WO2018109798A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2018109798A1
WO2018109798A1 PCT/JP2016/086879 JP2016086879W WO2018109798A1 WO 2018109798 A1 WO2018109798 A1 WO 2018109798A1 JP 2016086879 W JP2016086879 W JP 2016086879W WO 2018109798 A1 WO2018109798 A1 WO 2018109798A1
Authority
WO
WIPO (PCT)
Prior art keywords
airtight
air
room
space
heat
Prior art date
Application number
PCT/JP2016/086879
Other languages
French (fr)
Japanese (ja)
Inventor
俊郎 藤原
Original Assignee
東北資材工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東北資材工業株式会社 filed Critical 東北資材工業株式会社
Priority to PCT/JP2016/086879 priority Critical patent/WO2018109798A1/en
Publication of WO2018109798A1 publication Critical patent/WO2018109798A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Definitions

  • the present invention relates to an air conditioning system that forms a comfortable living space throughout the year with minimal atmospheric influence.
  • the forced ventilation by natural ventilation or centralized mechanical ventilation equipment in the above-mentioned conventional example is only for indoor ventilation.
  • the outdoor temperature is much lower than the indoor temperature, or the air changes. If there is a difference between the outdoor atmospheric pressure (atmospheric pressure) and the indoor atmospheric pressure (internal atmospheric pressure), the indoor temperature will drop, the humidity will change rapidly, Fluctuations occur in the atmospheric pressure.
  • Such conventional heat storage tanks and floors for example, in the winter, release the heat stored during the daytime to save energy in the daily heat balance, and use solar heat in large cycles throughout the seasons. Is not intended.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-28903 discloses a heat storage tank that is surrounded by a heat insulating material and buried in the ground with respect to a highly air-tight and highly heat-insulated house than a conventional house having a hermetic heat-insulating structure.
  • a building that is comprehensively bent by a heat insulating material is constructed on the top of the heat storage tank, the interior of the heat storage tank and the interior of the building are connected to each other, and heat is exchanged by a heat exchanger while exhausting from the heat storage tank.
  • An invention of an air conditioning system for a building in which the air supply from the outside is introduced into the room of the building by adjusting the humidity, temperature and pressure in the room of the building, for example, is disclosed.
  • This air conditioning system is designed to store the heat generated in a secret-structured room in an underground heat storage tank and gradually use the stored heat to adjust the temperature. In winter, cooking is done in a closed room space. Since there are many heat sources, sufficient heat can be stored in the heat storage tank. By using this heat in a distributed manner, a very comfortable living space can be formed in winter.
  • the present invention provides an air-conditioning system for a highly airtight and highly insulated house that can form a stable living space in the summer as well as a stable living space in the summer in a highly insulated and airtight house. It is intended to provide.
  • an object of the present invention is to provide an air-conditioning system that can be freely designed without interior projections.
  • the air conditioning system of the present invention is formed in the heat storage airtight tank formed in the ground, the underfloor airtight chamber formed on the heat storage airtight tank, the underfloor airtight chamber, and the side surface is formed by the airtight layer in the wall surface.
  • the air passage of the partition wall communicates with an underfloor hermetic chamber formed by a floor material and a base constituting the lower part of the airtight space of the room,
  • the underfloor airtight chamber communicates with the heat storage airtight tank through an underground duct provided in the foundation
  • the heat storage airtight tank is an air control unit having a heat exchanger and a cooling device disposed on the upper surface of the ceiling hermetic layer via an exhaust duct disposed in a wall ventilation layer formed in the wall constituting the room airtight space.
  • Air that is introduced into the unit and whose humidity, temperature, and pressure are adjusted by the air control unit is supplied to the airtight space in the room from the air supply port.
  • the air control unit further includes at least one device selected from the group consisting of a dehumidifier, a heater, a filter, and a humidifier.
  • the operation of the heater and the air conditioner is automatically switched depending on the temperature difference between the set temperature and the airtight space in the room.
  • the temperature of the airtight space in the room can be maintained within a certain range.
  • air in an airtight space is exhausted through the heat exchanger in an amount that changes the air in the airtight space, for example, 0.8 to 3.0 times per hour, and the same amount through the heat exchanger Introducing outside air.
  • a floor surface material is arranged on the surface of the base material through a spacer to form a floating floor structure, and a new supply duct branched from the supply duct is connected to a wall-tight layer and / or a partition wall air passage.
  • the air supply can be blown from the air supply port provided between the base material and the floor surface material after being lowered between the base material and the floor surface material.
  • the supply air discharged from the mouth can be adjusted to an appropriate temperature.
  • the exhaust duct that rises from the heat storage airtight tank to the air control unit at the back of the hut is preferably heat-insulated and placed in an airtight layer in the wall provided on the outer wall, thereby forming an airtight space on the inner wall.
  • the ridge of the exhaust duct is not formed. Therefore, the exhaust duct does not interfere with the design when designing a residential airtight space.
  • a plurality of underground ducts are collectively arranged at different positions so that the air flow in the heat storage and airtight tank is more complicated and the air flow is more likely to come into contact with the cobblestone. Therefore, the temperature can be more uniformly transmitted to the boulder without generating temperature spots, and the boulder can be used more effectively.
  • the temperature of the floor surface material is reduced to the room air-tightness by branching the air supply duct and lowering the air passage formed in the wall hermetic layer or partition wall and supplying air under the floor surface material raised by the spacer. It can always be matched with the temperature of the space, and cooling or heat from the floor surface material can be reduced.
  • FIG. 1 is a cross-sectional view showing an embodiment of a building adopting the air conditioning system of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing a part of another embodiment of a building adopting the air conditioning system of the present invention.
  • FIG. 3 is a diagram showing an example of the arrangement of underground ducts and exhaust ducts in the air conditioning system of the present invention.
  • number 1 in the air conditioning system of the present invention is a heat storage and airtight tank that is excavated in the ground and embedded therein.
  • the outer periphery of the heat storage airtight tank 1 is covered with a heat insulating material 4 such as a polystyrene foam having a thickness of 150 mm, for example, and a pressure-resistant rubber sheet 5 is stretched around the inner peripheral surface thereof.
  • a large number of cobblestones 2 having an average diameter of about 30 cm, for example, are spread inside the heat storage airtight tank 1, and the quarry 3 is spread almost uniformly on the upper surface of the cobblestone 2.
  • the surface of the quarry 3 is covered with a heat insulating material 4 such as polystyrene foam having a thickness of 150 mm through a pressure-resistant rubber sheet 5 to form a heat storage and airtight tank 1.
  • the volume of the heat storage air-tight tank 1 is good to a volume 100 m 3 per 0.99 ⁇ 190 m 3 of room airtight space 30.
  • the air can be exchanged 0.8 to 3.0 times per hour.
  • an underfloor airtight chamber 7 is formed under the floor above the heat storage airtight tank 1. That is, the foundation (concrete slab) 8 is placed on the heat-resistant rubber sheet 5 and the heat insulating material 4 that cover the upper surface of the heat storage airtight tank 1.
  • a floor 9 is stretched over the entire surface at a position spaced above the foundation 8 by a predetermined distance.
  • the floor 9 is formed by sandwiching a heat insulating material 10 such as a polystyrene foam having a thickness of 50 mm between a base plywood 60 and a base material 62.
  • a pressure-resistant rubber sheet may be disposed on the upper surface of the underfloor hermetic chamber 7 (the upper surface of the lower base plywood 60).
  • the wall hermetic layer 13 includes a heat insulating material 21 made of, for example, 50 mm thick polystyrene sandwiched between a pair of base plywoods 60, 60, and a pressure-resistant rubber sheet 5 disposed on the inside thereof.
  • An outer wall surface of the in-wall ventilation layer 13 is formed by placing an exterior wall 12 on the surface of the base plywood.
  • the inner wall surface is formed at a predetermined distance from the outer wall surface thus formed.
  • the inner wall surface is stretched between the base plywood 60 and the base plywood 60 by sandwiching a heat insulating material 21 such as a foamed polystyrene having a thickness of 25 mm in a sandwich shape.
  • a heat insulating material 21 such as a foamed polystyrene having a thickness of 25 mm in a sandwich shape.
  • a space spaced apart by a predetermined distance between the outer wall surface and the inner wall surface becomes the wall airtight layer 13.
  • An interior material 23 is stretched on the indoor side surface of the wall forming the airtight space 30 of the room.
  • the ceiling is formed by sandwiching a heat insulating material 21 made of, for example, 50 mm thick expanded polystyrene between a pair of base plywoods 60 and 60 and stretching the ceiling material between the peripheral walls 11 and 11. can do.
  • a heat insulating material 24 made of, for example, 50 mm thick expanded polystyrene, and, if necessary, a pressure-resistant rubber sheet 6 are sandwiched between the base plywood 60 and the shed back partition plate 25 at a predetermined interval on the upper surface of the ceiling thus stretched. Put it in between and stretch it.
  • the gap between the ceiling members formed at a predetermined interval and formed here becomes the ceiling airtight layer 14.
  • the interior of the building 6 is enclosed twice, an airtight layer or an airtight chamber is provided between the heat insulating materials, and the outer periphery is covered with a pressure-resistant rubber sheet, so that the airtightness is 1.5 mm / it is possible to suppress the m 2 about the top-level.
  • a shed space 27 is formed between the shed partition plate 25 and the roof 26 covering the upper side.
  • the roof 26 covers the upper surface of a heat insulating material 24 such as a 25 mm-thick foamed polystyrene and the lower surface with a base plywood 60 through a pressure-resistant rubber sheet 5 if necessary, and a long iron plate or the like on the upper surface of the base plywood 60 located on the upper surface.
  • the roof material 29 is stretched and formed.
  • a partition wall 31 is formed in order to divide the room airtight space 30 into a plurality of rooms, and an air passage 32 is formed in the partition wall 31.
  • the partition wall 31 is formed by arranging a pair of partition wall bodies 33 spaced apart by a predetermined distance, and the spaced distance becomes the air passage 32.
  • Each partition wall 33 is formed by covering a base plywood 60 and a heat insulating material made of, for example, 25 mm thick polystyrene, etc. on one side, covering with a pressure-resistant rubber sheet, and finishing the surface with a finishing material 35 such as sand wall finishing. It is formed by.
  • a ventilation port 32 formed in the partition wall 31 is formed with a through-hole 33 a for sucking air of the room airtight space 30, and the room airtightness is also formed at the lower end portion of the partition wall 31.
  • a through-hole 33b for sucking air in the space 30 is formed.
  • the lower end of the partition wall 31 communicates with the underfloor airtight chamber 7.
  • a plurality of underground ducts 36 are formed in the underfloor hermetic chamber 7 so as to penetrate the foundation 8 and communicate with the heat storage and airtight tank 1, thereby allowing the through holes 33 a and 33 b of the wall body 33, the ventilation path 32,
  • the room airtight space 30 of the building and the heat storage airtight tank 1 are configured to communicate with each other via the underfloor airtight chamber 7 and the underground duct 36.
  • a plurality of underground ducts 36 are preferably arranged at different positions.
  • the underground duct 36 is formed of a resin pipe having good heat resistance and weather resistance such as vinyl chloride, and its diameter is usually 50 to 100 mm, and the exhaust duct 66 of the heat storage airtight tank 1 is provided. Not provided on the side.
  • the cobblestone 2 filled in the heat storage airtight tank 1 can be used effectively.
  • the right peripheral wall 11 in FIG. 1 basically has the same configuration as the left peripheral wall 11, but an exhaust duct 66 rising from the heat storage airtight tank 1 is disposed in the airtight layer 13.
  • a plurality of the exhaust ducts 66 are preferably arranged as shown in FIG.
  • the exhaust duct 66 has been arranged in the sealed room 30, but when the exhaust passes through the exhaust duct 66, the surface of the exhaust duct 66 becomes hot and the temperature inside the sealed room 30 becomes high. Since there is a possibility that the exhaust duct 66 is exposed, the exhaust duct 66 is exposed in the closed space 30 of the room, so that the exhaust duct 66 may be freely designed without being adapted to the interior design of the closed space 30 of the room. In the present invention, the exhaust duct 66 is accommodated in the wall hermetic layer 13 formed in the peripheral wall 11 because it cannot be performed.
  • the plurality of exhaust ducts are formed in the in-wall hermetic layer 13 formed on the peripheral wall 11, so that the plurality of exhaust ducts 66 are formed in the room airtight. Therefore, the exhaust duct 66 does not interfere with the design when the interior decoration of the airtight space 30 is applied.
  • the plurality of exhaust ducts 66 are arranged in this way, a plurality of air flows are formed from the underground duct 36 inside the heat storage airtight tank 1, and the airflow flows throughout the cobblestone 2 filled inside the heat storage airtight tank 1. As a result, temperature fluctuations are unlikely to occur in the filled boulder 2 and the boulder 2 can be used efficiently.
  • the exhaust duct 66 rising from the heat storage and airtight tank 1 is disposed in the in-wall hermetic layer 13 formed in the peripheral wall 11 through the cloth base 15 rising from the foundation 8 and the flooring. It is in the hut space 27. When there are a plurality of exhaust ducts 66, they are converged into one in the cabin space 27.
  • the exhaust duct 66 is disposed in the wall hermetic layer 13 formed by arranging a heat insulating material, it does not need to be particularly insulated, but the temperature in the wall hermetic layer 13 may increase.
  • the exhaust duct 66 is preferably heat-insulated.
  • the exhaust duct 66 may be of a thickness that can be accommodated in the intra-wall hermetic layer 13 and the total thickness of the intra-wall hermetic layer 13 is, for example, about 70 mm. Preferably it is 40-50 mm.
  • the exhaust duct 66 may be formed of a heat-resistant synthetic resin such as vinyl chloride, and may be formed of a composite material surrounded by a heat insulating material such as foamed polystyrene, or may be formed of a foamed polystyrene tube. Also good.
  • the exhaust duct 66 that has escaped into the attic space 27 is introduced into the heat exchanger 40 of the air control unit 50 disposed in the attic space 27.
  • An air supply pipe 51 for supplying outdoor air to the heat exchanger 40 and an exhaust pipe 52 for exhausting exhaust gas introduced from the exhaust duct 66 are provided, and the temperature in the exhaust gas from the exhaust duct 66 is changed from the air supply pipe 51. Heat is exchanged with external air to be supplied and exhausted from the exhaust pipe 52. By passing through the heat exchanger 40, the heat in the exhaust duct 66 is transferred to the air supplied from the supply pipe 51 and is not released from the exhaust pipe 52.
  • the temperature of the exhaust from the exhaust duct 66 is too high, it is possible to reduce the heat exchange rate of the heat exchanger 40 and include the heat in the exhaust gas exhausted from the exhaust pipe 52 to exhaust heat. is there. Furthermore, when the temperature of the atmosphere is higher than the exhaust gas from the exhaust duct, the air can be introduced by cooling the atmosphere by exchanging heat between the exhaust gas in the exhaust duct and the atmosphere.
  • the air from the heat exchanger 40 is normally sent to the dehumidifier 41, and dehumidifies the air supplied through the air supply pipe 51 and heat-exchanged by the heat exchanger 40. Humidity is removed to make dry air once.
  • the air thus dried by the dehumidifier 41 is heat-exchanged by the heat exchanger 40, and while the air itself is fresh external air, the temperature of the air is almost equal to the temperature of the exhaust in the exhaust duct 66.
  • the heater 42 is usually heated to a predetermined set temperature.
  • the temperature of the air introduced from the heat storage airtight tank 1 into the heat exchanger 40 by the exhaust duct 66 is considerably high, and outside air is introduced from the air supply pipe 51.
  • heat is hardly required by heating.
  • the air is heated by the heater 42.
  • the set temperature is 25 ° C., for example.
  • the heater 42 is driven to keep the air temperature constant.
  • the temperature of the air in the airtight space 30 can be kept constant by exchanging heat as described above and using a heater as an auxiliary.
  • the heat source in the present invention is a heater 42 used as an auxiliary and a heat source used in the airtight space 30 in the room. These heat sources are stored in the heat storage airtight tank 1 and used. In the winter season, the room airtight space 30 can be maintained at a temperature of, for example, about 25 ° C. by using these heat sources even in a cold region.
  • the heat storage airtight tank 1 having a very large volume compared to the airtight space 30 in the living room, the temperature change in the four seasons is received by the heat storage airtight tank 1, and the constant temperature, humidity and pressure are constant throughout the four seasons. Should be able to keep on.
  • the heat in the atmosphere taken in by the heat exchanger 40 can be taken in as warm air without performing heat exchange. Rather, the amount of heat generated in the airtight space 30 in the winter and summer does not change greatly. Therefore, when the temperature of the atmosphere is high, the amount of heat of the atmosphere supplied from the supply pipe 51 is greater than the amount of heat exhausted from the exhaust pipe 52. The situation that is large occurs.
  • the airtight space 30 in the room is a space that is completely thermally shut off from the outside air by at least four layers of the heat insulating material, the airtight layer, the pressure-resistant rubber sheet, and the heat insulating material, and the waste heat means is basically Only the heat exchanger 40 is provided. Therefore, when the temperature of the air supplied from the supply pipe 51 is higher than the temperature of the exhaust discharged from the exhaust pipe 52, heat is accumulated in the air conditioning system of the present invention, resulting in an overheated state.
  • an air control unit 50 incorporating a cooling device 43 is used.
  • the air conditioner 43 is driven when the temperature of the air taken in from the air supply pipe 51 is higher than the temperature of the exhaust air exhausted from the exhaust pipe 52, thereby cooling the air supply air.
  • the temperature of the introduction air cooled by the cooling device 43 is made equal to the temperature set in the airtight space 30 in the room. By doing in this way, it can prevent that the inside of the air-conditioning system of this invention will be in an overheating state.
  • the heater 42 is not driven. Heat generated by using the air conditioner 43 is released to the outside of the building 6 by an exhaust means (not shown) provided separately.
  • the heat exchanger 40, the heater 42, and the air conditioner 43 are automatically driven and stopped according to, for example, a temperature sensor provided outside the building 6 and a temperature detected by a temperature sensor disposed in the exhaust duct 66. It is preferable to carry out.
  • the air that has passed through the air conditioner 43 is then removed by the filter 44 from harmful substances such as dust and pollen and sent to the humidifier 45.
  • the air sent to the humidifier 45 is humidified to, for example, 80% by the humidifier 45, and the air supply duct is branched from the air supply duct 46 and is arranged on the ceiling of each room space 30.
  • Each room airtight space 30 is sent from the air supply port 47 to each room airtight space 30 and can be kept at a humidity of, for example, 25 ° C. and 80% throughout the year.
  • the temperature of the air in the room airtight space 30 is the temperature of the air supplied from the air supply port 47 due to sunlight from a window or the like. Is generally higher.
  • the air in the airtight space 30 thus heated is introduced into the air passage 32 through the through-holes 33a and 33b provided in the upper and lower ends of the partition wall and sent to the underfloor airtight chamber 7,
  • the heat storage airtight layer 1 is reached through the duct 36.
  • the heat storage airtight tank 1 is filled with a large number of cobblestones 2 as described above, and the air introduced from the underground duct 36 is deprived of heat by the cobblestones 2 by coming into contact with the cobblestones 2. Heat is stored in the heat storage airtight tank 1 by being cooled.
  • an exhaust duct 66 is disposed at a position spaced apart from the underground duct 36 by a predetermined distance. Air in the heat storage airtight tank 1 passes through the exhaust duct 66 and enters the shed space 27. It is introduced into the arranged air control unit 50 and the same operation as described above is performed.
  • the air supply duct that has been humidified is branched, and the inside of the wall hermetic layer 13 where the exhaust duct 66 is not disposed is lowered to lower the floor surface material 63.
  • An air supply port 47 is arranged on the lower side.
  • a spacer 64 is sandwiched between the floor surface material 63 and the base material 62 to form a continuous gap between the floor surface material 63 and the base material 62.
  • the supply air flowing through the underfloor air passage 65 under the floor surface material 63 passes from the end of the floor surface material 63 through the through hole to the underfloor airtight chamber 7, passes through the underground duct 36, and is stored in the heat storage airtight tank 1.
  • the humidity of the airtight space 30 can be kept at, for example, 80% and the room temperature at, for example, 25 ° C., thereby preventing the atmosphere from adversely affecting rheumatism and joint diseases. It is also useful for preventing colds.
  • the room airtight space 30 and the heat storage airtight tank 1 etc. are shut off from the outside, thereby suppressing rapid fluctuations in the internal atmospheric pressure, causing the occurrence of stroke due to the rapid fluctuations in atmospheric pressure, blood The deterioration of the circulation can be prevented.
  • the exhaust duct 66 is not exposed in the airtight space 30 of the room and does not hinder the interior design.
  • thermometer a thermometer, a barometer, and a hygrometer are set in the airtight space 30 of the room, and the humidifier 45 is controlled by the hygrometer so that the humidity of the airtight space 30 is maintained at a constant value of 80%, for example.
  • the barometer can control the heat exchanger 40 or the like to keep the air pressure in the airtight space 30 constant, or keep the room temperature constant.
  • the air conditioning system of the present invention is configured as described above, most of the heat stored in the heat storage airtight tank is used by exchanging heat with a heat exchanger, and the heat storage airtight tank is effectively used throughout the year. be able to. In addition, it is possible to conduct the necessary ventilation in the room by guiding the fresh air exchanged by the heat exchanger to the airtight space in the room.
  • the room airtight space and the heat storage airtight space of the building are both in communication with each other in a state of being cut off from the outside through a heat insulating material, so that the indoor state varies with the influence of the outdoor state due to ventilation. There is nothing to do.
  • the heat in the supply air can be exchanged into the exhaust by the heat exchanger and released outside the building. If this is not sufficient, the air supply is forcibly cooled by a cooler arranged in the air control unit. Therefore, even when the atmospheric temperature is high, the temperature of the room airtight space is expected according to the system of the present invention. No more than you are.
  • the air supply duct is branched, and the airtight layer in the wall where the exhaust duct does not pass or the ventilation layer in the partition wall is lowered to the floor, and a ventilation path is created using a spacer at the bottom of the floor surface material to supply air
  • a ventilation path is created using a spacer at the bottom of the floor surface material to supply air
  • the heat storage airtight tank is larger than the room airtight space, and therefore the heat storage capacity of the heat storage airtight tank is very large. For this reason, it is possible not only to cope with short-term temperature changes such as day and night temperature changes, but also to form a comfortable living environment of, for example, 25 ° C. and humidity of about 80% in any season.
  • the dehumidifier 41, the heater 42, the air conditioner 43, the filter 44, and the humidifier 45 are described as separate devices, but these devices can be arbitrarily combined and incorporated into the system.
  • the order of incorporation can be arbitrarily changed within a range that does not impair the object of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Building Environments (AREA)

Abstract

The purpose of the present invention is to provide an air conditioning system for a highly airtight and highly heat-insulating house, the system being capable of forming a stable living space in a winter season and also forming a stable living space in a summer season in a highly heat-insulating and highly airtight house. The system is configured to include: a heat storage airtight tank formed in the ground; an underfloor airtight chamber formed on the heat storage airtight tank; and a room airtight space which is formed on the underfloor airtight chamber, and the side surface of which is surrounded by a wall surface airtight layer, and moreover on the top surface of which a ceiling airtight layer is disposed. The room airtight space has an air supply port for supplying air sent from an air control unit formed on the ceiling airtight layer to the room airtight space. The room airtight space communicates with a passage vertically passing through a partitioning wall, which defines the room airtight space, by passing-ports formed on upper and lower end portions of the partitioning wall. The passage in the partitioning wall communicates with the underfloor airtight chamber formed by a floor material and a base constituting the lower part of the room airtight space. The underfloor airtight chamber communicates with the heat storage airtight tank through an underground duct provided in the base. The heat storage airtight tank communicates with the air control unit which has a heat exchanger and a cooling machine, and which is disposed in an attic space on the top surface of the ceiling airtight layer through an exhaust duct disposed in a ventilating layer formed in the wall body constituting the room airtight space. A part of exhausted air that has been introduced in the air control unit from the heat storage airtight tank through the exhaust duct is discharged to the outside of a building through the heat exchanger. Outside air corresponding to the amount of the exhausted air is introduced into the air control unit through the heat exchanger. The air control unit supplies air, of which humidity, temperature, and pressure have been adjusted, to the room airtight space through the air supply port.

Description

空調システムAir conditioning system
 本発明は大気の影響を最小限にして一年を通して快適な居住空間を形成する空調システムに関するものである。 The present invention relates to an air conditioning system that forms a comfortable living space throughout the year with minimal atmospheric influence.
 近年、建築物の周囲を断熱材で包括的に囲繞して、建築物の断熱性および気密性を向上させた気密住宅が開発され、特に寒冷地において好評を博している。 In recent years, airtight houses have been developed in which the surroundings of a building are comprehensively surrounded by a heat insulating material to improve the heat insulating property and airtightness of the building, and are particularly popular in cold regions.
 このような気密住宅においては建築物内が密封空間となるため、建築物内の計画的な換気が必要である。すなわち、健康のためにも、優れた居住性を長く保つためにも、空気の汚れや不要な湿度から居住を守って、清潔で健康的な居住環境を作り出すための適正な換気が必要である。 In such an airtight house, since the inside of the building becomes a sealed space, the planned ventilation in the building is necessary. In other words, proper ventilation is necessary to create a clean and healthy living environment by protecting the house from air pollution and unnecessary humidity in order to maintain good living comfort and good health. .
 一般に、上記のような気密住宅では、一時間に0.5回(二時間に1回)程度の自然換気があるといわれているが、これだけでは常時必要な空気量が確保されているとは言えないので、排気から熱を回収するようにした熱交換機と、ダクト配管とを備えた集中機械換気設備を配置して、必要に応じて強制的に換気を行うことが必要であるとされている。 In general, it is said that the above-mentioned airtight houses have natural ventilation of about 0.5 times per hour (once every two hours). It is said that it is necessary to forcibly ventilate as necessary by arranging a centralized mechanical ventilation facility equipped with a heat exchanger that recovers heat from the exhaust and duct piping. Yes.
 一方、地中に蓄熱槽や蓄熱床を設けて窓等から取り込んだ太陽光をこの蓄熱槽や蓄熱床に蓄熱して、この蓄熱した熱を放出することにより太陽光を有効に利用して、特に暖房時における省エネを図ることも広く行われている。 On the other hand, by installing solar storage tanks and thermal storage floors in the ground and storing sunlight taken in from windows etc. in the thermal storage tanks and thermal storage floors, effectively using sunlight by releasing the stored heat, In particular, energy saving during heating is also widely performed.
 しかしながら、上述した従来例における自然換気或いは集中機械換気設備による強制換気は室内の換気のみに充填を置いたもので、例えば屋外の温度の方が室内の温度よりもかなり低かったり、大気の変動に伴って屋外の気圧(大気圧)と室内の気圧(内気圧)との間に差が生じてしまうと、室内の温度が低下したり、室内に湿度が急速に変化したり、さらには室内の気圧に変動が生じてしまう。 However, the forced ventilation by natural ventilation or centralized mechanical ventilation equipment in the above-mentioned conventional example is only for indoor ventilation. For example, the outdoor temperature is much lower than the indoor temperature, or the air changes. If there is a difference between the outdoor atmospheric pressure (atmospheric pressure) and the indoor atmospheric pressure (internal atmospheric pressure), the indoor temperature will drop, the humidity will change rapidly, Fluctuations occur in the atmospheric pressure.
 こうした温度の急速な変動、湿度の急速な変化および気圧の急激な変動は、居住者の健康に悪影響を及ぼすことがある。 こ う し た Such rapid fluctuations in temperature, rapid changes in humidity, and sudden changes in atmospheric pressure can adversely affect the health of residents.
 例えば、従来の蓄熱槽および蓄熱床では、自然換気或いは集中機械換気に伴って、室内の温度、湿度が急速に変動すると、リューマチや関節炎に悪影響を与えることがあり、また、湿度の変化によって風邪を悪化させることがある。さらに、室内の気圧の変動に伴って、脳卒中の危険度が高まるばかりでなく、血液の循環にも悪影響を与えることがある。 For example, in conventional heat storage tanks and floors, rapid changes in room temperature and humidity with natural ventilation or concentrated mechanical ventilation may adversely affect rheumatism and arthritis. May worsen. Furthermore, fluctuations in room air pressure not only increase the risk of stroke, but can also adversely affect blood circulation.
 このような従来の蓄熱槽および蓄熱床は、例えば冬期においては、昼間に蓄えた熱を夜間に放出して日々の熱収支における省エネを図るものであり、四季を通じた大きなサイクルでの太陽熱の利用を図るものではない。 Such conventional heat storage tanks and floors, for example, in the winter, release the heat stored during the daytime to save energy in the daily heat balance, and use solar heat in large cycles throughout the seasons. Is not intended.
 こうした中、従来の気密断熱構造の住宅よりも高気密で高断熱の住宅に関して特許文献1(特開平8-28903号公報)には、周囲を断熱材で包囲して地中に埋設した蓄熱槽の上部に断熱材で包括的に包撓された建築物を構築すると共に、前記蓄熱槽の内部と建築物の室内とを互いに連通させ、前記蓄熱槽内から排気を行いつつ熱交換機で熱交換した外部からの給気を、例えば建築物の室内の湿度、温度および圧力が一定となるように調節して建築物の室内に導入した建築物の空調システムの発明が開示されている。 Under these circumstances, Patent Document 1 (Japanese Patent Application Laid-Open No. 8-28903) discloses a heat storage tank that is surrounded by a heat insulating material and buried in the ground with respect to a highly air-tight and highly heat-insulated house than a conventional house having a hermetic heat-insulating structure. A building that is comprehensively bent by a heat insulating material is constructed on the top of the heat storage tank, the interior of the heat storage tank and the interior of the building are connected to each other, and heat is exchanged by a heat exchanger while exhausting from the heat storage tank. An invention of an air conditioning system for a building in which the air supply from the outside is introduced into the room of the building by adjusting the humidity, temperature and pressure in the room of the building, for example, is disclosed.
 この空調システムは、機密構造の室内で発生した熱を地下の蓄熱槽に蓄えてこの蓄熱した熱を徐々に使用して温度調整を図るものであり、冬場は閉鎖された居室空間で調理をするなど熱源が多いので蓄熱槽に充分な熱を蓄えることができる。この熱を分散して使用することにより、冬場は非常に快適な居住空間を形成することができる。 This air conditioning system is designed to store the heat generated in a secret-structured room in an underground heat storage tank and gradually use the stored heat to adjust the temperature. In winter, cooking is done in a closed room space. Since there are many heat sources, sufficient heat can be stored in the heat storage tank. By using this heat in a distributed manner, a very comfortable living space can be formed in winter.
 ところが、夏場においても居室空間における熱源はそれほど大きく変化せず、従って、蓄熱槽も相当量の熱量が蓄熱された状態になり、小屋裏に設けられた熱交換機では廃熱が間に合わないことがあり、結果として夏場の居室空間の温度が高くなる傾向がある。さらに、蓄熱層から小屋裏に空気を送る排気ダクトが居室内にむき出しになっているために、この排気ダクトも熱くなり、この排気ダクトから放出する熱量も無視できない程度になるとの問題がある。また、この排気ダクトが居住空間のインテリアをデザインする上でも障害になることがある。 However, even in the summer, the heat source in the living room space does not change so much, so a considerable amount of heat is also stored in the heat storage tank, and waste heat may not be in time for the heat exchanger installed in the back of the hut. As a result, the temperature of the room space in summer tends to increase. Furthermore, since the exhaust duct for sending air from the heat storage layer to the back of the cabin is exposed in the living room, this exhaust duct also becomes hot, and there is a problem that the amount of heat released from this exhaust duct cannot be ignored. In addition, this exhaust duct may be an obstacle in designing the interior of the living space.
特開平8-28903号公報JP-A-8-28903
 本発明は、高断熱の高気密住宅において、冬期において安定した居住空間を形成することができるのは勿論、夏期においても安定した居住空間を形成することができる高気密高断熱住宅における空調システムを提供することを目的としている。 The present invention provides an air-conditioning system for a highly airtight and highly insulated house that can form a stable living space in the summer as well as a stable living space in the summer in a highly insulated and airtight house. It is intended to provide.
 さらに本発明は、インテリアデザイン的にも余分な突起物がなく、自由にインテリアデザインをすることができる空調システムを提供することを目的としている。 Furthermore, an object of the present invention is to provide an air-conditioning system that can be freely designed without interior projections.
 本発明の空調システムは、地中に形成された蓄熱気密槽と、該蓄熱気密槽の上に形成された床下気密室と、該床下気密室の上に形成され、側面を壁面内気密層によって囲繞され、上面に天井気密層が配置された居室気密空間とを有し、
 上記居室気密空間は、天井気密層の上に形成された空気コントロールユニットから送られる空気を居室気密空間に供給する給気口を有すると共に、該居室気密空間を区画する間仕切り壁の上下端部に形成された貫通口によって該間仕切り壁を縦に貫通する通気路と連通しており、
 上記間仕切り壁の通気路は、居室気密空間の下部を構成する床材と基礎によって形成される床下気密室と連通しており、
 該床下気密室は、基礎に設けられた地下ダクトによって蓄熱気密槽と連通しており、
 蓄熱気密槽は、居室気密空間を構成する壁体内に形成された壁体内通気層内に配置された排気ダクトを介して天井気密層の上面に配置された熱交換機および冷房機を有する空気コントロールユニットと連通しており、
 蓄熱気密槽から排気ダクトを介して空気コントロールユニットに導入された排気の一部は、熱交換機を介して建築物外部に放出されると共に、排気された分の外気が熱交換機を介して空気コントロールユニットに導入され、該空気コントロールユニットにより、湿度、温度および圧力を調整された空気を、給気口から居室気密空間に供給することを特徴としている。
The air conditioning system of the present invention is formed in the heat storage airtight tank formed in the ground, the underfloor airtight chamber formed on the heat storage airtight tank, the underfloor airtight chamber, and the side surface is formed by the airtight layer in the wall surface. A room airtight space surrounded by a ceiling airtight layer on the upper surface,
The room airtight space has an air supply port for supplying the air sent from the air control unit formed on the ceiling airtight layer to the room airtight space, and at the upper and lower ends of the partition wall that partitions the room airtight space. Communicated with the ventilation path that vertically penetrates the partition wall by the formed through-hole,
The air passage of the partition wall communicates with an underfloor hermetic chamber formed by a floor material and a base constituting the lower part of the airtight space of the room,
The underfloor airtight chamber communicates with the heat storage airtight tank through an underground duct provided in the foundation,
The heat storage airtight tank is an air control unit having a heat exchanger and a cooling device disposed on the upper surface of the ceiling hermetic layer via an exhaust duct disposed in a wall ventilation layer formed in the wall constituting the room airtight space. Communicated with
A part of the exhaust gas introduced into the air control unit from the heat storage airtight tank through the exhaust duct is released to the outside of the building through the heat exchanger, and the exhausted outside air is controlled by the air through the heat exchanger. Air that is introduced into the unit and whose humidity, temperature, and pressure are adjusted by the air control unit is supplied to the airtight space in the room from the air supply port.
 上記空気コントロールユニットが、さらに、除湿機、加熱機、フィルターおよび加湿機よりなる群から選ばれる少なくとも1種類の機器を有することが好ましい。 It is preferable that the air control unit further includes at least one device selected from the group consisting of a dehumidifier, a heater, a filter, and a humidifier.
 本発明の空調システムでは、上記空気コントロールユニットが、加熱機および冷房機の両者を有する場合において、設定温度と居室気密空間との温度差によって、自動的に加熱機および冷房機の運転切り替えを行って、居室気密空間の温度を一定範囲内に維持することができる。 In the air conditioning system of the present invention, when the air control unit has both the heater and the air conditioner, the operation of the heater and the air conditioner is automatically switched depending on the temperature difference between the set temperature and the airtight space in the room. Thus, the temperature of the airtight space in the room can be maintained within a certain range.
 本発明の空調システムにおいては、通常は、気密空間の空気を一時間に例えば0.8~3.0回入れ替える量の空気を熱交換機を介して排気すると共に、該熱交換機を介して同量の外気を導入する。 In the air conditioning system of the present invention, normally, air in an airtight space is exhausted through the heat exchanger in an amount that changes the air in the airtight space, for example, 0.8 to 3.0 times per hour, and the same amount through the heat exchanger Introducing outside air.
 上記空調システムでは、下地材の表面にスペーサーを介して床表面材を配置して浮き床構造を形成し、供給ダクトから分岐した新たな供給ダクトを壁面気密層および/または間仕切り壁の通気路を、下地材と床表面材との間まで立下げて、該下地材と床表面材との間に設けられた給気口から給気を吹き込むことができる。 In the above air conditioning system, a floor surface material is arranged on the surface of the base material through a spacer to form a floating floor structure, and a new supply duct branched from the supply duct is connected to a wall-tight layer and / or a partition wall air passage. The air supply can be blown from the air supply port provided between the base material and the floor surface material after being lowered between the base material and the floor surface material.
 本発明においては、排気ダクトを異なる位置に複数本配置することが好ましい。 In the present invention, it is preferable to arrange a plurality of exhaust ducts at different positions.
 さらに、地下ダクトを複数本まとめて、異なる位置に複数配置することが好ましい。 Furthermore, it is preferable to arrange a plurality of underground ducts at different positions.
 本発明によれば、空気コントロールユニット内に冷房機を組み入れることによって、蓄熱気密槽が過加温状態になり、空気コントロールユニット内の熱交換機による廃熱が不充分である場合においても、給気口から排出される給気を適正な温度に調節することができる。 According to the present invention, even if the heat storage airtight tank is overheated by incorporating the air conditioner in the air control unit and the waste heat by the heat exchanger in the air control unit is insufficient, The supply air discharged from the mouth can be adjusted to an appropriate temperature.
 さらに、蓄熱気密槽から小屋裏の空気コントロールユニットに立ち上がる排気ダクトを、好適には断熱加工して外壁に設けられた壁体内気密層内に配置することにより、居住気密空間を形成する内壁面に排気ダクトの出っ張りが形成されない。従って、居住気密空間をデザインする際に排気ダクトがデザインの邪魔をすることがない。 Furthermore, the exhaust duct that rises from the heat storage airtight tank to the air control unit at the back of the hut is preferably heat-insulated and placed in an airtight layer in the wall provided on the outer wall, thereby forming an airtight space on the inner wall. The ridge of the exhaust duct is not formed. Therefore, the exhaust duct does not interfere with the design when designing a residential airtight space.
 この排気ダクトを複数本形成することにより、蓄熱気密槽における空気の流れを複数形成することができ、蓄熱気密槽における空気の流れを複雑化することができ、充填されている玉石全体に空気が行き渡るので、温度斑が発生し難く、玉石を有効に利用することができる。 By forming a plurality of the exhaust ducts, it is possible to form a plurality of air flows in the heat storage and airtight tank, complicate the air flow in the heat storage and airtight tank, and air is applied to the entire filled cobblestone. Since it spreads, temperature spots are unlikely to occur, and cobblestone can be used effectively.
 また、この排気ダクトを断熱加工することにより、この排気ダクトからの発熱もなく、さらにこの排気ダクトが立ち上がる壁体内気密層も表裏面が断熱材で覆うことにより壁体内気密層からの発熱もない。 Also, by heat-insulating this exhaust duct, there is no heat generation from this exhaust duct, and there is no heat generation from the wall airtight layer by covering the front and back surfaces of the wall with a heat insulating material. .
 さらに本発明においては、地下ダクトも複数本まとめて異なる位置に複数配置することにより、蓄熱気密槽内の空気の流れはより複雑化して、空気流が玉石と接触し易くなり、充填された玉石に温度斑を作らずにより均一に玉石に温度を伝達することができ、玉石をより有効に利用することができる。 Furthermore, in the present invention, a plurality of underground ducts are collectively arranged at different positions so that the air flow in the heat storage and airtight tank is more complicated and the air flow is more likely to come into contact with the cobblestone. Therefore, the temperature can be more uniformly transmitted to the boulder without generating temperature spots, and the boulder can be used more effectively.
 また、給気ダクトを分岐して壁体内気密層あるいは間仕切り壁に形成された通気路を立ち下げてスペーサーで床上げした床表面材の下に給気することにより、床表面材の温度を居室気密空間の温度と常に一致させることができ、床表面材からの冷え込み或いは暑さを低減することができる。 In addition, the temperature of the floor surface material is reduced to the room air-tightness by branching the air supply duct and lowering the air passage formed in the wall hermetic layer or partition wall and supplying air under the floor surface material raised by the spacer. It can always be matched with the temperature of the space, and cooling or heat from the floor surface material can be reduced.
図1は、本発明の空調システムを採用した建築物の一実施例を示す断面図である。FIG. 1 is a cross-sectional view showing an embodiment of a building adopting the air conditioning system of the present invention. 図2は、本発明の空調システムを採用した建築物の他の実施例の一部を拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view showing a part of another embodiment of a building adopting the air conditioning system of the present invention. 図3は、本発明の空調システムにおける地下ダクトおよび排気ダクトの配置の例を示す図である。FIG. 3 is a diagram showing an example of the arrangement of underground ducts and exhaust ducts in the air conditioning system of the present invention.
 次に本発明の空調システムを採用した建築物を図面を参照しながら本発明の実施例を詳細に説明するが本発明はこれらによって限定されるものではない。 Next, an embodiment of the present invention will be described in detail with reference to the drawings for a building employing the air conditioning system of the present invention, but the present invention is not limited thereto.
 図1において、本発明の空調システムにおける付番1は、地中を堀削してここに埋設した蓄熱気密槽である。この蓄熱気密槽1は外周が、例えば150mm厚の発泡スチロール等の断熱材4で覆われており、その内周面には耐圧ゴムシート5が張り巡らされている。この蓄熱気密槽1の内部には例えば平均直径30cm程度の玉石2が多数敷き詰められており、この玉石2の上面には採石3がほぼ均一に敷き詰められている。この採石3の表面には耐圧ゴムシート5を介して例えば150mm厚の発泡スチロール等の断熱材4で覆われて、蓄熱気密槽1を形成している。 In FIG. 1, number 1 in the air conditioning system of the present invention is a heat storage and airtight tank that is excavated in the ground and embedded therein. The outer periphery of the heat storage airtight tank 1 is covered with a heat insulating material 4 such as a polystyrene foam having a thickness of 150 mm, for example, and a pressure-resistant rubber sheet 5 is stretched around the inner peripheral surface thereof. A large number of cobblestones 2 having an average diameter of about 30 cm, for example, are spread inside the heat storage airtight tank 1, and the quarry 3 is spread almost uniformly on the upper surface of the cobblestone 2. The surface of the quarry 3 is covered with a heat insulating material 4 such as polystyrene foam having a thickness of 150 mm through a pressure-resistant rubber sheet 5 to form a heat storage and airtight tank 1.
 この蓄熱気密槽1の容積は、居室気密空間30の容積100m3当たり150~190m3にするのが良い。 The volume of the heat storage air-tight tank 1 is good to a volume 100 m 3 per 0.99 ~ 190 m 3 of room airtight space 30.
 このように居室気密空間30に対して蓄熱気密槽1の容積を設定することにより、一時間当たり0.8~3.0回の空気の入れ換えが可能になる。 As described above, by setting the volume of the heat storage airtight tank 1 with respect to the airtight space 30 in the room, the air can be exchanged 0.8 to 3.0 times per hour.
 上記の建築物6は、蓄熱気密槽1の上の床下に床下気密室7が形成されている。すなわち、蓄熱気密槽1の上面を覆う耐熱ゴムシート5および断熱材4の上に基礎(コンクリートスラブ)8が打設されている。そして、この基礎8の上方の所定間隔離間した位置に床9が一面に張設されている。この床9は、下地合板60と下地材62との間に例えば50mm厚の発泡スチロール等の断熱材10をサンドイッチ状に挟んで形成されている。 In the building 6 described above, an underfloor airtight chamber 7 is formed under the floor above the heat storage airtight tank 1. That is, the foundation (concrete slab) 8 is placed on the heat-resistant rubber sheet 5 and the heat insulating material 4 that cover the upper surface of the heat storage airtight tank 1. A floor 9 is stretched over the entire surface at a position spaced above the foundation 8 by a predetermined distance. The floor 9 is formed by sandwiching a heat insulating material 10 such as a polystyrene foam having a thickness of 50 mm between a base plywood 60 and a base material 62.
 なお、床下気密室7の上面(下部の下地合板60の上面)には耐圧ゴムシートを配置しても良い。 A pressure-resistant rubber sheet may be disposed on the upper surface of the underfloor hermetic chamber 7 (the upper surface of the lower base plywood 60).
 上記床9から立ち上がる周壁11には壁体内気密層13が形成されている。この壁体内気密層13は、一対の下地合板60,60の間に、例えば50mm厚の発泡スチロール等からなる断熱材21をサンドイッチ状に挟んで、さらにその内側に耐圧ゴムシート5を配置し、外側の下地合板の表面に外装壁12を打設することにより壁内通気層13の外側の壁面を形成する。 An airtight layer 13 in the wall is formed on the peripheral wall 11 rising from the floor 9. The wall hermetic layer 13 includes a heat insulating material 21 made of, for example, 50 mm thick polystyrene sandwiched between a pair of base plywoods 60, 60, and a pressure-resistant rubber sheet 5 disposed on the inside thereof. An outer wall surface of the in-wall ventilation layer 13 is formed by placing an exterior wall 12 on the surface of the base plywood.
 こうして形成された外側の壁面とは所定間隔離間して内側の壁面を形成する。内側の壁面は下地合板60と下地合板60との間に例えば25mm厚の発泡スチロール等の断熱材21をサンドイッチ状に挟んで張設する。外側の壁面と内側の壁面との間に所定間隔離間した空間が壁体内気密層13となる。なお、居室気密空間30を形成する壁の室内側表面には内装材23が張設されている。 The inner wall surface is formed at a predetermined distance from the outer wall surface thus formed. The inner wall surface is stretched between the base plywood 60 and the base plywood 60 by sandwiching a heat insulating material 21 such as a foamed polystyrene having a thickness of 25 mm in a sandwich shape. A space spaced apart by a predetermined distance between the outer wall surface and the inner wall surface becomes the wall airtight layer 13. An interior material 23 is stretched on the indoor side surface of the wall forming the airtight space 30 of the room.
 一方、天井は、一対の下地合板60,60の間に例えば50mm厚の発泡ポリスチレン等からなる断熱材21をサンドイッチ状にはさみ、この天井材を、周壁11、11間に張設することにより形成することができる。 On the other hand, the ceiling is formed by sandwiching a heat insulating material 21 made of, for example, 50 mm thick expanded polystyrene between a pair of base plywoods 60 and 60 and stretching the ceiling material between the peripheral walls 11 and 11. can do.
 さらに、こうして張設した天井の上面に所定間隔離間して、下地合板60と、小屋裏仕切板25間に例えば50mm厚の発泡ポリスチレンなどからなる断熱材24および必要により耐圧ゴムシート6をサンドイッチ状に挟み込んで張設する。ここで形成される所定間隔離間して張設された天井材の間隙が天井気密層14となる。 Further, a heat insulating material 24 made of, for example, 50 mm thick expanded polystyrene, and, if necessary, a pressure-resistant rubber sheet 6 are sandwiched between the base plywood 60 and the shed back partition plate 25 at a predetermined interval on the upper surface of the ceiling thus stretched. Put it in between and stretch it. The gap between the ceiling members formed at a predetermined interval and formed here becomes the ceiling airtight layer 14.
 このように建築物6の室内を二重に包囲すると共に、この断熱材の間に気密層あるいは気密室を設け、さらに外周を耐圧ゴムシートで覆うことにより、気密性を、例えば1.5mm/m2程度のトップレベルに抑えることができる。 In this way, the interior of the building 6 is enclosed twice, an airtight layer or an airtight chamber is provided between the heat insulating materials, and the outer periphery is covered with a pressure-resistant rubber sheet, so that the airtightness is 1.5 mm / it is possible to suppress the m 2 about the top-level.
 そして、上記小屋裏仕切板25とこの上方を覆う屋根26との間には、小屋裏空間27が形成されている。ここで屋根26は、例えば25mm厚の発泡スチロール等の断熱材24の上面および必要により耐圧ゴムシート5を介して下面を下地合板60で覆い、上面に位置する下地合板60の上面に長尺鉄板などの屋根材29を張設して形成されている。 Further, a shed space 27 is formed between the shed partition plate 25 and the roof 26 covering the upper side. Here, for example, the roof 26 covers the upper surface of a heat insulating material 24 such as a 25 mm-thick foamed polystyrene and the lower surface with a base plywood 60 through a pressure-resistant rubber sheet 5 if necessary, and a long iron plate or the like on the upper surface of the base plywood 60 located on the upper surface. The roof material 29 is stretched and formed.
 さらに本発明の空調システムにおいては、居室気密空間30を複数の部屋に区画するために間仕切り壁31が形成されており、この間仕切り壁31の内部には通気路32が形成されている。この間仕切り壁31は、一対の間仕切り壁体33を所定間隔離間して配置することにより形成されており、離間された間隔が通気路32となる。 Furthermore, in the air conditioning system of the present invention, a partition wall 31 is formed in order to divide the room airtight space 30 into a plurality of rooms, and an air passage 32 is formed in the partition wall 31. The partition wall 31 is formed by arranging a pair of partition wall bodies 33 spaced apart by a predetermined distance, and the spaced distance becomes the air passage 32.
 各間仕切り壁体33は、下地合板60と、例えば厚さ25mmの発泡ポリスチレン等からなる断熱材を一面にしきならべ、耐圧ゴムシートで覆い、この表面を砂壁仕上げなどの仕上げ材35により仕上げを行うことにより形成されている。 Each partition wall 33 is formed by covering a base plywood 60 and a heat insulating material made of, for example, 25 mm thick polystyrene, etc. on one side, covering with a pressure-resistant rubber sheet, and finishing the surface with a finishing material 35 such as sand wall finishing. It is formed by.
 さらに間仕切り壁31の上端部には、間仕切り壁31に形成された通気路32に、居室気密空間30の空気を吸い込む貫通口33aが形成されていると共に、間仕切り壁31の下端部にも居室気密空間30の空気を吸い込む貫通口33bが形成されている。 Further, at the upper end portion of the partition wall 31, a ventilation port 32 formed in the partition wall 31 is formed with a through-hole 33 a for sucking air of the room airtight space 30, and the room airtightness is also formed at the lower end portion of the partition wall 31. A through-hole 33b for sucking air in the space 30 is formed.
 そして間仕切り壁31の下端部は、床下気密室7に連通している。 The lower end of the partition wall 31 communicates with the underfloor airtight chamber 7.
 さらに、この床下気密室7には、基礎8を貫通して蓄熱気密槽1に連通する地下ダクト36が複数形成されており、これにより、壁体33の貫通口33a、33b、通気路32、床下気密室7および地下ダクト36を介して建築物の居室気密空間30と蓄熱気密槽1とが互いに連通するように構成されている。この地下ダクト36は、図3に示すように、異なる位置に例えば複数本ずつまとめて配置することが好ましい。このように例えば異なる箇所に複数本ずつまとめて地下ダクト36を形成することにより、蓄熱気密槽1全体に複雑な空気の流れを形成することができ、充填された玉石2に温度斑が発生し難くなり、玉石2を有効に利用することができる。 Furthermore, a plurality of underground ducts 36 are formed in the underfloor hermetic chamber 7 so as to penetrate the foundation 8 and communicate with the heat storage and airtight tank 1, thereby allowing the through holes 33 a and 33 b of the wall body 33, the ventilation path 32, The room airtight space 30 of the building and the heat storage airtight tank 1 are configured to communicate with each other via the underfloor airtight chamber 7 and the underground duct 36. As shown in FIG. 3, for example, a plurality of underground ducts 36 are preferably arranged at different positions. In this way, for example, by forming a plurality of underground ducts 36 in different places and forming the underground duct 36, a complicated air flow can be formed in the entire heat storage and airtight tank 1, and temperature spots are generated in the filled cobblestone 2. It becomes difficult and the cobblestone 2 can be used effectively.
 ここで地下ダクト36は、塩化ビニルなどの耐熱性、耐候性の良いの樹脂パイプで形成されており、その直径は、通常は50~100mmであり、蓄熱気密槽1の排気ダクト66の設けられていない側に設けられている。このように地下ダクト36と排気ダクト66とを、蓄熱気密槽1の中で距離を設けることにより、蓄熱気密槽1内に充填された玉石2を有効に利用することができる。 Here, the underground duct 36 is formed of a resin pipe having good heat resistance and weather resistance such as vinyl chloride, and its diameter is usually 50 to 100 mm, and the exhaust duct 66 of the heat storage airtight tank 1 is provided. Not provided on the side. Thus, by providing a distance between the underground duct 36 and the exhaust duct 66 in the heat storage airtight tank 1, the cobblestone 2 filled in the heat storage airtight tank 1 can be used effectively.
 一方、図1の右側の周壁11は、基本的には左側の周壁11と同一の構成を有するが、気密層13内に、蓄熱気密槽1から立ち上がった排気ダクト66が配置されている。この排気ダクト66は、図3に示されるように、複数配置されていることが好ましい。 On the other hand, the right peripheral wall 11 in FIG. 1 basically has the same configuration as the left peripheral wall 11, but an exhaust duct 66 rising from the heat storage airtight tank 1 is disposed in the airtight layer 13. A plurality of the exhaust ducts 66 are preferably arranged as shown in FIG.
 すなわち、従来は排気ダクト66は居室密封空間内30内に配置されていたが、この排気ダクト66内を排気が通ることにより排気ダクト66の表面が高温になり居室気密空間30の内部の温度が上がる虞があること、この排気ダクト66が居室密閉空間30内にむき出しになって配置されていたために、この居室密閉空間30のインテリアデザインにこの排気ダクト66が馴染まず自由にデザインをすることができないことなどから、本発明では、この排気ダクト66を周壁11に形成された壁体内気密層13内に収納している。 That is, conventionally, the exhaust duct 66 has been arranged in the sealed room 30, but when the exhaust passes through the exhaust duct 66, the surface of the exhaust duct 66 becomes hot and the temperature inside the sealed room 30 becomes high. Since there is a possibility that the exhaust duct 66 is exposed, the exhaust duct 66 is exposed in the closed space 30 of the room, so that the exhaust duct 66 may be freely designed without being adapted to the interior design of the closed space 30 of the room. In the present invention, the exhaust duct 66 is accommodated in the wall hermetic layer 13 formed in the peripheral wall 11 because it cannot be performed.
 本発明においては、複数の排気ダクト66を配置したとしても、この複数の排気ダクトは周壁11に形成された壁体内気密層13の中に形成されるので、この複数の排気ダクト66が居室気密空間30に露出することがなく、従って、居室気密空間30の室内装飾を施すにあたり、排気ダクト66がデザインの邪魔をすることがない。しかも、このように複数の排気ダクト66を配置すると、蓄熱気密槽1内部において、地下ダクト36から複数の空気の流れが形成され、蓄熱気密槽1内部に充填された玉石2全体に空気の流れが行き渡り、充填された玉石2に温度斑が発生し難く、玉石2を効率よく利用できるとの効果がある。 In the present invention, even if a plurality of exhaust ducts 66 are arranged, the plurality of exhaust ducts are formed in the in-wall hermetic layer 13 formed on the peripheral wall 11, so that the plurality of exhaust ducts 66 are formed in the room airtight. Therefore, the exhaust duct 66 does not interfere with the design when the interior decoration of the airtight space 30 is applied. In addition, when the plurality of exhaust ducts 66 are arranged in this way, a plurality of air flows are formed from the underground duct 36 inside the heat storage airtight tank 1, and the airflow flows throughout the cobblestone 2 filled inside the heat storage airtight tank 1. As a result, temperature fluctuations are unlikely to occur in the filled boulder 2 and the boulder 2 can be used efficiently.
 本発明の空調システムにおいては、蓄熱気密槽1から立ち上がった排気ダクト66は、基礎8から立ち上がった布基礎15および床材を通って周壁11内に形成されている壁体内気密層13内に配置され小屋裏空間27に抜けている。複数の排気ダクト66がある場合にはこの小屋裏空間27で一本に収束される。 In the air conditioning system of the present invention, the exhaust duct 66 rising from the heat storage and airtight tank 1 is disposed in the in-wall hermetic layer 13 formed in the peripheral wall 11 through the cloth base 15 rising from the foundation 8 and the flooring. It is in the hut space 27. When there are a plurality of exhaust ducts 66, they are converged into one in the cabin space 27.
 排気ダクト66は、断熱材を配置して形成されている壁体内気密層13内に配置されているので、特に断熱する必要はないが、壁体内気密層13内の温度が上がることがあるので、排気ダクト66を断熱加工することが好ましい。 Since the exhaust duct 66 is disposed in the wall hermetic layer 13 formed by arranging a heat insulating material, it does not need to be particularly insulated, but the temperature in the wall hermetic layer 13 may increase. The exhaust duct 66 is preferably heat-insulated.
 この排気ダクト66は、壁体内気密層13内に収容される太さであれば良く、壁体内気密層13の総厚が例えば70mm程度であるから、断熱ダクト66の外周は通常は70mm以下、好ましくは40~50mmにする。この排気ダクト66は、塩化ビニルのような耐熱性の合成樹脂で形成し、その周囲を発泡ポリスチレンのような断熱材で囲繞した複合材料で形成しても良いし、発泡ポリスチレンチューブで形成しても良い。 The exhaust duct 66 may be of a thickness that can be accommodated in the intra-wall hermetic layer 13 and the total thickness of the intra-wall hermetic layer 13 is, for example, about 70 mm. Preferably it is 40-50 mm. The exhaust duct 66 may be formed of a heat-resistant synthetic resin such as vinyl chloride, and may be formed of a composite material surrounded by a heat insulating material such as foamed polystyrene, or may be formed of a foamed polystyrene tube. Also good.
 小屋裏空間27に抜けた排気ダクト66は、小屋裏空間27に配置された空気コントロールユニット50の熱交換機40に導入される。熱交換機40に屋外の空気を給気する給気管51と排気ダクト66から導入された排気を排気する排気管52が設けられており、排気ダクト66からの排気中の温度を、給気管51から給気する外部の空気と熱交換を行って排気管52から排気される。この熱交換機40を通過することにより、排気ダクト66中の熱は、給気管51から給気する空気に移り、排気管52からは放出されない。なお、排気ダクト66からの排気の温度が高すぎる場合には、熱交換機40の熱交換率を低下させて排気管52から排気される排気ガスに熱を含ませて排熱することも可能である。さらに排気ダクトからの排気ガスよりも大気の温度が高い場合には、排気ダクトの排気ガスと大気の間で熱交換して大気を冷却して導入することもできる。 The exhaust duct 66 that has escaped into the attic space 27 is introduced into the heat exchanger 40 of the air control unit 50 disposed in the attic space 27. An air supply pipe 51 for supplying outdoor air to the heat exchanger 40 and an exhaust pipe 52 for exhausting exhaust gas introduced from the exhaust duct 66 are provided, and the temperature in the exhaust gas from the exhaust duct 66 is changed from the air supply pipe 51. Heat is exchanged with external air to be supplied and exhausted from the exhaust pipe 52. By passing through the heat exchanger 40, the heat in the exhaust duct 66 is transferred to the air supplied from the supply pipe 51 and is not released from the exhaust pipe 52. If the temperature of the exhaust from the exhaust duct 66 is too high, it is possible to reduce the heat exchange rate of the heat exchanger 40 and include the heat in the exhaust gas exhausted from the exhaust pipe 52 to exhaust heat. is there. Furthermore, when the temperature of the atmosphere is higher than the exhaust gas from the exhaust duct, the air can be introduced by cooling the atmosphere by exchanging heat between the exhaust gas in the exhaust duct and the atmosphere.
 上記のようにして熱交換機40からの空気は、通常は、次いで除湿機41に送られて、給気管51で給気されて熱交換機40で熱交換された空気を除湿して、空気中の湿度を除去して一旦乾燥空気とされる。 As described above, the air from the heat exchanger 40 is normally sent to the dehumidifier 41, and dehumidifies the air supplied through the air supply pipe 51 and heat-exchanged by the heat exchanger 40. Humidity is removed to make dry air once.
 こうして除湿機41で乾燥された空気は、熱交換機40で熱交換されており、空気自体は外部の新鮮な空気でありながら、空気の温度は排気ダクト66の排気の温度とほぼ同等であるが、温度が低い場合、通常は加熱機42で所定の設定温度に加熱する。 The air thus dried by the dehumidifier 41 is heat-exchanged by the heat exchanger 40, and while the air itself is fresh external air, the temperature of the air is almost equal to the temperature of the exhaust in the exhaust duct 66. When the temperature is low, the heater 42 is usually heated to a predetermined set temperature.
 すなわち、通常は、蓄熱気密槽1に熱が蓄熱されているので、蓄熱気密槽1から排気ダクト66で熱交換機40に導入された空気の温度は相当高く、外気を給気管51から導入しても熱交換機40で熱交換することにより、殆ど加熱を必要とするものではないが、設定した所定の温度に満たない場合は、この加熱機42で空気を加熱する。設定温度は例えば25℃である。空気が例えば設定温度25℃よりも1℃以上低い場合は加熱機42を駆動させて空気の温度を一定に保つ。 That is, normally, since heat is stored in the heat storage airtight tank 1, the temperature of the air introduced from the heat storage airtight tank 1 into the heat exchanger 40 by the exhaust duct 66 is considerably high, and outside air is introduced from the air supply pipe 51. In the heat exchanger 40, heat is hardly required by heating. However, when the predetermined temperature is not reached, the air is heated by the heater 42. The set temperature is 25 ° C., for example. When the air is, for example, 1 ° C. lower than the set temperature 25 ° C., the heater 42 is driven to keep the air temperature constant.
 冬期の場合は、上記のように熱交換をして補助的に加熱機を用いることによって居室気密空間30内の空気の温度を一定に保つことができる。 In the winter season, the temperature of the air in the airtight space 30 can be kept constant by exchanging heat as described above and using a heater as an auxiliary.
 本発明における熱源は、補助的に使用される加熱機42と、居室気密空間30内で用いられる熱源であり、これらの熱源を蓄熱気密槽1に蓄熱して、この熱を利用する。冬期の場合、寒冷地でもこれらの熱源を利用することにより、居室気密空間30を例えば25℃程度の温度に維持することができる。 The heat source in the present invention is a heater 42 used as an auxiliary and a heat source used in the airtight space 30 in the room. These heat sources are stored in the heat storage airtight tank 1 and used. In the winter season, the room airtight space 30 can be maintained at a temperature of, for example, about 25 ° C. by using these heat sources even in a cold region.
 すなわち、冬場にあっては、夏場の高温で蓄熱されて外気よりも温度の高い暖気を、夏場にあっては蓄熱気密槽1中にあって外気よりも低い温度の冷気を排気ダクト66から熱交換機40に排気として送り、この排気熱を熱交換機40で給気と熱交換して利用することができる。 That is, in the winter season, warm air that is stored at a high temperature in summer and has a higher temperature than the outside air is heated from the exhaust duct 66 in summer, and in the heat storage airtight tank 1, cold air that has a lower temperature than the outside air is heated from the exhaust duct 66. The exhaust heat is sent to the exchanger 40 and the exhaust heat can be used by exchanging heat with the supply air in the heat exchanger 40.
 このように、居室気密空間30に比べて非常に体積の大きな蓄熱気密槽1を有することにより、四季の温度変化をこの蓄熱気密槽1で受け止めて、四季を通じて一定の温度、湿度および気圧を一定に保つことができるはずである。 Thus, by having the heat storage airtight tank 1 having a very large volume compared to the airtight space 30 in the living room, the temperature change in the four seasons is received by the heat storage airtight tank 1, and the constant temperature, humidity and pressure are constant throughout the four seasons. Should be able to keep on.
 ところが、夏期の場合、給気する大気の温度が高いので、熱交換機40で取り込む大気中の熱を熱交換を行わなくとも暖気として取り入れることができる。むしろ、冬期と夏期で居室気密空間30内で発生する熱量は大きくは変わらないので、大気の温度が高いと排気管52から排気される熱量よりも給気管51から給気する大気の熱量の方が大きいといった事態が生じる。 However, in the summer, since the temperature of the atmosphere to be supplied is high, the heat in the atmosphere taken in by the heat exchanger 40 can be taken in as warm air without performing heat exchange. Rather, the amount of heat generated in the airtight space 30 in the winter and summer does not change greatly. Therefore, when the temperature of the atmosphere is high, the amount of heat of the atmosphere supplied from the supply pipe 51 is greater than the amount of heat exhausted from the exhaust pipe 52. The situation that is large occurs.
 従来の空調システムにおいては、居室気密空間30は、少なくとも断熱材、気密層、耐圧ゴムシートおよび断熱材の四層により外気とは完全に熱的に遮断された空間であり、廃熱手段は基本的に熱交換機40しか有していない。従って、給気管51から給気する大気の温度が、排気管52から排出される排気の温度よりも高い場合、本発明の空調システム内に熱が蓄積され、過加温状態になる。 In the conventional air conditioning system, the airtight space 30 in the room is a space that is completely thermally shut off from the outside air by at least four layers of the heat insulating material, the airtight layer, the pressure-resistant rubber sheet, and the heat insulating material, and the waste heat means is basically Only the heat exchanger 40 is provided. Therefore, when the temperature of the air supplied from the supply pipe 51 is higher than the temperature of the exhaust discharged from the exhaust pipe 52, heat is accumulated in the air conditioning system of the present invention, resulting in an overheated state.
 本発明ではこうした過加温状態を解消する為に、冷房機43を組み込んだ空気コントロールユニット50を使用する。本発明において、冷房機43は、排気管52から排気される排気空気の温度よりも、給気管51から取り入れられる大気の温度が高い場合に駆動させて、給気空気を冷却して本発明の空調システム内に導入する。冷房機43によって冷房される導入大気の温度は、居室気密空間30において設定した温度と同等にする。このようにすることにより本発明の空調システム内が過加温状態になるのを防止することができる。なお、冷房機43を使用しているときには、加熱機42は駆動させないのは勿論である。冷房機43を使用することにより発生した熱は別途設けられた排気手段(図示なし)により建築物6の外部に放出される。 In the present invention, in order to eliminate such an overheating state, an air control unit 50 incorporating a cooling device 43 is used. In the present invention, the air conditioner 43 is driven when the temperature of the air taken in from the air supply pipe 51 is higher than the temperature of the exhaust air exhausted from the exhaust pipe 52, thereby cooling the air supply air. Install in the air conditioning system. The temperature of the introduction air cooled by the cooling device 43 is made equal to the temperature set in the airtight space 30 in the room. By doing in this way, it can prevent that the inside of the air-conditioning system of this invention will be in an overheating state. Of course, when the air conditioner 43 is used, the heater 42 is not driven. Heat generated by using the air conditioner 43 is released to the outside of the building 6 by an exhaust means (not shown) provided separately.
 これら熱交換機40、加熱機42および冷房機43の駆動および駆動停止は、例えば建築物6の外側に設けられた温度センサーと排気ダクト66内に配置された温度センサーの感知する温度により、自動的に行うことが好ましい。 The heat exchanger 40, the heater 42, and the air conditioner 43 are automatically driven and stopped according to, for example, a temperature sensor provided outside the building 6 and a temperature detected by a temperature sensor disposed in the exhaust duct 66. It is preferable to carry out.
 こうして冷房機43を通った空気は、次いでフィルター44で、粉塵、花粉などの有害物質を取り除かれて、加湿機45に送られる。 The air that has passed through the air conditioner 43 is then removed by the filter 44 from harmful substances such as dust and pollen and sent to the humidifier 45.
 加湿機45に送られた空気は、この加湿機45で例えば80%に加湿されて給気ダクト46から、給気口47から給気ダクトを分岐して各居室空間30の天井に配置された給気口47から各居室気密空間30に送られて、年間を通じて各居室気密空間30を例えば25℃、80%の湿度に保つことができる。 The air sent to the humidifier 45 is humidified to, for example, 80% by the humidifier 45, and the air supply duct is branched from the air supply duct 46 and is arranged on the ceiling of each room space 30. Each room airtight space 30 is sent from the air supply port 47 to each room airtight space 30 and can be kept at a humidity of, for example, 25 ° C. and 80% throughout the year.
 この居室気密空間30には、人が生活することにより生活熱が発生すると共に、窓等からの太陽光により、居室気密空間30の空気の温度は、給気口47から供給された空気の温度よりも高くなるのが一般的である。 In this room airtight space 30, living heat is generated as a person lives, and the temperature of the air in the room airtight space 30 is the temperature of the air supplied from the air supply port 47 due to sunlight from a window or the like. Is generally higher.
 このように温度が高くなった居室気密空間30の空気を間仕切り壁の上下端部に設けられた貫通口33a、33bを通って通気路32に導き入れられて床下気密室7に送られ、地下ダクト36を通って蓄熱気密層1に到達する。 The air in the airtight space 30 thus heated is introduced into the air passage 32 through the through-holes 33a and 33b provided in the upper and lower ends of the partition wall and sent to the underfloor airtight chamber 7, The heat storage airtight layer 1 is reached through the duct 36.
 この蓄熱気密槽1内には、前述のように多数の玉石2が充填されており、地下ダクト36から導入された空気は、この玉石2と接触することにより、玉石2に熱を奪われて冷却されることにより蓄熱気密槽1に熱が蓄熱される。 The heat storage airtight tank 1 is filled with a large number of cobblestones 2 as described above, and the air introduced from the underground duct 36 is deprived of heat by the cobblestones 2 by coming into contact with the cobblestones 2. Heat is stored in the heat storage airtight tank 1 by being cooled.
 蓄熱気密槽1には、上記の地下ダクト36から所定距離離間した位置に排気ダクト66が配置されており、蓄熱気密槽1内の空気は、この排気ダクト66を通って、小屋裏空間27に配置された空気コントロールユニット50に導入されて、上記と同様の操作が施される。 In the heat storage airtight tank 1, an exhaust duct 66 is disposed at a position spaced apart from the underground duct 36 by a predetermined distance. Air in the heat storage airtight tank 1 passes through the exhaust duct 66 and enters the shed space 27. It is introduced into the arranged air control unit 50 and the same operation as described above is performed.
 また、本発明のシステムにおいては、図2に示すように、加湿を終えた給気ダクトを分岐して、排気ダクト66の配置されていない壁体内気密層13内を立下げて床表面材63の下側に給気口47を配置する。このような給気口47の配置に伴って、床表面材63と下地材62の間にスペーサー64を挟んで、床表面材63と下地材62との間に連続した空隙を形成する。この空隙に吸気口47からの給気を流すことにより、とかく低くなりがちな、床の表面温度を居室気密空間30の温度と同等に維持することができる。 Further, in the system of the present invention, as shown in FIG. 2, the air supply duct that has been humidified is branched, and the inside of the wall hermetic layer 13 where the exhaust duct 66 is not disposed is lowered to lower the floor surface material 63. An air supply port 47 is arranged on the lower side. Along with the arrangement of the air supply openings 47, a spacer 64 is sandwiched between the floor surface material 63 and the base material 62 to form a continuous gap between the floor surface material 63 and the base material 62. By flowing the supply air from the air inlet 47 into this gap, the floor surface temperature, which tends to be low, can be maintained at the same level as the temperature of the airtight space 30 in the room.
 この床表面材63の下の床下通気路65を流れた給気は、床表面材63の端部から貫通口を通って床下気密室7に抜けて、地下ダクト36を通って蓄熱気密槽1に収容される例を示したが、間仕切り壁に設けられた通気路32内に給気ダクト46を立下げて同様に給気を行うこともできる。 The supply air flowing through the underfloor air passage 65 under the floor surface material 63 passes from the end of the floor surface material 63 through the through hole to the underfloor airtight chamber 7, passes through the underground duct 36, and is stored in the heat storage airtight tank 1. However, it is also possible to supply air in the same manner by lowering the air supply duct 46 in the air passage 32 provided in the partition wall.
 このように空気を循環させることにより、居室気密空間30の湿度を例えば常に80%、室温を例えば常に25℃に保つことができ、これによりリューマチや関節病に大気が悪影響を及ぼすことを防止することができ、さらに風邪の予防にも有益である。 By circulating air in this manner, the humidity of the airtight space 30 can be kept at, for example, 80% and the room temperature at, for example, 25 ° C., thereby preventing the atmosphere from adversely affecting rheumatism and joint diseases. It is also useful for preventing colds.
 また、前述のように、居室気密空間30および蓄熱気密槽1等を外部から遮断することにより、これらの内部の気圧の急激な変動を抑えて、気圧の急激な変動による脳卒中の発生や、血液循環の悪化を防止することができる。 Further, as described above, the room airtight space 30 and the heat storage airtight tank 1 etc. are shut off from the outside, thereby suppressing rapid fluctuations in the internal atmospheric pressure, causing the occurrence of stroke due to the rapid fluctuations in atmospheric pressure, blood The deterioration of the circulation can be prevented.
 特に、排気ダクト66が居室気密空間30内に露出しておらず、インテリアデザインの妨げにもならない。 In particular, the exhaust duct 66 is not exposed in the airtight space 30 of the room and does not hinder the interior design.
 なお、居室気密空間30に温度計、気圧計および湿度計を設定しておき、この湿度計により、加湿機45を制御し、居室密閉空間30の湿度を例えば80%の一定に維持したり、気圧計によって前記熱交換機40等を制御して居室気密空間30の気圧を一定に維持したり、室内の温度を一定に維持することができる。 In addition, a thermometer, a barometer, and a hygrometer are set in the airtight space 30 of the room, and the humidifier 45 is controlled by the hygrometer so that the humidity of the airtight space 30 is maintained at a constant value of 80%, for example. The barometer can control the heat exchanger 40 or the like to keep the air pressure in the airtight space 30 constant, or keep the room temperature constant.
 本発明の空調システムは、上記のような構成であるので、蓄熱気密槽に蓄えられた熱の殆どを熱交換機によって熱交換して使用し、1年を通じてこの蓄熱気密槽の有効な利用を図ることができる。しかも、熱交換機により熱交換された新鮮な給気を居室気密空間に導いて、室内の必要な換気を行うことができる。 Since the air conditioning system of the present invention is configured as described above, most of the heat stored in the heat storage airtight tank is used by exchanging heat with a heat exchanger, and the heat storage airtight tank is effectively used throughout the year. be able to. In addition, it is possible to conduct the necessary ventilation in the room by guiding the fresh air exchanged by the heat exchanger to the airtight space in the room.
 建築物の居室気密空間と蓄熱気密空間は、共に断熱材を介して外部と遮断された状態で相互に連通しているため、換気に伴って室内の状態が室外の状態の影響を受けて変動することがない。 The room airtight space and the heat storage airtight space of the building are both in communication with each other in a state of being cut off from the outside through a heat insulating material, so that the indoor state varies with the influence of the outdoor state due to ventilation. There is nothing to do.
 さらに、外気温が、排気ダクトで排気される排気の温度よりも高い場合であっても、熱交換機で給気中の熱を排気に熱交換して建築物外に放出することができ、さらにそれで不充分な場合には、空気コントロールユニット内に配置された冷却機によって給気を強制的に冷却するので、大気温度が高い場合でも本発明のシステムによれば居室気密空間内の温度が予定しているよりも高くなることがない。 Furthermore, even when the outside air temperature is higher than the temperature of the exhaust exhausted through the exhaust duct, the heat in the supply air can be exchanged into the exhaust by the heat exchanger and released outside the building. If this is not sufficient, the air supply is forcibly cooled by a cooler arranged in the air control unit. Therefore, even when the atmospheric temperature is high, the temperature of the room airtight space is expected according to the system of the present invention. No more than you are.
 さらに給気ダクトを分岐して、排気ダクトの通っていない壁体内気密層あるいは間仕切り壁の通気層内を床まで立下げると共に、床表面材の下部にスペーサーを用いて通気路を造り、給気ダクトからの給気を床表面材の下に通すことにより、とかく冷えがちになる床面を、居室気密空間の温度と同等にすることができる。 Furthermore, the air supply duct is branched, and the airtight layer in the wall where the exhaust duct does not pass or the ventilation layer in the partition wall is lowered to the floor, and a ventilation path is created using a spacer at the bottom of the floor surface material to supply air By passing the air supply from the duct under the floor surface material, the floor surface that tends to cool can be made equal to the temperature of the airtight space in the room.
 本発明の空調システムは、蓄熱気密槽が居室気密空間よりも大きく、従って蓄熱気密槽の蓄熱容量が非常に大きい。このため、昼夜の温度変化のような短期的な温度変化に対応できることは勿論、春夏秋冬いずれの季節においても例えば25℃、湿度80%程度の快適な住環境を形成することができる。 In the air conditioning system of the present invention, the heat storage airtight tank is larger than the room airtight space, and therefore the heat storage capacity of the heat storage airtight tank is very large. For this reason, it is possible not only to cope with short-term temperature changes such as day and night temperature changes, but also to form a comfortable living environment of, for example, 25 ° C. and humidity of about 80% in any season.
 本発明の空調システムは上記のような構成を有するが、本発明の目的を損なわない範囲内で種々改変することができる。 Although the air conditioning system of the present invention has the above-described configuration, various modifications can be made without departing from the object of the present invention.
 例えば、上記説明では、除湿機41、加熱機42、冷房機43、フィルター44、加湿機45を別々の装置として記載したが、これらの装置は任意に組み合わせてシステムに組み込むことができる。また、本発明の目的を損なわない範囲でその組み込み順序を任意に組み替えることができる。 For example, in the above description, the dehumidifier 41, the heater 42, the air conditioner 43, the filter 44, and the humidifier 45 are described as separate devices, but these devices can be arbitrarily combined and incorporated into the system. In addition, the order of incorporation can be arbitrarily changed within a range that does not impair the object of the present invention.
1・・・蓄熱気密槽
2・・・玉石
3・・・採石
4・・・断熱材
5・・・耐圧ゴムシート
6・・・建築物
7・・・床下気密室
8・・・基礎(コンクリートスラブ)
9・・・床
10・・・断熱材
11・・・周壁
12・・・外層壁
13・・・壁体内気密層
14・・・天井気密層
15・・・布基礎
21・・・断熱材
23・・・内装材
24・・・断熱材
25・・・小屋裏仕切板
26・・・屋根
27・・・小屋裏空間
29・・・屋根材
30・・・居室気密空間
31・・・間仕切り壁
32・・・通気路
33・・・間仕切り壁体
33a・・・吸い込み貫通口
33b・・・吸い込み貫通口
35・・・仕上げ材
36・・・地下ダクト
40・・・熱交換機
41・・・除湿機
42・・・加熱機
43・・・冷房機
44・・・フィルター
45・・・加湿機
47・・・給気口
50・・・空気コントロールユニット
51・・・給気管
52・・・排気管
60・・・下地合板
62・・・下地材
63・・・床表面材
64・・・スペーサー
65・・・床下通気路
66・・・排気ダクト
DESCRIPTION OF SYMBOLS 1 ... Thermal storage airtight tank 2 ... Cobblestone 3 ... Quarry 4 ... Thermal insulation material 5 ... Pressure-resistant rubber sheet 6 ... Building 7 ... Underfloor airtight chamber 8 ... Foundation (concrete Slab)
DESCRIPTION OF SYMBOLS 9 ... Floor 10 ... Heat insulating material 11 ... Perimeter wall 12 ... Outer layer wall 13 ... Wall airtight layer 14 ... Ceiling airtight layer 15 ... Fabric foundation 21 ... Heat insulating material 23 ... Interior material 24 ... Insulating material 25 ... Shut partition plate 26 ... Roof 27 ... Shoe space 29 ... Roof material 30 ... Airtight space 31 in the room ... Partition wall 32 ... Ventilation path 33 ... Partition wall 33a ... Suction penetration port 33b ... Suction penetration port 35 ... Finishing material 36 ... Underground duct 40 ... Heat exchanger 41 ... Dehumidification Machine 42 ... Heater 43 ... Cooling machine 44 ... Filter 45 ... Humidifier 47 ... Air supply port 50 ... Air control unit 51 ... Air supply pipe 52 ... Exhaust pipe 60: Base plywood 62: Base material 63 ... Floor surface material 64 ... Spacer 65 ...・ Underfloor air passage 66 ... exhaust duct

Claims (7)

  1.  地中に形成された蓄熱気密槽と、該蓄熱気密槽の上に形成された床下気密室と、該床下気密室の上に形成され、側面が壁面気密層によって囲繞され、上面に天井気密層が配置された居室気密空間とを有し、
     上記居室気密空間は、天井気密層の上に形成された空気コントロールユニットから送られる空気を居室気密空間に供給する給気口を有すると共に、該居室気密空間を区画する間仕切り壁の上下端部に形成された貫通口によって該間仕切り壁を縦に貫通する通気路と連通しており、
     上記間仕切り壁の通気路は、居室気密空間の下部を構成する床材と基礎によって形成される床下気密室と連通しており、
     該床下気密室は、基礎に設けられた地下ダクトによって蓄熱気密槽と連通しており、
     蓄熱気密槽は、居室気密空間を構成する壁体内に形成された壁体内通気層内に配置された排気ダクトを介して天井気密層の上面に配置された熱交換機および冷房機を有する空気コントロールユニットと連通しており、
     蓄熱気密槽から排気ダクトを介して空気コントロールユニットに導入された排気の一部は、熱交換機を介して建築物外部に放出されると共に、排気された分の外気が熱交換機を介して空気コントロールユニットに導入され、該空気コントロールユニットにより、湿度、温度および圧力を調整された空気を、給気口から居室気密空間に供給することを特徴する空調システム。
    A heat storage airtight tank formed in the ground, an underfloor airtight chamber formed on the heat storage airtight tank, and formed on the underfloor airtight chamber, the side surface is surrounded by a wall surface airtight layer, and a ceiling airtight layer is formed on the upper surface. And an airtight space in which the room is arranged,
    The room airtight space has an air supply port for supplying the air sent from the air control unit formed on the ceiling airtight layer to the room airtight space, and at the upper and lower ends of the partition wall that partitions the room airtight space. Communicated with the ventilation path that vertically penetrates the partition wall by the formed through-hole,
    The air passage of the partition wall communicates with an underfloor hermetic chamber formed by a floor material and a base constituting the lower part of the airtight space of the room,
    The underfloor airtight chamber communicates with the heat storage airtight tank through an underground duct provided in the foundation.
    The heat storage airtight tank is an air control unit having a heat exchanger and a cooling device disposed on the upper surface of the ceiling hermetic layer via an exhaust duct disposed in a wall ventilation layer formed in the wall constituting the room airtight space. Communicated with
    A part of the exhaust gas introduced into the air control unit from the heat storage airtight tank through the exhaust duct is released to the outside of the building through the heat exchanger, and the exhausted outside air is controlled by the air through the heat exchanger. An air conditioning system characterized in that air introduced into a unit and adjusted in humidity, temperature and pressure by the air control unit is supplied from an air supply opening to a room airtight space.
  2.  上記空気コントロールユニットが、さらに、除湿機、加熱機、フィルターおよび加湿機よりなる群から選ばれる少なくとも1種類の機器を有することを特徴とする請求項1に記載の空調システム。 The air conditioning system according to claim 1, wherein the air control unit further includes at least one device selected from the group consisting of a dehumidifier, a heater, a filter, and a humidifier.
  3.  上記空気コントロールユニットが、加熱機および冷房機の両者を有する場合において、設定温度と居室気密空間との温度差によって、自動的に加熱機および冷房機の運転切り替えを行って、居室気密空間の温度を一定範囲内に維持することを特徴とする請求項2に記載の空調システム。 When the air control unit has both a heater and a cooler, the operation of the heater and the cooler is automatically switched depending on the temperature difference between the set temperature and the airtight space in the room, and the temperature of the airtight space in the room is determined. The air conditioning system according to claim 2, wherein the air conditioning system is maintained within a certain range.
  4.  上記空調システムが、居室気密空間の空気を一時間に0.8~3.0回入れ替える量の空気を熱交換機を介して排気すると共に、該熱交換機を介して同量の外気を導入することを特徴とする請求項1に記載の空調システム。 The air conditioning system exhausts air through the heat exchanger so that the air in the airtight space in the room is exchanged 0.8 to 3.0 times per hour, and introduces the same amount of outside air through the heat exchanger. The air conditioning system according to claim 1.
  5.  上記空調システムが、下地材の表面にスペーサーを介して床表面材を配置して浮き床構造を形成し、供給ダクトから分岐した新たな供給ダクトを壁面気密層および/または間仕切り壁の通気路を、下地材と床表面材との間まで立下げて、該下地材と床表面材との間に給気を吹き込むようにされていることを特徴とする請求項1に記載の空調システム。 The above air conditioning system arranges a floor surface material on the surface of the base material via a spacer to form a floating floor structure, and a new supply duct branched from the supply duct is connected to the wall airtight layer and / or the partition wall air passage. 2. The air conditioning system according to claim 1, wherein the air conditioning system is configured to fall between the base material and the floor surface material and to blow air supply between the base material and the floor surface material.
  6.  上記排気ダクトを異なる位置に複数本配置することを特徴とする請求項1に記載の空調システム。 The air conditioning system according to claim 1, wherein a plurality of the exhaust ducts are arranged at different positions.
  7.  上記地下ダクトを異なる位置に複数配置することを特徴とする請求項1に記載の空調システム。 The air conditioning system according to claim 1, wherein a plurality of the underground ducts are arranged at different positions.
PCT/JP2016/086879 2016-12-12 2016-12-12 Air conditioning system WO2018109798A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/086879 WO2018109798A1 (en) 2016-12-12 2016-12-12 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/086879 WO2018109798A1 (en) 2016-12-12 2016-12-12 Air conditioning system

Publications (1)

Publication Number Publication Date
WO2018109798A1 true WO2018109798A1 (en) 2018-06-21

Family

ID=62558498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086879 WO2018109798A1 (en) 2016-12-12 2016-12-12 Air conditioning system

Country Status (1)

Country Link
WO (1) WO2018109798A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828903A (en) * 1994-07-12 1996-02-02 Tohoku Shizai Kogyo Kk Aid conditioning system in building
JPH10205823A (en) * 1997-01-24 1998-08-04 S X L Corp Panel structural body for heating/cooling
JP2012082574A (en) * 2010-10-06 2012-04-26 Sekisui Chem Co Ltd Piping method of building
JP3178089U (en) * 2012-06-19 2012-08-30 金子建築工業株式会社 Air conditioning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828903A (en) * 1994-07-12 1996-02-02 Tohoku Shizai Kogyo Kk Aid conditioning system in building
JPH10205823A (en) * 1997-01-24 1998-08-04 S X L Corp Panel structural body for heating/cooling
JP2012082574A (en) * 2010-10-06 2012-04-26 Sekisui Chem Co Ltd Piping method of building
JP3178089U (en) * 2012-06-19 2012-08-30 金子建築工業株式会社 Air conditioning system

Similar Documents

Publication Publication Date Title
JP2014051874A (en) Energy-saving ventilation system for air-tightness house
JPH07217011A (en) Cooling and heating system for highly airtight and highly heat insulated housing
JP6208194B2 (en) Air conditioning ventilation system
JP2007100437A (en) Double window ventilation system
JP4524348B1 (en) Energy saving ventilation system
JP3944181B2 (en) Building air conditioning system
JP2009084936A (en) Thermal insulation dwelling house and ventilation system
WO2018109798A1 (en) Air conditioning system
JP5249837B2 (en) Ventilation air conditioning system and building
JP4049380B2 (en) Building ventilation system
JP2007163023A (en) Heating device and cooling device associated with structure of house
JP6524506B2 (en) Ventilation system and house
JP3150126U (en) Eco house
JP3338412B2 (en) House ventilation systems
JP2007092323A (en) Roof structure with venting skin and building having roof structure with venting skin
JP2014088740A (en) Whole building air-conditioning dwelling house
JPH0293228A (en) Ventilating device for building
JP2014142151A (en) Air conditioning system using geothermal heat
JP3123276U (en) Housing structure
JP3727229B2 (en) Air circulation type air conditioning system
JP5866532B2 (en) Air purification type building and air purification method for building
JP5030246B1 (en) Building ventilation insulation structure
JP2020148386A (en) Pressure heat exchange ventilation type building
JP5526316B1 (en) Ventilation structure of buildings using air conditioning system using geothermal heat
JP2568697B2 (en) Air conditioning ventilation hot water supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP