JP4049380B2 - Building ventilation system - Google Patents

Building ventilation system Download PDF

Info

Publication number
JP4049380B2
JP4049380B2 JP2003407257A JP2003407257A JP4049380B2 JP 4049380 B2 JP4049380 B2 JP 4049380B2 JP 2003407257 A JP2003407257 A JP 2003407257A JP 2003407257 A JP2003407257 A JP 2003407257A JP 4049380 B2 JP4049380 B2 JP 4049380B2
Authority
JP
Japan
Prior art keywords
building
air
ventilation
space
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003407257A
Other languages
Japanese (ja)
Other versions
JP2005163482A (en
Inventor
廣伸 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Foundation for Science and Technology Promotion
Original Assignee
Hamamatsu Foundation for Science and Technology Promotion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Foundation for Science and Technology Promotion filed Critical Hamamatsu Foundation for Science and Technology Promotion
Priority to JP2003407257A priority Critical patent/JP4049380B2/en
Publication of JP2005163482A publication Critical patent/JP2005163482A/en
Application granted granted Critical
Publication of JP4049380B2 publication Critical patent/JP4049380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、建物の換気システム、特に、壁体内部に通気空間が形成され、この通気空間を天井裏空間、床下空間等に連通させて居住空間の周りに空気流通路が形成されると共に、この空気流通路内に空気を流通させることにより、外気取得を機械換気方式で行うワンパス方式の建物の換気システムに関するものである。   The present invention is a ventilation system for buildings, in particular, a ventilation space is formed inside the wall, and this ventilation space is communicated with a ceiling back space, an underfloor space, etc., and an air flow passage is formed around the living space, The present invention relates to a one-pass building ventilation system in which outside air is acquired by a mechanical ventilation method by circulating air in the air flow passage.

住宅等の建物では、室内の冷暖房を高めるため壁体部分を断熱構造としたものが一般的に知られている。この断熱構造は一般的には内壁と外壁との間に断熱材を入れ、屋外の熱影響を受けないようにすると共に、屋内の熱が外部に逃げないように防止している。また、断熱性と共に屋内の気密性を高めた構造の建物では、建物内に空気流通路を設けて新鮮な外気が屋内を流通するようにしたものや、外気を取り入れる際に屋内から排気する空気と熱交換する熱交換器を経由させることにより外気を暖めて建物内に導入するといった方式を採用しているものがある。   In buildings such as houses, it is generally known that the wall portion has a heat insulating structure in order to enhance indoor air conditioning. In general, this heat insulating structure is provided with a heat insulating material between an inner wall and an outer wall so as not to be affected by outdoor heat and to prevent indoor heat from escaping to the outside. Also, in buildings with a structure that improves indoor airtightness as well as heat insulation, air flow passages are provided in the building so that fresh outside air circulates indoors, and air that is exhausted from the inside when outside air is introduced. Some have adopted a system in which the outside air is warmed and introduced into a building through a heat exchanger that exchanges heat with the air.

これらの空気循環建物の内、温熱環境の改善を試みているものには、外気導入ダクトの一端を建物外に開口させ、集熱スステムや熱交換器を介して外気を床下空間に導入し、床面の開口部や壁内通気路に設けた開口部から各室に供給する。そして、室内に供給された空気は室内を還流した後、排気口からダクトを介して屋外に排出されるように構成されているものがある。   Among these air circulation buildings, those that are trying to improve the thermal environment, open one end of the outside air introduction duct outside the building, introduce outside air into the underfloor space through the heat collecting stem and heat exchanger, It supplies to each room from the opening part provided in the opening part of a floor surface, or the ventilation path in a wall. In some cases, the air supplied to the room is recirculated through the room and then discharged to the outside from the exhaust port through a duct.

然しながら、このような空気循環建物では、各室のダクトおよび集熱システム等を含めると設備費が莫大となり、また、床下に白蟻防除剤等が散布されていれば有害となるばかりでなく、建材の中に含まれるホルムアルデヒド等の揮発性化学物質が室内に流入して頭痛やめまい、吐き気といった症状を引き起こす、所謂シックハウス症候群の居住者が出現する恐れがある。こうした問題点を解決したものとして、図3に示すような建物の換気システムが知られている。   However, in such an air circulation building, if the ducts and heat collection systems of each room are included, the equipment cost becomes enormous, and if the white ant control agent etc. are sprayed under the floor, it will not only be harmful, but also building materials There is a risk that resident of so-called sick house syndrome, in which volatile chemical substances such as formaldehyde contained in the house flow into the room and cause symptoms such as headache, dizziness and nausea may appear. As a solution to such problems, a building ventilation system as shown in FIG. 3 is known.

この建物の換気システムは、建物51の屋根裏52に設置された強制排出装置53での空気の吸い上げにより、各室内54の空気と各空気流通路63、64、65、および屋根裏52の屋根裏空間52aと一連の空気の流れを発生させるというものである。   In this building ventilation system, the air in each room 54 and the air flow passages 63, 64, 65, and the attic space 52 a of the attic 52 are obtained by sucking up air in the forced exhaust device 53 installed in the attic 52 of the building 51. And a series of air flows.

具体的には、この建物51は、外壁55および間仕切壁56をパネル工法によって建築され、屋根57、床58、および外壁55の内側に断熱材59が備えられた高気密性建物である。各室54の一部に設けられた外気導入用の排気口60から各室54内の室内空間54aに導入された空気を、各室54の仕上の床板61の面に設けられた開口部62から床通気路63を介して、外壁通気路64と間仕切壁通気路65を通って屋根裏52の屋根裏空間52aに集め、屋根裏52に設置された強制排出装置53を介して外部へ排出させるようにしている。これにより、常時各室内および壁内の換気が好適になると共に、結露による土台の腐敗や、室内におけるカビやダニの発生を防止することができる。   Specifically, the building 51 is a highly airtight building in which the outer wall 55 and the partition wall 56 are constructed by a panel method, and a heat insulating material 59 is provided inside the roof 57, the floor 58, and the outer wall 55. The air introduced into the indoor space 54a in each chamber 54 from the outside air introduction exhaust port 60 provided in a part of each chamber 54 is an opening 62 provided on the surface of the finished floor board 61 of each chamber 54. The air is collected in the attic space 52a of the attic 52 through the outer wall aeration path 64 and the partition wall aeration path 65 through the floor aeration path 63, and discharged to the outside through the forced discharge device 53 installed in the attic 52. ing. Thus, ventilation in each room and wall is always suitable, and it is possible to prevent the base from being damaged by condensation and the generation of mold and mites in the room.

さらに、二重床66内に循環パイプ(図示せず)が配管され、この循環パイプに、季節により温水または冷水を循環させ、循環パイプから放散される暖気または冷気が外壁通気路64や間仕切壁通気路65を通る際に各壁から放散される暖気または冷気で各室54内の冷暖房をしている。これにより、建物内の各室内を均一な温度に保つことができる。
特開2002−88939号公報
Further, a circulation pipe (not shown) is provided in the double floor 66, and hot water or cold water is circulated through the circulation pipe depending on the season, and the warm air or cold air dissipated from the circulation pipe is supplied to the outer wall ventilation path 64 and the partition wall. Each room 54 is heated and cooled with warm air or cold air that is dissipated from each wall when passing through the air passage 65. Thereby, each room | chamber interior in a building can be kept at a uniform temperature.
JP 2002-88939 A

こうした従来の建物の換気システムは、屋根裏52に設置された強制排出装置53での空気の吸い上げにより空気の流れを発生させるワンパス方式であるため、建材等から放出される有害物質が室54内に侵入しないという点では好適な室内換気をすることができるが、二重床66内に循環パイプを配管し、この循環パイプにより熱交換をして各室54内の冷暖房を行うようにしたものであるから、建物の大きさに比例して工事費や、この循環パイプおよびこの循環パイプに付随する機器等の設備費が嵩むだけでなく、季節によってシステム管理を変更しなければならなく、建物の維持管理コストがかかるという問題があった。   Such a conventional building ventilation system is a one-pass system that generates an air flow by sucking air with a forced exhaust device 53 installed in the attic 52, so that harmful substances released from building materials and the like are contained in the chamber 54. Although it is possible to provide suitable room ventilation in terms of not intruding, a circulation pipe is provided in the double floor 66, and heat is exchanged by this circulation pipe to cool and heat each room 54. Therefore, in addition to the construction costs and equipment costs associated with this circulation pipe and equipment associated with this circulation pipe, the system management must be changed according to the season, There was a problem that the maintenance cost was high.

本発明は、こうした従来の問題に鑑みこれを解決するためになされたもので、建物全体の冷暖房が好適になされると共に、屋内の換気が好適にでき、環境空間を快適に維持することができる建物の換気システムを提供することを目的とする。   The present invention has been made in order to solve this problem in view of such a conventional problem. The entire building is suitably cooled and heated, indoor ventilation can be favorably performed, and the environment space can be maintained comfortably. The purpose is to provide a ventilation system for buildings.

係る目的を達成するために、本発明のうち請求項1に記載の発明は、居住区画の外側に断熱材が介装され、建物の居室に設けられた外気導入口を介して外気が導入され、この外気を還流させて建物内が換気される建物の換気システムにおいて、前記居室と前記建物の屋根との間に屋根裏空間が形成され、前記建物内と断熱材との間に内側通気路が形成されると共に、前記居室空間の上部に排気口が形成され、各居室を通過した外気はこの排気口を介して前記屋根裏空間に集められ、この屋根裏空間に集められた空気を排気ファンによって集めて送気ダクトで、閉塞された基礎と該基礎に接続され地中に埋設されて地熱が伝熱される金属もしくは金属が混入されたコンクリートからなる熱橋とを備える床下空間に送り、この床下空間で熱交換させた後、前記内側通気路に沿って上昇させて屋外に放出させた構成を採用した。
In order to achieve such an object, the invention according to claim 1 of the present invention is such that a heat insulating material is interposed outside the living section, and outside air is introduced through an outside air inlet provided in the room of the building. In the building ventilation system in which the outside air is circulated and the inside of the building is ventilated, an attic space is formed between the living room and the roof of the building, and an inner ventilation path is provided between the building and the heat insulating material. In addition, an exhaust port is formed in the upper portion of the living room space, and outside air that has passed through each living room is collected in the attic space through the exhaust port, and the air collected in the attic space is collected by an exhaust fan. The air supply duct is sent to an underfloor space comprising a closed foundation and a heat bridge made of a metal that is connected to the foundation and buried in the ground to transmit geothermal heat or mixed with metal , and this underfloor space With heat exchange It was followed, employing the configuration in which the inner and ventilation channel is raised along to release outdoors.

このように、建物内と断熱材との間に内側通気路が形成されると共に、居室の上部に排気口が形成され、この排気口を介して居室内の空気を排気ファンによって集めて送気ダクトで床下空間に送り、この床下空間で熱交換させた後、内側通気路に沿って上昇させて屋外に放出させたので、排気ファンの空気の吸い上げにより建物内に一連の空気の流れを発生させることができるワンパス方式の換気システムを構成することができ、建材等から放出される有害物質が室内に侵入しない建物内の換気が好適に行われると共に、結露による土台の腐敗や、居室内におけるカビやダニの発生を防止することができる。さらに低コストかつ効率的で均一な冷暖房がなされ、環境空間を快適に維持することができる建物の換気システムを提供することができる。   In this way, an inner air passage is formed between the building and the heat insulating material, and an exhaust port is formed in the upper portion of the living room, and air in the living room is collected by the exhaust fan through this exhaust port and sent to the air. After being sent to the under-floor space by a duct and exchanging heat in this under-floor space, it was raised along the inner ventilation path and released to the outside, so a series of air flow was generated in the building by sucking up the air from the exhaust fan It is possible to construct a one-pass type ventilation system that can be allowed to ventilate inside the building so that harmful substances released from building materials etc. do not enter the room. Generation of mold and mites can be prevented. Furthermore, it is possible to provide a ventilation system for a building that is low-cost, efficient, and uniform air-conditioning and that can maintain an environmental space comfortably.

好ましくは、請求項2に記載の発明のように、前記排気ファンが屋根裏空間に配設されていれば、居室の上部に溜まった暖気を効果的に排気口を経由して排気ファンで吸い上げることができ、建物内の換気を好適に行うことができる。   Preferably, if the exhaust fan is disposed in the attic space as in the invention described in claim 2, the warm air accumulated in the upper part of the living room is effectively sucked up by the exhaust fan via the exhaust port. And ventilation in the building can be suitably performed.

また、請求項3に記載の発明は、前記屋根裏空間に吸気ファンが設けられると共に、この吸気ファンに接続され、一端が前記建物の外部に開口され、他端が前記送気ダクトに連結された吸気ダクトが配設され、この吸気ダクトで導入される温調された外気と熱交換するようにしたので、新たな集熱面等を設けることなく低コストで蓄熱効果を上げると共に、地熱交換の補助をすることができる。   According to a third aspect of the present invention, an air intake fan is provided in the attic space, connected to the air intake fan, one end opened to the outside of the building, and the other end connected to the air supply duct. Since an intake duct is installed and heat exchange is performed with the temperature-controlled outside air introduced by this intake duct, the heat storage effect is improved at a low cost without providing a new heat collecting surface, etc. You can help.

好ましくは、請求項4に記載の発明のように、前記吸気ダクトは、熱伝導率が高くかつ有害物質を放出しない材質で蛇腹状に形成されていれば、小スペースで効率的に熱交換がなされる。   Preferably, as in the invention described in claim 4, if the air intake duct is formed in a bellows shape with a material having high thermal conductivity and does not emit harmful substances, heat exchange can be efficiently performed in a small space. Made.

また、請求項5に記載の発明のように、前記建物内にエアコンが配設されていれば、建物内の除湿をはじめ効果的に熱交換型温調システムの補助をすることができる。   If an air conditioner is provided in the building as in the invention described in claim 5, it is possible to effectively assist the heat exchange type temperature control system including dehumidification in the building.

また、請求項6に記載の発明は、前記建物の外周側に沿って外壁と屋根の内側に連続して形成され、その下部側の一端は屋外に開通されると共に、上部側の一端は屋上を介して屋外に開通された外側通気路が形成されているので、外側通気路の下部側から進入した外気がこの外側通気路に沿って上昇して屋上から排出されるという定常的な空気の流れが生じ、外壁支持部の換気が良好になり外壁のずり落ち等を防止して耐久性を向上させると共に、この外側通気路がクッションの役割をなして好適な断熱効果を発揮する。   According to a sixth aspect of the present invention, the outer wall and the roof are continuously formed along the outer peripheral side of the building, one end on the lower side is opened to the outdoors, and one end on the upper side is on the rooftop. The outside air passage that is opened to the outside through the outside air passage is formed, so that the outside air that has entered from the lower side of the outside air passage rises along the outside air passage and is discharged from the rooftop. A flow is generated, the ventilation of the outer wall support portion is improved, the outer wall is prevented from slipping and the like is improved, and the outer ventilation path serves as a cushion to exhibit a suitable heat insulating effect.

また、請求項7に記載の発明は、前記熱橋が地下水位から2m離して埋設されている。
In the invention according to claim 7, the thermal bridge is buried 2 m away from the groundwater level.

また、請求項8に記載の発明は、前記屋根裏空間の上の棟部に上部排気室が設けられており、この上部排気室には、前記床下空間を経由してきた空気を吸い込み、これを屋外に放出するための排気ファンが設けられている。In the invention according to claim 8, an upper exhaust chamber is provided in a ridge above the attic space, and the upper exhaust chamber sucks in air that has passed through the underfloor space, An exhaust fan is provided to discharge the air.

本発明の建物の換気システムは、居住区画の外側に断熱材が介装され、建物の居室に設けられた外気導入口を介して外気が導入され、この外気を還流させて建物内が換気される建物の換気システムにおいて、前記居室と前記建物の屋根との間に屋根裏空間が形成され、前記建物内と断熱材との間に内側通気路が形成されると共に、前記居室空間の上部に排気口が形成され、各居室を通過した外気はこの排気口を介して前記屋根裏空間に集められ、この屋根裏空間に集められた空気を前記屋根裏空間に設けられた排気ファンによって集めて送気ダクトで、閉塞された基礎と該基礎に接続され地中に埋設されて地熱が伝熱される金属もしくは金属が混入されたコンクリートからなる熱橋とを備える床下空間に送り、この床下空間で熱交換させた後、前記内側通気路に沿って上昇させて屋外に放出させたので、排気ファンの空気の吸い上げにより建物内に一連の空気の流れを発生させることができるワンパス方式の換気システムを構成することができ、建材等から放出される有害物質が室内に侵入しない建物内の換気が好適に行われると共に、結露による土台の腐敗や、居室内におけるカビやダニの発生を防止することができる。また、低コストかつ効率的で均一な冷暖房がなされ、環境空間を快適に維持することができる建物の換気システムを提供することができる。
In the building ventilation system of the present invention, a heat insulating material is provided outside the living section, outside air is introduced through an outside air introduction port provided in the room of the building, and the inside of the building is ventilated by circulating the outside air. In the building ventilation system, an attic space is formed between the living room and the roof of the building, an inner air passage is formed between the building and the heat insulating material, and an exhaust is formed above the living room space. A mouth is formed and outside air that has passed through each room is collected in the attic space through this exhaust port, and the air collected in this attic space is collected by an exhaust fan provided in the attic space in an air supply duct. , Sent to an underfloor space comprising a closed foundation and a heat bridge made of metal or a metal-mixed concrete that is connected to the foundation and buried in the ground to transfer geothermal heat , and heat was exchanged in the underfloor space rear Since it was raised along the inner ventilation path and released to the outside, a one-pass ventilation system that can generate a series of air flows in the building by sucking up air from the exhaust fan can be configured, Ventilation in the building where harmful substances released from building materials and the like do not enter the room is suitably performed, and it is possible to prevent the base from decaying due to condensation and the generation of mold and mites in the room. In addition, it is possible to provide a building ventilation system that is low-cost, efficient, and uniform air-conditioning and that can maintain an environmental space comfortably.

居住区画の外側に断熱材が介装され、建物の居室に設けられた外気導入口を介して外気が導入され、この外気を還流させて建物内が換気される建物の換気システムにおいて、前記居室と前記建物の屋根との間に屋根裏空間が形成され、前記建物内と断熱材との間に内側通気路が形成されると共に、前記居室空間の上部に排気口が形成され、各居室を通過した外気はこの排気口を介して前記屋根裏空間に集められ、この屋根裏空間に集められた空気を排気ファンによって集めて送気ダクトで、閉塞された基礎と該基礎に接続され地中に埋設されて地熱が伝熱される金属もしくは金属が混入されたコンクリートからなる熱橋とを備える床下空間に送り、この床下空間で熱交換させた後、前記内側通気路に沿って上昇させて屋外に放出させた。
In the ventilation system of a building, where a heat insulating material is interposed outside the living section, outside air is introduced through an outside air inlet provided in the room of the building, and the inside of the building is ventilated by circulating the outside air, the room An attic space is formed between the building and the roof of the building, an inner air passage is formed between the building and the heat insulating material, and an exhaust port is formed in the upper portion of the living room space, passing through each living room. The collected outside air is collected in the attic space through this exhaust port, and the air collected in this attic space is collected by an exhaust fan, and is connected to the closed foundation and the foundation and buried in the ground by an air supply duct. To the underfloor space provided with a metal to which geothermal heat is transferred or a concrete bridge mixed with metal, and after exchanging heat in this underfloor space, it is raised along the inner air passage and released to the outside. It was.

以下、本発明の実施の形態を図面に基いて詳細に説明する。
図1は、本発明に係る建物の換気システムの一実施形態を示す断面図、図2は、図1の建物の屋根裏空間を示す平面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing an embodiment of a building ventilation system according to the present invention, and FIG. 2 is a plan view showing an attic space of the building of FIG.

この建物1は、コンクリート製の基礎2と、この基礎2に接続された熱橋3と、これらの上に設けられた建物本体4とからなる。基礎2は換気口等を設けずに閉塞された状態で形成され、床下空間5の気密性が確保されている。また、基礎2の外側には後述する断熱材15が延設され、床下空間5での断熱性が好適に得られるようになっている。   The building 1 includes a concrete foundation 2, a thermal bridge 3 connected to the foundation 2, and a building body 4 provided on these. The foundation 2 is formed in a closed state without providing a ventilation port or the like, and the airtightness of the underfloor space 5 is ensured. Moreover, the heat insulating material 15 mentioned later is extended in the outer side of the foundation 2, and the heat insulation in the underfloor space 5 is obtained suitably.

建物本体4内には間仕切壁6、内壁7、床8および天井9等により区分された複数の居室10が形成されている。また、これら各居室10と屋根11と間には屋根裏空間12が形成され、その上の棟部には上部排気室13が設けられている。床8、屋根11および外壁14の内側には所定の形態からなる断熱材15が介装され、高気密性の建物1を構成している。この断熱材15は、発泡ポリスチレン(EPS)等の発泡プラスチックからなる断熱ボードで構成されている。なお、こうした断熱材15以外にもグラスウール等からなる断熱材を充填させても良い。また、基礎用断熱材として防蟻剤入りの断熱材が使用され、さらに地面からの熱が床下に回り込むのを防止するためにスカート断熱を基礎周りに適用しても良い。   In the building body 4, a plurality of living rooms 10 are formed that are partitioned by a partition wall 6, an inner wall 7, a floor 8, a ceiling 9, and the like. Further, an attic space 12 is formed between each of the living rooms 10 and the roof 11, and an upper exhaust chamber 13 is provided in the ridge portion above the space. A heat insulating material 15 having a predetermined shape is interposed inside the floor 8, the roof 11, and the outer wall 14 to constitute a highly airtight building 1. The heat insulating material 15 is composed of a heat insulating board made of foamed plastic such as expanded polystyrene (EPS). In addition to the heat insulating material 15, a heat insulating material made of glass wool or the like may be filled. Further, a heat insulating material containing an anti-anticide is used as the heat insulating material for the foundation, and skirt heat insulating may be applied around the foundation to prevent heat from the ground from flowing under the floor.

建物本体4を構成する壁の内部には、外側通気路16と内側通気路17が形成されている。外側通気路16は、建物本体4の外周側に沿って外壁14と屋根11の内側に連続して形成され、その下部側の一端は屋外に開通されると共に、上部側の一端は屋上を介して屋外に開通されている。なお、上部側は屋上だけでなく軒天にも開口させても良い。したがって、図中黒矢印で示すように外側通気路16の下部側から進入した外気はこの外側通気路16に沿って上昇して屋上あるいは屋上と軒天から排出される。外側通気路16では定常的にこのような空気の流れが生じ、外壁支持部の換気が良好になり外壁のずり落ち等を防止して耐久性を向上させると共に、この外側通気路16がクッションの役割をなして好適な断熱効果を発揮する。   An outer ventilation path 16 and an inner ventilation path 17 are formed inside the wall constituting the building body 4. The outer ventilation path 16 is formed continuously along the outer peripheral side of the building body 4 on the inner side of the outer wall 14 and the roof 11, and one end on the lower side is opened to the outdoors, and one end on the upper side passes through the rooftop. Open to the outdoors. The upper side may be opened not only on the roof but also on the eaves. Therefore, as indicated by the black arrows in the figure, the outside air that has entered from the lower side of the outer ventilation path 16 rises along the outer ventilation path 16 and is discharged from the rooftop or the rooftop and eaves. Such an air flow is constantly generated in the outer air passage 16, and the outer wall support portion is well ventilated to prevent the outer wall from slipping and the like, and the durability is improved. It plays a role and exhibits a suitable heat insulating effect.

一方、内側通気路17は、内壁通気路18と床通気路19および屋根裏通気路20とからなっている。内壁通気路18は、建物本体4の内周側に沿って断熱材15と内壁7間に連続して形成され、その下部側の一端は床下空間5に開通されると共に、上部側の一端は屋根裏通気路20を介して上部排気室13に開通されている。この上部排気室13には床下空間5を経由してきた空気を吸い込み、これを屋外に放出するための排気ファン21が設けられている。なお、本実施形態では、屋根断熱を例示したが、これに限らず、天井に断熱材を介装し、天井断熱として屋根裏空間をそのまま上部排気室としても良い。   On the other hand, the inner air passage 17 includes an inner wall air passage 18, a floor air passage 19 and an attic air passage 20. The inner wall ventilation path 18 is formed continuously between the heat insulating material 15 and the inner wall 7 along the inner peripheral side of the building body 4, and one end on the lower side is opened to the underfloor space 5, and one end on the upper side is The upper exhaust chamber 13 is opened via the attic air passage 20. The upper exhaust chamber 13 is provided with an exhaust fan 21 for sucking air that has passed through the underfloor space 5 and releasing the air outdoors. In the present embodiment, the roof insulation is exemplified. However, the present invention is not limited to this, and a heat insulating material may be interposed in the ceiling, and the attic space may be used as the upper exhaust chamber as the ceiling insulation.

ここで、最上階を除く各梁22および土台26には横方向にそれぞれ切欠き22a、26aが形成されている。これにより、一階の内側通気路17を上昇してきた空気は床通気路19を経由して二階の内側通気路17へと流れると共に、二階の床8は密閉されない構造となるため、一階への騒音の響きが緩和される。また、落とし根太に合板張りで一体化されているため強度的にも有利である。なお、最上階の梁23には縦方向の切欠き23aが形成され、二階の内壁通気路18を通過してきた空気は屋根裏通気路20に流れ、上部排気室13の排気ファン21で放出される。   Here, notches 22a and 26a are respectively formed in the transverse direction in each beam 22 and the base 26 except for the top floor. As a result, the air that has risen up the inner air passage 17 on the first floor flows to the inner air passage 17 on the second floor via the floor air passage 19, and the floor 8 on the second floor has a structure that is not sealed. The sound of noise is reduced. In addition, it is advantageous in terms of strength because it is integrated with plywood on the dropped joists. Note that a vertical cutout 23 a is formed in the beam 23 on the uppermost floor, and the air that has passed through the inner wall ventilation path 18 on the second floor flows into the attic ventilation path 20 and is released by the exhaust fan 21 in the upper exhaust chamber 13. .

なお、本実施形態では、内側通気路17が内壁通気路18と床通気路19および屋根裏通気路20で構成されているものを例示したが、さらに、間仕切壁6の内部に間仕切壁通気路(図示せず)を設け、この間仕切壁通気路を経由させて床下空間5から上昇してきた空気を屋根裏通気路20に流すようにしても良い。これにより、各居室10の温度を一層均一に維持することができる。   In the present embodiment, the inner air passage 17 is exemplified by the inner wall air passage 18, the floor air passage 19, and the attic air passage 20, but the partition wall air passage ( (Not shown) may be provided, and the air rising from the underfloor space 5 through the partition wall ventilation path may be caused to flow to the attic ventilation path 20. Thereby, the temperature of each living room 10 can be maintained more uniformly.

各居室10には外気導入口24が形成されている。この外気導入口24から導入された外気は、各居室10に形成された壁開口部25を介して各居室10を通過した後、最終的に二階の天井9に形成された排気口28を介して屋根裏空間12に集められる。ここで、壁開口部25とは、戸のアンダーカットやガラリ、あるいは引戸等を指し、排気口28は居室10に限らず図示しない廊下や階段であっても良い。また、排気口28は外気導入口24に対向する位置に配設されるのが有効である。なお、外気導入口24は、実施例では居室10における内壁7の略中央に設けられているが、天井9または床8に近接して設けても良い。また、一箇所のみでなく複数箇所に設けても良く、所望の換気流量に応じてその開口面積等が適宜決定される。   An outside air inlet 24 is formed in each room 10. The outside air introduced from the outside air introduction port 24 passes through each living room 10 through the wall opening 25 formed in each living room 10, and finally passes through the exhaust opening 28 formed in the ceiling 9 on the second floor. And collected in the attic space 12. Here, the wall opening 25 refers to an undercut or louver of a door, a sliding door, or the like, and the exhaust port 28 is not limited to the living room 10 and may be a corridor or a staircase (not shown). Further, it is effective that the exhaust port 28 is disposed at a position facing the outside air introduction port 24. In addition, the outside air inlet 24 is provided in the approximate center of the inner wall 7 in the living room 10 in the embodiment, but may be provided close to the ceiling 9 or the floor 8. Moreover, you may provide in multiple places instead of only one place, The opening area etc. are suitably determined according to desired ventilation flow volume.

図2に示すように、屋根裏空間12には排気ファン29が設けられ、この排気ファン29での空気の吸い上げにより、各居室10内と屋根裏空間12内とに一連の空気の流れを発生させ、建物本体4内の換気が好適に行われると共に、結露による土台の腐敗や、居室10内におけるカビやダニの発生を防止することができる。このように、居室10の上部に溜まった暖気は効果的に排気口28を経由して排気ファン29で吸い上げられ、送気ダクト30を介して床下空間5に送られる。なお、ここでは、屋根裏空間12に排気ファン29を設け、各居室10内の空気を屋根裏空間12に集める構造を例示したが、これに限らず、各居室10の上部に溜まる暖気を床下空間5に送るものであれば良く、例えば、各居室10の上部にそれぞれ排気ファン29を設け、送気ダクト30を介して床下空間5に送るようにしても良い。またこれ以外に、排気ファン21の吸い込みのみで空気の流れを発生させることも可能である。   As shown in FIG. 2, an exhaust fan 29 is provided in the attic space 12, and by sucking air by the exhaust fan 29, a series of air flows is generated in each living room 10 and the attic space 12, Ventilation in the building body 4 is suitably performed, and it is possible to prevent the base from being damaged by condensation and the occurrence of mold and mites in the living room 10. Thus, the warm air accumulated in the upper part of the living room 10 is effectively sucked up by the exhaust fan 29 via the exhaust port 28 and sent to the underfloor space 5 via the air supply duct 30. Here, the exhaust fan 29 is provided in the attic space 12 and the structure in which the air in each living room 10 is collected in the attic space 12 is illustrated. However, the present invention is not limited to this, and the warm air accumulated in the upper part of each living room 10 For example, an exhaust fan 29 may be provided at the top of each living room 10 and sent to the underfloor space 5 via the air supply duct 30. In addition to this, it is also possible to generate an air flow only by suction of the exhaust fan 21.

さらに、屋根裏空間12には吸気ファン31が設けられている。そして、この吸気ファン31に接続され、一端が建物本体4の南側の軒下に開口され、他端が前記送気ダクト30に連結された吸気ダクト32が配設されている。この吸気ダクト32は軒下に限らず棟部に配設されても良い。なお、この吸気ダクト32は、アルミ合金等、熱交換性が高くかつ有害物質を放出しない材質からなり、蛇腹状に形成されている。これにより、冬は太陽光による加熱、夏は放射冷却を利用する熱交換型温調システムを構成している。したがって、この吸気ダクト32により外気は熱交換されて床下空間5に送られるので、新たな集熱面等を設けることなく低コストで蓄熱効果を上げると共に、後述する地熱交換の補助をすることができる。なお、この吸気ファン31は、図示しないタイマーと温度センサーを用いて、冬は昼間、夏は夜間に作動させるようにしても良い。   Further, an intake fan 31 is provided in the attic space 12. An intake duct 32 connected to the intake fan 31, having one end opened under the eaves on the south side of the building body 4 and the other end connected to the air supply duct 30 is disposed. The intake duct 32 may be disposed not only under the eaves but also in the ridge. The intake duct 32 is made of a material such as an aluminum alloy that has high heat exchange and does not emit harmful substances, and is formed in a bellows shape. This constitutes a heat exchange type temperature control system that uses solar heating in the winter and radiation cooling in the summer. Therefore, since the outside air is heat-exchanged by the intake duct 32 and is sent to the underfloor space 5, it is possible to increase the heat storage effect at a low cost without providing a new heat collecting surface or the like, and to assist geothermal exchange described later. it can. The intake fan 31 may be operated in the daytime in winter and in the nighttime in summer by using a timer and a temperature sensor (not shown).

床下空間5の地中には熱橋3が埋設されている。この熱橋3としては、熱伝導性を考慮し、アルミ合金や銅等の金属やこれらの金属が混入されたコンクリートからなっている。また、この熱橋3に接続される基礎2の一部(図中水平部)に熱交換面が構成されている。さらに、この熱交換面の効率を上げるため、基礎2の表面に割栗石、木炭、セラミック炭等を配設するのが良い。なお、ベタ基礎の場合は、このように基礎2と熱交換面が同一となるが、布基礎のような場合は熱交換面を別途設けることも可能である。従来から地中にコンクリート製やアルミ系のパイプを埋設し、このパイプの中に空気を流して地熱を利用する方法があるが、パイプ内に水、塵、雑菌等が溜まるという問題があり好ましくない。ここで、地下水によって熱が奪われる恐れがあるため、熱橋3は、地下水位から少なくとも2m離して埋設されるのが好ましい。例えば、地下水位が5mの場合は、熱橋3は3m以内に設定されるのが好ましい。こうした基礎2および熱橋3を採用することにより、その熱、すなわち、基礎2に蓄積された熱および地熱を床下空間5に導くことができる。そして、屋根裏空間12で集められた空気がこの床下空間5に送られることにより熱交換され、この空気が、図1の白矢印で示すように、内側通気路17、すなわち、内壁通気路18と床通気路19等に送られ、輻射および熱伝導により各居室10の冷暖房を行った後、最終的に屋根裏通気路20を介して上部排気室13から屋外に放出される。したがって、建物本体4の内部の換気が好適になされると共に、結露による土台の腐敗や、居室10内におけるカビやダニの発生を防止することができる。また、効率的で均一な冷暖房がなされ、従来の蓄熱システムに比べ、工事費や設備費が嵩むことがなく、また季節によってシステム管理を変更することもなく、建物の維持管理を低コストに抑え、かつ有効な蓄熱システムが得られ、環境空間を快適に維持することができる建物の換気システムを提供することができる。 A thermal bridge 3 is buried in the ground of the underfloor space 5. As the thermal bridge 3, consideration of thermal conductivity, metals and these metals, such as aluminum alloy or copper is made of concrete which is mixed. Further, a heat exchange surface is formed on a part of the foundation 2 (horizontal portion in the figure) connected to the thermal bridge 3. Furthermore, in order to increase the efficiency of this heat exchange surface, it is preferable to arrange cracked stone, charcoal, ceramic charcoal, etc. on the surface of the foundation 2. In the case of a solid foundation, the heat exchange surface is the same as that of the foundation 2 as described above. However, in the case of a cloth foundation, a heat exchange surface can be provided separately. Conventionally, there is a method of burying concrete or aluminum pipes in the ground and using geothermal heat by flowing air into the pipes, but there is a problem that water, dust, germs, etc. accumulate in the pipes. Absent. Here, since heat may be taken away by the groundwater, the thermal bridge 3 is preferably buried at least 2 m away from the groundwater level . For example, when the groundwater level is 5 m, the thermal bridge 3 is preferably set within 3 m. By adopting the foundation 2 and the thermal bridge 3, the heat, that is, the heat accumulated in the foundation 2 and the geothermal heat can be led to the underfloor space 5. Then, the air collected in the attic space 12 is sent to the underfloor space 5 to exchange heat, and this air is exchanged with the inner air passage 17, that is, the inner wall air passage 18 as indicated by the white arrows in FIG. The air is sent to the floor air passage 19 and the like, and after cooling and heating each room 10 by radiation and heat conduction, the air is finally discharged from the upper exhaust chamber 13 through the attic air passage 20 to the outside. Therefore, the inside of the building body 4 is preferably ventilated, and the base can be rotted due to dew condensation and the generation of mold and mites in the living room 10 can be prevented. In addition, efficient and uniform cooling and heating are performed, and compared to conventional heat storage systems, construction costs and equipment costs are not increased, and system management is not changed according to the seasons. In addition, an effective heat storage system can be obtained, and a building ventilation system that can maintain an environmental space comfortably can be provided.

このように、エアコン33がない場合、各居室10内の温度に比べ、夏場の昼間は内側通気路17内の方が低く、冬場の夜は逆に内側通気路17内の方が高くなる。そのため、内壁7を通して輻射冷暖房がなされ、居室10内の温度に比べ実際の体感温度は過ごし易い状態になる。必要に応じて、夏は屋根裏空間12に設置されたエアコン33を補助冷暖房として利用し、低コストな夜間電力で作動させ、床下空間5に蓄熱する。また、床下空間5の湿度が上がるような場合には、このエアコン33で除湿することも可能である。なお、エアコン33は、屋根裏空間12に限らず、一階に設置されても、また、屋根裏空間12と一階、あるいはその他の場所に設置されても良い。   Thus, in the absence of the air conditioner 33, the temperature in the inner ventilation path 17 is lower during the daytime in summer and the temperature in the inner ventilation path 17 is higher during the night in winter compared to the temperature in each room 10. Therefore, radiant cooling and heating are performed through the inner wall 7, and the actual sensible temperature is easier to spend than the temperature in the living room 10. If necessary, the air conditioner 33 installed in the attic space 12 is used as auxiliary air conditioning in summer, and is operated with low-cost nighttime electric power to store heat in the underfloor space 5. Further, when the humidity of the underfloor space 5 is increased, the air conditioner 33 can be used for dehumidification. The air conditioner 33 is not limited to the attic space 12 and may be installed on the first floor, or may be installed on the attic space 12 and the first floor, or in other places.

次に、地熱交換について具体的に詳述する。
1.夏の昼間は、基礎2および熱橋3の冷熱を利用して内側通気路17より冷却する。この場合、基礎2の表面が温度上昇する。なお、そこに結露する恐れがある場合は必要に応じてエアコン33を使用する。
2.夏の夜間は、居室10内よりも外気の方が低温な場合が多いため、外気を積極的に取り入れて基礎2の表面の温度を冷やす。この補助として軒下の吸気ダクト32による熱交換型温調システムが有効である。熱帯夜のような場合は、適宜エアコン33を作動させるのが好ましい。
3.冬の昼間は、各居室10に日射が差し込み温度が上昇するが、その熱を気流に乗せて基礎2の表面へと蓄熱する。この時、この補助として軒下の吸気ダクト32による熱交換型温調システムが有効である。
4.冬の夜間は、断熱して基礎2で蓄熱された熱を利用して温度を維持する。必要に応じて適宜エアコン33による暖房を利用するのが好ましい。
Next, the geothermal exchange will be specifically described in detail.
1. During summer daytime, cooling is performed from the inner air passage 17 using the cold energy of the foundation 2 and the thermal bridge 3. In this case, the temperature of the surface of the foundation 2 rises. If there is a risk of condensation there, the air conditioner 33 is used as necessary.
2. During summer nights, the outside air is often cooler than in the living room 10, so the outside air is actively taken to cool the surface of the foundation 2. As this assistance, a heat exchange type temperature control system using an intake duct 32 under the eaves is effective. In the case of a tropical night, it is preferable to operate the air conditioner 33 as appropriate.
3. During the daytime in winter, solar radiation is inserted into each living room 10 and the temperature rises, but the heat is put on the airflow and stored on the surface of the foundation 2. At this time, a heat exchange type temperature control system using the intake duct 32 under the eaves is effective as this assistance.
4). During winter nights, heat is insulated and the temperature is maintained using the heat stored in the foundation 2. It is preferable to use heating by the air conditioner 33 as needed.

基礎2および熱橋3からなる床下空間5での熱交換は、蓄熱量が大きい基礎コンクリートを利用しているため、居室10に比べ温度変化は緩慢となり、居室10内の温度変化に対して略5〜8時間のずれが見込まれる。この特性を利用し、内側通気路17内の空気の温度に応じて熱交換、すなわち、各居室10に熱を与えたり、あるいは奪ったりして温度調節をする。また、基礎2自体の蓄熱量もさることながら、本実施形態に係る熱交換は、大地という巨大な熱源により、温度差に略5ヶ月のずれが生じ、これにより安定的な温度を維持することができる。さらに安定化するためには、第一種換気として、各居室10への吸気と排気との熱交換を行い、流入する空気の温度を居室10内の温度に近付けても良い。   The heat exchange in the underfloor space 5 composed of the foundation 2 and the thermal bridge 3 uses basic concrete having a large amount of heat storage, so that the temperature change is slower than that in the room 10, and the temperature change in the room 10 is almost the same. A shift of 5-8 hours is expected. Utilizing this characteristic, the temperature is adjusted by exchanging heat according to the temperature of the air in the inner air passage 17, that is, applying heat to each living room 10 or taking it away. In addition to the amount of heat stored in the foundation 2 itself, the heat exchange according to the present embodiment causes a temperature difference of about 5 months due to a huge heat source called the earth, thereby maintaining a stable temperature. Can do. In order to further stabilize, as the first type ventilation, heat exchange between the intake air and the exhaust air into each room 10 may be performed, and the temperature of the inflowing air may be brought close to the temperature in the room 10.

本実施形態では、図1の黒矢印で示すように、外気の流れはワンパス方式の一方向とし、循環させずに各居室10内の空気を床下空間5に送るようにしたので、建材等から放出される有害物質や地中からのラドンが循環しないだけでなく、必要以上に居室10と床下空間5との温度差を広げることはない。このことは一階の床8における夏場の結露防止に有効であると共に、冬場は、昼間に導かれた太陽熱を床下空間5へと蓄熱し、夜間の寒さに備えることができる。   In the present embodiment, as indicated by the black arrows in FIG. 1, the flow of outside air is one-way, and the air in each room 10 is sent to the underfloor space 5 without being circulated. Not only does the released harmful substances and radon from the ground not circulate, but the temperature difference between the living room 10 and the underfloor space 5 is not increased more than necessary. This is effective for preventing dew condensation in the summer on the floor 8 on the first floor, and in the winter, the solar heat guided during the daytime can be stored in the underfloor space 5 to prepare for cold at night.

以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment, and is merely an example, and various modifications can be made without departing from the scope of the present invention. Of course, the scope of the present invention is indicated by the description of the scope of claims, and further, the equivalent meanings described in the scope of claims and all modifications within the scope of the scope of the present invention are included. Including.

本発明に係る建物の換気システムは、高気密・高断熱構造を有する建物に適用できる。   The building ventilation system according to the present invention can be applied to a building having a highly airtight and highly heat insulating structure.

本発明に係る建物の換気システムの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the ventilation system of the building which concerns on this invention. 同上、屋根裏空間を示す平面図である。It is a top view which shows an attic space same as the above. 従来の建物の換気システムを示す断面図である。It is sectional drawing which shows the ventilation system of the conventional building.

符号の説明Explanation of symbols

1・・・・・・・・建物
2・・・・・・・・基礎
3・・・・・・・・熱橋
4・・・・・・・・建物本体
5・・・・・・・・床下空間
6・・・・・・・・間仕切壁
7・・・・・・・・内壁
8・・・・・・・・床
9・・・・・・・・天井
10・・・・・・・居室
11・・・・・・・屋根
12・・・・・・・屋根裏空間
13・・・・・・・上部排気室
14・・・・・・・外壁
15・・・・・・・断熱材
16・・・・・・・外気通路
17・・・・・・・内側通気路
18・・・・・・・内壁通気路
19・・・・・・・床通気路
20・・・・・・・屋根裏通気路
21、29・・・・排気ファン
22、23・・・・梁
22a、26a・・切欠き
23a・・・・・・切欠き
24・・・・・・・外気導入口
25・・・・・・・壁開口部
26・・・・・・・土台
28・・・・・・・排気口
31・・・・・・・吸気ファン
30・・・・・・・送気ダクト
32・・・・・・・吸気ダクト
33・・・・・・・エアコン
51・・・・・・・建物
52・・・・・・・屋根裏
52a・・・・・・屋根裏空間
53・・・・・・・強制排出装置
54・・・・・・・室
54a・・・・・・室内空間
55・・・・・・・外壁
56・・・・・・・間仕切壁
57・・・・・・・屋根
58・・・・・・・床
59・・・・・・・断熱材
60・・・・・・・排気口
61・・・・・・・床板
62・・・・・・・開口部
63・・・・・・・床通気路
64・・・・・・・外壁通気路
65・・・・・・・間仕切壁通気路
66・・・・・・・二重床
1 ... Building 2 ... Basic 3 ... Thermal Bridge 4 ... Building Body 5 ...・ Underfloor space 6 ・ ・ ・ ・ ・ ・ ・ ・ Partition wall 7 ・ ・ ・ ・ ・ ・ ・ ・ Inner wall 8 ・ ・ ・ ・ ・ ・ ・ ・ Floor 9 ・ ・ ・ ・ ・ ・ ・ ・ Ceiling 10 ・ ・ ・······················································································································································· Insulating material 16 .... Outside air passage 17 .... Inside air passage 18 .... Inside wall air passage 19 .... Floor air passage 20 .... ... Attic air passages 21, 29 ... Exhaust fans 22, 23 ... Beams 22a, 26a ... Notches 23a ... Notches 24 ... Open air inlet 25 ........ Wall opening 26.・ ・ ・ ・ ・ Base 28 ・ ・ ・ ・ ・ ・ ・ Exhaust port 31 ・ ・ ・ ・ ・ ・ Air intake fan 30 ・ ・ ・ ・ ・ ・ Air supply duct 32 ・ ・ ・ ・ ・ ・ Air intake duct 33 ・ ・Air conditioner 51 ... Building 52 ... Attic 52a ... Attic space 53 ... Forced discharge device 54 ... .. Room 54a ... Indoor space 55 ... Outer wall 56 ... Partition wall 57 ... Roof 58 ... Floor 59 ········ Insulation material 60 ········································································································ ································ 65

Claims (8)

居住区画の外側に断熱材が介装され、建物の居室に設けられた外気導入口を介して外気が導入され、この外気を還流させて建物内が換気される建物の換気システムにおいて、前記居室と前記建物の屋根との間に屋根裏空間が形成され、前記建物内と断熱材との間に内側通気路が形成されると共に、前記居室空間の上部に排気口が形成され、各居室を通過した外気はこの排気口を介して前記屋根裏空間に集められ、この屋根裏空間に集められた空気を排気ファンによって集めて送気ダクトで、閉塞された基礎と該基礎に接続され地中に埋設されて地熱が伝熱される金属もしくは金属が混入されたコンクリートからなる熱橋とを備える床下空間に送り、この床下空間で熱交換させた後、前記内側通気路に沿って上昇させて屋外に放出させたことを特徴とする建物の換気システム。 In the ventilation system of a building, where a heat insulating material is interposed outside the living section, outside air is introduced through an outside air inlet provided in the room of the building, and the inside of the building is ventilated by circulating the outside air, the room An attic space is formed between the building and the roof of the building, an inner air passage is formed between the building and the heat insulating material, and an exhaust port is formed in the upper portion of the living room space, passing through each living room. The collected outside air is collected in the attic space through this exhaust port, and the air collected in this attic space is collected by an exhaust fan, and is connected to the closed foundation and the foundation and buried in the ground by an air supply duct. To the underfloor space provided with a metal to which geothermal heat is transferred or a concrete bridge mixed with metal, and after exchanging heat in this underfloor space, it is raised along the inner air passage and released to the outside. That Ventilation system of the building to be a butterfly. 前記排気ファンが屋根裏空間に配設されている請求項1に記載の建物の換気システム。   The building ventilation system according to claim 1, wherein the exhaust fan is disposed in an attic space. 前記屋根裏空間に吸気ファンが設けられると共に、この吸気ファンに接続され、一端が前記建物の外部に開口され、他端が前記送気ダクトに連結された吸気ダクトが配設され、この吸気ダクトで導入された外気と熱交換した請求項1または2に記載の建物の換気システム。   An air intake fan is provided in the attic space, connected to the air intake fan, one end opened to the outside of the building, and the other end is connected to the air supply duct. The building ventilation system according to claim 1 or 2, wherein heat is exchanged with the introduced outside air. 前記吸気ダクトは、熱交換性が高くかつ有害物質を放出しない材質で蛇腹状に形成されている請求項3に記載の建物の換気システム。   4. The building ventilation system according to claim 3, wherein the air intake duct is formed in a bellows shape with a material that has high heat exchange and does not emit harmful substances. 前記建物内にエアコンが配設されている請求項1乃至4いずれかに記載の建物の換気システム。   The building ventilation system according to any one of claims 1 to 4, wherein an air conditioner is disposed in the building. 前記建物の外周側に沿って外壁と屋根の内側に連続して形成され、その下部側の一端は屋外に開通されると共に、上部側の一端は屋上を介して屋外に開通された外側通気路が形成されている請求項1乃至5いずれかに記載の建物の換気システム。   An outer ventilation passage formed continuously along the outer peripheral side of the building on the outer wall and the inside of the roof, with one end on the lower side opened to the outdoors and one end on the upper side opened to the outdoors via the roof The building ventilation system according to any one of claims 1 to 5, wherein: 前記熱橋が地下水位から2m離して埋設されている請求項1乃至6いずれかに記載の建物の換気システム。 The building ventilation system according to any one of claims 1 to 6, wherein the thermal bridge is embedded at a distance of 2 m from a groundwater level . 前記屋根裏空間の上の棟部に上部排気室が設けられており、この上部排気室には、前記床下空間を経由してきた空気を吸い込み、これを屋外に放出するための排気ファンが設けられている請求項1乃至7いずれかに記載の建物の換気システム。   An upper exhaust chamber is provided in the ridge above the attic space, and this upper exhaust chamber is provided with an exhaust fan for sucking air that has passed through the underfloor space and releasing it to the outdoors. The building ventilation system according to any one of claims 1 to 7.
JP2003407257A 2003-12-05 2003-12-05 Building ventilation system Expired - Fee Related JP4049380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407257A JP4049380B2 (en) 2003-12-05 2003-12-05 Building ventilation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407257A JP4049380B2 (en) 2003-12-05 2003-12-05 Building ventilation system

Publications (2)

Publication Number Publication Date
JP2005163482A JP2005163482A (en) 2005-06-23
JP4049380B2 true JP4049380B2 (en) 2008-02-20

Family

ID=34729364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407257A Expired - Fee Related JP4049380B2 (en) 2003-12-05 2003-12-05 Building ventilation system

Country Status (1)

Country Link
JP (1) JP4049380B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931493B2 (en) * 2006-06-28 2012-05-16 株式会社ウッドビルド Buildings and building ventilation methods
JP5577188B2 (en) * 2010-08-10 2014-08-20 松尾 寿一 Air cycle housing
RU2537868C2 (en) * 2013-04-05 2015-01-10 Государственное научное учреждение Всероссийский научно-исследовательский институт механизации животноводства Российской академии сельскохозяйственных наук ГНУ ВНИИМЖ Россельхозакадемии Ventilation system of livestock building
KR101374865B1 (en) 2013-08-12 2014-03-26 주식회사 비젼인텍 Ventilation system

Also Published As

Publication number Publication date
JP2005163482A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP2014051874A (en) Energy-saving ventilation system for air-tightness house
JP2006266575A (en) House using geothermal heat
JP2002340382A (en) House
JP4049380B2 (en) Building ventilation system
JP2002180558A (en) Building
JP2009192185A (en) Air conditioning ventilation system
JP2011145046A (en) Smart ecological air conditioning system
JP2520125B2 (en) Building structure
JP3150126U (en) Eco house
JP3156275U (en) House with comfortable living space using air conditioner
JP2905417B2 (en) Air circulation building
WO2012105134A1 (en) Air-conditioning system utilizing underground heat and solar heat
JP2009084936A (en) Thermal insulation dwelling house and ventilation system
JP2007163023A (en) Heating device and cooling device associated with structure of house
JP2005195223A (en) Room air conditioning system utilizing heat in underfloor space
JP2007092323A (en) Roof structure with venting skin and building having roof structure with venting skin
JP2006132899A (en) Triple ventilation system
JP6208194B2 (en) Air conditioning ventilation system
JP3727229B2 (en) Air circulation type air conditioning system
JP2934159B2 (en) Ventilated structures
JP3338412B2 (en) House ventilation systems
JP5084407B2 (en) Building air conditioning system
JP2009085553A (en) Geothermal system for building
JP3164069U (en) Building structure with circulation path in the wall
JP2627268B2 (en) House

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees