JP2014142151A - Air conditioning system using geothermal heat - Google Patents

Air conditioning system using geothermal heat Download PDF

Info

Publication number
JP2014142151A
JP2014142151A JP2013012058A JP2013012058A JP2014142151A JP 2014142151 A JP2014142151 A JP 2014142151A JP 2013012058 A JP2013012058 A JP 2013012058A JP 2013012058 A JP2013012058 A JP 2013012058A JP 2014142151 A JP2014142151 A JP 2014142151A
Authority
JP
Japan
Prior art keywords
air
heat
wall
cooling
ceiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013012058A
Other languages
Japanese (ja)
Inventor
Kazunori Fujimoto
和典 藤本
Atsushi Hasegawa
敦志 長谷川
Masao Yamagishi
政夫 山岸
Hiroyuki Shindo
啓之 進藤
Hajime Saito
一 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMADA SXL HOME CO Ltd
Original Assignee
YAMADA SXL HOME CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMADA SXL HOME CO Ltd filed Critical YAMADA SXL HOME CO Ltd
Priority to JP2013012058A priority Critical patent/JP2014142151A/en
Publication of JP2014142151A publication Critical patent/JP2014142151A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Central Heating Systems (AREA)
  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning system using geothermal heat capable of reducing heat loss in winter and heat inflow in summer, efficiently cooling/heating an entire building, and realizing energy saving.SOLUTION: An air conditioning system using geothermal heat comprises: heat exchange means 2 for exchanging heat with an underground soil, and cooling/heating air; cooled/heated air ventilation means 3 for cooling/heating an interior of a building by ventilating the air cooled/heated by this heating means; and air exhaustion means 4 for discharging the air ventilated by this cooled/heated air ventilation means to outdoor air from an attic space. As the cooling/heating ventilation means, the air conditioning system using geothermal heat comprises: an underfloor space 31 temporarily storing the air cooled/heated by the heat exchange means; inner-wall cooled/heated air passages 32 and 33 communicating with this underfloor space; an inner-ceiling cooled/heated air passage 34 communicating with these inner-wall cooled/heated air passages 32 and 33; and an attic space duct 35 communicating with this inner-ceiling cooled/heated air passage, and led to the outside air via the attic space. A portion of a ceiling where the inner-ceiling cooled/heated air passage is provided is formed into a double ceiling in which plate materials are installed to be vertically away from each other by a predetermined distance, and the inner-ceiling cooled/heated air passage is installed between the plate materials so as to be provided below a ceiling heat insulation material.

Description

この発明は、地中熱利用空調システムに関し、さらに詳しくは一定以上の深さになると地中の温度変化があまりないことを利用し、地下の地盤と熱交換して温められ又は冷やされた空気を壁や天井に沿って通気することで、居室などの建物の内部空間の冷暖房を行う技術に係るものである。   The present invention relates to a geothermal air-conditioning system, and more specifically, air that has been heated or cooled by exchanging heat with the underground ground by utilizing the fact that there is not much temperature change in the ground at a certain depth or more. It is related to the technology which air-conditions along a wall and a ceiling, and performs the air conditioning of the interior space of buildings, such as a living room.

従来、一定以上の深さになると地中の温度変化があまりないことを利用し、地中深くの地下地盤と熱交換して建物内の冷暖房を行う地中熱を利用した空調システムが知られている。例えば、特許文献1には、地下地盤と熱交換して夏季は冷やし、冬季は温めた空気を床下に取入れ、該空気を外壁の中に通して小屋裏より強制排気することにより、冷暖房費を削減することができる床下換気システムが開示されている。   Conventionally, an air conditioning system using geothermal heat that heats and cools the building by exchanging heat with the underground underground deeply using the fact that the underground temperature does not change much at a certain depth is known. ing. For example, in Patent Document 1, heat exchange with the underground ground is performed to cool in the summer, and in the winter, warm air is taken under the floor, and the air is forced to exhaust from the back of the hut through the outer wall. An underfloor ventilation system that can be reduced is disclosed.

しかし、特許文献1に記載の床下換気システムでは、地下地盤と熱交換して冷暖房した空気を、外壁内を通して間接的に室内の冷暖房を行うものであり、外壁から遠い建物内部の中央付近にある居室等を冷暖房することはできず、建物全体の冷暖房削減効果は小さいという問題があった。   However, in the underfloor ventilation system described in Patent Literature 1, air that has been heated and cooled by exchanging heat with the underground ground is indirectly heated and cooled through the inside of the outer wall, and is located near the center of the interior of the building far from the outer wall. There was a problem that the room could not be air-conditioned and the effect of reducing the air-conditioning of the entire building was small.

また、特許文献2には、メッシュ管よりなる熱交換用パイプ1の一端を住宅外の地上に臨ませ、熱交換用パイプ1の他端を住宅Hの床下空間H1に臨ませ熱交換用パイプ1の中途を地中に所要の深さに埋設し、住宅Hの外壁H2の内面に断熱材H3をライニングして室内壁H4との空間を床下空間H1及び天井裏空間H7に連通させ、熱交換用パイプ1の前記他端に室内空気導入管4の一端を連通接続して他端を室内H8に連通し、屋根裏空間H6に設置した第一の排気ファン5で壁空間H5流通空気を吸引して住宅外へ排気するとともに、室内空気排出管6の一端を室内に連通接続するとともに他端を屋根裏または天井裏に設置した第二の排気ファン7の吸引口に連通接続し、第二の排気ファン7で室内H8流通空気を吸引して住宅外へ排気するように構成し、夏期は屋外の暖気を地中の冷熱と熱交換して冷気を壁空間及び室内に流通し住宅全体を効果的に冷却・除湿でき、冬期は屋外の寒気を地中の温熱と熱交換して暖気を壁空間及び室内に流通し住宅全体を効果的に暖房でき、そのため、設備費を安価に抑えられ、省エネルギー、低ランニングコスト化に寄与し得る住宅の地中熱利用冷暖房装置が開示されている(特許文献2の実用新案登録請求の範囲の請求項1、明細書の段落0002,0005、図面の図1等参照)。   Further, in Patent Document 2, one end of a heat exchange pipe 1 made of a mesh tube faces the ground outside the house, and the other end of the heat exchange pipe 1 faces the underfloor space H1 of the house H. 1 is buried in the ground at a required depth, and a heat insulating material H3 is lined on the inner surface of the outer wall H2 of the house H so that the space between the interior wall H4 and the indoor space H4 communicates with the underfloor space H1 and the ceiling space H7. One end of the indoor air introduction pipe 4 is connected to the other end of the replacement pipe 1 and the other end is connected to the room H8, and the air flowing through the wall space H5 is sucked by the first exhaust fan 5 installed in the attic space H6. Then, the air is exhausted outside the house, one end of the indoor air discharge pipe 6 is connected to the room, and the other end is connected to the suction port of the second exhaust fan 7 installed on the attic or the back of the ceiling. The exhaust fan 7 sucks indoor H8 circulating air and exhausts it outside the house. In the summer, the outdoor warm air can be exchanged with the cold in the ground to distribute the cool air through the wall space and indoors, effectively cooling and dehumidifying the entire house. Heat exchange with warm heat circulates warm air in the wall space and indoors to effectively heat the entire house, so that the facility cost can be kept low, and it can contribute to energy saving and low running cost. An air conditioner is disclosed (see claim 1 of the utility model registration request in Patent Document 2, paragraphs 0002 and 0005 of the specification, FIG. 1 of the drawings, etc.).

しかし、特許文献2に記載の地中熱利用冷暖房装置は、確かに、地下地盤と熱交換した空気を、室内壁H4を通過させて直接室内H8に導入できる構成ではあるが、2つのファン5,7が必要なため初期コストが高くつくうえ、第二の排気ファン7で室内H8の空気を強制排気するため、冬季において折角暖めた空気が排気されてしまい熱効率が良いものではなかった。   However, although the underground heat utilization cooling and heating apparatus described in Patent Document 2 is certainly configured to allow the air exchanged with the underground ground to be directly introduced into the room H8 through the indoor wall H4, the two fans 5 , 7 is expensive, and the initial cost is high, and the air in the room H8 is forcibly exhausted by the second exhaust fan 7, so that the warm air is exhausted in the winter and the thermal efficiency is not good.

特開2005−90202号公報JP 2005-90202 A 実用新案登録第3032891号公報Utility Model Registration No. 3032891

そこで、この発明は、前記従来技術の問題点を解決し、冬季の外気への熱損失及び夏季の外気からの熱流入を軽減して建物全体を効率良く冷暖房することができ、省エネルギー化を図ることができる地中熱利用空調システムを提供することを目的とする。   Therefore, the present invention solves the problems of the prior art, and can reduce the heat loss to the outdoor air in winter and the heat inflow from the outdoor air in summer, thereby efficiently cooling and heating the entire building, thereby saving energy. An object of the present invention is to provide an air conditioning system using geothermal heat.

前記課題を解決するために、請求項1に記載の発明は、所定深さ以上の地下地盤と熱交換して空気を冷暖房する熱交換手段と、この熱交換手段で冷暖房した空気を通気することで建物内部を冷暖房する冷暖気通気手段と、この冷暖気通気手段で通気した空気を小屋裏から外気へ排気する排気手段と、を備えて地中熱を利用して建物全体を冷暖房する地中熱利用空調システムであって、前記冷暖気通気手段は、前記熱交換手段で冷暖房した空気を一時貯留する床下空間と、この床下空間と連通する壁体内冷暖気路と、この壁体内冷暖気路と連通する天井内冷暖気路と、この天井内冷暖気路に連通して小屋裏を通り外気へ通じる小屋裏ダクトと、を有し、前記天井内冷暖気路が設けられた部分の天井は、板材が上下に所定間隔離間して設置された二重天井となっており、前記天井内冷暖気路は、前記二重天井の板材間に天井断熱材の下となるよう設置されていることを特徴とする。   In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that heat exchange means for heat-exchanging air by exchanging heat with an underground ground of a predetermined depth or more, and ventilating air cooled / heated by this heat exchange means. A ground that cools and heats the entire building using geothermal heat, and has a cooling / warming ventilation means for cooling and heating the inside of the building and an exhausting means for exhausting air ventilated by the cooling and warming ventilation means from the back of the hut to the outside air In the heat utilization air conditioning system, the cooling / warming ventilation means includes an underfloor space for temporarily storing air cooled and heated by the heat exchange means, a wall cooling / warming path communicating with the underfloor space, and a wall cooling / warming path. A ceiling cool air passage that communicates with the ceiling, and a roof duct that communicates with the ceiling air cool passage through the back of the cabin and communicates with the outside air. , The plate material was installed up and down at predetermined intervals Has a heavy ceiling, the ceiling in the cold warm path, characterized in that it is installed so as to be below the ceiling insulation material between the double ceiling plate.

請求項2に記載の発明は、請求項1に記載の地中熱利用空調システムにおいて、前記壁体内冷暖気路は、内壁である間仕切壁内に設けられている。   According to a second aspect of the present invention, in the ground heat utilization air conditioning system according to the first aspect, the wall cooling / heating air passage is provided in a partition wall which is an inner wall.

請求項3に記載の発明は、請求項1又は2に記載の地中熱利用空調システムにおいて、前記壁体内冷暖気路は、外壁内の外壁断熱材の内側に設けられている。   According to a third aspect of the present invention, in the geothermal air conditioning system according to the first or second aspect, the wall cooling / heating air path is provided inside an outer wall heat insulating material in the outer wall.

請求項4に記載の発明は、請求項1ないし3のいずれかに記載の地中熱利用空調システムにおいて、外壁の外装材の内側には、外気と小屋裏空間とに連通し、外装材の熱が建物内部に伝達することを遮熱する外部通気路が設けられている。   According to a fourth aspect of the present invention, in the ground heat utilization air conditioning system according to any one of the first to third aspects, the outside air is communicated with the outside air and the shed space inside the exterior material of the exterior wall. An external ventilation path is provided to block heat from being transferred to the interior of the building.

請求項5に記載の発明は、請求項1ないし4のいずれかに記載の地中熱利用空調システムにおいて、外壁の外壁断熱材の外側には、前記床下空間と小屋裏空間とに連通し、壁体内結露を防止するとともに外気からの熱流入又は外気への熱流出を低減する壁体内通気路が設けられている。   The invention according to claim 5 is the ground heat utilization air conditioning system according to any one of claims 1 to 4, wherein the outside of the outer wall heat insulating material of the outer wall communicates with the underfloor space and the attic space. A wall ventilation path is provided that prevents condensation in the wall and reduces heat inflow from the outside air or heat outflow to the outside air.

請求項6に記載の発明は、請求項1ないし5のいずれかに記載の地中熱利用空調システムにおいて、前記床下空間とその上階の建物内部の空間とを連通する連通口が設けられている。   A sixth aspect of the present invention is the underground heat-utilizing air conditioning system according to any one of the first to fifth aspects, wherein a communication port that communicates the underfloor space and the space inside the building on the upper floor is provided. Yes.

請求項7に記載の発明は、請求項1ないし6のいずれかに記載の地中熱利用空調システムにおいて、前記床下空間は、基礎内に外気を取り入れる床下換気口と連通し、この床下換気口は、開閉自在となっている。   The invention according to claim 7 is the geothermal heat-use air conditioning system according to any one of claims 1 to 6, wherein the underfloor space communicates with an underfloor vent that takes outside air into the foundation, and the underfloor vent Is openable and closable.

請求項8に記載の発明は、請求項1ないし7のいずれかに記載の地中熱利用空調システムにおいて、前記排気手段は、小屋裏空間の空気を吸引可能であるとともに、前記小屋裏ダクトは、開閉自在となっている。   The invention according to claim 8 is the geothermal heat-use air conditioning system according to any one of claims 1 to 7, wherein the exhaust means can suck air in the attic space, and the attic duct is It can be opened and closed freely.

この発明は、前記のようであって、請求項1に記載の発明によれば、所定深さ以上の地下地盤と熱交換して空気を冷暖房する熱交換手段と、この熱交換手段で冷暖房した空気を通気することで建物内部を冷暖房する冷暖気通気手段と、この冷暖気通気手段で通気した空気を小屋裏から外気へ排気する排気手段と、を備えて地中熱を利用して建物全体を冷暖房する地中熱利用空調システムであって、前記冷暖気通気手段は、前記熱交換手段で冷暖房した空気を一時貯留する床下空間と、この床下空間と連通する壁体内冷暖気路と、この壁体内冷暖気路と連通する天井内冷暖気路と、この天井内冷暖気路に連通して小屋裏を通り外気へ通じる小屋裏ダクトと、を有し、前記天井内冷暖気路が設けられた部分の天井は、板材が上下に所定間隔離間して設置された二重天井となっており、前記天井内冷暖気路は、前記二重天井の板材間に天井断熱材の下となるよう設置されているので、ランニングコストがあまり掛からない地中熱利用の熱交換手段により、一年中を通じて変動の少ない地中深くの地下地盤と熱交換して冷暖房した空気を、床下空間から壁体内冷暖気路を経由して、二重天井の天井断熱材の内側に設けられた天井内冷暖気路内を通過させることにより、建物の室内を冷暖房することができるため、壁体内冷暖気路で外気との(物体から別の物体へ直接熱が伝わる)熱伝達を遮断して冬季の外気への熱損失及び夏季の外気からの熱流入を軽減することができる。また、冷暖気の溜まった床下空間、壁体内冷暖気路、及び天井断熱材の内側にある天井内冷暖気路により、室内をはじめとする廊下、階段などの建物内部を効率良く冷暖房することができる。このため、室内における冷暖房負荷を軽減して省エネルギー化を図ることができる。   This invention is as described above, and according to the invention described in claim 1, heat exchange means for heat-cooling air by exchanging heat with the underground ground of a predetermined depth or more, and air-conditioning by this heat exchange means The whole building is equipped with a cooling / warming ventilation means for cooling and heating the inside of the building by ventilating the air, and an exhausting means for exhausting the air ventilated by the cooling / warming ventilation means from the back of the hut to the outside air using the underground heat A geothermal air conditioning system for cooling and heating a building, wherein the cooling / warming ventilation means includes an underfloor space for temporarily storing air cooled and heated by the heat exchange means, a wall cooling / warming path communicating with the underfloor space, A cooling / warming passage in the ceiling that communicates with the cooling / warming passage in the wall and a duct in the ceiling that communicates with the cooling / warming passage in the ceiling and communicates with the outside air through the back of the hut. The ceiling of the raised part is separated by a certain distance in the vertical direction. Since it is an installed double ceiling and the cooling and heating air passage in the ceiling is installed under the ceiling heat insulating material between the plate materials of the double ceiling, geothermal heat that does not require much running cost Double-ceiling ceiling heat insulating material that heats and heats the underground ground, which has little fluctuation throughout the year, by heat exchange means, and heats the air from the underfloor space through the wall cooling and heating airway. Because the interior of the ceiling can be cooled and heated by passing through the cooling / heating air passage inside the ceiling, the outside air is transferred from the object to the outside air through the wall cooling / heating air passage (direct heat transfer from one object to another) Heat transfer can be cut off to reduce heat loss to the outside air in winter and heat inflow from outside air in summer. In addition, it is possible to efficiently cool and heat the interior of buildings such as hallways and stairs such as indoors by using the underfloor space where the cool and warm air accumulates, the wall cool and warm air passage, and the ceiling cooling and warm air passage inside the ceiling insulation. it can. For this reason, the air-conditioning load in a room can be reduced and energy saving can be achieved.

請求項2に記載の発明によれば、請求項1に記載の地中熱利用空調システムにおいて、前記壁体内冷暖気路は、内壁である間仕切壁内に設けられているので、地中熱を利用して冷暖房した空気が、両側が建物内部となる間仕切壁内を通過することとなり、更に効率良く室内を冷暖房することができる。   According to the second aspect of the present invention, in the ground heat utilization air conditioning system according to the first aspect, the wall cooling / warming air passage is provided in the partition wall which is the inner wall. Air that has been air-conditioned and heated will pass through the partition walls that are both inside the building, and the room can be more efficiently air-conditioned.

請求項3に記載の発明によれば、請求項1又は2に記載の地中熱利用空調システムにおいて、前記壁体内冷暖気路は、外壁内の外壁断熱材の内側に設けられているので、外壁内にある壁体内冷暖気路で外気との熱伝達を遮断しつつ、外壁断熱材の内側に設けられた壁体内冷暖気路で効率良く建物内部を冷暖房することができる。   According to the invention described in claim 3, in the geothermal air conditioning system according to claim 1 or 2, the wall cooling / warming path is provided inside the outer wall heat insulating material in the outer wall. The inside of the building can be efficiently cooled and heated by the wall cooling / heating passage provided inside the outer wall heat insulating material while blocking heat transfer with the outside air in the wall cooling / heating passage inside the outer wall.

請求項4に記載の発明によれば、請求項1ないし3のいずれかに記載の地中熱利用空調システムにおいて、外壁の外装材の内側には、外気と小屋裏空間とに連通し、外装材の熱が建物内部に伝達することを遮熱する外部通気路が設けられているので、外部通気路により熱伝達を遮蔽することができる。このため、夏季は日射(太陽からの輻射熱)で暖まった外装材の熱が冷房した建物内部(室内)に貫入することを低減するとともに、冬季は暖房した建物内部(室内)から冷えた外気への熱損失を低減することができる。   According to a fourth aspect of the present invention, in the ground heat utilization air conditioning system according to any one of the first to third aspects, the outside wall communicates with the outside air and the shed space inside the exterior material. Since the external air passage that shields the heat of the material from being transmitted to the inside of the building is provided, the heat transfer can be shielded by the external air passage. For this reason, in summer, heat from exterior materials heated by solar radiation (radiant heat from the sun) is reduced from penetrating into the air-conditioned building (indoors), and in winter, from the heated building interior (indoors) to the cold outside air The heat loss can be reduced.

請求項5に記載の発明によれば、請求項1ないし4のいずれかに記載の地中熱利用空調システムにおいて、外壁の外壁断熱材の外側には、前記床下空間と小屋裏空間とに連通し、壁体内結露を防止するとともに外気からの熱流入又は外気への熱流出を低減する壁体内通気路が設けられているので、壁体内通気路により熱伝達を遮蔽しつつ、室内から漏洩した湿気を排出することができ、壁体内結露を防止するとともに外気からの熱流入又は外気への熱流出を低減することができる。   According to a fifth aspect of the present invention, in the ground heat utilization air conditioning system according to any one of the first to fourth aspects, the outer wall of the outer wall of the outer wall communicates with the underfloor space and the cabin space. In addition, there is a wall ventilation path that prevents condensation in the wall and reduces heat inflow from the outside air or heat outflow to the outside air. Moisture can be discharged, condensation in the wall can be prevented, and heat inflow from the outside air or heat outflow to the outside air can be reduced.

請求項6に記載の発明によれば、請求項1ないし5のいずれかに記載の地中熱利用空調システムにおいて、前記床下空間とその上階の建物内部の空間とを連通する連通口が設けられているので、床下空間への空気の供給先として外気ではなく別の冷暖房器具で冷暖房した室内空気を用いることができ、更に効率良く、建物全体で冬季の外気への熱損失及び夏季の外気からの熱流入を軽減して省エネルギー化を図ることができる。   According to a sixth aspect of the invention, in the geothermal air conditioning system according to any one of the first to fifth aspects, a communication port is provided for communicating the underfloor space with the space inside the building on the upper floor. Therefore, it is possible to use indoor air that has been air-conditioned and heated by another air-conditioning equipment instead of outside air as the air supply destination to the underfloor space, and more efficiently, heat loss to the outside air in winter and outside air in summer in the entire building It is possible to reduce the heat inflow and save energy.

請求項7に記載の発明によれば、請求項1ないし6のいずれかに記載の地中熱利用空調システムにおいて、前記床下空間は、基礎内に外気を取り入れる床下換気口と連通し、この床下換気口は、開閉自在となっているので、床下換気口から外気を取り入れることができ、冷暖房が必要ない時に排気手段を停止して自然通気に切り換えることも可能となる。このため、更に省エネルギー化を図ることができる。   According to a seventh aspect of the present invention, in the geothermal air conditioning system according to any one of the first to sixth aspects, the underfloor space communicates with an underfloor ventilation port for taking outside air into the foundation. Since the ventilation opening is openable and closable, outside air can be taken in from the underfloor ventilation opening, and it is possible to switch to natural ventilation by stopping the exhaust means when air conditioning is not required. For this reason, further energy saving can be achieved.

請求項8に記載の発明によれば、請求項1ないし7のいずれかに記載の地中熱利用空調システムにおいて、前記排気手段は、小屋裏空間の空気を吸引可能であるとともに、前記小屋裏ダクトは、開閉自在となっているので、小屋裏空間の空気を排気手段で強制排気することができる。また、前記壁体内冷暖気路や前記天井内冷暖気路だけでなく、前記外部通気路や壁体内通気路の通気量の調整も前記排気手段で行うことができるようになる。このため、梅雨や台風などの影響を考慮して外装材(裏打ちの断熱材も含む)の濡れ具合に応じて、又は外気温に応じて外部通気路や壁体内通気路の通気量を増減することができ、更に省エネルギー化を図ることができる。   According to an eighth aspect of the present invention, in the geothermal air conditioning system according to any one of the first to seventh aspects, the exhaust means is capable of sucking air in the attic space and the attic space. Since the duct is openable and closable, the air in the cabin space can be forcibly exhausted by the exhaust means. Further, not only the wall cooling / warming path and the ceiling cooling / warming path but also the adjustment of the ventilation amount of the external ventilation path and the wall ventilation path can be performed by the exhaust means. For this reason, taking into consideration the influence of rainy season, typhoon, etc., increase or decrease the ventilation volume of the external ventilation path or the ventilation path in the wall according to the wetness of the exterior materials (including the backing insulation) or according to the outside temperature In addition, energy saving can be achieved.

この発明の一実施の形態の実施例1に係る地中熱利用空調システムを2階建ての木造戸建住宅に適用した場合を模式的に示す鉛直断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a vertical sectional view which shows typically the case where the underground heat utilization air conditioning system which concerns on Example 1 of one embodiment of this invention is applied to a 2-story wooden detached house. 実施例1に係る熱交換手段の有孔パイプ、熱交換パイプ、及び循環ポンプを主に示す鉛直断面図である。It is a vertical sectional view mainly showing a perforated pipe, a heat exchange pipe, and a circulation pump of the heat exchange means according to the first embodiment. 同上の熱交換手段が収められた地下ピットの平面図である。It is a top view of the underground pit in which the heat exchange means same as the above was stored. 実施例1に係る熱交換手段の熱交換パネルの単体をタイプ別に示す平面図である。(A)が一般部タイプ、(B)がUターン部タイプである。It is a top view which shows the simple substance of the heat exchange panel of the heat exchange means which concerns on Example 1 according to type. (A) is a general part type, (B) is a U-turn part type. 同上の熱交換パネルの単体の鉛直断面図である。It is a vertical sectional view of the single body of a heat exchange panel same as the above. 図1の建物の基礎周辺を主に示す鉛直断面図である。It is a vertical sectional view mainly showing the periphery of the foundation of the building of FIG. 同上の熱交換パネルの割り付けを主に示す1階平面図である。It is a 1st floor top view which mainly shows allocation of a heat exchange panel same as the above. 実施例1に係る冷暖気通気手段の床下連通口を主に示す1階平面図である。FIG. 3 is a first floor plan view mainly showing an underfloor communication port of the cool / warm air ventilation means according to the first embodiment. 図1で示す建物の内壁を主に示す鉛直断面図である。It is a vertical sectional view mainly showing the inner wall of the building shown in FIG. 図1で示す建物の外壁を主に示す鉛直断面図である。It is a vertical sectional view mainly showing the outer wall of the building shown in FIG. 実施例2に係る地中熱利用空調システムを模式的に示す鉛直断面図である。FIG. 6 is a vertical sectional view schematically showing a geothermal air conditioning system according to a second embodiment.

この発明の一実施の形態に係る地中熱利用空調システムについて、図面を参照しながら、以下に説明する。   A geothermal air conditioning system according to an embodiment of the present invention will be described below with reference to the drawings.

芯−芯で5.46m×5.46m程度の平面規模(図8等参照)のパネル工法による木造2階建ての実験住宅の建物に本システムを適用した場合を例示して、この発明の実施例1に係る地中熱利用空調システムの全体構成の概略について説明する。図1に示す符号1が、本実施例に係る地中熱利用空調システムであり、この地中熱利用空調システム1は、所定深さ以上の地下地盤と熱交換して空気を冷暖房する熱交換手段2と、この熱交換手段2で冷暖房した空気を通気することで建物内部を冷暖房する冷暖気通気手段3と、この冷暖気通気手段3で通気した空気を小屋裏から外気へ排気する排気手段4などから構成されている。   Implementation of the present invention by exemplifying the case where the present system is applied to a two-story wooden experimental house building by a panel method with a core scale of about 5.46m x 5.46m (see Fig. 8 etc.) An outline of the overall configuration of the geothermal air conditioning system according to Example 1 will be described. Reference numeral 1 shown in FIG. 1 is a geothermal air conditioning system according to the present embodiment. The geothermal air conditioning system 1 performs heat exchange with the underground ground having a predetermined depth or more to heat and cool the air. Means 2, cooling / heating air ventilation means 3 for cooling / heating the interior of the building by ventilating air cooled / heated by the heat exchange means 2, and exhaust means for exhausting the air ventilated by the cooling / heating air ventilation means 3 from the back of the hut to the outside air 4 or the like.

(熱交換手段)
熱交換手段2は、図1に示すように、地中に掘削された採熱用の採熱孔に埋設された有孔パイプ21と、この有孔パイプ21内に配管された熱交換パイプ22と、この熱交換パイプ22と連通して建物のベタ基礎の耐圧盤上に敷設される熱交換パネル23と、これら熱交換パイプ22及び熱交換パネル23内に熱媒体となる液体を循環させる循環ポンプ24など、から構成され、熱交換パイプ22を流れる熱媒体と地下地盤とで熱交換して熱交換パネル23で後述の床下空間31の空気を冷暖房する機能を有している。
(Heat exchange means)
As shown in FIG. 1, the heat exchanging means 2 includes a perforated pipe 21 embedded in a heat collecting hole for heat excavation excavated in the ground, and a heat exchanging pipe 22 provided in the perforated pipe 21. A heat exchange panel 23 that is in communication with the heat exchange pipe 22 and is laid on a pressure-resistant panel of a solid foundation of the building, and a circulation that circulates a liquid as a heat medium in the heat exchange pipe 22 and the heat exchange panel 23. It comprises a pump 24 and the like, and has a function of heat-exchanging air between the heat medium flowing through the heat exchange pipe 22 and the underground ground to cool and heat the air in an underfloor space 31 described later by the heat exchange panel 23.

有孔パイプ21は、図1及び図2に示すように、一年中温度が略一定に保たれる所定深さ(本実施例では5m)以上となる採熱孔21aに挿入され、この採熱孔21aの底部付近に達する所定長さの直径φ200mm程度の塩化ビニル管からなり、全部又は下部に多数の孔が穿設された有孔管となっている。このため、容易に地下水がパイプ内に浸入して地下地盤の地中熱と熱交換パイプ22内を流れる熱媒体とが熱交換し易い構成となっている。また、有孔パイプ21の地上付近の周りには、図2に示すように、固定及び上端部補強のためコンクリートを巻くことが好ましい。   As shown in FIGS. 1 and 2, the perforated pipe 21 is inserted into a heat collecting hole 21a having a predetermined depth (5 m in this embodiment) or more at which the temperature is kept almost constant throughout the year. It is a perforated tube which is made of a vinyl chloride tube having a diameter of about φ200 mm and reaches the vicinity of the bottom of the heat hole 21a, and has a large number of holes formed in the whole or in the lower part. For this reason, the groundwater easily enters the pipe, and the underground heat of the underground ground and the heat medium flowing in the heat exchange pipe 22 are easily exchanged with heat. Moreover, as shown in FIG. 2, it is preferable to wind concrete around the perimeter of the perforated pipe 21 for fixing and reinforcing the upper end portion.

熱交換パイプ22は、図2及び図3に示すように、基本的に管材の材質は問わないが、地下地盤との熱交換のため熱伝導率(熱伝達率)が高いものが好ましく、本実施例では、直径φ50mm程度の金属管から構成されている。また、熱交換パイプ22には、圧力調整用のフローセッターバルブ22aや個体の不純物を取り除くストレーナ22b、その他バルブ22c,フローセッター22dなどが取り付けられている(図7も参照)。   As shown in FIGS. 2 and 3, the heat exchange pipe 22 is basically not limited to the material of the pipe material, but preferably has a high thermal conductivity (heat transfer coefficient) for heat exchange with the underground ground. In the embodiment, it is composed of a metal tube having a diameter of about 50 mm. The heat exchange pipe 22 is provided with a flow setter valve 22a for adjusting pressure, a strainer 22b for removing solid impurities, other valves 22c, a flow setter 22d, and the like (see also FIG. 7).

そして、この熱交換パイプ22内を循環させる熱媒体は、水(水道水)でも構わないが、凍結のおそれのある地域では不凍液を使用することが好ましく、本実施例では、プロピレングリコールを主成分とする不凍液が採用されている。   The heat medium circulating in the heat exchange pipe 22 may be water (tap water), but it is preferable to use an antifreeze liquid in an area where there is a risk of freezing. In this embodiment, propylene glycol is the main component. The antifreeze is used.

熱交換パネル23は、図4〜図7に示すように、所定の強度を有するポリプロピレンなどの樹脂材を基体23aとして(特に、図4参照)、ポリブテンなどの耐熱樹脂の細管23b(図5参照)を配管・載置する厚さ20mm程度の2タイプの大きさのパネル(図4の(A)が800mm×400mm、(B)が400mm×400mm)からなり、ベタ基礎のコンクリートスラブS(耐圧盤)上に複数枚が平面的に敷き並べられて蟻足状の継手が接合されたうえ、基体23aの溝23cに細管23b(図5参照)同士を連結しながら嵌め込むことで、熱交換パイプ22と接続する水平方向に蛇行する蛇行パイプ23dが形成され(特に、図7参照)、この蛇行パイプ23dに、熱交換パイプ22を通過することで地下深くの地盤と熱交換して冷暖房された熱媒体(不凍液)が流入して、後述の床下空間31の空気と接触して熱媒体と熱交換することにより冷暖房する仕組みとなっている。   As shown in FIGS. 4 to 7, the heat exchange panel 23 is made of a resin material such as polypropylene having a predetermined strength as a base 23a (especially, see FIG. 4), and a thin tube 23b of heat-resistant resin such as polybutene (see FIG. 5). ) Is composed of two types of panels (Fig. 4 (A) is 800 mm x 400 mm, (B) is 400 mm x 400 mm), and a solid foundation concrete slab S (withstand pressure) A plurality of flat plates are laid out on top of each other to join the dovetail joints, and the thin tubes 23b (see FIG. 5) are fitted into the grooves 23c of the base 23a while being connected to each other, thereby exchanging heat. A meandering pipe 23d meandering in the horizontal direction connected to the pipe 22 is formed (particularly, see FIG. 7). The meandering pipe 23d passes through the heat exchange pipe 22 to exchange heat with the ground deep underground. A heating / cooling heat medium (antifreeze) flows in, and contacts with air in an underfloor space 31 described later to exchange heat with the heat medium, thereby cooling and heating.

また、熱交換パネル23には、図5に示すように、細管23bの下方に発泡ポリウレタンなどの断熱材23eが介装され、コンクリートスラブS側の熱伝達抵抗が高くなっており、細管23b内を流れる熱媒体からコンクリートスラブSへ冬季には熱が逃げにくいように、夏季にはコンクリートスラブから熱が流入しにくいようになっている。   In addition, as shown in FIG. 5, the heat exchange panel 23 is provided with a heat insulating material 23e such as polyurethane foam below the narrow tube 23b, and the heat transfer resistance on the concrete slab S side is high, and the inside of the narrow tube 23b. In order to prevent heat from escaping from the heat medium flowing through the concrete slab S in winter, it is difficult for heat to flow in from the concrete slab in summer.

循環ポンプ24は、液体の熱媒体が熱交換パイプ22の最下部まで到達して還流可能であり、かつ、細管23bからなる蛇行パイプ23d内を送流可能な圧力を掛けることができる一般的な圧力ポンプであれば構わない。   The circulation pump 24 is capable of applying a pressure at which a liquid heat medium can reach the lowermost part of the heat exchange pipe 22 and can be recirculated, and can be sent through a meandering pipe 23d composed of a thin tube 23b. Any pressure pump can be used.

なお、熱交換手段2として、不凍液の熱媒体を介して床下空間31の空気を冷暖房するものを例示して説明したが、床下空間31から空気を直接採熱孔21aにある熱交換パイプ22等を通して直接冷暖房する熱交換手段でもよく、ヒートポンプを採用した熱交換手段を利用すると、更に熱交換の効率が向上する。また、建物の基礎Gの外部に採熱孔21aを設けたものを例示したが、基礎の耐圧盤Sの下に採熱孔を設けてもよいことは勿論であり、図7に示すように、複数の採熱孔を設けることで冷暖房の効率が向上する。
要するに、熱交換手段2は、所定の深さの地下地盤と熱交換して空気を冷暖房可能なものであればその構成や設置個数を問わず、既知の他の熱交換手段を採用することが可能である。
The heat exchange means 2 has been described by exemplifying the air cooling / heating of the air in the underfloor space 31 through the heat medium of the antifreeze liquid, but the heat exchange pipe 22 etc. directly in the heat collecting hole 21a from the underfloor space 31 Heat exchange means that directly cools and heats the air may be used, and if heat exchange means that employs a heat pump is used, the efficiency of heat exchange is further improved. Moreover, although the thing which provided the heat collection hole 21a in the exterior of the foundation G of a building was illustrated, of course, you may provide a heat collection hole under the pressure | voltage resistant board S of a foundation, as shown in FIG. The efficiency of air conditioning is improved by providing a plurality of heat collecting holes.
In short, the heat exchanging means 2 may adopt other known heat exchanging means regardless of the configuration and the number of installed heat exchange means 2 as long as it can heat and cool the air by exchanging heat with the underground ground of a predetermined depth. Is possible.

(冷暖気通気手段)
次に、図1、図6、図8〜図10を用いて、冷暖気通気手段3について説明する。
冷暖気通気手段3は、図1に示すように、熱交換手段2で冷暖房した空気を一時貯留する床下空間31と、この床下空間31と連通する壁体内冷暖気路32、33と、この壁体内冷暖気路32、33と連通する天井内冷暖気路34と、この天井内冷暖気路34と連通して小屋裏を通り外気へ通じる小屋裏ダクト35など、から構成され、熱交換手段2で冷暖房した空気を通気することで建物内部を冷暖房する機能を有している。
(Cooling and warming ventilation means)
Next, the cooling / heating air ventilation means 3 will be described with reference to FIGS. 1, 6, and 8 to 10.
As shown in FIG. 1, the cool / warm air ventilation means 3 includes an underfloor space 31 for temporarily storing air cooled and heated by the heat exchange means 2, wall cool / warm air passages 32 and 33 communicating with the underfloor space 31, The inside cooling / warming passage 34 communicated with the body cooling / warming passages 32, 33, and the roof duct 35 communicating with the ceiling cooling / warming passage 34 through the back of the hut to the outside air. It has the function of cooling and heating the inside of the building by ventilating air that has been air-conditioned and heated.

床下空間31は、図1及び図6に示すように、建物の基礎、即ち、基礎梁Gと耐圧盤であるコンクリートスラブSと、その上階(本実施例では1階)の床F1(大引き、根太などの床を構成する床材を含む)とで囲まれる空間であり、この床下空間31において、熱交換パネル23で周囲の空気を冷暖房して一時的に貯留しておく機能を有している。この床下空間31は、一定の大きさを有し、熱容量が大きく温度変化の少ないコンクリート製の基礎に囲まれているうえ、建物が上方を覆うため日射の影響を受けないため、空気を冷暖房し、一時貯留するに際して好適な場所となっている。   As shown in FIGS. 1 and 6, the underfloor space 31 includes a foundation of a building, that is, a foundation slab G and a concrete slab S which is a pressure platen, and a floor F1 (large floor in this embodiment) on the upper floor (in this embodiment). In this under-floor space 31, the heat exchange panel 23 cools and cools the surrounding air and temporarily stores it. doing. This underfloor space 31 has a certain size, is surrounded by a concrete foundation having a large heat capacity and a small temperature change, and is not affected by solar radiation because the building covers the upper part. It is a suitable place for temporary storage.

また、この基礎梁Gには、図1に示すように、床下換気口G1が設けられ、この床下換気口は開閉自在となっており、床下空間31に外気を取り入れて換気するか、閉鎖して熱交換手段2で冷暖房した空気を貯留するかを選択することができる。   In addition, as shown in FIG. 1, the foundation beam G is provided with an underfloor ventilation opening G1, which is openable and closable. Thus, it is possible to select whether to store air cooled or heated by the heat exchange means 2.

そして、1階の床F1には、図1及び図8に示すように、1階にある建物内部の空間と連通する100mm角の正方形の床下連通口F1aが3箇所形成されており、床下換気口G1を閉じて、この床下連通口F1aから1階の室内の空気を床下空間31へ給気することが可能となっている。
このため、熱交換手段2の熱交換パネル23で冷暖房する床下空間31への空気の供給源として外気だけではなく熱交換手段2とは別の1階室内に設置された冷暖房器具(図示せず)で冷暖房した空気を用いることができ、更に効率良く、建物全体で冬季の外気への熱損失及び夏季の外気からの熱流入を軽減して省エネルギー化を図ることができる。
なお、図示(5.35m×5.35m×0.4m≒11.45mを想定)程度の床下空間31であれば、100mm角の正方形の床下連通口F1aが3箇所程あれば足りるが、床下連通口の大きさや設置箇所、設置位置等は、当然、建物の規模に応じて適宜変更可能であることは言うまでもない。
As shown in FIGS. 1 and 8, the floor F1 on the first floor is formed with three 100mm square underfloor communication openings F1a that communicate with the space inside the building on the first floor. The mouth G1 is closed, and the indoor air on the first floor can be supplied to the underfloor space 31 from the underfloor communication port F1a.
For this reason, as a supply source of air to the underfloor space 31 that is air-conditioned by the heat exchange panel 23 of the heat exchange means 2, not only the outside air but also an air conditioner (not shown) installed in the first floor room different from the heat exchange means 2 ) Can be used, and the energy can be saved more efficiently by reducing heat loss to the outside air in winter and heat inflow from outside air in summer in the entire building.
If the underfloor space 31 is about the size shown (assuming 5.35 m × 5.35 m × 0.4 m≈11.45 m 3 ), it is sufficient that there are about three 100 mm square underfloor communication ports F1a. It goes without saying that the size, installation location, installation position, etc. of the underfloor communication port can be appropriately changed according to the scale of the building.

壁体内冷暖気路32は、図1及び図9に示すように、桟木と板材からなる芯パネルIW0外面の両面にスペーサとして30mm厚の捨木を適当な間隔をおいて打ち付けたうえ、12.5mm厚の石膏ボードを貼り付けることにより、内壁である間仕切壁IW内の(鉛直断面における)左右両側に形成された30mm程度の隙間からなる通気路であり、1階から2階まで通して形成された間仕切壁IWのうち1階部分(1階間仕切壁IW1)内に1階内壁内冷暖気路32aが形成され、2階部分(2階間仕切壁IW2)に2階内壁内冷暖気路32bが形成されている。   As shown in FIGS. 1 and 9, the wall cooling / warming path 32 is formed by striking 30 mm thick timber at appropriate intervals on both sides of the outer surface of the core panel IW0 made of a crosspiece and a plate material. Affixed with a gap of about 30 mm formed on the left and right sides (in the vertical cross section) of the partition wall IW, which is the inner wall, by attaching a 5 mm thick gypsum board. The first-floor inner wall cooling / warming passage 32a is formed in the first floor portion (first-floor partitioning wall IW1) of the partition walls IW, and the second-floor inner wall cooling / warming passage 32b is formed in the second-floor portion (second-floor partitioning wall IW2). Is formed.

この壁体内冷暖気路32は、1階間仕切壁IW1の直下の床に形成された壁下連通口32cで床下空間31と連通し、2階間仕切壁IW2の直上の天井に形成された壁上連通口32dで後述の天井内冷暖気路34と連通しており、床下空間31で冷暖房された空気を通気することで各室内や廊下、階段などの建物内部を冷暖房する機能を有している。
このため、壁体内冷暖気路32により、地中熱を利用して冷暖房した空気を、両側が建物内部となる間仕切壁IW内を通過させて、効率良く建物内部を冷暖房することができる。
This wall cooling / warming passage 32 communicates with the underfloor space 31 through a lower wall communication port 32c formed in the floor immediately below the first floor partition wall IW1, and is on the wall formed on the ceiling directly above the second floor partition wall IW2. The communication port 32d communicates with a cooling / heating passage 34 in the ceiling, which will be described later, and has a function of cooling and heating the interiors of buildings such as indoors, corridors, and stairs by ventilating air that has been heated and cooled in the underfloor space 31. .
For this reason, the air inside and outside the building can be efficiently air-conditioned by allowing the air cooled and heated by using the underground heat to pass through the partition wall IW whose both sides are the inside of the building.

また、壁体内冷暖気路33は、図1及び図10に示すように、桟木と板材からなる芯パネルOW0外面の内側にスペーサとして30mm厚の捨木を適当な間隔をおいて打ち付けたうえ、9mm厚の針葉樹合板を貼り付けることにより、外壁OW内の内側に形成された30mm程度の隙間からなる通気路であり、1階から2階まで通して形成された外壁OWのうち1階部分(1階外壁OW1)内に1階外壁内冷暖気路33aが形成され、2階部分(2階外壁OW2)に2階外壁内冷暖気路33bが形成されている。   Further, as shown in FIG. 1 and FIG. 10, the wall cooling / warming passage 33 is struck with a 30 mm thick timber at an appropriate interval as a spacer inside the outer surface of the core panel OW0 made of a crosspiece and a plate material. By affixing a 9 mm thick softwood plywood, it is a ventilation path consisting of a gap of about 30 mm formed inside the outer wall OW, and the first floor portion of the outer wall OW formed through the first floor to the second floor ( A first-floor outer wall cooling / heating passage 33a is formed in the first-floor outer wall OW1), and a second-floor outer wall cooling / heating passage 33b is formed in the second-floor portion (second-floor outer wall OW2).

この壁体内冷暖気路33は、1階外壁OW1の直下の床に形成された壁下連通口33cで床下空間31と連通し、2階外壁OW2の直上の天井に形成された壁上連通口33dで後述の天井内冷暖気路34と連通しており、床下空間31で冷暖房された空気を通気することで各室内や廊下、階段などの建物内部を冷暖房する機能を有している。このため、外壁OW内にある壁体内冷暖気路33により、外気との熱伝達を遮断しつつ、後述の外壁断熱材Dの内側に設けられていることにより、効率良く建物内部を冷暖房することができる。   This wall cooling / warming passage 33 communicates with the underfloor space 31 through a lower wall communication port 33c formed in the floor immediately below the first floor outer wall OW1, and is connected to the upper wall formed in the ceiling directly above the second floor outer wall OW2. 33d communicates with a ceiling cooling / heating passage 34, which will be described later, and has a function of cooling and heating the interior of the building such as each room, corridor, and stairs by ventilating the air that has been cooled and heated in the underfloor space 31. For this reason, the inside / outside wall heat insulation path 33 in the outer wall OW blocks the heat transfer with the outside air, and is provided inside the outer wall insulation D to be described later, thereby efficiently cooling / heating the inside of the building. Can do.

なお、室内側の合板として針葉樹合板を用いたのは、安定であるためホルムアルデヒドの放出が少ないフェノール−ホルムアルデヒド樹脂系接着剤が使われているからであり、ホルムアルデヒドの放出が少なければ他の合板やボード類も勿論使用することができる。   The reason why softwood plywood was used as the indoor plywood is because it uses a phenol-formaldehyde resin adhesive that has low formaldehyde emission because it is stable. Of course, boards can also be used.

<壁体内通気路>
この外壁OWには、図1及び図10に示すように、芯パネルOW0内の内側(建物内部側)に、グラスウールなどの不燃材からなる外壁断熱材D1が偏在して挿入され、芯パネルOW0内の外側に30mmに隙間空間が形成されており、この隙間が、壁体内通気路5となっている。
<Inside wall ventilation path>
As shown in FIGS. 1 and 10, an outer wall heat insulating material D1 made of a non-combustible material such as glass wool is unevenly inserted into the outer wall OW on the inner side (inside the building) inside the core panel OW0, and the core panel OW0. A gap space is formed at 30 mm on the outer side, and this gap serves as a ventilation passage 5 in the wall.

この壁体内通気路5は、1階壁体内通気路51と2階壁体内通気路52とから構成され、1階外壁OW1の直下の床に形成された壁下連通口53で床下空間31と連通し、2階外壁OW2の直上の天井に形成された壁上連通口54で小屋裏空間と連通しており、空気が床下空間31から1階壁体内通気路51及び2階壁体内通気路52を通過して小屋裏空間へ流れることにより、室内から漏れる湿気を含んだ空気が外壁断熱材D1の内外の温度差により壁体内で結露することを防止するとともに、外気温からの熱伝達により暖められ又は冷やされた空気を小屋裏から逃がすことで外気からの熱流入又は外気への熱流出を低減する機能を有している。このため、壁体内通気路5により熱伝達を遮蔽しつつ、室内から漏洩した湿気を排出することができ、壁体内結露を防止するとともに外気からの熱流入又は外気への熱流出を低減することができる。   This wall passage 5 includes a first-floor wall passage 51 and a second-floor passage 52, and is connected to the underfloor space 31 by a lower wall communication port 53 formed on the floor immediately below the first-floor outer wall OW1. Communicating with the back of the hut space through a communication port 54 on the wall formed in the ceiling directly above the second floor outer wall OW2, and the air from the underfloor space 31 to the first floor wall ventilation path 51 and the second floor wall ventilation path. By flowing into the attic space through 52, the moisture containing moisture leaking from the room is prevented from condensing inside the wall due to the temperature difference between the inside and outside of the outer wall heat insulating material D1, and by heat transfer from the outside temperature It has a function of reducing the heat inflow from the outside air or the heat outflow to the outside air by escaping the warmed or cooled air from the back of the cabin. Therefore, moisture leaked from the room can be discharged while shielding heat transfer by the wall ventilation path 5, preventing condensation in the wall and reducing heat inflow from the outside air or heat outflow to the outside air. Can do.

<外部通気路>
それに加え、外壁OWには、芯パネルOW0の外面(建物外部側の面)に、スペーサとして30mm厚の捨木を適当な間隔をおいて打ち付けたうえ、ガルバリウム鋼板やサイディング板などの一般的な外装材Eが取り付けられており、外装材Eの内側に30mm程度の隙間からなる外部通気路6が形成されている。
<External ventilation path>
In addition, on the outer wall OW, the outer surface of the core panel OW0 (surface on the outside of the building) is struck with 30 mm thick lumber as a spacer at an appropriate interval, and a general galvalume steel plate or siding plate is used. An exterior material E is attached, and an external ventilation path 6 having a gap of about 30 mm is formed inside the exterior material E.

この外部通気路6は、1階外部通気路61と2階外部通気路62とから構成され、1階外壁OW1の直下に設けられた外気連通口63で外気と連通し、2階外壁OW2の直上に設けられた小屋裏連通口64で小屋裏空間に連通しており、外装材Eの内側を通気することで、外部通気路6により外装材Eからの熱伝達を遮蔽する機能を有している。このため、夏季は日射で暖まった外装材の熱が冷房した建物内部(室内)に貫入することを低減するとともに、冬季は暖房した建物内部(室内)から冷えた外気への熱損失を低減することができる。また、外装材Eに発泡ポリウレタンなどの図示しない断熱材が裏打ちされている場合でも、通気により除湿して断熱材が濡れたまま放置されカビが生えるのを防止することができる。   This external ventilation path 6 is composed of a first-floor external ventilation path 61 and a second-floor external ventilation path 62, communicates with the outside air through an outside air communication port 63 provided immediately below the first-floor outer wall OW 1, and is formed on the second-floor outer wall OW 2. It communicates with the back of the hut space through the hut back communication port 64 provided directly above, and has a function of shielding heat transfer from the exterior material E by the external air passage 6 by ventilating the inside of the exterior material E. ing. For this reason, in summer, heat from exterior materials heated by solar radiation is reduced from entering the cooled building (indoors), and in winter, heat loss from the heated building (indoors) to the chilled outside air is reduced. be able to. Further, even if the exterior material E is lined with a heat insulating material (not shown) such as polyurethane foam, it is possible to prevent the mold from growing by dehumidification by ventilation and leaving the heat insulating material wet.

天井内冷暖気路34は、図1、図9に示すように、天井根太などの通常の天井下地の下に厚さ12.5mmの石膏ボードを取り付け、その下にスペーサとして30mm厚の捨木を適当な間隔をおいて貼着したうえ、その下に厚さが9mmの石膏ボードを取り付けることにより、板材である石膏ボードが上下に二重となった部分に設けられた30mm程度の隙間からなる通気路であり、前述の壁上連通口32d,33dで壁体内冷暖気路32、33に連通するとともに、後で詳述する小屋裏ダクト35に連通しており、床下空間31で冷暖房された空気を通気することで建物内部を冷暖房する機能を有している。   As shown in FIGS. 1 and 9, the ceiling cooling / warming passage 34 has a 12.5 mm thick gypsum board attached under a normal ceiling foundation such as a ceiling joist, and a 30 mm thick timber as a spacer below it. Is attached at an appropriate interval, and a gypsum board with a thickness of 9 mm is attached below it. In addition to communicating with the wall cooling and warming passages 32 and 33 through the above-mentioned communication ports 32d and 33d on the wall, the air passage is connected to a hut back duct 35, which will be described in detail later. It has the function of cooling and heating the inside of the building by ventilating the air.

また、小屋裏空間を介して外気からの熱伝達を遮蔽するグラスウールなどの不燃材からなる天井断熱材D2は、この天井内冷暖気路34の上となる厚さ12.5mmの石膏ボードの上に載置されているため、天井内冷暖気路34により、天井断熱材D2の内側から効率よく建物内部を冷暖房することができる。このため、特に夏季は、天井内冷暖気路34を通過する熱交換手段2で冷やされた空気により、建物内部の空気が冷やされて下降していき、相対的に暑い空気が上昇して、石膏ボードを介して天井内冷暖気路34と接触してまた下降していくため、対流させながら建物内部を効率よく冷房することができる。   Further, the ceiling heat insulating material D2 made of non-combustible material such as glass wool that shields heat transfer from the outside air through the shed space is above the 12.5 mm thick gypsum board that is above the cooling / heating air passage 34 in the ceiling. Therefore, the inside of the building can be efficiently cooled and heated from the inside of the ceiling heat insulating material D2 by the cooling / heating air passage 34 in the ceiling. For this reason, especially in the summer, the air inside the building is cooled and lowered by the air cooled by the heat exchange means 2 passing through the ceiling cooling / warming passage 34, and the relatively hot air rises. Since it descends in contact with the ceiling cooling / warming passage 34 via the gypsum board, the inside of the building can be efficiently cooled while being convected.

小屋裏ダクト35は、図1に示すように、アルミフレキシブル管や亜鉛鋼板製のスパイラル管などからなるダクトであり、前述の天井内冷暖気路34に連通するとともに、寄せ棟屋根の屋根面や切妻屋根の妻面などから外気に達するダクトであり、途中に、後で詳述する排気手段4が装備されており、天井内冷暖気路34などの連通する通気路内の空気を外気に排気手段4で強制排気する際の通路となっている。   As shown in FIG. 1, the shed duct 35 is a duct made of an aluminum flexible pipe, a spiral pipe made of galvanized steel plate, etc., and communicates with the above-described ceiling cooling / warming passage 34, It is a duct that reaches outside air from the gable face of the gable roof, and is provided with exhaust means 4 to be described in detail later, and exhausts the air in the communicating air passage such as the cooling / heating air passage 34 in the ceiling to the outside air. This is a passage for forced exhaust by means 4.

(排気手段)
次に、図1を用いて、排気手段4について説明する。
排気手段4は、排気量(送風量)を調整可能な一般的な軸流ファンである排気ファン40から主に構成され、小屋裏ダクト35及び小屋裏空間内の空気を吸引可能となっており、これらの空気を外気へ強制排気する機能を有している。また、この排気ファン40は、小屋裏ダクト35を開閉自在なシャッタ41を有し、このシャッタ41を開閉することにより、小屋裏ダクト35に連通する通気路の空気と小屋裏空間の空気の両方を吸引して強制排気するか、又は小屋裏空間の空気のみを吸引して強制排気するかを選択可能となっている。
(Exhaust means)
Next, the exhaust means 4 will be described with reference to FIG.
The exhaust means 4 is mainly composed of an exhaust fan 40 which is a general axial fan capable of adjusting the exhaust amount (air flow rate), and is capable of sucking air in the shed back duct 35 and the shed space. The air has a function of forcibly exhausting the air to the outside air. The exhaust fan 40 has a shutter 41 that can freely open and close the shed duct 35, and by opening and closing the shutter 41, both the air in the air passage communicating with the shed duct 35 and the air in the shed space are provided. It is possible to select whether to forcibly exhaust by sucking the air or to forcibly exhaust only the air in the cabin space.

それに加え、排気手段4は、建物の屋根の頂部に、小屋裏頂部開閉弁42を有し、この小屋裏頂部開閉弁42から小屋裏の空気を自然換気することもできる構成となっている。
なお、排気ファンとして一般的な軸流ファンを例示したが、排気する空気と外気から取り入れる空気との間で熱と湿度を交換する全熱交換タイプのファンを使用することもでき、その場合は、さらに冷暖房の効率が向上する。
In addition, the exhaust means 4 has a hut back top on-off valve 42 at the top of the roof of the building, and the air in the back of the hut can be naturally ventilated from the hut back top on / off valve 42.
In addition, although the general axial fan was illustrated as an exhaust fan, the fan of the total heat exchange type which exchanges heat and humidity between the air taken in and the air taken in from external air can also be used. In addition, the efficiency of air conditioning is improved.

(地中熱利用空調システムの動作)
[夏季]
次に、図1を用いて、実施例1に係る地中熱利用空調システム1の動作について説明する。先ず、夏季に地中熱利用空調システム1を使って建物全体を冷房する際の説明をすると、床下換気口G1及び小屋裏頂部開閉弁42を閉じるとともに、シャッタ41を開き小屋裏ダクト35を開放した状態で排気ファン40を作動する。すると、小屋裏ダクト35と連通する天井内冷暖気路34から空気が吸引されるとともに、小屋裏空間の空気が吸引される。
(Operation of underground heat utilization air conditioning system)
[summer]
Next, the operation of the ground heat utilization air conditioning system 1 according to the first embodiment will be described with reference to FIG. First, in the summer, when the entire building is cooled using the geothermal air conditioning system 1, the underfloor vent G1 and the hut back top on-off valve 42 are closed, the shutter 41 is opened, and the shed duct 35 is opened. In this state, the exhaust fan 40 is operated. Then, air is sucked from the cooling / heating air passage 34 in the ceiling communicating with the roof duct 35 and air in the roof space is sucked.

小屋裏空間と壁上連通口54、小屋裏連通口64で連通する壁体内通気路5、外部通気路6内に気流を生じ、日射などで熱せられた外装材Eや外気温からの熱伝達により暑くなった空気を小屋裏から外気へ逃がすことで外部からの熱流入を低減することができる。   Heat transfer from the exterior material E that is heated by solar radiation, etc., generated by an air flow in the internal ventilation path 5 and the external ventilation path 6 that communicates with the back space, the communication port 54 on the wall, and the communication port 64 on the wall By releasing the air that has become hotter from the back of the cabin to the outside air, the heat inflow from the outside can be reduced.

また、これと同時に、天井内冷暖気路34と壁上連通口32d、壁上連通口33dで連通する壁体内冷暖気路32,33内に気流を生じ、熱交換手段2で地下地盤と熱交換して20℃程度に冷やされた床下空間31内の空気が、壁体内冷暖気路32,33、及び天井内冷暖気路34を通り、小屋裏ダクト35から外気へ排気される。このため、壁体内冷暖気路32,33、及び天井内冷暖気路34通過時に、薄い板材(12.5mm厚の石膏ボードや9mm厚の針葉樹合板)を介して20℃程度に冷やされた空気と接触する建物内部の空気を効率よく冷房することができ、夏季の冷房負荷を軽減することができる。   At the same time, an air flow is generated in the wall cooling / warming passages 32, 33 communicating with the cooling / warming passage 34 in the ceiling, the communication port 32d on the wall, and the communication port 33d on the wall. The air in the underfloor space 31 that is exchanged and cooled to about 20 ° C. passes through the wall cooling / heating passages 32 and 33 and the ceiling cooling / heating passage 34, and is exhausted from the cabin back duct 35 to the outside air. For this reason, the air cooled to about 20 ° C. through a thin plate material (12.5 mm thick gypsum board or 9 mm thick softwood plywood) when passing through the wall cooling / warming passages 32 and 33 and the ceiling cooling / heating passage 34. The air inside the building in contact with the air can be efficiently cooled, and the cooling load in summer can be reduced.

特に夏季は、天井内冷暖気路34を通過する熱交換手段2で冷やされた空気により、最上階(図1では2階)の建物内部の空気が冷やされて下降していき、相対的に暑い空気が上昇して、薄い板材(石膏ボード)を介して天井内冷暖気路34内の冷気と接触してまた下降していくため、対流させながら建物内部を効率よく冷房することができる。このとき、階段などの吹き抜け空間から1階部分も冷房することができるため、非常に効率よく建物全体を冷房することができる。また、必要に応じて、1階と2階とを連通する連通口を設けるなどすれば、満遍なく建物全体を冷房することができる。   Especially in the summer, the air inside the building on the top floor (second floor in FIG. 1) is cooled and lowered by the air cooled by the heat exchanging means 2 passing through the cooling / heating passage 34 in the ceiling. The hot air rises and comes into contact with the cool air in the ceiling cool / warm passage 34 through a thin plate material (gypsum board) and descends again, so that the inside of the building can be efficiently cooled while being convected. At this time, since the first floor portion can be cooled from the atrium space such as stairs, the entire building can be cooled very efficiently. Further, if necessary, a communication port that connects the first floor and the second floor can be provided to cool the entire building evenly.

そのうえ、床下空間31への空気の供給は、床下換気口G1を通じた外気からでは無く、床下連通口F1aを通じた1階の建物内部から行うので、建物内部で別の空調機器により冷房(後述の冬季は暖房、以下同じ)に使用されたエネルギーを無駄にすることなく、外気温からの熱流入を軽減して効率よく冷房することができ、省エネルギーである。   In addition, the supply of air to the underfloor space 31 is performed not from outside air through the underfloor ventilation port G1, but from the inside of the first floor building through the underfloor communication port F1a. In winter, energy used for heating, the same applies hereinafter) can be efficiently saved by reducing heat inflow from outside air temperature without wasting energy.

なお、このときの動作において、小屋裏頂部開閉弁42を開放すると、この小屋裏頂部開閉弁42を通じて小屋裏空間に外気が流入し、壁体内通気路5、外部通気路6内に生じる気流を減じることができる。つまり、外装材Eの濡れ状態(例えば、台風や大雨の後、梅雨季等の天候)や、日射量、外気温などに応じて、小屋裏頂部開閉弁42の開閉により壁体内通気路5、外部通気路6内の通気量を調節でき、より効果的、経済的に建物全体の冷暖房を行うことができる。
また、小屋裏頂部開閉弁42の開閉だけでなく、併せて排気ファン40の時間当りの回転数を変えることで通風量を調節できることは言うまでもない。
In the operation at this time, when the shed back top opening / closing valve 42 is opened, outside air flows into the shed space through the shed back top opening / closing valve 42, and the air flow generated in the wall ventilation path 5 and the external ventilation path 6 is generated. Can be reduced. That is, according to the wet state of the exterior material E (for example, after a typhoon or heavy rain, the rainy season, etc.), the amount of solar radiation, the outside temperature, etc. The amount of ventilation in the external ventilation path 6 can be adjusted, and the entire building can be cooled and heated more effectively and economically.
Further, it goes without saying that the ventilation rate can be adjusted not only by opening / closing the hut back top opening / closing valve 42 but also by changing the rotational speed of the exhaust fan 40 per hour.

[冬季]
次に、図1を用いて、冬季に地中熱利用空調システム1を使って建物全体を暖房する際の説明をする。
この場合、夏季と同様に、床下換気口G1及び小屋裏頂部開閉弁42を閉じるとともに、シャッタ41を開き小屋裏ダクト35を開放した状態で排気ファン40を作動する。すると、小屋裏ダクト35と連通する天井内冷暖気路34から空気が吸引されるとともに、小屋裏空間の空気が吸引される。
[winter]
Next, with reference to FIG. 1, a description will be given of heating the entire building using the underground heat utilization air conditioning system 1 in winter.
In this case, as in the summer, the exhaust fan 40 is operated in a state in which the underfloor ventilation opening G1 and the hut back top opening / closing valve 42 are closed and the shutter 41 is opened and the shed duct 35 is opened. Then, air is sucked from the cooling / heating air passage 34 in the ceiling communicating with the roof duct 35 and air in the roof space is sucked.

このとき、壁体内通気路5、外部通気路6内に気流を生じ、この気流により、室内からの熱伝達を遮断することとなり、暖められた室内の空気の熱が、外気へ逃げることを防ぎ、冬季の熱損失を低減することができるとともに、壁体内冷暖気路32,33、及び天井内冷暖気路34通過時に、薄い板材を介して熱交換手段2で地下地盤と熱交換して15℃程度に暖められた空気と接触する建物内部の空気を効率よく暖房することができる。
また、前述と同様に、外気温や積雪状況などに応じて、小屋裏頂部開閉弁42の開閉により壁体内通気路5、外部通気路6内の通気量を調節できる。
At this time, an air flow is generated in the wall ventilation path 5 and the external ventilation path 6, and the heat transfer from the room is blocked by this air flow, and the heat of the heated indoor air is prevented from escaping to the outside air. The heat loss in winter can be reduced, and the heat exchange means 2 exchanges heat with the underground ground via the thin plate material 15 when passing through the wall cooling / heating passages 32, 33 and the ceiling cooling / heating passage 34. It is possible to efficiently heat the air inside the building that comes into contact with the air heated to about ℃.
Further, similarly to the above, according to the outside air temperature, the snow condition, etc., the ventilation amount in the wall ventilation path 5 and the external ventilation path 6 can be adjusted by opening / closing the hut back top opening / closing valve 42.

特に、冬季においては、室内から漏洩した湿気を含んだ空気が外壁断熱材を境に外気温により急冷されることで露点温度を下回り、壁体内結露を生じ、建物の耐久性を損なうとともに、カビなどの温床となり健康を害するおそれがあるという問題がある。しかし、地中熱利用空調システム1では、壁体内冷暖気路32,33、及び天井内冷暖気路34で暖房すると同時に、壁体内通気路5の通気及び小屋裏空間からの排気により、外壁断熱材D1、天井断熱材D2の内外両側で換気・除湿しているので、このような問題を解決することができる。   In particular, in winter, air containing moisture leaked from the room is rapidly cooled by the outside air temperature at the boundary of the outer wall insulation material, so that it falls below the dew point temperature, causing condensation within the wall, impairing the durability of the building, There is a problem that it becomes a hotbed such as and there is a risk of harming health. However, in the underground heat-utilizing air conditioning system 1, the wall cooling / heating passages 32, 33 and the ceiling cooling / heating passage 34 are heated, and at the same time, the outer wall is insulated by the ventilation of the wall ventilation passage 5 and the exhaust from the cabin space. Since ventilation and dehumidification are performed on both the inside and outside of the material D1 and the ceiling heat insulating material D2, such a problem can be solved.

[春季、秋季]
次に、図1を用いて、春季や秋季など、特に冷暖房を必要としないときの、実施例1に係る地中熱利用空調システム1の動作について説明する。
この場合、床下換気口G1及び小屋裏頂部開閉弁42を開放するとともに、シャッタ41を開き小屋裏ダクト35を開放した状態で排気ファン40を停止する。すると、高低による大気圧の差により壁体内冷暖気路32,33、天井内冷暖気路34、壁体内通気路5、外部通気路6のそれぞれに通気が生じる。このため、機械動力を使用せずにランニングコストを低減して、壁材等を常に気乾状態に保つことができ、建物の耐久性を向上させるとともに、省エネルギー化を図ることができる。
さらに、天候に応じて、床下換気口G1を閉じて排気ファン40を作動させることで機械通気も可能であり、最小限のエネルギーで壁材等を常に気乾状態に保つことができる。
[Spring, Autumn]
Next, the operation of the geothermal air conditioning system 1 according to the first embodiment will be described with reference to FIG. 1 when there is no particular need for air conditioning such as spring or autumn.
In this case, the exhaust fan 40 is stopped in a state where the underfloor ventilation port G1 and the hut back top opening / closing valve 42 are opened, the shutter 41 is opened, and the shed back duct 35 is opened. Then, ventilation occurs in each of the wall cooling / heating passages 32 and 33, the ceiling cooling / heating passage 34, the wall ventilation passage 5, and the external ventilation passage 6 due to the difference in atmospheric pressure due to the height. For this reason, running cost can be reduced without using mechanical power, wall materials and the like can always be kept in an air-dry state, and the durability of the building can be improved and energy saving can be achieved.
Furthermore, mechanical ventilation is also possible by closing the underfloor ventilation opening G1 and operating the exhaust fan 40 according to the weather, so that the wall material or the like can be kept in an air-dried state with a minimum amount of energy.

[24時間換気]
また、一定の気密状態となる建物には、ホルムアルデヒドなどの揮発性化学物質の換気を目的として24時間の機械換気が法令により義務付けられており、24時間作動する換気扇の設置が必要である。しかし、地中熱利用空調システム1によれば、床下換気口G1を閉じるとともに、シャッタ41を開き小屋裏ダクト35を開放した状態で排気ファン40を作動することにより、床下換気口G1及び法令により設置義務のある各居室の室内換気口を通じて、建物内部の各居室を全て換気することができるため、前述の換気扇を地中熱利用空調システム1の排気ファン40で代用することができ、本換気扇の設置コスト、及びランニングコストを削減することができ経済的である。
[24 hour ventilation]
In addition, a building that is in a certain airtight state is obligated by law to provide mechanical ventilation for 24 hours for the purpose of ventilation of volatile chemical substances such as formaldehyde, and it is necessary to install a ventilation fan that operates for 24 hours. However, according to the underground heat-utilizing air conditioning system 1, by closing the underfloor ventilation opening G1 and operating the exhaust fan 40 with the shutter 41 opened and the roof duct 35 open, Since all the rooms inside the building can be ventilated through the indoor ventilation openings of each room where the installation is obligatory, the above-described ventilation fan can be substituted with the exhaust fan 40 of the underground heat utilization air conditioning system 1, and this ventilation fan The installation cost and running cost can be reduced, which is economical.

以上のように、地中熱利用空調システム1によれば、ランニングコストのあまり掛からない地中熱の熱交換手段を利用して、一年中を通じて建物全体を適温に保つことができ、冷暖房負荷を軽減して省エネルギー化を図ることができる。   As described above, according to the ground heat utilization air conditioning system 1, the entire building can be maintained at a suitable temperature throughout the year by using the heat exchange means of the ground heat that does not require much running cost. Can be saved to save energy.

次に、図11を用いて、この発明の実施例2に係る地中熱利用空調システムの全体構成の概略について説明する。図11に示すように、実施例1に係る地中熱利用空調システム1と実施例2に係る地中熱利用空調システム1’とが相違する点は、1階間仕切壁IW1と2階間仕切壁IW2とが雁行し、1階の天井の一部も二重天井として、天井内冷暖気路34と同様の天井内冷暖気路34’が設けられている点である。このため、本地中熱利用空調システム1’によれば、1階の天井内冷暖気路34’下をさらに効率よく冷暖房することができる。   Next, the outline of the whole structure of the geothermal air-conditioning system according to Embodiment 2 of the present invention will be described with reference to FIG. As shown in FIG. 11, the difference between the geothermal air conditioning system 1 according to the first embodiment and the geothermal air conditioning system 1 ′ according to the second embodiment is that the first floor partition wall IW1 and the second floor partition wall IW2 coasts, and a part of the ceiling on the first floor is also a double ceiling, and a ceiling cooling / heating passage 34 'similar to the ceiling cooling / heating passage 34' is provided. For this reason, according to the local medium heat utilization air conditioning system 1 ′, it is possible to further efficiently cool and heat the space below the ceiling cooling / heating passage 34 ′ on the first floor.

以上のように、この発明の実施例1,2に係る地中熱利用空調システムを説明したが、この発明は、図示した実施の形態に限られず、特許請求の範囲で適宜変更可能なことはいうまでもない。特に、熱交換手段や排気手段は、既知のものを適用することができ、建物もパネル工法による木造の建物には、この発明を適用し得る。   As described above, the ground heat utilization air conditioning system according to the first and second embodiments of the present invention has been described. However, the present invention is not limited to the illustrated embodiment, and can be appropriately changed within the scope of the claims. Needless to say. In particular, known heat exchange means and exhaust means can be applied, and the present invention can be applied to a building made of wood by a panel method.

1 地中熱利用空調システム
2 熱交換手段
3 冷暖気通気手段
31 床下空間
32,33 壁体内冷暖気路
34,34’ 天井内冷暖気路
35 小屋裏ダクト
4 排気手段
40 排気ファン
41 シャッタ
42 小屋裏頂部開閉弁
5 壁体内通気路
6 外部通気路
G 基礎梁
G1 床下換気口
S コンクリートスラブ(耐圧盤)
F1 1階床(基礎上階の床)
F1a 床下連通口
F2 2階床(最上階の床)
IW 間仕切壁(内壁)
OW 外壁
DESCRIPTION OF SYMBOLS 1 Air-conditioning system using geothermal heat 2 Heat exchange means 3 Cooling / warming ventilation means 31 Underfloor spaces 32, 33 Cooling / warming air paths 34, 34 'in the wall Cooling air warming path 35 in the roof Back top on-off valve 5 Ventilation path in wall 6 External ventilation path G Foundation beam G1 Underfloor ventilation opening S Concrete slab (pressure-resistant panel)
F1 1st floor (base upper floor)
F1a Underfloor communication entrance F2 2nd floor (top floor)
IW partition wall (inner wall)
OW outer wall

Claims (8)

所定深さ以上の地下地盤と熱交換して空気を冷暖房する熱交換手段と、この熱交換手段で冷暖房した空気を通気することで建物内部を冷暖房する冷暖気通気手段と、この冷暖気通気手段で通気した空気を小屋裏から外気へ排気する排気手段と、を備えて地中熱を利用して建物全体を冷暖房する地中熱利用空調システムであって、
前記冷暖気通気手段は、前記熱交換手段で冷暖房した空気を一時貯留する床下空間と、この床下空間と連通する壁体内冷暖気路と、この壁体内冷暖気路と連通する天井内冷暖気路と、この天井内冷暖気路に連通して小屋裏を通り外気へ通じる小屋裏ダクトと、を有し、
前記天井内冷暖気路が設けられた部分の天井は、板材が上下に所定間隔離間して設置された二重天井となっており、前記天井内冷暖気路は、前記二重天井の板材間に天井断熱材の下となるよう設置されていることを特徴とする地中熱利用空調システム。
Heat exchange means for cooling and heating the air by exchanging heat with the underground ground of a predetermined depth, cooling / warming ventilation means for cooling and heating the interior of the building by ventilating the air cooled and heated by this heat exchange means, and this cooling / warming ventilation means An air-conditioning system that uses geothermal heat to cool and heat the entire building using geothermal heat, and an exhaust means for exhausting the air ventilated from the back of the cabin to the outside air,
The cooling / warming ventilation means includes an underfloor space for temporarily storing air cooled and heated by the heat exchanging means, a wall cooling / warming path communicating with the underfloor space, and a ceiling cooling / warming path communicating with the wall cooling / warming path. And a shed back duct that communicates with the cooling air passage in the ceiling and passes through the shed to the outside air,
The ceiling of the portion in which the cooling / heating air passage in the ceiling is provided is a double ceiling in which plate materials are installed at a predetermined interval in the vertical direction, and the cooling / heating air passage in the ceiling is between the double ceiling plate materials. An underground air-conditioning system that is installed under the ceiling insulation.
前記壁体内冷暖気路は、内壁である間仕切壁内に設けられている請求項1に記載の地中熱利用空調システム。   The geothermal heat-use air conditioning system according to claim 1, wherein the wall cooling / warming path is provided in a partition wall which is an inner wall. 前記壁体内冷暖気路は、外壁内の外壁断熱材の内側に設けられている請求項1又は2に記載の地中熱利用空調システム。   The ground heat utilization air conditioning system according to claim 1 or 2, wherein the wall internal cooling / warming passage is provided inside an outer wall heat insulating material in an outer wall. 前記外壁の外装材の内側には、外気と小屋裏空間とに連通し、外装材の熱が建物内部に伝達することを遮熱する外部通気路が設けられている請求項1ないし3のいずれかに記載の地中熱利用空調システム。   4. An external air passage that communicates with the outside air and the cabin space and that shields heat from the exterior material from being transmitted to the interior of the building is provided inside the exterior material of the outer wall. The ground heat utilization air conditioning system described in Crab. 前記外壁の外壁断熱材の外側には、前記床下空間と小屋裏空間とに連通し、壁体内結露を防止するとともに外気からの熱流入又は外気への熱流出を低減する壁体内通気路が設けられている請求項1ないし4のいずれかに記載の地中熱利用空調システム。   Outside the outer wall heat insulating material of the outer wall, there is provided a ventilation passage in the wall that communicates with the underfloor space and the shed space, prevents condensation in the wall and reduces heat inflow from the outside air or heat outflow to the outside air. The underground heat utilization air conditioning system according to any one of claims 1 to 4. 前記床下空間とその上階の建物内部の空間とを連通する連通口が設けられている請求項1ないし5のいずれかに記載の地中熱利用空調システム。   The geothermal heat-use air conditioning system according to any one of claims 1 to 5, wherein a communication port that communicates the underfloor space and the space inside the building on the upper floor is provided. 前記床下空間は、基礎内に外気を取り入れる床下換気口と連通し、この床下換気口は、開閉自在となっている請求項1ないし6のいずれかに記載の地中熱利用空調システム。   The underground heat utilization air conditioning system according to any one of claims 1 to 6, wherein the underfloor space communicates with an underfloor ventilation port for taking outside air into the foundation, and the underfloor ventilation port is openable and closable. 前記排気手段は、小屋裏空間の空気を吸引可能であるとともに、前記小屋裏ダクトは、開閉自在となっている請求項1ないし7のいずれかに記載の地中熱利用空調システム。   The ground heat utilization air conditioning system according to any one of claims 1 to 7, wherein the exhaust means can suck air in the attic space, and the attic duct is openable and closable.
JP2013012058A 2013-01-25 2013-01-25 Air conditioning system using geothermal heat Pending JP2014142151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013012058A JP2014142151A (en) 2013-01-25 2013-01-25 Air conditioning system using geothermal heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013012058A JP2014142151A (en) 2013-01-25 2013-01-25 Air conditioning system using geothermal heat

Publications (1)

Publication Number Publication Date
JP2014142151A true JP2014142151A (en) 2014-08-07

Family

ID=51423582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013012058A Pending JP2014142151A (en) 2013-01-25 2013-01-25 Air conditioning system using geothermal heat

Country Status (1)

Country Link
JP (1) JP2014142151A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104748276A (en) * 2015-03-25 2015-07-01 安阳安振环境高科有限公司 Fresh air equipment air inducing device installed on window
CN114777197A (en) * 2022-04-29 2022-07-22 西安交通大学 Underground gallery geothermal energy recycling air conditioning system and method
JP7340307B1 (en) 2023-04-14 2023-09-07 株式会社竹内建築研究所 Buildings, multilayer ventilation panels and ventilation insulation methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104748276A (en) * 2015-03-25 2015-07-01 安阳安振环境高科有限公司 Fresh air equipment air inducing device installed on window
CN114777197A (en) * 2022-04-29 2022-07-22 西安交通大学 Underground gallery geothermal energy recycling air conditioning system and method
CN114777197B (en) * 2022-04-29 2024-03-26 西安交通大学 Underground corridor geothermal energy recycling air conditioning system and method
JP7340307B1 (en) 2023-04-14 2023-09-07 株式会社竹内建築研究所 Buildings, multilayer ventilation panels and ventilation insulation methods

Similar Documents

Publication Publication Date Title
JP2014051874A (en) Energy-saving ventilation system for air-tightness house
JP2009127921A (en) Cold taking-in system
JP2009192185A (en) Air conditioning ventilation system
JP2007085603A (en) Building air conditioning system
JP2014142151A (en) Air conditioning system using geothermal heat
WO2015015640A1 (en) Smart ecological air conditioning system
JP2009084936A (en) Thermal insulation dwelling house and ventilation system
EP2212623B1 (en) Building structure with controlled microclimate and method of air-conditioning of a building structure
JP2008261535A (en) Energy-saving constant-temperature ventilation system utilizing underground heat
JP4049380B2 (en) Building ventilation system
JP5410112B2 (en) Building ventilation structure
WO2012105134A1 (en) Air-conditioning system utilizing underground heat and solar heat
JP5084407B2 (en) Building air conditioning system
JPH06272894A (en) House
JP2007139236A (en) Underfloor air-conditioning device and method
JP3727229B2 (en) Air circulation type air conditioning system
JP2013231352A (en) Heat storage air-conditioning system
JP5653413B2 (en) Energy saving building
JP5352771B1 (en) Smart eco air conditioning system
JPH03152328A (en) Building structure
JPH0351640A (en) Ventilating device for housing
FI126643B (en) Drawer system for an outdoor unit for an air heat pump to increase the efficiency of the equipment and for air exchange and drying in the enclosure space under the building
JPH05295807A (en) Housing
JP5035577B1 (en) An air conditioning system that uses geothermal and solar heat.
JP4809498B1 (en) An air conditioning system that uses geothermal and solar heat.