JP4809498B1 - An air conditioning system that uses geothermal and solar heat. - Google Patents

An air conditioning system that uses geothermal and solar heat. Download PDF

Info

Publication number
JP4809498B1
JP4809498B1 JP2011018421A JP2011018421A JP4809498B1 JP 4809498 B1 JP4809498 B1 JP 4809498B1 JP 2011018421 A JP2011018421 A JP 2011018421A JP 2011018421 A JP2011018421 A JP 2011018421A JP 4809498 B1 JP4809498 B1 JP 4809498B1
Authority
JP
Japan
Prior art keywords
heat
underground
underfloor
wall
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011018421A
Other languages
Japanese (ja)
Other versions
JP2012159227A (en
Inventor
徹 林
Original Assignee
林 徹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林 徹 filed Critical 林 徹
Priority to JP2011018421A priority Critical patent/JP4809498B1/en
Application granted granted Critical
Publication of JP4809498B1 publication Critical patent/JP4809498B1/en
Priority to PCT/JP2011/079316 priority patent/WO2012105134A1/en
Publication of JP2012159227A publication Critical patent/JP2012159227A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Central Air Conditioning (AREA)
  • Central Heating Systems (AREA)
  • Building Environments (AREA)

Abstract

【課題】年間を通じて安定した地中恒温層の地中熱と冬期は屋根下の太陽熱の熱が加算利用できる空調システムを提供する。
【解決手段】空調システムは地中熱と太陽熱を利用した建築物の空調システムであって、断熱壁は建築物の外壁部断熱材23とその外壁部断熱材23の地中側に連結され地中3m以上に挿入されている遮水性能を付加した地中側断熱材1と、建築物の1階床の下側に天井部を1階床に設けた断熱床、壁部を壁断熱、底部を蓄熱層20により形成した床下放熱ボックス3と、循環ダクト10と、各室と床下放熱ボックス3を接続した、屋根下ダクト14と床下放熱ボックス3を接続した太陽熱循環ダクト13と、からなり、床下放熱ボックス3の太陽熱循環ダクト10の吹出口Aは循環ダクト10の吹出口Cより蓄熱層20側に設けている。
【選択図】図1
The present invention provides an air conditioning system capable of adding and using geothermal heat of a geothermal constant temperature stable throughout the year and solar heat under a roof in winter.
An air conditioning system is an air conditioning system for a building using underground heat and solar heat, and a heat insulating wall is connected to a ground side of the outer wall heat insulating material 23 and the outer wall heat insulating material 23 of the building. Underground heat insulating material 1 with water-blocking performance inserted 3m or more in the middle, a heat insulating floor with a ceiling on the first floor under the first floor of the building, and wall insulation on the wall It consists of an underfloor heat radiation box 3 whose bottom is formed by a heat storage layer 20, a circulation duct 10, and a solar heat circulation duct 13 that connects each room and the underfloor heat radiation box 3 and connects the underfloor duct 14 and the underfloor heat radiation box 3. The air outlet A of the solar heat circulation duct 10 of the underfloor radiating box 3 is provided on the heat storage layer 20 side from the air outlet C of the circulation duct 10.
[Selection] Figure 1

Description

本発明は、地中熱と太陽熱を利用した空調システムに関するものである。   The present invention relates to an air conditioning system using underground heat and solar heat.

地中熱や太陽熱を利用した空調システムはいろいろな構成が考えられているが、例
えば、特許文献1に開示されている空調システムは地中熱を建築物の冷暖房等に利用
するシステムであって地中恒温層まで延びる板状の断熱壁で建築物を囲い埋設し、地
中熱を有効に利用している構成である。断熱壁は板状で相互に連接する突合せ縁の一
方に嵌合条、残る他方に嵌合溝を有する構造であり、内外を連通する通湿孔も設け、
通気性又は通水性を発揮できる構造になっている。
Various configurations are considered for an air conditioning system using geothermal heat and solar heat. For example, the air conditioning system disclosed in Patent Document 1 is a system that uses geothermal heat for cooling and heating buildings. The building is surrounded by a plate-like heat insulation wall that extends to the underground constant temperature layer, and the underground heat is effectively used. The heat insulating wall is a plate-like structure having a fitting strip on one of the butting edges that are connected to each other, and a fitting groove on the other, and a moisture passage hole that communicates the inside and the outside.
It has a structure that can exhibit air permeability or water permeability.

また、特許文献2に開示されている地中熱と太陽熱を利用している空調システムで
は地中熱は夏期に太陽熱は冬期に使い分けしているシステムである。建物の地下に水
槽を設け、水槽の周囲は断熱壁でおおわれている。水槽には熱交換パイプが設けられ、
換気パイプを介して各室と接続されている。夏期は水槽の床構造であるコンクリート
ブロック内に中空層を設け、その中空層に水を入れて、地中熱をその水を介して水槽
に伝導するようにして、地中熱の15〜16℃を利用するようにしている。
冬期は水槽の床のコンクリートブロックの水を抜いて空気を入れ地中熱が水槽に伝
わらないようにし、屋根に設けた太陽熱温水器により採熱した太陽熱を水槽に伝導さ
せる様にして、太陽熱のみを利用する様にしている。
Moreover, in the air conditioning system using geothermal heat and solar heat disclosed in Patent Document 2, geothermal heat is used separately in summer and solar heat is used separately in winter. There is a water tank in the basement of the building, and the water tank is covered with a heat insulating wall. The water tank is equipped with a heat exchange pipe,
It is connected to each room via a ventilation pipe. In summer, a hollow layer is provided in a concrete block which is a floor structure of an aquarium, and water is put into the hollow layer so that the underground heat is conducted to the aquarium through the water. I try to use ℃.
During the winter season, the concrete block on the aquarium floor is drained and air is introduced so that the underground heat is not transmitted to the aquarium, and the solar heat collected by the solar water heater on the roof is conducted to the aquarium. Is used.

特開2007−120297号公報JP 2007-120297 A 特開平5−296603号公報Japanese Patent Laid-Open No. 5-296603

特許文献1は、この地中熱のみを建築物の冷暖房等に利用する地熱利用構造物にお
いては、地中恒温層の地中熱を利用するシステムとしては優れているシステムである
が夏期は地中熱を利用して一定の冷房ができるが、冬期は地中熱15℃〜16℃では
暖房温度を十分に得ることが難しい。
また、断熱壁は突合せ縁の嵌合条、嵌合溝や板状の断熱壁の内外を連通する通湿孔
を設けているので地下水や雨水が流出入し、その結果、地中熱が影響を受けて、安定
的な地中熱の確保が難しい。
Patent Document 1 is an excellent system for using geothermal heat of a geothermal constant layer in a geothermal utilization structure that uses only this geothermal heat for cooling and heating of a building, etc. Although constant cooling can be achieved using intermediate heat, it is difficult to obtain a sufficient heating temperature in the winter when the underground heat is 15 ° C to 16 ° C.
In addition, the insulation wall has mating strips at the butt edges, fitting grooves, and moisture vents that connect the inside and outside of the plate-like insulation wall, so groundwater and rainwater flow in and out, resulting in the influence of underground heat Therefore, it is difficult to secure stable geothermal heat.

特許文献2については、夏期は地中熱を伝熱床に伝導し、水槽を介して熱交換パイ
プに地中熱を伝導し、連通換気パイプを経て各室換気パイプで吹き出し冷房するので
一定の冷房ができるが熱交換パイプに結露が発生するので機能の持続が難しい。
冬期は太陽熱温水器から温水循環パイプから水槽を介して水槽の温水熱交換パイプ
で水槽内の熱交換パイプに伝導し、連通換気パイプを経て各室換気パイプで吹き出し
暖房するが冬期の太陽の日射のみでは不安定で暖房温度の確保が難しい。
Regarding Patent Document 2, in the summer, the ground heat is conducted to the heat transfer floor, the ground heat is conducted to the heat exchange pipe through the water tank, and the air is blown and cooled by the ventilation pipes through the communication ventilation pipes. Although it can be cooled, it is difficult to maintain its function because of condensation on the heat exchange pipe.
In the winter season, it is conducted from the solar water heater through the hot water circulation pipe to the heat exchange pipe in the aquarium through the aquarium, to the heat exchange pipe in the aquarium. It is unstable by itself and it is difficult to secure the heating temperature.

本発明はかかる問題点を解決すべく発明されたものであって、地中熱と太陽熱を利
用した建築物の空調システムにおいて、断熱壁は建築物の外壁部断熱材とその外壁部
断熱材の地中側に連結され地中3m以上に挿入されている遮水性能を付加した地中側
断熱材と、
建築物の1階床の下側に天井部を1階床に設けた断熱床、壁部を壁断熱、底部を蓄
熱層により形成した床下放熱ボックスと、
建築物の各室には天井側と床側に吹出吸込口を設け、床下放熱ボックスに設けた冬
期用送風機、夏期用送風機を介して床下放熱ボックスと各室を循環ダクトで接続し、
床下放熱ボックス上部に吹出口を設けた循環ダクトと、
床下放熱ボックス上部に吸込口を設け、壁ダクト、軒先、屋根下ダクト、降下ダク
トに接続し、降下送風機を介して床下放熱ボックス下部の吹出口に接続している太陽
熱循環ダクトと、
からなり、床下放熱ボックスの太陽熱循環ダクトの吹出口は循環ダクトの吹出口よ
り蓄熱層側に設けていることを特徴とする。
The present invention has been invented to solve such problems, and in a building air conditioning system using geothermal heat and solar heat, the heat insulating wall is composed of the outer wall heat insulating material of the building and the outer wall heat insulating material thereof. Underground side heat insulating material that is connected to the underground side and inserted with a water shielding performance of 3 m or more underground,
A heat-insulating floor with a ceiling portion provided on the first-floor floor under the first-floor floor of the building, a wall heat-insulating wall and a bottom heat-dissipating box formed by a heat storage layer at the bottom;
In each room of the building, there are blowout inlets on the ceiling side and floor side, and the underfloor heat dissipation box and each room are connected by circulation ducts through the winter blower and the summer blower provided in the underfloor heat dissipation box,
A circulation duct with an air outlet at the top of the underfloor heat dissipation box;
A solar heat circulation duct that is provided with a suction port at the top of the underfloor heat radiation box, connected to the wall duct, eaves, under roof roof, and descending duct, and connected to the air outlet at the bottom of the underfloor heat dissipating box via the lowering fan,
The air outlet of the solar heat circulation duct of the underfloor radiator box is provided on the heat storage layer side from the air outlet of the circulation duct.

また、床下放熱ボックスは地上側と地中側からなることを特徴とする。   Further, the underfloor heat dissipation box is characterized by comprising a ground side and an underground side.

また、蓄熱層は床下放熱ボックスの断熱壁内側の床面に蓄熱材と基礎コンクリート
を設けることを特徴とする。
The heat storage layer is characterized in that a heat storage material and basic concrete are provided on the floor surface inside the heat insulating wall of the underfloor heat radiation box.

また、地中側断熱材は断熱板であって、断熱板を矢板に装着して床下放熱ボックス
の周囲に形成しているオーガー工法のベントナイト、ソイルセメント、コンクリート
内に挿入することを特徴とする。
In addition, the underground heat insulating material is a heat insulating plate, and is inserted into bentonite, soil cement, or concrete of an auger method in which the heat insulating plate is attached to a sheet pile and formed around the underfloor heat dissipation box. .

また、地中側断熱材単体を掘削部に施工することを特徴とする。   Moreover, it is characterized by constructing the underground heat insulating material alone in the excavation part.

また、太陽熱循環ダクトは外気を取り入れるための吸気口で取り入れた外気を排出
するための自然換気窓に接続していることを特徴とする。
In addition, the solar heat circulation duct is connected to a natural ventilation window for discharging the outside air taken in at the intake port for taking in the outside air.

本発明の地中熱と太陽熱を利用した空調システムは夏期に地中熱を利用して冬期に
は地中熱に太陽熱を加算して熱を床下放熱ボックスに蓄熱し、床下放熱ボックスより
夏期用送風機、冬期用送風機を介して各室の天井側と床側に設けた吹出吸込口で循環
させることによって空調するシステムである。
特に冬期は地中熱の15〜16℃と晴天時の太陽熱の40〜60℃を加算蓄熱でき、
冬期でも十分な温度の確保ができるように構成されている。
The air conditioning system using geothermal heat and solar heat of the present invention uses geothermal heat in summer, adds solar heat to the ground heat in winter, and stores the heat in the underfloor heat dissipation box, which is used for summer than the underfloor heat dissipation box. It is a system which air-conditions by circulating with the blower inlet provided in the ceiling side and floor side of each room via a blower and a winter blower.
Especially in winter, it can add and store 15-16 ° C of geothermal heat and 40-60 ° C of solar heat in fine weather,
It is configured to ensure sufficient temperature even in winter.

本発明の断熱壁は建築物の外壁部断熱材とその外壁部断熱材の地中側に連結され地
中3m以上に挿入され、遮水性能を持った地中側断熱材により地下水や雨水の影響を
受けずに地中恒温層の地中熱を利用し、また、断熱壁で囲まれた床下放熱ボックス内と蓄熱層に安定した地中熱を熱平衡で確保ができる。
地中側断熱材の地中3m以下では外気温の影響を地中熱が受けるため地中3m以上
とすることで外気温の影響が少なくなり安定した地中熱の確保ができる。
The heat insulating wall of the present invention is connected to the underground side of the outer wall part heat insulating material of the building and the outer wall heat insulating material, and is inserted into the ground 3 m or more. The geothermal heat of the underground constant temperature layer is used without being affected, and stable underground heat can be secured in thermal equilibrium in the underfloor heat radiation box surrounded by the heat insulating wall and in the heat storage layer.
When the underground heat insulating material is 3 m or less below ground, the influence of the outside air temperature is affected by the underground heat. By setting the underground temperature to 3 m or above, the influence of the outside temperature is reduced and stable underground heat can be secured.

床下放熱ボックスの太陽熱循環ダクトの吹出口は循環ダクトの吹出口より蓄熱層側
に設けていることで循環ダクトの吹出口より吹き出した空気が混合することが避けら
れ、蓄熱層に直接的に蓄熱されて地中熱に太陽熱を加算蓄熱できる利点があり冬期で
も暖房温度の確保できる。
また、断熱壁が建築物の4方を囲み、上部を断熱床で囲まれているので、床下放熱
ボックスは外気温の影響が少ない。
The air outlet of the solar heat circulation duct of the underfloor heat dissipation box is provided on the heat storage layer side of the air outlet of the circulation duct, so that the air blown out from the air outlet of the circulation duct is prevented from mixing and the heat storage layer directly stores heat. In addition, there is an advantage that solar heat can be added and stored in the underground heat, and the heating temperature can be secured even in winter.
Moreover, since the heat insulating wall surrounds the four sides of the building and the upper part is surrounded by the heat insulating floor, the underfloor heat dissipation box is less affected by the outside air temperature.

本発明の床下放熱ボックスにより効率的に冷暖房ができ、夏期には一定の冷房がで
き、また、晴天時の冬期には地中熱に太陽熱を加算できるため快適な温かさが確保で
き、年間を通して十分な冷暖房が達成できる。
The underfloor heat dissipation box of the present invention allows efficient cooling and heating, constant cooling in the summer, and the addition of solar heat to the underground heat in the winter when the weather is sunny, ensuring a comfortable warmth and sufficient throughout the year Air conditioning can be achieved.

床下放熱ボックスは地上側と地中側からなることで外気温の影響を小さくでき、地
中側を掘り下げて体積を多くすることで床下放熱ボックスの放熱量が多くなり各室の
暖房効率が改善される。
The underfloor heat dissipation box is composed of the ground side and the underground side to reduce the influence of outside air temperature. By digging the underground side and increasing the volume, the heat dissipation of the underfloor heat dissipation box is increased and the heating efficiency of each room is improved. Is done.

蓄熱層は床下放熱ボックスの断熱壁内側の床面に蓄熱材と基礎コンクリートを設け
ることで地中熱に太陽熱を効率的に加算蓄熱できる。
The heat storage layer can efficiently add solar heat to the underground heat by providing a heat storage material and foundation concrete on the floor inside the heat insulation wall of the underfloor heat radiation box.

地中側断熱材は断熱板であって、断熱板を矢板に装着し、また、断熱壁単体で床下
放熱ボックスの周囲に形成しているオーガー工法のベントナイト、ソイルセメント、
コンクリート内に挿入することで、隣接地近くに施工でき、土地利用が図れ、施工精
度もよくなる。
The underground heat insulating material is a heat insulating plate, the heat insulating plate is attached to the sheet pile, and the auger method bentonite, soil cement,
By inserting the material into the concrete, it can be constructed near the adjacent land, can be used for land, and construction accuracy is improved.

地中側断熱材単体を掘削部に施工することで工事の単純化、工事費が削減でき、工
期の短縮になる。
By constructing the underground side insulation alone in the excavation part, the construction can be simplified, the construction cost can be reduced, and the construction period can be shortened.

太陽熱循環ダクトは外気を取り入れるための吸気口で取り入れた外気を排出するた
めの自然換気窓に接続しているので夏期の屋根面の太陽熱を排気でき、地中熱による
冷房が効率よくなる。
The solar heat circulation duct is connected to a natural ventilation window for exhausting the outside air taken in at the intake port for taking in the outside air, so that the solar heat on the roof surface in summer can be exhausted, and the cooling by the underground heat becomes efficient.

雪国の冬期には地中熱を床下放熱ボックス上部に吸込口を設け、壁ダクト、軒先、
屋根下ダクトに地中熱を通気し、軒先、屋根の融雪が図れ、屋根下ダクトで日射の太
陽熱を早期に地中熱に太陽熱を加算できる。
In the winter season in snowy countries, the ground heat is provided with a suction port at the top of the under-floor heat dissipation box, wall ducts, eaves,
The underground heat can be ventilated through the duct under the roof to melt the snow at the eaves and the roof, and solar heat can be added to the underground heat at an early stage.

本発明に係る全体構成断面図Overall configuration sectional view according to the present invention 同地中側断熱材挿入側面図Side view of insertion of insulation inside the ground 同地中側断熱材矢板装着・遮水連結部平断面図Cross section of the ground insulation sheet pile mounting / water shielding connection section 同地中側断熱材単体・遮水連結部・連結金物付き平断面図Flat cross-sectional view with single insulation, water-impervious connecting part and connecting hardware 同地中側断熱壁単体・遮水連結部平断面図Cross section of the insulation wall on the middle side of the ground 同操作盤及び温度制御部の構成図Configuration diagram of the operation panel and temperature control unit 同冬期の全体構成断面図Cross-sectional view of the entire configuration during the winter 同夏期の全体構成断面図Cross-sectional view of the overall structure during the summer 別の実施例1の冬期の地下野菜工場・地上ガラス温室全体構成断面図Cross-sectional view of the whole ground vegetable greenhouse and ground glass greenhouse in winter in another example 1 別の実施例1の夏期の地下野菜工場・地上ガラス温室全体構成断面図Cross-sectional view of the whole underground vegetable factory and ground glass greenhouse in the summer of Example 1 別の実施例2の冬期の地下野菜工場・地上定温倉庫全体構成断面図Cross-sectional view of the whole winter vegetable plant and ground temperature controlled warehouse of another example 2 別の実施例2の夏期の地下野菜工場・地上定温倉庫全体構成断面図Cross-sectional view of the overall structure of the underground vegetable factory and the above-ground constant temperature warehouse in the summer of another embodiment 2 別の実施例1、2の冬期の地下野菜工場全体構成平面図Whole configuration plan view of underground vegetable factory in winter of another Example 1, 2 別の実施例1、2の夏期の地下野菜工場全体構成平面図Whole configuration plan view of the underground vegetable factory in the summer of another Examples 1 and 2

以下、本発明を実施するための最良の形態を図面に基づいて詳細に説明する。本発
明の図1の全体構成断面図に示しているように、断熱壁は建築物の外壁部断熱材23
とその外壁部断熱材23の地中側に連結され地中3m以上に挿入されている遮水性能
を付加した地中側断熱材1と、
建築物の1階床の下側に天井部を1階床に設けた断熱床、壁部を壁断熱、底部を蓄
熱層20により形成した床下放熱ボックス3と、
建築物の各室には天井側と床側に吹出吸込口12を設け、床下放熱ボックス3に設
けた冬期用送風機7、夏期用送風機8を介して床下放熱ボックス3と各室を循環ダク
ト10で接続し、床下放熱ボックス3上部に吹出口Bを設けた循環ダクト10と、
床下放熱ボックス3上部に吸込口Dを設け、壁ダクト17、軒先、屋根下ダクト1
4、降下ダクト15に接続し、降下送風機16を介して床下放熱ボックス3下部の吹
出口Aに接続している太陽熱循環ダクト13と、
からなり、床下放熱ボックス3の太陽熱循環ダクト13の吹出口Aは循環ダクト1
0の吹出口Bより蓄熱層20側に設けている。
The best mode for carrying out the present invention will be described below in detail with reference to the drawings. As shown in the overall configuration sectional view of FIG. 1 of the present invention, the heat insulating wall is an outer wall insulating material 23 of a building.
And the underground side heat insulating material 1 which added the water-blocking performance connected with the underground side of the outer wall part heat insulating material 23, and is inserted in 3 m or more in the ground,
A heat-insulating floor in which a ceiling portion is provided on the first-floor floor under the first-floor floor of the building, a wall portion is wall-insulated, and a bottom portion is a heat-dissipating layer 20 and the under-floor heat radiation box 3 is formed;
Each room of the building is provided with blowout inlets 12 on the ceiling side and the floor side, and a circulation duct 10 is connected between the underfloor heat dissipating box 3 and each room via a winter fan 7 and a summer fan 8 provided in the underfloor heat dissipating box 3. And a circulation duct 10 provided with an outlet B at the top of the underfloor heat dissipating box 3,
A suction port D is provided in the upper part of the underfloor heat radiation box 3, and the wall duct 17, the eaves edge, the roof under duct 1
4. A solar thermal circulation duct 13 connected to the descending duct 15 and connected to the outlet A at the bottom of the underfloor heat radiation box 3 via the descending fan 16;
The outlet A of the solar heat circulation duct 13 of the underfloor heat radiation box 3 is the circulation duct 1
It is provided on the heat storage layer 20 side from the zero outlet B.

本発明の図2に記載されているように、地上側の板状の外壁断熱材23と連結され
ており、遮水性能を付加した板状の地中側断熱材1と設計地盤付近で遮水連結され、
3m以上の深さに挿入されている。
As shown in FIG. 2 of the present invention, it is connected to a plate-like outer wall heat insulating material 23 on the ground side, and is shielded near the design ground and the plate-like underground heat insulating material 1 to which water shielding performance is added. Water-linked,
It is inserted at a depth of 3 m or more.

本発明の図3に記載されているように、矢板29に装着され、地中側断熱材1は遮
水連結部2には補強金物43で隅部を補強し、水3倍膨張ゴム11aを補強金物43と
補強金物43の間に装着しており、地中に埋設後は水3倍膨張ゴム11aが水膨張し、
遮水隔離できるようにしている。
As shown in FIG. 3 of the present invention, it is attached to the sheet pile 29, the underground heat insulating material 1 is reinforced with a reinforcing metal fitting 43 at the water-impervious connecting portion 2, and a water triple expansion rubber 11a is provided. It is mounted between the reinforcement hardware 43 and the reinforcement hardware 43, and after being buried in the ground, the water triple expansion rubber 11a is water expanded,
It is designed so that it can be isolated.

尚、図3のように矢板29に装着されることなく連結する構成としては、図4に記
載されているように、例えば地中側断熱材1を重ねて、その隅部を補強金物43bと
連結金物44を持ち、水3倍膨張ゴム11bを地中側断熱材1と地中側断熱材1の間
に装着しており、地中に埋設後は水3倍膨張ゴム11bが水膨張し、遮水隔離できる
ようにしている。
As shown in FIG. 4, for example, as shown in FIG. 4, the ground side heat insulating material 1 is overlapped and the corners thereof are connected to the reinforcing hardware 43 b as shown in FIG. 4. It has a metal fitting 44, and a water triple expansion rubber 11b is mounted between the underground side heat insulating material 1 and the underground side heat insulating material 1, and the water triple expansion rubber 11b expands after embedding in the ground. It is possible to isolate the water.

あるいは、図5に記載されているように、遮水連結部2には水3倍膨張ゴム11c
を地中側断熱材1と地中側断熱材1の間に装着しており、地中に埋設後は水3倍膨張
ゴム11cが水膨張し、遮水隔離できるようにしている。
Alternatively, as shown in FIG. 5, the water shielding connecting portion 2 has a water triple expansion rubber 11 c.
Is installed between the underground side heat insulating material 1 and the underground side heat insulating material 1, and after being buried in the ground, the water triple expansion rubber 11c is water expanded so that the water can be isolated.

冬期の太陽熱の集熱の仕組みについては屋根材と屋根材受け登り桟木と屋根材受け
登り桟木の間と屋根下地材に囲まれた空間か筒型ダクトが屋根下ダクト14で屋根材
下部空間で太陽熱の集熱し、上昇気流で暖気を換気棟25に集中させて降下送風機1
6を介して降下ダクト15で床下放熱ボックス3の蓄熱層20に送風して蓄熱させて
いる。
また、太陽熱温水器18でも太陽熱の集熱し、循環ポンプ39を介して2系統の温
水パイプで床下放熱ボックス3の放熱機19で蓄熱層20に送風して蓄熱させている。
尚、床下放熱ボックス3の蓄熱層20のパラフィン材料の蓄熱材41と基礎コンク
リートに地中熱に太陽熱を加算蓄熱され、ゆっくりと床下放熱ボックス3内に放熱を
する。
循環ダクト10、壁ダクト17は縦桟と縦桟、壁下地と壁下地の間にある空間か筒
型ダクトで断熱材に囲われている。
As for the solar heat collection mechanism in winter, the space between the roofing material, the roof material receiving climbing pier, the roof material receiving climbing pier, and the roof base material or the cylindrical duct is the lower roof material space in the roof material duct 14 The solar fan collects the heat and concentrates the warm air in the ventilation building 25 with the rising airflow.
6 is sent to the heat storage layer 20 of the underfloor heat radiation box 3 by the descending duct 15 to store heat.
Further, the solar water heater 18 also collects solar heat and sends air to the heat storage layer 20 by the radiator 19 of the underfloor heat radiation box 3 through two circulation hot water pipes through the circulation pump 39 to store the heat.
In addition, solar heat is added and stored in the heat storage layer 41 of the heat storage layer 20 of the underfloor heat radiating box 3 and the ground concrete, and the heat is slowly radiated into the underfloor heat radiating box 3.
The circulation duct 10 and the wall duct 17 are surrounded by a heat insulating material by a vertical beam, a vertical beam, a space between the wall base and the wall base, or a cylindrical duct.

本発明は図6に記載されているように、操作盤及び温度制御部の構成図で温度制御
は温度制御部によって行なわれる。室内には温度センサーと湿度センサーと操作盤が
設置されていて、操作盤には温度設定部、冷房・暖房と自動・強・中・弱の切換部が
あり、冬期用送風機7、夏期用送風機8、降下送風機16の切換部がある。冬期送風
機7、夏期送風機8には強・中・弱の切換部があり、除湿機9のON/OFFの切換
部もある。
また、温度制御部には温度センサーのための温度検出部、湿度センサーのための湿
度検出部、温度コントロール部、冬期送風機7、夏期送風機8、降下送風機16の風
量調節部、除湿機9のON/OFFが内蔵されている。降下ダクト15内には降下送
風機16とダンパー6が内蔵され、床下放熱ボックス3内には冬期送風機7、夏期送
風機8や除湿機9のON/OFFが内蔵され、床下放熱ボックス3内に循環ダクト1
0にはダンパー6のON/OFFが設けられ、循環ダクト10上部にもダンパー6が
設けられ連動している。
As shown in FIG. 6, the present invention is a block diagram of the operation panel and the temperature control unit, and the temperature control is performed by the temperature control unit. A temperature sensor, humidity sensor, and operation panel are installed in the room. The operation panel has a temperature setting unit, cooling / heating and automatic / strong / medium / weak switching unit. Winter blower 7 and summer blower 8. There is a switching unit for the lowering fan 16. The winter blower 7 and the summer blower 8 have a strong / medium / weak switching unit, and an ON / OFF switching unit for the dehumidifier 9.
In addition, the temperature control unit includes a temperature detection unit for the temperature sensor, a humidity detection unit for the humidity sensor, a temperature control unit, a winter blower 7, a summer blower 8, an air volume adjustment unit for the descending blower 16, and a dehumidifier 9 ON. / OFF is built-in. A descending fan 15 and a damper 6 are built in the descending duct 15, and an ON / OFF of the winter fan 7, the summer fan 8 and the dehumidifier 9 is built in the underfloor heat dissipating box 3, and a circulation duct is installed in the underfloor heat dissipating box 3. 1
0 is provided with ON / OFF of the damper 6, and the damper 6 is provided at the upper part of the circulation duct 10 to be interlocked.

このような制御によって、例えば、室内の温度を温度設定部で調節することで放熱
ボックス3内の冬期送風機7、夏期送風機8で送風し、風量も調節され、放熱量が調
節される。
また、同時に各室に吹き出すための冬期送風機7、夏期送風機8の風量も調節され、
室内温度が調節される。
操作盤には冬期送風機7、夏期送風機8の送風調整スィッチがあり自動、強、中、弱がある。また、風量調整スィッチがあり自動、強、中、弱があり、風量も調節され、これを組み合わせることで各室温度を調節することができる。
By such control, for example, the room temperature is adjusted by the temperature setting unit so that the air is blown by the winter blower 7 and the summer blower 8 in the heat radiating box 3, the air volume is also adjusted, and the heat release is adjusted.
In addition, the air volume of the winter blower 7 and the summer blower 8 for blowing out into each room at the same time is adjusted,
The room temperature is adjusted.
The operation panel has air blow adjustment switches for the winter blower 7 and the summer blower 8, and there are automatic, strong, medium and weak. In addition, there is an air volume adjustment switch, there are automatic, strong, medium and weak, the air volume is also adjusted, and the temperature of each room can be adjusted by combining these.

例えば、夏期には室内の温度が30℃の時に操作盤で室内の温度設定を操作し、2
5℃に設定すると、自動制御であれば、床下放熱ボックス3内の黴除去フィルター2
4に通気し、除湿機9で除湿し、夏期送風機8が送風し、風量も調整され、15〜1
6℃位の温度を放冷しつつ、天井側、吹出吸込口12より各室に吹き出し、風量も調
整され、室内温度センサーが25℃になるまで自動的に運転される。
冬期に室内の温度が5℃の時に操作盤で室内の温度設定を操作し、13℃に設定す
ると、自動制御であれば、床下放熱ボックス3内の黴除去フィルター24に通気し、
冬期送風機7で送風し、風量も調整され、15〜16℃位の温度を放熱しつつ、床下
放熱ボックス3内の循環ダクト10で床側の吸込吹出口12より各室に吹き出し、風
量も調整され、室内温度センサーが13℃になるまで自動的に運転される。
尚、冬期の晴天時に屋根下ダクト14の太陽熱と太陽温水器18の太陽熱を床下放
熱ボックス3に放熱すると25℃位で放熱するが各室に循環するがの熱損失もあり1
8〜20位の室内温度になる。
For example, in the summer, when the room temperature is 30 ° C,
If set to 5 ° C, if it is automatic control, the soot removal filter 2 in the underfloor heat dissipation box 3
4, dehumidified by the dehumidifier 9, the summer blower 8 blows air, and the air volume is also adjusted.
While the temperature of about 6 ° C. is allowed to cool, the air is blown into each room from the ceiling side and the air inlet 12 and the air volume is adjusted, and the room temperature sensor is automatically operated until it reaches 25 ° C.
In winter, when the room temperature is 5 ° C., the room temperature setting is operated on the operation panel, and when the room temperature is set to 13 ° C., if it is automatic control, it will ventilate the wrinkle removal filter 24 in the underfloor heat radiation box 3,
Air is blown by the blower 7 in the winter season, the air volume is adjusted, and heat is radiated at a temperature of about 15 to 16 ° C. It is automatically operated until the indoor temperature sensor reaches 13 ° C.
In addition, when the solar heat of the roof under duct 14 and the solar water of the solar water heater 18 are radiated to the under-floor heat radiating box 3 at the time of fine weather in winter, the heat is radiated at about 25 ° C.
The room temperature is about 8-20.

このような構成によって、例えば関西地区以西では、地中下部3m以上の地中熱は
年間を通じて15〜16℃前後であるので、24時間冷暖房した場合、夏期では室内
温度が22〜28℃になり、冬期には各室暖房温度が地中熱だけでは13℃位になる
が晴天時に屋根下からの太陽熱を循環送風し、太陽熱温水器18の熱を加算すること
で室内温度が18〜20℃位になる。
With such a configuration, for example, in the west of the Kansai region, geothermal heat of 3 m or more below the ground is around 15-16 ° C throughout the year, so if it is air-conditioned for 24 hours, the indoor temperature will be 22-28 ° C in the summer. In winter, the room heating temperature is about 13 ° C when only underground heat is used, but in sunny weather, the solar heat from the roof is circulated and the heat from the solar water heater 18 is added to increase the room temperature to 18-20 ° C. Become a rank.

本発明の図7に記載されているように、冬期の全体構成断面図で矢板29に装着し
た地中側断熱材1(遮水・断熱材3m以上)を遮水連結挿入し、基礎コンクリート4、
床下放熱ボックス3を囲う。
床下放熱ボックス3内に地中恒温層21から24時間熱平衡できる地中熱と晴天時
の屋根下ダクト14の太陽熱を屋根下の降下送風機16を介して開放したダンパー6
に通気し、降下ダクト13で下降し、床下放熱ボックス3下部の吹出口Aより床下放
熱ボックス3と蓄熱層20の蓄熱材41と基礎コンクリート4に加算蓄熱ができ、さ
らに、太陽熱温水器18の温水を循環ポンプを介して放熱機19で放熱し、床下放熱
ボックス3と蓄熱層20の蓄熱材41と基礎コンクリート4にさらに加算蓄熱し、暖
房温度を上昇させて床下放熱ボックス3に放熱し、床下放熱ボックス3上部の吸込口
Dより黴除去フィルター24と開放したダンパー6を通気して循環をする。
床下放熱ボックス3内の黴除去フィルター24に通気させて冬期用送風機7を介し
て循環ダクト10で壁下の吹出吸込口12より吹き出し各室の暖房し、壁上の吹出吸
込口12より吸い込み循環ダクト10で床下放熱ボックス3上部に設けた吹出口Bよ
り吹き出し循環をする。
また、冬期は床下放熱ボックス3の上部の吸込口Dより地中熱を壁ダクト17、軒
先42、屋根下ダクト14に通気させることで軒先42と屋根の融雪が図れ、軒先4
2のすが漏りがなくなり、太陽熱の採取を早めることができ、耐久性が向上する。
さらに、地中恒温層21からの地下水の毛細管現象防止のための毛細管現象防止用利水シート27が基礎コンクリート4下に敷き込み床下放熱ボックス3内の乾燥を確保する。
As shown in FIG. 7 of the present invention, the underground side insulating material 1 (water-insulating / insulating material 3 m or more) attached to the sheet pile 29 in the winter general configuration sectional view is inserted into the water-insulating connection, and the basic concrete 4 ,
Enclose the underfloor heat dissipation box 3.
A damper 6 in which the underground heat that can be in thermal equilibrium for 24 hours from the underground constant temperature layer 21 and the solar heat of the roof duct 14 in fine weather are opened via a descending blower 16 under the roof.
To the bottom heat radiation box 3, the heat storage material 41 of the heat storage layer 20, and the foundation concrete 4 from the outlet A at the bottom of the floor heat radiation box 3, and additional heat storage can be performed on the solar water heater 18. The hot water is radiated by the radiator 19 through the circulation pump, and the additional heat is stored in the heat storage material 41 and the foundation concrete 4 of the underfloor heat dissipation box 3 and the heat storage layer 20, and the heating temperature is increased to dissipate the heat to the underfloor heat dissipation box 3. From the suction port D at the top of the underfloor heat dissipation box 3, the soot removal filter 24 and the opened damper 6 are ventilated to circulate.
Air is passed through the soot removal filter 24 in the underfloor radiating box 3, the air is blown from the blowout inlet 12 below the wall in the circulation duct 10 through the winter blower 7, and the respective rooms are heated and circulated through the blowout inlet 12 on the wall. The duct 10 blows out and circulates from an outlet B provided at the top of the underfloor heat dissipating box 3.
Further, in the winter season, snow is melted between the eaves 42 and the roof by venting underground heat from the suction port D at the upper part of the underfloor heat radiation box 3 to the wall duct 17, the eaves 42, and the under roof duct 14.
No soot leaks out, solar heat can be collected faster, and durability is improved.
Further, a water-use sheet 27 for preventing capillary action for preventing the capillary action of groundwater from the underground constant temperature layer 21 is laid under the foundation concrete 4 to ensure drying in the underfloor heat radiation box 3.

本発明の図8に記載されているように、夏期の全体構成断面図で矢板29に装着し
た地中側断熱材1(遮水・断熱材3m以上)を遮水連結挿入し、基礎コンクリート4、
床下放熱ボックス3を囲う。
地中恒温層21から24時間熱平衡できる地中熱を効率よく床下放熱ボックス3と
蓄熱層20に蓄冷し、黴除去フィルター24と除湿機9に通気させて夏期用送風機8
を介して循環ダクト10で壁上の吹出吸込口12より吹き出し、各室の冷房し、壁下
の吹出吸込口12より吸い込み循環ダクト10で床下放熱ボックス3の上部の吹出口
Cに吹き出し循環をする。
また、夏期には換気口34より外気を吸い込み壁ダクト17、軒先42、屋根下ダ
クト14に通気し、太陽熱を換気棟25の自然換気窓26で排気して建築物内への影
響を排除して冷房効率の向上を図る。
As shown in FIG. 8 of the present invention, the underground concrete heat insulating material 1 (water shielding / heat insulating material of 3 m or more) attached to the sheet pile 29 in the whole structure sectional view in the summer is inserted into the water shielding connection, and the basic concrete 4 ,
Enclose the underfloor heat dissipation box 3.
The geothermal heat that can equilibrate for 24 hours from the underground constant temperature layer 21 is efficiently stored in the underfloor heat radiation box 3 and the heat storage layer 20, and is passed through the soot removal filter 24 and the dehumidifier 9 to blow the summer blower 8
The air is blown out from the blowout inlet 12 on the wall through the circulation duct 10 to cool each room, and the air is blown out from the blowout inlet 12 below the wall to the blowout outlet C in the upper part of the underfloor heat radiation box 3 through the suction duct 10. To do.
In the summer, outside air is sucked from the ventilation port 34 and is ventilated through the wall duct 17, the eaves 42 and the roof duct 14, and the solar heat is exhausted through the natural ventilation window 26 of the ventilation building 25 to eliminate the influence on the inside of the building. To improve cooling efficiency.

本発明の別実施例を図9によって説明すると冬期の地下野菜工場・地上ガラス温室
全体構成断面図で地中側断熱材1(遮水・断熱材3m以上、厚さ100〜400mm
)単体で囲まれた床下放熱ボックス3(地下野菜工場)で地中恒温層21から熱平衡
で床下放熱ボックス3(地下野菜工場)と蓄熱層20を暖房しつつ、地上ガラス温室
内の床を伝導保温する。
また、黴除去フィルター24に通気させて冬期送風機7を介して循環ダクト10か
ら地上ガラス温室の下部の吹出吸込口12より吹き出し暖房をし、上部の吹出吸込口
12より吸い込み床下放熱ボックス3(地下野菜工場)の上部の吹出口Bに循環送風
する。
さらに、床下放熱ボックス3(地下野菜工場)の上部の吸込口Dより吸い込み壁ダ
クト17、屋根下ダクト14に通気し、太陽熱を加算しながら降下送風機16を介し
て降下ダクト13で降下し、床下放熱ボックス3(地下野菜工場)の下部の吹出口A
より吹き出し床下放熱ボックス3(地下野菜工場)と蓄熱層20に地中熱に太陽熱を
加算し、暖房効率の向上を図る。
空中ビニールフィルム32は日照と外気温の影響を減らすために設け、温度センサ
ー付き換気扇30は一定の温度になると作動して屋外に排気調整する。
Another embodiment of the present invention will be described with reference to FIG. 9. In the winter underground vegetable factory / ground glass greenhouse overall cross-sectional view, the underground side heat insulating material 1 (water shielding / heat insulating material 3 m or more, thickness 100 to 400 mm)
) Conducted through the floor in the above-ground glass greenhouse while heating the underfloor heat radiation box 3 (underground vegetable factory) and the heat storage layer 20 in the thermal equilibrium from the underground constant temperature layer 21 in the underfloor heat radiation box 3 (underground vegetable factory) surrounded by a single unit Keep warm.
In addition, air is passed through the soot removal filter 24 and is heated from the circulation duct 10 through the blowing duct 7 through the blower inlet 7 at the lower part of the ground glass greenhouse, and is heated from the blowing inlet 12 at the upper part of the ground glass greenhouse. Circulating air is sent to the outlet B at the top of the vegetable factory.
Further, the air flows into the suction wall duct 17 and the roof duct 14 from the upper suction port D of the underfloor heat radiation box 3 (underground vegetable factory), descends with the descending duct 13 through the descending fan 16 while adding solar heat, and below the floor Outlet A at the bottom of the heat dissipation box 3 (underground vegetable factory)
Further, solar heat is added to the underground heat in the blowout floor under-radiation box 3 (underground vegetable factory) and the heat storage layer 20 to improve the heating efficiency.
The aerial vinyl film 32 is provided to reduce the influence of sunlight and the outside air temperature, and the ventilation fan 30 with a temperature sensor operates to adjust the exhaust to the outdoors when a certain temperature is reached.

本発明は図10に記載されているように、夏期の地下野菜工場・地上ガラス温室全
体構成断面図で単体の地中側断熱材1(遮水・断熱材3m以上、厚さ100〜400
mm)で囲まれた床下放熱ボックス3(地下野菜工場)で地中恒温層21から熱平衡
で床下放熱ボックス3(地下野菜工場)と蓄熱層20を冷房しつつ、地上ガラス温室
内の床を伝導冷温する。
また、黴除去フィルター24と除湿機9に通気させて除湿しつつ夏期送風機8を介
して循環ダクト10から地上ガラス温室の上部の吹出吸込口12より吹き出し冷房を
し、下部の吹出吸込口12より吸い込み床下放熱ボックス3(地下野菜工場)の上部
の吹出口Cに吹き出し循環送風する。
さらに、外気を吸気口34より吸入し、壁ダクト17と屋根下ダクト14に通気し
て換気棟25の自然換気窓26で排気する。
空中ビニールフィルム32は日照と気温の影響を減らすために設け、温度センサー
付き換気扇30は一定の温度になると作動して屋外に排気し、温度・湿度を調整する。
As shown in FIG. 10, the present invention is a single underground ground insulation material 1 (water shielding / insulation material 3 m or more, thickness 100 to 400 in a sectional view of the entire structure of an underground vegetable factory and ground glass greenhouse in summer.
mm), the floor heat sink 3 (underground vegetable factory) conducts the floor in the above-ground glass greenhouse while cooling the underfloor heat sink 3 (underground vegetable factory) and the heat storage layer 20 from the thermostat 21 in the ground. Allow to cool.
Further, air is passed through the soot removal filter 24 and the dehumidifier 9 to be dehumidified, and then blown from the circulation duct 10 through the summer blower 8 through the blowing duct 12 at the upper part of the ground glass greenhouse and cooled from the lower blowing inlet 12. The air is blown and circulated through the air outlet C at the top of the suction floor under heat radiation box 3 (underground vegetable factory).
Further, outside air is sucked from the air inlet 34, ventilated through the wall duct 17 and the roof duct 14, and exhausted through the natural ventilation window 26 of the ventilation building 25.
The aerial vinyl film 32 is provided to reduce the influence of sunlight and air temperature, and the ventilating fan 30 with a temperature sensor operates to exhaust to the outside when the temperature reaches a certain temperature, and adjusts the temperature and humidity.

本発明は図11に記載されているように、冬期の地下野菜工場・地上定温倉庫全体
構成断面図で地中側断熱材1(遮水・断熱材3m以上、厚さ100〜400mm)単
体で囲まれた基礎コンクリート4、床下放熱ボックス3(地下野菜工場)で地中恒温
層21から熱平衡で床下放熱ボックス3(地下野菜工場)と蓄熱層20を暖房しつつ、
地上定温倉庫の床を伝導保温する。
また、黴除去フィルター24に通気させて冬期送風機7を介して循環ダクト10か
ら地上定温倉庫の下部の吹出吸込口12より吹き出し暖房をし、上部の吹出吸込口1
2より吸い込み床下放熱ボックス3(地下野菜工場)の上部の吹出口Bに吹き出し循
環送風する。
さらに、床下放熱ボックス3(地下野菜工場)の上部より地中熱で暖められた空気
を吸込口Dより吸い込み壁ダクト17、屋根下ダクト14に通気し、太陽熱を加算し、
降下送風機16を介して降下ダクト13で降下し、床下放熱ボックス3(地下野菜工
場)の下部の吹出口Aより吹き出し床下放熱ボックス3(地下野菜工場)と蓄熱層2
0に地中熱に太陽熱を加算でき、暖房効率の向上を図る。
As shown in FIG. 11, the present invention is a sectional view of the whole structure of an underground vegetable factory and a constant temperature warehouse in the winter season, with the ground side heat insulating material 1 (water shielding / heat insulating material 3 m or more, thickness 100 to 400 mm) alone. While heating the underfloor heat radiation box 3 (underground vegetable factory) and the heat storage layer 20 in thermal equilibrium from the underground constant temperature layer 21 in the enclosed foundation concrete 4, underfloor heat dissipation box 3 (underground vegetable factory),
Conductive insulation of the floor of the above-ground constant temperature warehouse.
In addition, air is passed through the soot removal filter 24 and is heated from the circulation duct 10 through the winter blower 7 through the blowout inlet 12 at the lower part of the above-ground constant temperature warehouse, and the upper blowout inlet 1.
2. Suction is circulated and blown to the air outlet B at the top of the underfloor heat radiation box 3 (underground vegetable factory).
Furthermore, air heated by underground heat from the upper part of the underfloor heat radiation box 3 (underground vegetable factory) is sucked from the suction port D into the suction wall duct 17 and the roof duct 14, and solar heat is added.
It descends at the descending duct 13 via the descending blower 16 and blows out from the outlet A below the underfloor heat radiation box 3 (underground vegetable factory) and the underfloor heat radiation box 3 (underground vegetable factory) and the heat storage layer 2.
Solar heat can be added to ground heat at 0, and heating efficiency is improved.

本発明は図12に記載されているように、夏期の地下野菜工場・地上定温倉庫の全
体構成断面図で地中側断熱材1(遮水・断熱材3m以上、厚さ100〜400mm)
単体で囲まれた基礎コンクリート4、床下放熱ボックス3(地下野菜工場)で地中恒
温層21から熱平衡で床下放熱ボックス3(地下野菜工場)と蓄熱層20を冷房しつ
つ、地上定温倉庫の床を伝導冷却する。
また、黴除去フィルター24と除湿機9に通気させて除湿しつつ、夏期送風機8を
介して循環ダクト10から地上定温倉庫の上部の吹出吸込口12より吹き出し冷房を
し、下部の吹出吸込口12より吸い込み循環ダクト10に通気し、床下放熱ボックス
3(地下野菜工場)の上部の吹出口Cに吹き出し循環送風する。
さらに、外気を吸気口34より吸入し、壁ダクト17と屋根下ダクト14に通気し
て太陽熱を換気棟25の自然換気窓26で排気して建物への影響を排除し、冷房効率
の向上を図る。
As shown in FIG. 12, the present invention is a cross-sectional view of the entire structure of an underground vegetable factory and a constant temperature warehouse in the summer, and an underground side heat insulating material 1 (water shielding / heat insulating material 3 m or more, thickness 100 to 400 mm)
The floor of the above-ground constant temperature warehouse while cooling the underfloor radiating box 3 (underground vegetable factory) and the heat storage layer 20 in the thermal equilibrium from the underground constant temperature layer 21 with the foundation concrete 4 surrounded by a single unit and the underfloor radiating box 3 (underground vegetable factory). Conductive cooling.
In addition, air is passed through the soot removal filter 24 and the dehumidifier 9 to dehumidify, and the cooling duct 10 is blown from the circulation duct 10 through the summer blower 8 through the air blowing inlet 12 at the upper part of the above-ground fixed temperature warehouse, and the lower air blowing inlet 12 is provided. The air is drawn into the suction circulation duct 10 and blown out and circulated to the outlet C at the upper part of the underfloor heat radiation box 3 (underground vegetable factory).
Further, outside air is sucked from the air inlet 34, vented to the wall duct 17 and the roof duct 14, and the solar heat is exhausted through the natural ventilation window 26 of the ventilation building 25 to eliminate the influence on the building, thereby improving the cooling efficiency. Plan.

本発明は図13に記載されているように、冬期の地下野菜工場の全体構成平面図で
地中側断熱材1(遮水・断熱材3m以上、厚さ100〜400mm)で囲まれた基礎
コンクリート4、床下放熱ボックス3(地下野菜工場)と蓄熱層20を地中熱で暖房
し、黴除去フィルター24に通気させて冬期用送風機7を介して循環ダクト10から
地上へ送風し、暖房して床下放熱ボックス3(地下野菜工場)の上部の吹出口Bに吹
き出し循環する。
床下放熱ボックス3(地下野菜工場)の下部の吸込口Dより壁ダクト17、屋根下
ダクト14に通気し、太陽熱を加算して降下送風機16を介して降下ダクト15で床
下放熱ボックス3(地下野菜工場)の下部の吹出口Aより吹き出し循環する。
As shown in FIG. 13, the present invention is a foundation surrounded by an underground heat insulating material 1 (water shielding / heat insulating material of 3 m or more, thickness of 100 to 400 mm) in an overall configuration plan view of an underground vegetable factory in winter. The concrete 4, the underfloor heat radiation box 3 (underground vegetable factory) and the heat storage layer 20 are heated by underground heat, vented to the soot removal filter 24, blown from the circulation duct 10 to the ground via the winter blower 7, and heated. It blows out and circulates to the outlet B at the top of the underfloor heat radiation box 3 (underground vegetable factory).
Underfloor heat radiation box 3 (underground vegetable factory) vents into wall duct 17 and under roof duct 14 from the lower suction port D, adds solar heat, and descends heat radiation box 3 (underground vegetable) via descent fan 16 through descending blower 16 It blows out from the outlet A at the bottom of the factory.

本発明は図14に記載されているように、夏期の地下野菜工場の全体構成平面図で
地中側断熱材1(遮水・断熱材3m以上、厚さ100〜400mm)で囲まれた基礎
コンクリート4、地中恒温層21から熱平衡で床下放熱ボックス3(地下野菜工場)
と蓄熱層20を地中熱で冷房し、黴除去フィルター24に通気させて夏期用送風機7
を介して循環ダクト10から地上へ送風し、冷房して床下放熱ボックス3(地下野菜
工場)の上部の吹出口Bに吹き出し循環する。
床下放熱ボックス3(地下野菜工場)の外気の給気口34より壁ダクト17、屋根
下ダクト14に通気し、太陽熱を換気棟25の自然換気窓26より排気する。
As shown in FIG. 14, the present invention is a foundation surrounded by an underground heat insulating material 1 (water shielding / heat insulating material of 3 m or more, thickness of 100 to 400 mm) in an overall configuration plan view of an underground vegetable factory in summer. Underfloor heat dissipation box 3 (underground vegetable factory) with thermal balance from concrete 4 and thermostatic chamber 21
And the heat storage layer 20 is cooled by underground heat, and the soot removal filter 24 is ventilated to blow the summer 7
The air is blown from the circulation duct 10 to the ground via the air, cooled, and blown and circulated to the air outlet B at the upper part of the underfloor heat radiation box 3 (underground vegetable factory).
The air is supplied to the wall duct 17 and the roof duct 14 from the outside air supply port 34 of the underfloor heat radiation box 3 (underground vegetable factory), and the solar heat is exhausted from the natural ventilation window 26 of the ventilation building 25.

本発明は、地域特性としてその地域の年平均気温が地中恒温層3m以上の地中熱で
あり場所により採用できる。地熱の違いがあるが何処の地域でも冷暖房が可能となる。
また、木造住宅、一般住宅、定温倉庫、農業用温室等、野菜工場、学校、体育館、劇
場、公会堂、集会所、マンション、事務所、公共建築物、既設建物、木造2×4工法、
鉄筋コンクリート造、鉄骨鉄筋コンクリート造、鉄骨造等の建物の空調システムに適
用できる。
The present invention is a geothermal heat whose regional average annual temperature is 3 m or more in the ground, and can be adopted depending on the location. Although there is a difference in geothermal heat, it is possible to heat and cool anywhere.
Also, wooden houses, ordinary houses, fixed temperature warehouses, agricultural greenhouses, vegetable factories, schools, gymnasiums, theaters, public halls, meeting halls, condominiums, offices, public buildings, existing buildings, wooden 2 × 4 construction methods,
It can be applied to air conditioning systems for buildings such as reinforced concrete, steel reinforced concrete, and steel.

1・・地中側断熱材
2・・遮水連結部
3・・床下放熱ボックス
4・・基礎コンクリート
5・・排水口
6・・ダンパー
7・・冬期用送風機
8・・夏期用送風機
9・・除湿機
10・・循環ダクト
11・・水3倍膨張ゴム
12・・吹出吸込口
13・・太陽熱循環ダクト
14・・屋根下ダクト
15・・降下ダクト
16・・降下送風機
17・・壁ダクト
18・・太陽熱温水器
19・・放熱機
20・・蓄熱層
21・・地中恒温層
22・・外壁
23・・外壁部断熱材
24・・黴除去フィルター
25・・換気棟
26・・自然換気窓
27・・毛細管現象防止用利水シート
28・・オーガー掘削(チエン式)
29・・矢板
30・・温度センサー付き換気扇
31・・TOP換気ロ
32・・空中ビニールフィルム
33・・上部換気口
34・・吸気口
35・・耕作土
36・・ガラス
37・・防水層
38・・小屋裏
39・・循環ポンプ
40・・防水シート
41・・蓄熱材
42・・軒先
43・・端部補強金物
44・・連結金物
A・・吹出口
B・・吹出口
C・・吹出口
D・・吸込口
1 .. Underground insulation
2. ・ Water shielding connection
3. ・ Under floor heat dissipation box
4. ・ Concrete concrete
5.Drain outlet
6.Damper
7 ・ ・ Blower for winter
8. Summer blower
9. Dehumidifier
10. ・ Circulation duct
11 .. Water triple expansion rubber
12. ・ Blowout inlet
13. Solar thermal circulation duct
14. ・ Under roof duct
15 ... Descent duct
16. ・ Descent fan
17. ・ Wall duct
18 .. Solar water heater
19. ・ Heater
20 ... Heat storage layer
21 .. Underground constant temperature layer
22. ・ Outer wall
23..Outer wall insulation
24 ・ ・ Haze removal filter
25. ・ Ventilation building
26 .. Natural ventilation window
27 ・ ・ Water-use sheet for preventing capillary phenomenon
28 ・ ・ Auger drilling (Chen type)
29 ...
30 ・ ・ Ventilation fan with temperature sensor
31 ・ ・ TOP ventilation
32..Air vinyl film
33 .. Upper ventilation port
34 ・ ・ Inlet
35 .. Cultivated soil
36 ・ ・ Glass
37..Waterproof layer
38 ...
39 ・ ・ Circulating pump
40 ・ ・ Waterproof sheet
41 ・ ・ Heat storage material
42 ... Eaves
43 .. End reinforcement hardware
44 ・ ・ Connecting hardware A ・ ・ Blowout port B ・ ・ Blowout port C ・ ・ Blowout port D ・ ・ Suction port

Claims (6)

地中熱と太陽熱を利用した建築物の空調システムにおいて、
断熱壁は建築物の外壁部断熱材とその外壁部断熱材の地中側に連結され地中3m
以上に挿入されている遮水性能を付加した地中側断熱材と、
建築物の1階床の下側に天井部を1階床に設けた断熱床、壁部を壁断熱、底部を
蓄熱層により形成した床下放熱ボックスと、
建築物の各室には天井側と床側に吹出吸込口を設け、床下放熱ボックスに設けた
冬期用送風機、夏期用送風機を介して床下放熱ボックスと各室を循環ダクトで接続
し、床下放熱ボックス上部に吹出口を設けた循環ダクトと、
床下放熱ボックス上部に吸込口を設け、壁ダクト、軒先、屋根下ダクト、降下ダ
クトに接続し、降下送風機を介して床下放熱ボックス下部の吹出口に接続している
太陽熱循環ダクトと、
からなり、床下放熱ボックスの太陽熱循環ダクトの吹出口は循環ダクトの吹出口
より蓄熱層側に設けていることを特徴とする地中熱と太陽熱を利用した空調システ
ム。
In building air conditioning systems using geothermal and solar heat,
The heat insulation wall is connected to the underground side of the outer wall of the building and the outer wall of the outer wall.
Underground insulation with added water shielding performance inserted above,
A heat-insulating floor with a ceiling portion provided on the first-floor floor under the first-floor floor of the building, a wall heat-insulating wall and a bottom heat-dissipating box formed by a heat storage layer at the bottom;
Each room of the building is provided with outlets on the ceiling and floor, and the underfloor heat dissipation box and each room are connected by a circulation duct via the winter blower and the summer blower provided in the underfloor heat dissipation box, and the underfloor heat dissipation. A circulation duct with an air outlet at the top of the box;
A solar heat circulation duct that is provided with a suction port at the top of the underfloor heat radiation box, connected to the wall duct, eaves, under roof roof, and descending duct, and connected to the air outlet at the bottom of the underfloor heat dissipating box via the lowering fan,
An air conditioning system using underground heat and solar heat, characterized in that the air outlet of the solar heat circulation duct of the underfloor radiator box is provided on the heat storage layer side of the air outlet of the circulation duct.
床下放熱ボックスは地上側と地中側からなることを特徴とする請求項1に記載の地中熱と太陽熱を利用した空調システム。   The air conditioning system using underground heat and solar heat according to claim 1, wherein the underfloor heat radiating box includes a ground side and an underground side. 蓄熱層は床下放熱ボックスの断熱壁内側の床面に蓄熱材と基礎コンクリートを設
けることを特徴とする請求項1に記載の地中熱と太陽熱を利用した空調システム。
2. The air conditioning system using geothermal heat and solar heat according to claim 1, wherein the heat storage layer is provided with a heat storage material and foundation concrete on the floor surface inside the heat insulating wall of the underfloor radiation box.
地中側断熱材は断熱板であって、断熱板を矢板に装着して床下放熱ボックスの周
囲に形成しているオーガー工法のベントナイト、ソイルセメント、コンクリート内
に挿入することを特徴とする請求項1に記載の地中熱と太陽熱を利用した空調シス
テム。
The underground heat insulating material is a heat insulating plate, and is inserted into bentonite, soil cement, or concrete of an auger method in which the heat insulating plate is attached to a sheet pile and formed around the underfloor heat dissipation box. The air conditioning system using the underground heat and solar heat as described in 1.
地中側断熱材単体を掘削部に施工することを特徴とする請求項1に記載の地中熱
と太陽熱を利用した空調システム。
The air conditioning system using underground heat and solar heat according to claim 1, wherein the underground heat insulating material alone is applied to the excavation part.
太陽熱循環ダクトは外気を取り入れるための吸気口で取り入れた外気を排出するための自然換気窓に接続していることを特徴とする請求項1に記載の地中熱と太陽熱を利用した空調システム。   The air-conditioning system using underground heat and solar heat according to claim 1, wherein the solar heat circulation duct is connected to a natural ventilation window for discharging outside air taken in at an intake port for taking in outside air.
JP2011018421A 2011-01-31 2011-01-31 An air conditioning system that uses geothermal and solar heat. Expired - Fee Related JP4809498B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011018421A JP4809498B1 (en) 2011-01-31 2011-01-31 An air conditioning system that uses geothermal and solar heat.
PCT/JP2011/079316 WO2012105134A1 (en) 2011-01-31 2011-12-19 Air-conditioning system utilizing underground heat and solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011018421A JP4809498B1 (en) 2011-01-31 2011-01-31 An air conditioning system that uses geothermal and solar heat.

Publications (2)

Publication Number Publication Date
JP4809498B1 true JP4809498B1 (en) 2011-11-09
JP2012159227A JP2012159227A (en) 2012-08-23

Family

ID=45044163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011018421A Expired - Fee Related JP4809498B1 (en) 2011-01-31 2011-01-31 An air conditioning system that uses geothermal and solar heat.

Country Status (1)

Country Link
JP (1) JP4809498B1 (en)

Also Published As

Publication number Publication date
JP2012159227A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP2009264721A (en) Earth solar system (single layer type)
WO2011033325A1 (en) Cooling, heating, surface-radiating and air exchanging building system with low energy consumption for energy-saving houses with increased passive quality
US8555666B1 (en) Single package, indoor air-sourced, basement heat pump for home heating and air conditioning
JP2009235677A (en) Thermal environment improving system
JP5370880B2 (en) Energy saving building
WO2012105134A1 (en) Air-conditioning system utilizing underground heat and solar heat
JPH07208764A (en) High temperature and high humidity accommodation dwelling
JP2009084936A (en) Thermal insulation dwelling house and ventilation system
JP3187707B2 (en) Building cooling / heating / ventilation system
JP4809498B1 (en) An air conditioning system that uses geothermal and solar heat.
JP2010019502A (en) Air conditioning system using underground heat
JP2015148434A (en) Underground water utilization system
JP4049380B2 (en) Building ventilation system
JP2007092323A (en) Roof structure with venting skin and building having roof structure with venting skin
JP2954872B2 (en) House
JP2008261535A (en) Energy-saving constant-temperature ventilation system utilizing underground heat
JP2014142151A (en) Air conditioning system using geothermal heat
JP5035577B1 (en) An air conditioning system that uses geothermal and solar heat.
JP2934159B2 (en) Ventilated structures
JP2014077574A (en) Lumber dryer utilizing geothermal heat and solar heat
JP2007139236A (en) Underfloor air-conditioning device and method
JPH06272894A (en) House
JP2021134529A (en) Improved heat insulation effect by convection and whole building air conditioning system
JP3123276U (en) Housing structure
JP6748904B2 (en) Operating method of multi-function double skin system with vertical opening/closing mechanism

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20200826

Year of fee payment: 9

R150 Certificate of patent or registration of utility model

Ref document number: 4809498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees