JP2014077574A - Lumber dryer utilizing geothermal heat and solar heat - Google Patents

Lumber dryer utilizing geothermal heat and solar heat Download PDF

Info

Publication number
JP2014077574A
JP2014077574A JP2012224307A JP2012224307A JP2014077574A JP 2014077574 A JP2014077574 A JP 2014077574A JP 2012224307 A JP2012224307 A JP 2012224307A JP 2012224307 A JP2012224307 A JP 2012224307A JP 2014077574 A JP2014077574 A JP 2014077574A
Authority
JP
Japan
Prior art keywords
heat
wall
floor
underground
wood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012224307A
Other languages
Japanese (ja)
Inventor
Toru Hayashi
徹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012224307A priority Critical patent/JP2014077574A/en
Publication of JP2014077574A publication Critical patent/JP2014077574A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop a lumber dryer capable of reducing a cost of fuel expense, decreasing moisture content in lumber within a short time and preventing cytoclasis of lumber under utilization of geothermal heat and solar heat due to the presence of a heat insulation wall comprised of an outer wall part heat insulation material 22 of a building and an underground heat insulation material 1 added with water shielding properties that is connected to the underground side of the outer wall part heat insulation material 22 and inserted into the underground by more than 3 m.SOLUTION: This invention relates to a lumber dryer for a building utilizing geothermal heat and solar heat that is comprised of an under-floor heat radiation box 3 capable of sufficiently taking geothermal heat of 15 to 16°C at underground of no more than 3 m and performing natural dew condensation due to a temperature difference, and a lumber drying chamber 15 capable of taking solar heat of 40 to 60°C and adding the solar heat to the geothermal heat and performing earlier heating of lumber, and eliminates the need of fossil fuel, can decrease the water content rate of lumber, and prevents the occurrence of cytoclasis of lumber.

Description

本発明は、地中熱と太陽熱を利用した木材乾燥装置に関するものである。 The present invention relates to a wood drying apparatus using underground heat and solar heat.

木材乾燥装置はいろいろな構成が考えられているが、例えば木材を蒸気で加温した後冷却し、さらに乾燥を繰り返すことで木材の含水率を下げる木材乾燥装置では木材の細胞破壊がおき、大きな変形もあり、色艶がない木材ができ、燃料となる電気や重油ボイラーや加圧乾燥釜の設備が必要になり、乾燥量も少ない為、作業工程が大幅に増え、設備費と燃料費が負担になっている。 Various configurations are considered for wood drying equipment.For example, wood drying equipment that lowers the moisture content of wood by heating and cooling the wood with steam and further drying repeatedly destroys the cells of the wood. There is also deformation, lusterless wood can be produced, electricity and heavy oil boilers and pressure drying kettles are required as fuel, and the amount of drying is small, so the work process is greatly increased, equipment costs and fuel costs are reduced It is a burden.

また、特許文献1には細胞膜の水移動機能を応用した木材用乾燥機が開示されているが、この木材用乾燥機は乾燥機躯体に乾燥木材を設け、乾燥機躯体を30から50℃に小規模ヒータで温度調整させて乾燥機躯体の乾燥木材にグリーン材(被乾燥木材)の水分を移動して平準化しつつ乾燥機躯体の湿度調整を複数の小窓で実施している。
しかしながら、この木材用乾燥機では小規模ヒータで温度調整するので電気等が必要であり、乾燥機躯体内の温度確保や湿度調整が難しい。
Further, Patent Document 1 discloses a wood dryer that applies a water transfer function of a cell membrane. This wood dryer is provided with dry wood in a dryer case, and the dryer case is heated to 30 to 50 ° C. The humidity of the dryer housing is adjusted with a plurality of small windows while the temperature of the dryer is adjusted by moving the moisture of the green material (wood to be dried) to the dry wood of the dryer housing.
However, since this wood dryer adjusts the temperature with a small heater, electricity and the like are necessary, and it is difficult to secure the temperature and adjust the humidity in the dryer housing.

また、特許文献2には太陽熱利用の木材乾燥装置が開示されているが、この木材乾燥装置は木材乾燥室と除湿室からなっていて、木材乾燥室は太陽光を採取するための側部採光用側壁が設けられ、床にグレーチング、壁に反射板、壁と天井部に木材搬出搬入設備があり、太陽光の中温を潤沢に採取して木材を加温し、水分の蒸発を促進し、また、除湿室は断熱材で仕切られて上部と下部に空気を循環のための通気口が設けられて周囲の壁面を断熱材で囲まれ、金属製結露促進板・ファン・排気ファン・排水孔が設けられて飽和水蒸気を結露させて除湿をしている。しかしながら、この木材乾燥装置は太陽光を採取するための側部採光用側壁から太陽光が入射して床のグレーチングで発熱し、壁の反射板で加温し、太陽光で中温を確保した木材乾燥用サンルームにして木材を加温することで木材の水分を蒸発させてファンを介して送風して除湿室の金属製結露促進板で飽和水蒸気を結露させ、排水しているが、太陽光が側部採光用側壁から入射光や反射板から包装された木材面に照射される面と照射されない面で温度差がでて木材に歪みがでる。また、木材乾燥室が太陽熱で中温になった飽和水蒸気を除湿室に送風して金属製結露促進板で結露させているが温度差が十分でなく結露の促進が少ない。 Patent document 2 discloses a wood drying device using solar heat. This wood drying device is composed of a wood drying chamber and a dehumidifying chamber, and the wood drying chamber is side lighting for collecting sunlight. Side walls are provided, gratings on the floor, reflectors on the walls, and wood carry-in / out facilities on the walls and ceiling, warming the wood by collecting plenty of sunlight, promoting evaporation of moisture, In addition, the dehumidification chamber is partitioned by a heat insulating material, and vents for circulating air are provided in the upper and lower parts, and the surrounding wall surface is surrounded by heat insulating material. Metal dew condensation promotion plate, fan, exhaust fan, drainage hole Is provided for dehumidification by condensation of saturated water vapor. However, in this wood drying device, sunlight is incident from the side lighting side wall for collecting sunlight, heat is generated by the grating of the floor, is heated by the reflector on the wall, and is kept at a medium temperature with sunlight. Heating the wood as a drying sunroom evaporates the moisture in the wood, blows it through a fan, condenses saturated water vapor on the metal dew condensation promotion plate in the dehumidification chamber, and drains it. However, there is a temperature difference between the surface irradiated from the side lighting side wall and the surface of the wood wrapped from the reflector and the surface not irradiated, and the wood is distorted. In addition, saturated water vapor whose wood drying chamber has been heated by solar heat is blown to the dehumidification chamber to cause condensation on the metal condensation promotion plate, but the temperature difference is not sufficient and the promotion of condensation is small.

特開2009−109170号公報JP 2009-109170 A 特開2009−90532号公報JP 2009-90532 A

本発明はこのような課題を解決することを目的とする。 The present invention aims to solve such problems.

地中熱と太陽熱を利用した木材乾燥装置であって、
建築物の外壁部断熱材とその外壁部断熱材の地中側に連結され地中3m以上に挿入されている遮水性能を付加した地中側断熱材とからなる断熱壁と、
建築物の1階床組断熱床を天井部とし、壁部を該断熱壁、底部を蓄熱層で形成、壁には循環のための吸込口が設けられた床下放熱ボックスと、
建築物の1階断熱天井部と、壁部を該断熱壁、床部を1階床組断熱床で形成し、壁下に循環のための下部吹出口が設けられ、床には循環のための吸込口が接続された木材乾燥室と、
床下放熱ボックスの該吸込口、該断熱壁の内側に設けられた上昇用壁ダクト、軒先、屋根材下ダクト、該断熱壁の内側に設けた降下用壁ダクトに接続し、降下送風機を介して木材乾燥室の壁下に設けられた該下部吹出口が接続している太陽熱循環ダクトと、からなり、木材乾燥室の床に設けられた該吸込口の床下放熱ボックス側に結露用ダクトが接続されていることを特徴とする
A wood drying device using geothermal and solar heat,
A heat insulating wall composed of an outer wall heat insulating material of a building and an underground heat insulating material that is connected to the underground side of the outer wall heat insulating material and is inserted into the underground 3 m or more and has a water shielding performance added;
Underfloor heat radiating box in which the first floor floor heat insulating floor of the building is the ceiling, the wall is the heat insulating wall, the bottom is formed of a heat storage layer, and the wall is provided with a suction port for circulation.
The first floor heat insulation ceiling part of the building, the wall part is made of the heat insulation wall, the floor part is made of the first floor floor insulation floor, the lower outlet for circulation is provided under the wall, and the floor is for circulation A wood drying chamber to which the suction port of
Connected to the suction port of the underfloor heat dissipation box, the rising wall duct provided inside the heat insulation wall, the eaves, the roof material lower duct, the descent wall duct provided inside the heat insulation wall, and through the descent fan A solar heat circulation duct connected to the lower air outlet provided under the wall of the wood drying room, and a condensation duct connected to the under-floor radiation box side of the suction port provided on the floor of the wood drying room It is characterized by being

また、蓄熱層は床下放熱ボックスの断熱壁内側の床面に基礎コンクリートと下層に常時灌水層を設けることを特徴とする。 In addition, the heat storage layer is characterized in that a basic concrete is provided on the floor surface inside the heat insulating wall of the underfloor heat radiation box and a irrigation layer is always provided in the lower layer.

また、床下放熱ボックスにはその下端部が蓄熱層よりも地中側に突出している地下水循環用上井戸と、その地下水循環用上井戸に設置した地下水用循環ポンプと放熱機と、その下層部が蓄熱層よりも地中側に突出している地下水循環用下井戸が設けられていることを特徴とする。 The underfloor radiating box has an upper well for groundwater circulation whose lower end protrudes to the ground side of the heat storage layer, a groundwater circulation pump and radiator installed in the upper well for groundwater circulation, and a lower layer portion thereof. Is characterized in that a lower well for groundwater circulation protruding from the heat storage layer to the ground side is provided.

また、地中側断熱材は板状であって、断熱板を床下放熱ボックスの周囲に形成して
いることを特徴とする。
The underground heat insulating material is plate-shaped, and the heat insulating plate is formed around the underfloor heat radiating box.

また、地中側断熱材を掘削部に施工することを特徴とする。 Moreover, it is characterized by constructing an underground side heat insulating material in an excavation part.

また、太陽熱循環ダクトは外気を取り入れるための吸気口に接続していることを特徴とする。 The solar heat circulation duct is connected to an intake port for taking in outside air.

次に作用について説明する。本発明の地中熱と太陽熱を利用した木材乾燥装置は昼間に床下放熱ボックスの15〜16℃の地中熱を吸込口より吸い込み上昇用壁ダクト、屋根材下ダクトに通気して太陽熱を加算して、冬期は40〜60℃、夏期は40〜60℃の太陽熱を降下送風機を介して降下用壁ダクトに通気送風して下部吹出口より適度な風速で通風し、木材乾燥室と木材を冬期、夏期でも中温の40℃に緩やかに加温することで乾燥木材(含水率12%以下)と被乾燥木材(含水率35%以上)の水分を平準化させつつ、木材乾燥室の床面の吸込口より15〜16℃の床下放熱ボックスに結露用ダクトで送風させて飽和過剰水を結露用ダクトで結露させその結露水を排水孔より排水し、除湿を繰り返し行うことで木材を所定の含水率まで下げることができる。
夜間は木材乾燥室に昼間に加温された木材から放熱させることで木材から熱と水分が放出し、さらに木材の含水率を下げる。また、木材乾燥室の床面に設けた吸込口より15〜16℃の床下放熱ボックスに結露用ダクトに送風させて飽和過剰水を結露用ダクトで自然結露させて結露水を排水孔より排水し、除湿する。
また、毎日、昼夜繰り返すことで冬期は15日、夏期は12日位で柱材は含水率15%以下、板材は含水率12%以下の乾燥木材にすることができる。
Next, the operation will be described. The wood drying device using the ground heat and solar heat of the present invention sucks the ground heat of 15-16 ° C of the underfloor heat dissipation box from the suction port in the daytime and adds it to the wall duct for ascending and the duct below the roofing material. In winter, solar heat of 40-60 ° C, and in summer, 40-60 ° C are ventilated and blown to the descent wall duct through the lowering blower, and passed through the lower air outlet at an appropriate wind speed. Even in winter and summer, the floor of the wood drying room is leveled by gently warming the dry wood (moisture content of 12% or less) and dry wood (moisture content of 35% or more) by gently warming to a medium temperature of 40 ° C. From the air intake port, air is blown to the underfloor heat radiation box at 15 to 16 ° C. with the condensation duct, the saturated excess water is condensed with the condensation duct, the condensed water is drained from the drain hole, and the dehumidification is repeated to dehumidify the wood. Can be reduced to moisture content.
At night, heat and moisture are released from the wood by releasing heat from the wood heated in the daytime into the wood drying room, and the moisture content of the wood is further reduced. In addition, air from a suction port provided on the floor of the wood drying room is blown to the condensation duct under the floor heat radiation box at 15 to 16 ° C., and the saturated excess water is naturally condensed in the condensation duct, and the condensed water is drained from the drain hole. Dehumidify.
Moreover, by repeating day and night every day, it is possible to make dry wood with 15% or less moisture content in the column material and 15% or less moisture content in the column material in the winter season on the 15th and the summer season on the 12th.

本発明の断熱壁は建築物の外壁部断熱材とその外壁部断熱材の地中側に連結され地中3m以上に挿入され、地中側断熱材により地下水や雨水の影響を受けずに地中恒温層の地中熱を利用し、また、断熱壁で囲まれた床下放熱ボックス内と蓄熱層に安定した地中熱を熱平衡で確保ができる。
地中側断熱材の地中3m以下では外気温の影響を地中熱が受けるため地中3m以上とすることで地下階床よりも地中側に床下放熱ボックスを設けた構成と合いまって、より外気温の影響が少なくなり安定した地中熱の確保ができる。
The heat insulation wall of the present invention is connected to the underground side of the outer wall heat insulating material of the building and the outer wall heat insulating material and is inserted 3 m or more into the ground, and is not affected by groundwater or rainwater by the underground heat insulating material. The geothermal heat of the medium temperature zone can be used, and stable geothermal heat can be secured in thermal equilibrium in the underfloor heat radiation box surrounded by the heat insulating wall and the heat storage layer.
Underground heat insulation of 3m or less in the underground side is affected by the outside air temperature, so it is combined with the structure in which the underground heat radiation box is provided on the underground side of the underground floor by setting it to 3m or more in the underground. Therefore, the influence of outside air temperature is reduced and stable geothermal heat can be secured.

本発明の地中熱と太陽熱を利用した木材乾燥装置は昼間に床下放熱ボックスの地中熱15〜16℃に冬期は屋根材下の太陽熱40〜60℃、夏期は屋根材下の太陽熱40〜60℃を加温され、木材乾燥装室と木材を緩やかに40℃に加温することで乾燥木材と被乾燥木材の水分を同化させつつ、木材の水分を蒸発させてから床下放熱ボックスに送風することで温度差が十分にとれ、結露用ダクトで結露が大幅に促進されるので、木材の所定の含水率が早期にすることができる。 The wood drying apparatus using the geothermal heat and the solar heat of the present invention has a ground heat of 15 to 16 ° C. in the underfloor heat radiation box in the daytime, solar heat under the roof material in the winter 40 to 60 ° C., and in the summer the solar heat 40 to under the roof material. 60 ° C is heated, and the wood drying chamber and the wood are gently heated to 40 ° C to assimilate the moisture in the dried wood and the dried wood, and then evaporate the moisture in the wood before blowing it to the under-floor heat dissipation box By doing so, a sufficient temperature difference can be obtained, and condensation is greatly promoted by the condensation duct, so that the predetermined moisture content of the wood can be made early.

また、太陽熱と地中熱のみを利用しただけで十分な乾燥効果が確保できるので、小型ヒータなども必要がなく、電気や燃料費がいらない。 In addition, since a sufficient drying effect can be ensured by using only solar heat and underground heat, there is no need for a small heater or the like, and electricity and fuel costs are not required.

床下放熱ボックスは地下水温採取装置で地中熱が潤沢に採取でき、1階階床下の地上部と地中側からなることで外気温の影響が少ない構造になり、木材の乾燥が確実に促進される。 Underfloor heat dissipation box can collect ground heat with groundwater temperature sampling device, and it has a structure with less influence of outside air temperature because it consists of above ground part and underground side under the 1st floor, which surely promotes the drying of wood Is done.

蓄熱層は1階床下の床下放熱ボックスの断熱壁内側の床面に基礎コンクリートと常時灌水槽を設けることで伝導率が飛躍的に改善され、床下放熱ボックスの地中熱の蓄熱量が増え、循環送風することで太陽熱を加算して短時間で木材乾燥室の木材を加温や除湿を繰り返すことができる。 The heat storage layer has a dramatic improvement in conductivity by providing basic concrete and a regular irrigation tank on the floor inside the heat insulation wall of the underfloor heat radiation box under the first floor, increasing the amount of heat stored in the ground heat of the underfloor heat radiation box, By circulating air, heating and dehumidification of the wood in the wood drying room can be repeated in a short time by adding solar heat.

地下水循環用上井戸と地下水循環用下井戸を床下放熱ボックスに設けたので、床下放熱ボックスのおける地中熱の温度を安定させることができ、木材乾燥をより促進させる。 Since the groundwater circulation upper well and the groundwater circulation lower well are provided in the underfloor heat dissipation box, the temperature of the geothermal heat in the underfloor heat dissipation box can be stabilized and the drying of wood is further promoted.

太陽熱循環ダクトは外気を取り入れるための給気口に接続しているので、特に夏期
に地中熱の温度上昇を促進させることができるので、木材乾燥の時間をより短縮させ
ることができる。
Since the solar heat circulation duct is connected to an air supply port for taking in outside air, it is possible to promote an increase in the temperature of the underground heat, particularly in summer, so that the time for drying the wood can be further shortened.

本発明に係る木材乾燥装置全体構成断面図Cross-sectional view of the entire configuration of a wood drying apparatus according to the present invention 同地中側断熱材挿入側面図Side view of insertion of insulation inside the ground 同地中側断熱壁単体・遮水連結部平断面図Cross section of the insulation wall on the middle side of the ground 同操作盤及び温度制御部の構成図Configuration diagram of the operation panel and temperature control unit 同木材乾燥装置冬期全体構成断面図Cross-sectional view of the whole wood drying equipment in winter 同木材乾燥装置夏期全体構成断面図Cross-sectional view of the entire structure of the wood drying equipment in summer 同木材乾燥装置冬期の床下放熱ボックス平面図Floor plan of under-floor heat dissipation box in the same wood drying equipment in winter 同木材乾燥装置夏期の床下放熱ボックス平面図Floor plan of under-floor heat dissipation box in the same wood drying equipment in summer 同地中断熱材断面・平面図Cross section / plan view 同木材乾燥装置冬期の木材乾燥室平面図Top view of the wood drying room in winter 同木材乾燥装置夏期の木材乾燥室平面図Top view of the wood drying room in the summer 同木材乾燥装置冬期の屋根伏図Roof plan of the same wood dryer in winter 同木材乾燥装置夏期の屋根伏図Roof plan of the same wood dryer summer

以下、本発明を実施するための最良の形態を図面に基づいて詳細に説明する。本発明の図1に記載されているように、木材乾燥装置全体構成断面図は建築物の外壁部断熱材22とその外壁部断熱材22の地中側に連結され地中3m以上に挿入されている遮水性能を付加した地中側断熱材1とからなる断熱壁と、
建築物の1階床の下側に天井部を1階床下に設けた断熱床57、壁部を該断熱壁、底部を蓄熱層19と常時灌水層37により形成して地中熱を熱平衡で採熱できる。
建築物の1階断熱天井部、断熱層57と、壁部を該断熱壁、外部断熱材22、床部を1階床組58の断熱層57で形成し、壁には循環のための下部吹出口Aが設けられ、床には循環のための吸込口Cが接続された木材乾燥室15と、
床下放熱ボックス3の該吸込口B、該断熱壁の内側に設けられた上昇用壁ダクト16、軒先33、屋根材下ダクト13、該断熱壁の内側に設けた降下用壁ダクト16に接続し、降下送風機8を介して木材乾燥室15の壁下に設けられた該下部吹出口Aが接続している太陽熱循環ダクト12と、からなっており、木材乾燥室15の床面の吸
込口Cから床下放熱ボックス3の循環送風機9を介して結露用ダクト14−2に接続して飽和水蒸気の余剰水を自然結露させた0.038l/mの結露水を吹出口Dより排水し、除湿します。
夜間は木材乾燥室15内の昼間加温された木材乾燥装室15と木材の熱と水分が放出していくと共に床下放熱ボックス3の循環送風機9を介して結露用ダクト14−2で飽和水蒸気の余剰水を結露させ、0.004l/mの結露水を排水して除湿を毎日・昼夜繰り返すことで木材の含水率を徐々に下げ、化石エネルギーの要らない木材乾燥装置をつくることができる。
また、床下放熱ボックス3には吸込口Bを設け、太陽熱循環ダクト12、集熱ボックス24に接続し、降下送風機8を介して太陽熱循環ダクト12に下部吹出口Aに接続して循環送風している。
さらに、床下放熱ボックス3の黴はチタンコーティングで制御と黴除去フィルター23で除去して木材に黴の付着を極力減らすことができる。
The best mode for carrying out the present invention will be described below in detail with reference to the drawings. As shown in FIG. 1 of the present invention, the overall cross-sectional view of the wood drying apparatus is connected to the outer wall portion insulating material 22 of the building and the underground side of the outer wall insulating material 22 and is inserted into the underground 3 m or more. A heat insulating wall consisting of the underground heat insulating material 1 with added water shielding performance,
A heat insulating floor 57 provided with a ceiling portion under the first floor under the first floor of the building, a wall portion with the heat insulating wall, a bottom portion with the heat storage layer 19 and a constant irrigation layer 37, and heat in the ground is in thermal equilibrium. Can collect heat.
The first floor heat insulation ceiling part of the building, the heat insulation layer 57, the wall part is formed of the heat insulation wall, the external heat insulating material 22, and the floor part is formed of the heat insulation layer 57 of the first floor floor set 58, and the wall is a lower part for circulation. A wood drying chamber 15 provided with a blowout port A and connected to a suction port C for circulation on the floor;
Connected to the inlet B of the underfloor heat radiation box 3, the rising wall duct 16 provided inside the heat insulating wall, the eaves 33, the roof material lower duct 13, and the falling wall duct 16 provided inside the heat insulating wall. And a solar heat circulation duct 12 connected to the lower air outlet A provided under the wall of the wood drying chamber 15 via the descending blower 8, and a suction port C on the floor surface of the wood drying chamber 15. the condensed water underfloor radiator box 3 of the circulation blower 9 0.038l / m 3 the surplus water saturated steam connected to condensation duct 14-2 was air condensation through drained from the outlet D from dehumidified The
At night, the wood drying chamber 15 heated in the daytime in the wood drying chamber 15 and the heat and moisture of the wood are released, and at the same time, saturated steam is generated in the condensation duct 14-2 via the circulation fan 9 of the underfloor heat radiation box 3. It is possible to make a wood drying device that does not require fossil energy by gradually reducing the moisture content of wood by draining 0.004 l / m 3 of condensed water and repeating dehumidification every day and night.
Further, the underfloor heat radiation box 3 is provided with a suction port B, connected to the solar heat circulation duct 12 and the heat collection box 24, and connected to the solar heat circulation duct 12 via the lowering blower 8 to the lower air outlet A and circulated. Yes.
Furthermore, the cocoon in the underfloor heat radiation box 3 can be controlled by the titanium coating and removed by the cocoon removal filter 23 to reduce the adhesion of the cocoon to the wood as much as possible.

また、図2の地中側断熱材挿入側面図に示しているように、3m以上の深さに挿入されている板状の地中側断熱材1は地上側の板状の外壁断熱材22と設計地盤付近で連結されている。 Moreover, as shown in the underground side heat insulating material insertion side view of FIG. 2, the plate-shaped underground heat insulating material 1 inserted at a depth of 3 m or more is a plate-shaped outer wall heat insulating material 22 on the ground side. And connected near the design ground.

本発明の図3に記載されているように、地中側断熱材1の遮水連結部2には水3倍膨張性ゴム11を地中側断熱材1と地中側断熱材1の間に装着して、地中に埋設後は水3倍膨張性ゴム11が水膨張し、隔離できるようにしている。
尚、図1のように地中側断熱材1は掘削部の下層部に割栗石65その上部に均しモルタル66を設け、その上部に地中側断熱材1を施工する。
As shown in FIG. 3 of the present invention, a water triple expansion rubber 11 is provided between the underground side heat insulating material 1 and the underground side heat insulating material 1 in the water shielding connecting portion 2 of the underground side heat insulating material 1. After being embedded in the ground, the water triple-expandable rubber 11 expands and can be isolated.
In addition, as shown in FIG. 1, the underground side heat insulating material 1 is provided with a leveling mortar 66 on the upper part of the cracked stone 65 in the lower part of the excavation part, and the underground side heat insulating material 1 is constructed on the upper part.

本発明の図4に記載されているように、操作盤及び温度制御部の構成図で温度制御は温度制御部によって行なわれる。外部には温度センサーと湿度センサーと操作盤が設置されていて、操作盤には温度設定部に暖房の自動・強・中・弱の切換部があり、補助除湿機10の自動・強・中・弱の切換部がある。
降下送風機8と循環送風機9の切換部があり、降下送風機8と循環送風機9には強・中・弱の切換部があり、補助除湿機10のON/OFFの切換部もある。
また、温度制御部には温度センサーのための温度検出部、湿度センサーのための湿度検出部、温度コントロール部、降下送風機8と循環送風機9の風量調節部、補助除湿機10のON/OFFが内蔵されている。降下送風機8と循環送風機9内にはダンパー7が内蔵され、床下放熱ボックス3内には補助除湿機10のON/OFFが内蔵され、床下放熱ボックス3内のダンパー7が設けられ連動している。
As described in FIG. 4 of the present invention, the temperature control is performed by the temperature control unit in the configuration diagram of the operation panel and the temperature control unit. A temperature sensor, humidity sensor, and operation panel are installed outside, and the operation panel has a heating / automatic / strong / medium / weak switching part in the temperature setting section. -There is a weak switching section.
There is a switching unit between the descending fan 8 and the circulating fan 9, the descending fan 8 and the circulating fan 9 have strong / medium / weak switching units, and an ON / OFF switching unit for the auxiliary dehumidifier 10.
In addition, the temperature control unit includes a temperature detection unit for the temperature sensor, a humidity detection unit for the humidity sensor, a temperature control unit, an air volume adjustment unit for the descending fan 8 and the circulating fan 9, and ON / OFF of the auxiliary dehumidifier 10. Built in. A damper 7 is built in the descending fan 8 and the circulating fan 9, an ON / OFF of the auxiliary dehumidifier 10 is built in the underfloor heat dissipating box 3, and a damper 7 in the underfloor heat dissipating box 3 is provided and interlocked. .

このような制御によって、例えば、冬期の昼間に木材乾燥室15の温度を温度設定部で調節することで風量も調節され、放熱量が調節される。
また、冬期の夜間には木材乾燥室15内の床面の吸込口Cより黴除去フィルター23に通気し、結露用ダクト14−2の循環送風機9を介して送風し、風量も調整され、結露し、除湿される。
操作盤には降下送風機8、循環送風機9の送風調整スィッチがあり自動、強、中、弱がある。また、風量調整スィッチがあり自動、強、中、弱があり、風量も調節され、これを組み合わせることで室温度を調節することができる。
By such control, for example, the air volume is adjusted by adjusting the temperature of the wood drying chamber 15 by the temperature setting unit during the daytime in winter, and the heat radiation amount is adjusted.
Further, in the winter night, air is passed through the soot removal filter 23 from the suction port C in the floor of the wood drying chamber 15, and is blown through the circulation fan 9 of the condensation duct 14-2. And dehumidified.
The operation panel has a blower adjustment switch for the descending blower 8 and the circulating blower 9, and there are automatic, strong, medium and weak. In addition, there is an air volume adjustment switch, there are automatic, strong, medium and weak, the air volume is adjusted, and the room temperature can be adjusted by combining these.

例えば、夏期の昼間には室内の温度が25℃の時に操作盤で木材乾燥室15の温度設を操作し、40℃に設定すると、自動制御であれば、下降用壁ダクト14−1の下降送風機8を介して送風し、風量も調整され、床面の吸込口Cより床下放熱ボックス3に通気され、40℃に調整する。
また、夏期の夜間には木材乾燥室15内の床面の吸込口Cより黴除去フィルター23に通気し、結露用ダクト14−2の循環送風機9を介して送風し、風量も調整され、冷却結露し、除湿される。
For example, during summer daytime, when the temperature of the room is 25 ° C., the temperature setting of the wood drying room 15 is operated with the operation panel and set to 40 ° C. The air is blown through the blower 8 and the air volume is also adjusted. The air is ventilated from the suction port C on the floor surface to the underfloor heat radiation box 3 and adjusted to 40 ° C.
Further, during summer night, air is passed through the soot removal filter 23 from the suction port C on the floor surface in the wood drying chamber 15, and is blown through the circulation fan 9 of the condensation duct 14-2. Condensation and dehumidification.

本発明の図5に記載されているように、木材乾燥装置冬期全体構成断面図は冬期の昼間は地中恒温層20の15〜16℃の地中熱が熱平衡での採熱し、伝導と加温している。
床下放熱ボックス3の吸込口Bより壁ダクト16、軒先33に通気してテンパーライ42と棟凹形SUS鏡面太陽熱集熱器43で加温された屋根材下ダクト13で太陽熱を採熱し、集熱ボックス24に集熱して下降送風機8を介して降下ダクト14−1で降下し、下部吹出口Aより緩やかに木材乾燥室15に放熱され乾燥木材63と被乾燥木材64も加温されている。
また、真空式太陽熱温水器17と太陽熱採熱ハンドリング銅管44より循環ポンプ31−1を介して木材乾燥室15のベースボードヒータ26で放熱して木材乾燥室15に放熱され乾燥木材60と被乾燥木材61も40℃に加温されている。
木材乾燥室15の床面の吸込口Cより循環送風機9を介して結露用ダクト14−2に通気させて温度差によって飽和水蒸気余剰水を自然結露させて0.038l/mの結露水を排水して除湿する。床下放熱ボックス3の吸込口Bより壁ダクト16、軒先33、屋根材下ダクト13、集熱ボックス24、降下ダクト14−1に通気して下部吹出口Aより緩やかに木材乾燥室15の乾燥木材63と被乾燥木材64の水分を同化させつつ、放熱と冷却で水分の発散を繰り返し行うことで所定の含水率(12〜15%以下)にすることができる。
冬期の夜間は木材乾燥室15内の木材の冷却と共に水分も放出していくと共に木材乾燥室15の床面の吸込口Cより循環送風機9を介して結露用ダクト14−2で通気させ、温度差によって飽和水蒸気の余剰水を自然結露させて0.004l/mの結露水を排水して除湿する。床下放熱ボックス3の吸込口Bより壁ダクト16、軒先33、屋根材下ダクト13、集熱ボックス24、降下ダクト14−1に通気して下部吹出口Aより緩やかに木材乾燥室15の乾燥木材63と被乾燥木材64の水分を同化させつつ、木材も冷却して放熱と冷却で水分の発散を繰り返し行うことで所定の含水率(12〜15%以下)にすることができる。
As shown in FIG. 5 of the present invention, the entire configuration cross-sectional view of the wood drying apparatus in winter shows that the geothermal heat of 15 to 16 ° C. of the underground thermostatic layer 20 is collected in thermal equilibrium during the daytime in winter, and the conduction and heating are measured. It is warm.
Solar heat is collected in the duct under roof 13 that is ventilated from the suction port B of the underfloor heat radiation box 3 to the wall duct 16 and the eaves 33 and heated by the temper lie 42 and the ridge concave SUS mirror solar collector 43. The heat is collected in the box 24 and lowered by the descending duct 14-1 through the descending blower 8, and is gradually radiated from the lower outlet A to the wood drying chamber 15, and the dried wood 63 and the dried wood 64 are also heated.
In addition, heat is radiated from the vacuum solar water heater 17 and the solar heat collection handling copper pipe 44 through the circulation pump 31-1 to the baseboard heater 26 of the wood drying chamber 15 and is radiated to the wood drying chamber 15 to be dried with the dried wood 60. The dry wood 61 is also heated to 40 ° C.
Aeration steam C is ventilated from the suction port C of the floor of the wood drying chamber 15 through the circulation fan 9 to the condensation duct 14-2 to naturally condense the saturated water vapor surplus water due to the temperature difference, thereby draining 0.038 l / m 3 of dew condensation water. And dehumidify. Dried wood in the wood drying chamber 15 is gently passed through the wall duct 16, eaves 33, roof material lower duct 13, heat collecting box 24, and descending duct 14-1 from the suction port B of the underfloor heat radiation box 3 and slowly from the lower outlet A. It is possible to obtain a predetermined moisture content (12 to 15% or less) by repeatedly releasing water through heat dissipation and cooling while assimilating the water of 63 and the wood 64 to be dried.
During the night of winter, the wood in the wood drying chamber 15 is cooled and moisture is released, and the air is vented from the suction port C on the floor of the wood drying chamber 15 through the circulation fan 9 through the condensation duct 14-2. Due to the difference, excess water of saturated steam is naturally condensed, and 0.004 l / m 3 of condensed water is drained and dehumidified. Dried wood in the wood drying chamber 15 is gently passed through the wall duct 16, eaves 33, roof material lower duct 13, heat collecting box 24, and descending duct 14-1 from the suction port B of the underfloor heat radiation box 3 and slowly from the lower outlet A. The moisture content of 63 and the dried wood 64 can be assimilated, and the wood can also be cooled, and heat can be released by heat dissipation and cooling repeatedly to achieve a predetermined moisture content (12 to 15% or less).

本発明の図6に記載されているように、木材乾燥装置夏期全体構成断面図は夏期の昼間は吸込口Bより地中熱を吸い込み上昇用壁ダクト16、軒先33に通気してテンパーライト42と棟凹形SUS鏡面太陽熱集熱器43で加温された屋根材下ダクト13で太陽熱を採熱し、集熱ボックス24に集熱して下降送風機8を介して降下用壁ダクト14−1で降下させて下部吹出口Aより緩やかに木材乾燥室15に放熱され乾燥木材60と被乾燥木材61も加温される。
また、真空式太陽熱温水器17と太陽熱採熱ハンドリング銅管44より循環ポンプ31−1を介して木材乾燥室15のベースボードヒータ26で放熱して乾燥木材63と被乾燥木材64も追加加温され、含水量が同化する。
さらに、外部に給気口28を設けて高温の外気を給気口28より壁ダクト16、屋根材下ダクト13に通気し、加温を促進することもできる。
木材乾燥室15の床面の吸込口Cより循環用送風機9を介して結露用ダクト14−2で通気させて温度差により結露用ダクト14−2で飽和水蒸気の余剰水を自然結露させ0.038l/mの結露水を排水し、除湿して床下放熱ボックス3の吸込口Bより循環送風を繰り返し行うことで所定の含水率にすることができる。
夏期の夜間は木材乾燥室15内の木材の冷却と共に水分も放出していくと共に木材乾燥室15の床面の吸込口Cより循環送風機9を介して結露用ダクト14−2と吹出口Dに通気させて温度差によることで飽和水蒸気の余剰水を結露させて排水し、除湿して床下放熱ボックス3の吸込口Bより上昇用壁ダクト16、軒先33、屋根材下ダクト13、集熱ボックス24、降下用壁ダクト14−1に通気して下部吹出口Aより緩やかに木材乾燥室15を加温して乾燥木材60と被乾燥木材61も加温され、含水量が同化する。
木材乾燥室15の床面の吸込口Cより循環送風機9を介して結露用ダクト14−2に通気させて温度差により飽和水蒸気の余剰水を自然結露させて0.004l/mの結露水を排水し、除湿して床下放熱ボックス3の吸込口Bより循環送風を繰り返し行うことで所定の含水率(12〜15%以下)にすることができる。
As shown in FIG. 6 of the present invention, the whole section view of the wood drying apparatus in the summer is that the temperlight 42 is ventilated through the suction duct B and the elevating wall duct 16 and the eaves 33 during the daytime in the summer. The solar heat is collected by the roof material lower duct 13 heated by the ridge concave SUS mirror surface solar heat collector 43, collected in the heat collecting box 24, and lowered by the descending wall duct 14-1 through the descending fan 8. As a result, heat is gradually radiated to the wood drying chamber 15 from the lower outlet A, and the dry wood 60 and the dry wood 61 are also heated.
Further, the dry wood 63 and the to-be-dried wood 64 are additionally heated by dissipating heat from the vacuum solar water heater 17 and the solar heat collecting handling copper pipe 44 through the circulation pump 31-1 by the baseboard heater 26 of the wood drying chamber 15. The water content is assimilated.
Furthermore, an air supply port 28 is provided outside, and high-temperature outside air can be ventilated from the air supply port 28 to the wall duct 16 and the roof material lower duct 13 to promote heating.
Through the circulation fan 9, air is passed through the condensation duct 14-2 from the suction port C on the floor surface of the wood drying chamber 15, and excess water of saturated water vapor is naturally condensed in the condensation duct 14-2 due to the temperature difference. / M 3 of dew condensation water is drained, dehumidified, and recirculated and blown from the suction port B of the underfloor heat radiation box 3 to achieve a predetermined moisture content.
During the summer night, the moisture in the wood drying chamber 15 is cooled and moisture is discharged, and the dew duct 14-2 and the air outlet D are connected from the suction port C on the floor of the wood drying chamber 15 through the circulation fan 9. Due to the temperature difference, excess water of saturated steam is condensed and drained due to the temperature difference, dehumidified and raised from the suction port B of the underfloor radiating box 3, the wall duct 16 for elevating, the eaves 33, the roofing material lower duct 13, the heat collecting box 24. The wood drying chamber 15 is gently warmed from the lower outlet A by ventilating the descending wall duct 14-1, and the dry wood 60 and the dry wood 61 are also warmed, and the water content is assimilated.
Through the circulation blower 9 through the suction port C on the floor surface of the wood drying chamber 15, the dew condensation duct 14-2 is ventilated to naturally condense the excess water of saturated water vapor due to the temperature difference to generate 0.004 l / m 3 of dew condensation water. By draining, dehumidifying, and repeatedly circulating air from the suction port B of the underfloor heat radiation box 3, a predetermined moisture content (12 to 15% or less) can be obtained.

以上、木材乾燥装置の基本的な構成について説明してきたが図1に記載されているように、常時灌水層37や、地下水循環用上井戸46−1と地下水循環用下井戸46−2を設けることにより、木材乾燥機能を向上させることができる。
常時灌水層37は、蓄熱層19の地中側に設けられ、割栗石と水とから構成されている。この常時灌水層37を設けることにより、水により飛躍的に伝導率が高まり、蓄熱量の増加や短時間で地中恒温層20の地中熱を熱平衡できる。
また、地下水循環用上井戸46−1と地下水循環用下井戸46−2は、それぞれ上端部を床下放熱ボックス3に、下端部を蓄熱層19より地中側に設けた井戸であり、地下水循環用上井戸46−1と地下水循環用下井戸46−2は床下放熱ボックス3に別途設けられた循環ポンプ31−2と放熱機18と介してパイプで接続されている。
これら地下水循環用上井戸46−1、地下水循環用下井戸46−2、循環ポンプ31−2、放熱機18を設けることにより、地下水の地中熱を潤沢に採熱することできので、床下放熱ボックス3内に安定した地中恒温層20の地中熱を確保でき、温度差による結露が促進されることで木材の乾燥時間の短縮になる。
As described above, the basic configuration of the wood drying apparatus has been described. As shown in FIG. 1, the irrigation layer 37, the upper well 46-1 for circulating the groundwater, and the lower well 46-2 for circulating the groundwater are provided. Thus, the wood drying function can be improved.
The regular irrigation layer 37 is provided on the ground side of the heat storage layer 19 and is composed of quarry stone and water. By providing this constant irrigation layer 37, the conductivity is dramatically increased by water, and the heat of the underground thermostatic layer 20 can be thermally balanced in an increased amount of heat storage or in a short time.
Moreover, the upper well 46-1 for groundwater circulation and the lower well 46-2 for groundwater circulation are wells which respectively provided the upper end part in the underfloor heat radiating box 3, and the lower end part in the underground side from the thermal storage layer 19, and groundwater circulation The upper well 46-1 and the lower well 46-2 for circulating groundwater are connected to each other by a pipe via a circulation pump 31-2 and a radiator 18 which are separately provided in the underfloor heat radiation box 3.
By providing the groundwater circulation upper well 46-1, the groundwater circulation lower well 46-2, the circulation pump 31-2, and the radiator 18, ground heat can be collected abundantly. The stable underground heat of the underground thermostatic layer 20 can be secured in the box 3, and the condensation time due to the temperature difference is promoted, so that the drying time of the wood is shortened.

本発明は図7に記載されているように、木材乾燥装置の冬期の床下放熱ボックス平面図は床下放熱ボックス3の周囲に基礎コンクリート4の蓄熱層19と遮水機能を付加した地中側断熱材1が地下3.0m以上に挿入され、地中恒熱層20より熱平衡で地中熱の採熱ができ床下放熱ボックス3内が15〜16℃になっている。
また、床下放熱ボックス3には地下水循環用上井戸46−1と地下水循環用下井戸46−2があり、循環ポンプ31を介して地下水を循環して地中熱のみを放熱機18で潤沢に放熱して安定した地中熱を床下放熱ボックス3に供給している。
床下放熱ボックス3には吸込口Bがあり上昇用壁ダクト16、軒先33、屋根材下ダクト13に通気し、循環送風している。床下放熱ボックス3には結露用ダクト14−2で飽和水蒸気の過剰水を自然結露させて結露水を排水して除湿している。
As shown in FIG. 7, the plan view of the underfloor heat dissipation box in the winter of the wood drying apparatus is shown in FIG. 7. The heat insulation layer 19 of the foundation concrete 4 and the water insulation function are added around the underfloor heat dissipation box 3. The material 1 is inserted at a depth of 3.0 m or more underground, the ground heat can be collected from the underground constant temperature layer 20 by thermal equilibrium, and the inside of the under-floor radiation box 3 is 15 to 16 ° C.
The underfloor heat radiation box 3 has an upper well 46-1 for groundwater circulation and a lower well 46-2 for circulation of groundwater. The groundwater is circulated through the circulation pump 31 and only the underground heat is abundant by the radiator 18. The underground heat that is radiated and stabilized is supplied to the under-floor radiating box 3.
The underfloor heat radiation box 3 has a suction port B, which ventilates and circulates air through the ascending wall duct 16, the eaves edge 33, and the roof material lower duct 13. The underfloor heat radiation box 3 is dehumidified by naturally condensing excess water of saturated water vapor through the condensation duct 14-2 and draining the condensed water.

本発明は図8に記載されているように、木材乾燥装置の夏期の床下放熱ボックス平面図は床下放熱ボックス3の周囲に基礎コンクリート4の蓄熱層19と遮水機能を付加した地中側断熱材1が地下3.0m以上に挿入され、地中恒熱層20より熱平衡で地中熱の採熱ができ床下放熱ボックス3内が15〜16℃になっている。
また、床下放熱ボックス3には地下水循環用上井戸46−1と地下水循環用下井戸46−2があり、循環ポンプ31を介して地下水を循環して地中熱のみを放熱機18で潤沢に放熱して安定した地中熱を床下放熱ボックス3に供給している。
床下放熱ボックス3には吸込口Bがあり上昇用壁ダクト16、軒先33、屋根材下ダクト13に通気し、循環送風している。
地上の外部に吸気口28が上昇用壁ダクト16が接続し、夏期の外気の高温を時々供給して屋根材下ドクト13の太陽熱に加算して短時間で温度上昇を図っている。床下放熱ボックス3には結露用ダクト14−2で飽和水蒸気の過剰水を自然結露させて結露水を排水して除湿している。
As shown in FIG. 8, the plan view of the underfloor heat radiating box in the summer of the wood drying apparatus is shown in FIG. 8. The heat insulating layer 19 of the foundation concrete 4 and the water insulation function are added around the underfloor radiating box 3. The material 1 is inserted at a depth of 3.0 m or more underground, the ground heat can be collected from the underground constant temperature layer 20 by thermal equilibrium, and the inside of the under-floor radiation box 3 is 15 to 16 ° C.
The underfloor heat radiation box 3 has an upper well 46-1 for groundwater circulation and a lower well 46-2 for circulation of groundwater. The groundwater is circulated through the circulation pump 31 and only the underground heat is abundant by the radiator 18. The underground heat that is radiated and stabilized is supplied to the under-floor radiating box 3.
The underfloor heat radiation box 3 has a suction port B, which ventilates and circulates air through the ascending wall duct 16, the eaves edge 33, and the roof material lower duct 13.
The rising wall duct 16 is connected to the outside of the ground with the air inlet 28, and the high temperature of the outdoor air in the summer is sometimes supplied to add to the solar heat of the roofing material doct 13 to increase the temperature in a short time. The underfloor heat radiation box 3 is dehumidified by naturally condensing excess water of saturated water vapor through the condensation duct 14-2 and draining the condensed water.

本発明は断面図を図示した図9(A)と平面図を図示した図9(B)図9(A)(
B)に記載されているように、地中断熱材1はパワーショベル掘削55で地中3.0m以
上に掘削して掘削部5底部に割栗石厚100mm65と均しモルタル厚50mm66を敷
き込み、その上部に単体の地中側断熱材1を設け、下層部を段階的に埋め立てクラシ
ャラン層厚200mm32の底部まで埋め、その上部と地中側断熱材1の内側に基礎コン
クリート4を設けて床下放熱ボックス3にする。
地中側断熱材1が地下3.0m以上に挿入されることで地中恒熱層20より熱平衡で地
中熱が採熱され15〜16℃になっている。
The present invention is shown in FIG. 9A showing a sectional view and FIG. 9B showing a plan view.
As shown in B), the underground heat insulating material 1 is excavated to a depth of 3.0 m or more by a power shovel excavation 55, and the bottom of the excavation part 5 is laid with a crushed stone thickness of 100 mm65 and a mortar thickness of 50 mm66. A single underground heat insulating material 1 is provided at the top, and the lower layer is gradually filled up to the bottom of the crusheran layer with a thickness of 200mm32, and the foundation concrete 4 is provided on the top and inside the underground heat insulating material 1 to provide an underfloor heat dissipation box. Set to 3.
By inserting the underground heat insulating material 1 at a depth of 3.0 m or more underground, the underground heat is collected from the underground constant temperature layer 20 in a thermal equilibrium state and is 15 to 16 ° C.

本発明は図10に記載されているように、木材乾燥装置冬期の木材乾燥室平面図は
周囲を外壁断熱材22に周囲を囲まれ木材乾燥室15で一方に搬入扉47がある。間
仕切壁27と外壁断熱材22の間に降下用壁ダクト14−1が接続され下部に下部吹
出口Aが設けられ緩やかに加温され、乾燥木材60と被乾燥木材61の含水量を同化
させつつ、木材乾燥室15の床面の吸込口Cに循環送風機9を介して結露用ダクト1
4−2より床下放熱ボックス3に送風している。
また、真空式太陽熱温水器17から循環ポンプ31−1を介してベースボードヒー
タ26で加温して乾燥木材60と被乾燥木材61の含水量を同化させつつ、木材から
の水分を放出させ、床の吸込口Cより循環送風機9を介して結露用ダクト14−2で
ている。
As shown in FIG. 10, the plan view of the wood drying room in the winter of the wood drying apparatus is surrounded by the outer wall heat insulating material 22 and the wood drying room 15 has a carry-in door 47 on one side. A descending wall duct 14-1 is connected between the partition wall 27 and the outer wall heat insulating material 22, and a lower outlet A is provided at the lower portion to gently warm the water content of the dry wood 60 and the dry wood 61. Meanwhile, the dew condensation duct 1 is connected to the suction port C on the floor surface of the wood drying chamber 15 through the circulation fan 9.
The air is blown to the underfloor heat radiation box 3 from 4-2.
In addition, the water from the wood is released while assimilating the moisture content of the dry wood 60 and the dry wood 61 by heating with the baseboard heater 26 via the circulation pump 31-1 from the vacuum solar water heater 17, A dew condensation duct 14-2 is provided through a circulation blower 9 from a suction port C of the floor.

本発明は図11に記載されているように、木材乾燥装置夏期の木材乾燥室平面図は
周囲を外壁断熱材22に周囲を囲まれ木材乾燥室15で一方に搬入扉47がある。間
仕切壁27と外壁断熱材22の間に降下用壁ダクト14−1が接続され下部に下部吹
出口Aが設けられ緩やかに加温され、乾燥木材60と被乾燥木材61の含水量を同化
させつつ、木材乾燥室15の床面の吸込口Cに循環送風機9を介して結露用ダクト1
4−2より床下放熱ボックス3に送風している。
また、真空式太陽熱温水器17から循環ポンプ31−1を介してベースボードヒー
タ26で加温して乾燥木材60と被乾燥木材61の含水量を同化させつつ、木材から
の水分を放出させ、床の吸込口Cより循環送風機9を介して結露用ダクト14−2で
ている。
また、外部に給気口28を設けて高温の外気を給気口28より時々給気して上昇用壁ダクト16、軒先33、屋根材下ダクト13に通気し、加温を促進している。
As shown in FIG. 11, the plan view of the wood drying room in the summer of the wood drying apparatus is surrounded by the outer wall heat insulating material 22 and the wood drying room 15 has a carry-in door 47 on one side. A descending wall duct 14-1 is connected between the partition wall 27 and the outer wall heat insulating material 22, and a lower outlet A is provided at the lower portion to gently warm the water content of the dry wood 60 and the dry wood 61. Meanwhile, the dew condensation duct 1 is connected to the suction port C on the floor surface of the wood drying chamber 15 through the circulation fan 9.
The air is blown to the underfloor heat radiation box 3 from 4-2.
In addition, the water from the wood is released while assimilating the moisture content of the dry wood 60 and the dry wood 61 by heating with the baseboard heater 26 via the circulation pump 31-1 from the vacuum solar water heater 17, A dew condensation duct 14-2 is provided through a circulation blower 9 from a suction port C of the floor.
In addition, an air supply port 28 is provided outside, and high temperature outside air is sometimes supplied from the air supply port 28 to ventilate the rising wall duct 16, the eaves 33, and the roof material lower duct 13 to promote heating. .

本発明は図12に記載されているように、木材乾燥装置冬期の屋根伏図は屋根材下
と下地材に囲まれた空間か筒型ダクトが屋根面全体に設けられた屋根材下ダクト13
で棟部付近にテンパーライト42、棟部に棟凹形SUS鏡面太陽熱集熱器43で屋根
材下ダクト13を加温し、上昇気流で暖気を集熱ボックス24に集中させて降下送風
機8を介して降下用壁ダクト14−1の下部の下部吹出口Aより0.1m/秒の風速で
木材乾燥室15に送風する。
また、真空式太陽熱温水器17と太陽熱採熱ハンドリング銅管44でも太陽熱を集
熱し、循環ポンプ31−1を介して2系統の温水パイプで木材乾燥室15のベースボ
ードヒータ26で放熱する。
As shown in FIG. 12, the present invention shows a roof plan view in the winter of a wood drying apparatus. A roof duct 13 is a space surrounded by a roof material and a base material or a tubular duct provided on the entire roof surface.
In the vicinity of the ridge, the temperlight 42 is heated near the ridge and the ridge concave SUS specular solar collector 43 is used to heat the roof material duct 13 to concentrate the warm air on the heat collection box 24 by the rising airflow, and the descending blower 8 is installed. Then, the air is blown into the wood drying chamber 15 from the lower outlet A at the lower part of the descending wall duct 14-1 at a wind speed of 0.1 m / sec.
Further, solar heat is also collected by the vacuum solar water heater 17 and the solar heat collection handling copper pipe 44, and is radiated by the baseboard heater 26 of the wood drying chamber 15 through two hot water pipes via the circulation pump 31-1.

本発明は図13に記載されているように、木材乾燥装置夏期の屋根伏図は屋根材下
と下地材に囲まれた空間か筒型ダクトが屋根面全体に設けられた屋根材下ダクト13
で棟部付近にテンパーライト42、棟部に棟凹形SUS鏡面太陽熱集熱器43で屋根
材下ダクト13を加温し、上昇気流で暖気を集熱ボックス24に集中させて降下送風
機8を介して降下用壁ダクト14−1の下部の下部吹出口Aより0.1m/秒の風速で
木材乾燥室15に送風する。
また、真空式太陽熱温水器17と太陽熱採熱ハンドリング銅管44でも太陽熱を集
熱し、循環ポンプ31−1を介して2系統の温水パイプで木材乾燥室15のベースボ
ードヒータ26で放熱する。
As shown in FIG. 13, the present invention shows a roof plan in the summer of a wood drying apparatus. The roof under duct 13 is a space surrounded by a roof material and a base material or a cylindrical duct provided on the entire roof surface.
In the vicinity of the ridge, the temperlight 42 is heated near the ridge and the ridge concave SUS specular solar collector 43 is used to heat the roof material duct 13 to concentrate the warm air on the heat collection box 24 by the rising airflow, and the descending blower 8 is installed. Then, the air is blown into the wood drying chamber 15 from the lower outlet A at the lower part of the descending wall duct 14-1 at a wind speed of 0.1 m / sec.
Further, solar heat is also collected by the vacuum solar water heater 17 and the solar heat collection handling copper pipe 44, and is radiated by the baseboard heater 26 of the wood drying chamber 15 through two hot water pipes via the circulation pump 31-1.

本発明は、地域特性としてその地域の年平均気温が地中恒温層3m以上の地中熱であり場所により採用できる。地中熱の違いがあるが何処の地域でも加温が可能となる。また、木材乾燥に適した木材乾燥装置ができる。 The present invention is a geothermal heat whose regional average annual temperature is 3 m or more in the ground, and can be adopted depending on the location. Although there is a difference in geothermal heat, it is possible to heat anywhere. Moreover, a wood drying apparatus suitable for wood drying can be obtained.

1・・地中側断熱材
2・・遮水連結部
3・・床下放熱ボックス
4・・基礎コンクリート
5・・掘削部
6・・設計地盤
7・・ダンパー
8・・降下送風機
9・・循環送風機
10・・補助除湿機
11・・水3倍膨張性ゴム
12・・太陽熱循環ダクト
13・・屋根材下ダクト
14−1・・降下用壁ダクト
14−2・・結露用ダクト
15・・木材乾燥室
16・・上昇用壁ダクト
17・・真空式太陽熱温水器
18・・放熱機
19・・蓄熱層
20・・地中恒温層
21・・外壁
22・・外壁部断熱材
23・・黴除去フィルター
24・・集熱ボックス
25・・自然換気窓
26・・ベースボードヒータ
27・・間仕切壁
28・・吸気口
29・・防水層
30・・小屋裏
31−1・・太陽熱用循環ポンプ
31−2・・地下水用循環ポンプ
32・・クラシャラン厚200mm
33・・軒先
34・・雨水中水道タンク
35・・雨水防災タンク
36・・自然結露銅金網
37・・常時灌水層
38・・雨水中水道タンク
39・・雨水防災タンク
40・・排水孔
41・・金属瓦棒葺(下地アルミ箔敷き)
42・・テンパーライト
43・・棟凹形SUS鏡面太陽熱集熱器
44・・太陽熱採熱ハンドリング銅管
45・・壁面空気層
46−1・・地下水循環用上井戸
46−2・・地下水循環用下井戸
47・・搬入扉
48・・床下点検口
49・・棟
50・・敷金物
51・・冠金物
52・・浮式水位計
53・・埋立土
54・・モルタル仕上
55・・パワーショベル掘削
56・・接着剤
57・・断熱層
58・・1階床組
59・・束(φ250鉄筋コンクリート)
60・・乾燥木材
61・・被乾燥木材
62・・断面図
63・・平面図
64・・地下水温採取装置
65・・割栗石厚100mm
66・・均しモルタル厚50mm
67・・常時灌水層下防水シート
68・・防水シート
A・・下部吹出口
B・・吸込口
C・・吸込口
D・・吹出口
1. ・ Underground heat insulating material 2 ・ Water shielding connection part 3 ・ Underfloor radiation box 4 ・ Basic concrete 5 ・ Excavation part 6 ・ Design ground 7 ・ Damper 8 ・ Descent fan 9 ・ Circulating fan 10. · Auxiliary dehumidifier 11 ·· Water triple expansion rubber 12 ·· Solar heat circulating duct 13 ·· Roof duct 14-1 ·· Descent wall duct 14-2 ·· Condensation duct 15 ·· Drying wood Chamber 16 ··· Wall duct 17 for rising · · Vacuum-type solar water heater 18 · · Radiator 19 · · Heat storage layer 20 · Underground thermostatic layer 21 · · Outer wall 22 · · Outer wall insulation material 23 · · Soot removal filter 24 .. Heat collection box 25. Natural ventilation window 26. Baseboard heater 27. Partition wall 28. Air inlet 29. Waterproof layer 30. Back of hut 31-1. Solar circulation pump 31-2・ ・ Circulating pump for groundwater 32 ・ ・ Crusharan thickness 200mm
33 .... Eaves 34..Rainwater water tank 35..Rainwater disaster prevention tank 36..Naturally condensed copper wire mesh 37..Constant irrigation layer 38..Rainwater water tank 39..Rainwater disaster prevention tank 40..Drain hole 41.・ Metal rods (base aluminum foil)
42 ・ ・ Temper light 43 ・ ・ Recessed SUS mirror surface solar collector 44 ・ ・ Solar heat collection handling copper tube 45 ・ ・ Wall air layer 46-1 ・ ・ Ground water circulation upper well 46-2 ・ ・ Ground water circulation Lower well 47 ······································································································· 50 56 ·· Adhesive 57 · · Heat insulation layer 58 · · 1st floor set 59 · · Bundle (φ250 reinforced concrete)
60..Dried wood 61..Dried wood 62..Cross section 63..Plan view 64..Groundwater temperature sampling device 65..Written stone 100 mm thick
66 ・ ・ Leveling mortar thickness 50mm
67..Waterproof sheet 68 under normal irrigation layer..Waterproof sheet A..Lower outlet B..Air inlet C..Air inlet D..Air outlet

Claims (6)

地中熱と太陽熱を利用した木材乾燥装置であって、
建築物の外壁部断熱材とその外壁部断熱材の地中側に連結され地中3m以上に挿入されている遮水性能を付加した地中側断熱材とからなる断熱壁と、
建築物の1階床組断熱床を天井部とし、壁部を該断熱壁、底部を蓄熱層で形成、壁には循環のための吸込口が設けられた床下放熱ボックスと、
建築物の1階断熱天井部と、壁部を該断熱壁、床部を1階床組断熱床で形成し、壁には循環のための下部吹出口が設けられ、床には循環のための吸込口が接続された木材乾燥室と、
床下放熱ボックスの該吸込口、該断熱壁の内側に設けられた上昇用壁ダクト、軒先、屋根材下ダクト、該断熱壁の内側に設けた降下用壁ダクトに接続し、降下送風機を介して木材乾燥室の壁下に設けられた該下部吹出口が接続している太陽熱循環ダクトと、
からなり、木材乾燥室の床に設けられた該吸込口の床下放熱ボックス側に結露用ダクトが接続されていることを特徴とする地中熱と太陽熱を利用した木材乾燥装置。
A wood drying device using geothermal and solar heat,
A heat insulating wall composed of an outer wall heat insulating material of a building and an underground heat insulating material that is connected to the underground side of the outer wall heat insulating material and is inserted into the underground 3 m or more and has a water shielding performance added;
Underfloor heat radiating box in which the first floor floor heat insulating floor of the building is the ceiling, the wall is the heat insulating wall, the bottom is formed of a heat storage layer, and the wall is provided with a suction port for circulation.
The first floor heat insulation ceiling part of the building, the wall part is made of the heat insulation wall, the floor part is made of the first floor floor insulation floor, the wall has a lower outlet for circulation, and the floor is for circulation. A wood drying chamber to which the suction port of
Connected to the suction port of the underfloor heat dissipation box, the rising wall duct provided inside the heat insulation wall, the eaves, the roof material lower duct, the descent wall duct provided inside the heat insulation wall, and through the descent fan A solar circulation duct connected to the lower outlet provided below the wall of the wood drying chamber;
A wood drying apparatus using ground heat and solar heat, characterized in that a dew condensation duct is connected to the under-floor radiation box side of the suction port provided on the floor of the wood drying room.
蓄熱層は床下放熱ボックスの断熱壁内側の床面に基礎コンクリートと下層に常時灌水層を設けることを特徴とする請求項1に記載の地中熱と太陽熱を利用した木材乾燥装置。 2. The wood drying apparatus using geothermal heat and solar heat according to claim 1, wherein the heat storage layer is provided with basic concrete on the floor surface inside the heat insulating wall of the underfloor heat radiation box and a irrigation layer on the lower layer. 床下放熱ボックスにはその下端部が蓄熱層よりも地中側に突出している地下水循環用上井戸と、その地下水循環用上井戸に設置した地下水用循環ポンプと放熱機と、その下層部が蓄熱層よりも地中側に突出している地下水循環用下井戸が設けられていることを特徴とする請求項1に記載の地中熱と太陽熱を利用した木材乾燥装置。 In the underfloor heat radiation box, an upper well for groundwater circulation whose lower end protrudes to the ground side of the heat storage layer, a circulation pump for groundwater and a radiator installed in the upper well for groundwater circulation, and a lower layer heat storage 2. The wood drying apparatus using underground heat and solar heat according to claim 1, wherein a lower well for groundwater circulation protruding from the ground to the ground side is provided. 地中側断熱材は板状であって、断熱板を床下放熱ボックスの周囲に形成していることを特徴とする請求項1に記載の地中熱と太陽熱を利用した木材乾燥装置。 2. The wood drying apparatus using underground heat and solar heat according to claim 1, wherein the underground heat insulating material is plate-shaped, and the heat insulating plate is formed around the underfloor heat radiating box. 地中側断熱材を掘削部に施工することを特徴とする請求項1に記載の地中熱と太陽熱を利用した木材乾燥装置。 The wood drying apparatus using underground heat and solar heat according to claim 1, wherein the underground heat insulating material is applied to the excavation part. 太陽熱循環ダクトは外気を取り入れるための吸気口に接続していることを特徴とする請求項1に記載の地中熱と太陽熱を利用した木材乾燥装置。 2. The wood drying apparatus using ground heat and solar heat according to claim 1, wherein the solar heat circulation duct is connected to an air inlet for taking in outside air.
JP2012224307A 2012-10-09 2012-10-09 Lumber dryer utilizing geothermal heat and solar heat Pending JP2014077574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012224307A JP2014077574A (en) 2012-10-09 2012-10-09 Lumber dryer utilizing geothermal heat and solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012224307A JP2014077574A (en) 2012-10-09 2012-10-09 Lumber dryer utilizing geothermal heat and solar heat

Publications (1)

Publication Number Publication Date
JP2014077574A true JP2014077574A (en) 2014-05-01

Family

ID=50783014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012224307A Pending JP2014077574A (en) 2012-10-09 2012-10-09 Lumber dryer utilizing geothermal heat and solar heat

Country Status (1)

Country Link
JP (1) JP2014077574A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105333699A (en) * 2015-11-06 2016-02-17 海宁光泰太阳能工业有限公司 Solar air heat collecting oven
JP5913650B1 (en) * 2015-01-29 2016-04-27 東亜機工株式会社 Dryer and drying method
JP2021071203A (en) * 2019-10-29 2021-05-06 太平洋セメント株式会社 Dryer, and drying method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913650B1 (en) * 2015-01-29 2016-04-27 東亜機工株式会社 Dryer and drying method
CN105333699A (en) * 2015-11-06 2016-02-17 海宁光泰太阳能工业有限公司 Solar air heat collecting oven
JP2021071203A (en) * 2019-10-29 2021-05-06 太平洋セメント株式会社 Dryer, and drying method

Similar Documents

Publication Publication Date Title
Gupta et al. Review of passive heating/cooling systems of buildings
US8152608B1 (en) Solar energy intercept and waste heat recovery system
JP2007298261A (en) Completely-passive solar heat-utilizing lumber-drying device
JP2014051874A (en) Energy-saving ventilation system for air-tightness house
US20100102137A1 (en) Low energy consumption climate control system
EP2146150A2 (en) Method for controlling the climate in a building, and respective building
JP2004212038A (en) Air conditioning ventilation system for building
JP2014077574A (en) Lumber dryer utilizing geothermal heat and solar heat
JP2014219196A (en) Drying system
US4144999A (en) System and structure for conditioning air
JP2009235677A (en) Thermal environment improving system
JPH07208764A (en) High temperature and high humidity accommodation dwelling
JP2015148434A (en) Underground water utilization system
WO2012105134A1 (en) Air-conditioning system utilizing underground heat and solar heat
JP4120845B1 (en) Solar heat wood drying equipment
JP2009198095A (en) Solar heating and drying system
JP3848652B2 (en) Solar system house
Chen et al. Design and simulation for a solar house with building integrated photovoltaic-thermal system and thermal storage
JP2010019502A (en) Air conditioning system using underground heat
US20120132257A1 (en) Solar Electricity and Heat Transfer Systems
JP2005241073A (en) Passive solar system house
Peci et al. Experimental study of overheating of an unglazed transpired collector façade under southern European summer conditions for four modes of operation
JP2012097459A (en) Ventilation system of building
JP2007139236A (en) Underfloor air-conditioning device and method
JP2016040511A (en) Photovoltaic generation heat collection system