JP2013202469A - 有機性廃水の生物処理方法 - Google Patents

有機性廃水の生物処理方法 Download PDF

Info

Publication number
JP2013202469A
JP2013202469A JP2012072741A JP2012072741A JP2013202469A JP 2013202469 A JP2013202469 A JP 2013202469A JP 2012072741 A JP2012072741 A JP 2012072741A JP 2012072741 A JP2012072741 A JP 2012072741A JP 2013202469 A JP2013202469 A JP 2013202469A
Authority
JP
Japan
Prior art keywords
sludge
treatment
solubilization
organic wastewater
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012072741A
Other languages
English (en)
Other versions
JP6059443B2 (ja
Inventor
Sawako Ochiai
佐和子 落合
Kohei Ichikawa
康平 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Eco Tech Corp
Original Assignee
Nippon Steel and Sumikin Eco Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Eco Tech Corp filed Critical Nippon Steel and Sumikin Eco Tech Corp
Priority to JP2012072741A priority Critical patent/JP6059443B2/ja
Publication of JP2013202469A publication Critical patent/JP2013202469A/ja
Application granted granted Critical
Publication of JP6059443B2 publication Critical patent/JP6059443B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

【課題】活性汚泥の一部を可溶化させる処理を長期間にわたって継続的に行った場合にも、汚泥の沈降性を悪化させることなく、これにより最終段階で放出される処理水の水質の悪化を防止でき、長期間にわたっての安定した処理効率の達成と、安定した余剰汚泥の発生量の低減とを達成できる有機性廃水の処理方法の提供。
【解決手段】活性汚泥の一部を加熱条件下で処理した後、処理汚泥を活性汚泥処理槽に戻す汚泥の可溶化工程を有し、該可溶化工程において、活性汚泥の一部を、(1)処理温度を60〜130℃とし、(2)pHを2〜5又は9〜12とし、(3)可溶化処理槽へと導入する汚泥量を、汚泥を処理しない通常の活性汚泥処理時の余剰汚泥量に対して0.5〜4倍とし、(4)活性汚泥処理槽に戻す汚泥のMLSS濃度を5,000〜40,000mg/Lとし、(5)可溶化処理する時間を10分以上とする処理条件で処理する有機性廃水の生物処理方法。
【選択図】なし

Description

本発明は、有機性廃水の生物処理方法に関し、更に詳しくは、有機性廃水を活性汚泥で処理する場合に、長期間にわたって処理した場合にも、処理水の性状を損なうことなく、余剰汚泥の発生量を安定して減量化できる実用価値の高い有機性廃水の生物処理方法に関する。
水中の有機物を含んだ汚濁は、微生物によって生物学的な作用で浄化され易い。好気性微生物を含んだ活性汚泥によって有機性廃水を処理する活性汚泥法は、これを利用したものである。該方法は、浄化能力が高く、処理経費が比較的少なくて済む等の利点があり、下水処理や産業廃水処理等において広く一般に使用されている。
活性汚泥法では、調整槽等で廃水のpH調整や均一化等の前処理を行なった後、有機性廃水を曝気槽へと導入し、この曝気槽内で、活性汚泥によりBODで示される廃水中の有機汚濁成分を分解させて浄化処理する。この際、分解したBODのうちの50〜70%は微生物の維持エネルギーとして消費されるが、残りの30〜50%は微生物の増殖に使用されるので活性汚泥の量は次第に増加していく。このため一般的には、図7に示したように、曝気槽で処理された廃水を沈殿槽へと導き、沈殿した活性汚泥の中から有機性廃水の浄化処理に必要な量だけ返送汚泥として曝気槽内へと戻し、それ以外の活性汚泥は余剰汚泥として取り除いている。このため、多量の余剰汚泥が発生する。一方、この余剰汚泥は、生物難分解性物質等を含み、粘性が高く、取り扱いにくい等の欠点があり、有機性廃水を活性汚泥法によって浄化処理する場合においては、余剰汚泥の処理が常に大きな問題として残る。
すなわち、余剰汚泥を、嫌気性消化処理する等して脱水機により濃縮し、焼却或いは産業廃棄物として処分したとしても、余剰汚泥量が多いために、処理コストが著しく嵩むという問題がある。また、埋め立て処分場の確保の問題や汚泥焼却に伴うエネルギー消費の増加の問題等、地球規模の環境に及ぼす影響も看過できない。
このような従来技術の課題に対し、余剰汚泥を減容化する方法が種々提案されている。例えば、本発明者らは、既に、活性汚泥を利用した有機性廃水の処理過程のいずれかの過程で、活性汚泥を構成している細菌の一部を殺菌又は溶菌して処理過程中における活性汚泥の増殖を抑制する方法を提案している。そして、細菌の一部を殺菌又は溶菌する具体的な方法として、酸処理、アルカリ処理、界面活性剤処理、加熱水蒸気による加温等が挙げられている。例えば、処理温度40〜50℃で、余剰汚泥に、酸又は廃酸をpH2.5〜3.5となるように添加することや、アルカリ剤をpH10〜11となるように添加する方法を提案している(特許文献1参照)。
特開2000−61488号公報
しかしながら、上記した特許文献1に記載の方法によれば、確かに最終段階で放出される処理水の水質を悪化させることなく、余剰汚泥の発生量を大幅に減量することができ、極めて有用であるが、本発明者らの更なる検討によれば、実際の廃水に適用して、長期間にわたって運転していく過程で、下記の新たな課題があることを見出した。すなわち、特許文献1に記載の方法では、余剰汚泥の減量化についての顕著な効果を得ることができ、余剰汚泥の処理にかかるコストの低減が図られるが、例えば、少なくとも1年間にわたる長期間の処理をし続けると、徐々に汚泥の沈降性が悪化してくるという現象が発生することを見出した。好気性微生物を含んだ活性汚泥により有機性廃水を処理する浄化方法において、汚泥の沈降性が悪化することは、固液分離が速やかに行われずに処理効率が劣るものになることを意味すると同時に、処理水の悪化も懸念される。このため、本発明者らは、この点を改善し、より安定した、より経済性に優れる有機性廃水の生物処理方法を提案することが急務であるとの認識を持つに至った。
従って、本発明の目的は、活性汚泥を利用した有機性廃水の処理方法において、活性汚泥の一部を可溶化させる処理を長期間にわたって継続的に行った場合においても、汚泥の沈降性が悪化することなく、これによって最終段階で放出される処理水の水質が悪化することを有効に防止でき、長期間にわたっての安定した処理効率の達成と、安定した余剰汚泥の発生量の低減とを達成し、余剰汚泥処理にかかるコストの低減と、汚泥の沈降性が悪化することによって生じる運転負荷を低減できる、より経済的な有機性廃水の生物処理方法を提供することにある。
上記の目的は、下記の本発明によって達成される。すなわち、本発明は、活性汚泥の一部を加熱条件下で処理した後、処理した汚泥を活性汚泥処理槽に戻す汚泥の可溶化工程を有する有機性廃水の生物処理方法であって、上記可溶化工程において、活性汚泥の一部を、下記の(1)〜(5)を全て満たす条件下で処理することを特徴とする有機性廃水の生物処理方法を提供する。
(1)処理温度を60〜130℃とする
(2)酸又はアルカリの薬剤を添加して、被処理汚泥のpHを2〜5又は9〜12とする
(3)可溶化処理槽へと導入する汚泥量を、汚泥を処理しない通常の活性汚泥処理時の余剰汚泥量(kg−DrySS)に対して、0.5〜4倍とする
(4)活性汚泥処理槽に戻す汚泥のMLSS濃度を5,000〜40,000mg/Lとする
(5)可溶化処理する時間を10分以上とする
本発明の好ましい形態としては、下記のことが挙げられる。
前記条件(1)の処理温度が75〜105℃であること。
前記条件(3)の倍率が1〜3倍であること。
前記条件(5)の可溶化処理する時間が30分以上3時間以内であること。
少なくとも6カ月以上にわたって継続的に処理を行うこと。
前記酸が、硝酸、硫酸、塩酸、廃硝酸、廃塩酸、及びこれらの混合物からなる群から選ばれる少なくともいずれかを主体とする薬剤であり、前記アルカリが、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、アンモニア、及びこれらの混合物からなる群から選ばれる少なくともいずれかを主体とする薬剤であること。
本発明によれば、活性汚泥を利用した有機性廃水の処理方法において、例えば、少なくとも1年間以上の長期間にわたり継続処理した場合にも、汚泥の沈降性が悪化する現象を生じることなく、このことに原因した最終段階で放出される処理水の水質の悪化を有効に防止でき、しかも、安定して継続的に余剰汚泥の発生量を減らすことができる、余剰汚泥処理にかかるコストの低減と、汚泥の沈降性の悪化によって生じる運転負荷を低減できる、より経済的な有機性廃水の処理方法が提供される。
本発明の有機性廃水の生物処理方法の一例を示す概要システム図である。 本発明の有機性廃水の処理方法で、酸性側で継続的に汚泥の可溶化処理を行った場合と、従来の条件で可溶化処理して継続的な処理を行った場合における、汚泥の沈降性の違いを示すグラフである。 本発明の有機性廃水の処理方法で、酸性側で継続的に汚泥の可溶化処理を行った場合と、従来の条件で可溶化処理して継続的な処理を行った場合における、処理水のCOD値の違いを示すグラフである。 本発明の有機性廃水の処理方法で、アルカリ性側で継続的に汚泥の可溶化処理を行った場合と、従来の条件で可溶化処理して継続的な処理を行った場合における、汚泥の沈降性の違いを示すグラフである。 本発明の有機性廃水の処理方法で、アルカリ性側で継続的に汚泥の可溶化処理を行った場合と、従来の条件で可溶化処理して継続的な処理を行った場合における、処理水のCOD値の違いを示すグラフである。 本発明の有機性廃水の生物処理方法の別の一例を示す概要システム図である。 汚泥の可溶化処理を行わない従来の有機性廃水の生物処理方法の概要システム図の一例である。
以下、好ましい実施の形態を挙げて本発明を更に詳細に説明する。先述した、活性汚泥を構成している細菌の一部を、殺菌又は溶菌する方法(以下、可溶化処理方法と呼ぶ)を組み入れた有機性廃水の生物処理方法によれば、実際の廃水処理に適用した場合に、活性汚泥の増殖が抑制され、余剰汚泥の減量化が達成できるという優れた効果が得られる。しかしながら、本発明者らは、従来の汚泥の可溶化処理条件によって汚泥の一部を可溶化する工程を有する生物処理方法で、実際の廃水を浄化処理した場合に、先に述べたように、運転を長期間にわたって継続すると、初期段階よりも、汚泥の沈降性が徐々に悪化していく傾向があることを認識するに至った。具体的には、初期段階においては、汚泥の沈降性に何らの問題もなく、高い余剰汚泥の減量効果が得られ、極めて良好な処理が行われるが、運転を開始してから1年間以上経過すると、次第に汚泥の沈降性が悪化する傾向がみられた。汚泥の沈降性が悪化すると、沈降性を高めるための薬剤を必要としたり、固液分離に長時間を要するようになるため、処理効率が低下することが生じる。さらに、そのままの状態で処理を継続すると、場合によっては、廃水処理においては極めて重大な問題である処理水の水質の低下が生じることとなる。
より具体的には、活性汚泥の可溶化処理を、処理温度を40〜50℃とし、余剰汚泥に、酸又は廃酸を添加してpHが2.5〜3.5となる条件で行った場合や、アルカリ剤を添加してpHを10〜11となる条件で行った場合に、条件にもよるが、処理の開始から100日〜250日を経過した段階で、汚泥の沈降性が悪化し始め、沈殿槽での速やかな固液分離が行えなくなる傾向があった。そして、本発明者らの更なる詳細な検討の結果、この汚泥の沈降性の悪化は、継続処理が1年間を経過するとさらに加速し、処理水中にSS(浮遊物質濃度)が流出して、これが原因となって処理水のCOD値の悪化をもたらすことがわかった。このため、この汚泥の沈降性の悪化の問題を解消する目的で、頻繁に処理フローを再構築し直さなければならなくなる事態を生じるおそれがあった。
上記した処理の現状に対し、本発明者らは、継続した処理期間が長期におよんでも、汚泥の沈降性の悪化を生じることなく、安定して良好な状態の処理水とでき、かつ、余剰汚泥の減量化率を良好な状態に維持することができる、より経済的な有機性廃水の処理方法を開発することが急務であるとの認識を持つに至った。本発明者らは、かかる課題に対し鋭意検討を行い、その結果、上記した従来の課題を解決できる活性汚泥の可溶化条件を見出して本発明に至った。すなわち、本発明で規定する条件を全て満足する方法で、活性汚泥の可溶化処理を行い、これを通常の活性汚泥による有機性廃水の処理方法に組み入れれば、長期間にわたる継続的な運転を行っても汚泥の沈降性の悪化が生じることなく、良好な処理水を安定して得ることができ、しかも余剰汚泥の発生を安定して低減できることがわかった。この結果、余剰汚泥処理にかかるコストの低減と、汚泥の沈降性の悪化によって生じる種々の負荷の低減が達成でき、より経済的な処理が可能になる。
本発明の有機性廃水の生物処理方法では、活性汚泥の可溶化を下記の(1)〜(5)全ての要件を満足した状態で行うが、以下、各条件についてそれぞれ説明する。
(1)処理温度を60〜130℃とする。
(2)酸又はアルカリの薬剤を添加して、被処理汚泥のpHを2〜5又は9〜12とする。
(3)可溶化処理槽へと導入する汚泥量を、汚泥を処理しない通常の活性汚泥処理時の余剰汚泥量(kg−DrySS)に対して、0.5〜4倍とする。
(4)返送する汚泥のMLSS濃度を5,000〜40,000mg/Lとする。
(5)可溶化処理する時間を10分以上とする。
(1)処理温度
本発明者らは、汚泥の沈降性の悪化の問題を生じることなく、長期間にわたっての安定した処理と、余剰汚泥の効果的な減量化を達成するためには、特に汚泥の可溶化処理の温度が重要であり、従来行われていたよりも高温で行うことが有効であることを見出した。すなわち、汚泥の処理温度を60〜130℃、より好ましくは75〜105℃とするとよい。60℃よりも低い温度であると、処理が長期間にわたると、汚泥の沈降性の悪化が徐々に生じ、そのまま処理を継続すると処理水の悪化を生じるおそれがあるので好ましくない。また、余剰汚泥の低減効果を十分に維持するという点からも汚泥の処理温度を60℃以上とすることが好ましい。一方、あまり温度を高くするとランニングコストの上昇につながるので好ましくない。本発明者らの検討によれば、汚泥の可溶化処理の温度を85〜95℃に維持することで、汚泥の沈降性の悪化を生じることなく、継続的により良好な効果が安定して得られることがわかった。
(2)被処理汚泥のpH
さらに、本発明者らは、汚泥の沈降性の悪化の問題を生じることなく、長期間にわたっての安定した処理と、余剰汚泥の効果的な減量化を達成するためには、上記した処理温度に加えて、被処理汚泥のpHを中性ではなく、酸性側或いはアルカリ側の特定の範囲内にして処理することが有効であることを見出した。まず、汚泥の可溶化処理の条件としては、中性付近で処理した場合には効果的な余剰汚泥の減量化が達成できない。これに対し、酸性側であればpHを2〜5、より好ましくは2〜4、また、アルカリ側であればpHを9〜12、より好ましくは10〜12となるように処理pHを調整し、先に挙げた温度範囲で処理することで、本発明の顕著な効果が得られる。
上記した範囲に汚泥のpHを調整するためには、下記に挙げるような酸或いはアルカリ酸を汚泥に添加すればよい。酸としては、硝酸、硫酸、塩酸、廃硝酸、廃塩酸、及びこれらの混合物からなる群から選ばれる少なくともいずれかを主体とする薬剤を使用することが好ましい。アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、アンモニア、及びこれらの混合物からなる群から選ばれる少なくともいずれかを主体とする薬剤を使用することが好ましい。
(3)可溶化処理槽へと導入する被処理汚泥の汚泥量
本発明者らは、長期間にわたっての安定した処理と、効果的な余剰汚泥の減量化を達成するためには、被処理汚泥の温度とpHを上記に挙げた範囲に調整することに加えて、可溶化処理槽へと導入する汚泥量を、汚泥を処理しない通常の活性汚泥処理を行った時の余剰汚泥量(kg−DrySS)に対して0.5〜4倍、より好ましくは1〜3倍とすることが有効であることを見出した。本発明者らの検討によれば、可溶化処理する被処理汚泥の量が0.5倍よりも少ないと、減量化の効果が十分に得られなくなる。一方、可溶化処理する被処理汚泥の量が4倍よりも多いと、通常の処理系における活性汚泥量が不足して処理水のCOD値が悪化することになる場合があるので好ましくない。したがって、本発明の方法では、活性汚泥の引き抜き量が上記した範囲となるようにして可溶化処理を行うことを要する。
(4)返送する処理汚泥のMLSS濃度
本発明者らは、長期間にわたっての安定した処理と、効果的な余剰汚泥の減量化を達成するためには、被処理汚泥の温度とpHとを上記に挙げた範囲に調整し、さらに、可溶化処理槽へと導入させる被処理汚泥の汚泥量を上記範囲内とすることに加え、移送する被処理汚泥のMLSS濃度が5,000〜40,000mg/Lの範囲内となるようにすることが有効であることを見出した。すなわち、移送する汚泥のMLSS濃度がこの範囲内となるようにすることで、可溶化処理槽の大きさをコンパクトにでき、しかも処理汚泥を曝気槽等へポンプで容易に返送することができ、長期間にわたって継続して安定した良好な処理を円滑にできるようになる。
(5)可溶化処理する時間
本発明者らは、長期間にわたっての安定した処理と、効果的な余剰汚泥の減量化を達成するためには、被処理汚泥の温度とpHとを上記に挙げた範囲に調整し、さらに、可溶化処理槽へと導入させる被処理汚泥の汚泥量および返送する処理汚泥のMLSS濃度を上記範囲内とすることに加え、可溶化処理する時間を10分以上とすることが有効であることを見出した。すなわち、活性汚泥の可溶化処理を、上記した条件を全て満足した状態で行えば、その処理温度を高くしたことによって、10分以上という短時間の可溶化処理であっても本発明の顕著な効果を得ることができることがわかった。可溶化処理槽へと導入させる被処理汚泥の汚泥量にもよるが、より円滑に、十分な効果が得られる運転を長期間にわたって安定して行うためには、30分〜数時間の範囲で、例えば、30分間〜3時間程度、さらには30分間〜2時間程度とすることが好ましい。
上記した条件を全て満足する方法で、一部の活性汚泥の可溶化処理を行い、これを通常の活性汚泥による有機性廃水の処理方法に組み入れることで、長期間にわたる継続的な運転を行っても汚泥の沈降性の悪化を生じることなく、余剰汚泥の発生を効果的に低減できる処理を安定して行えるようになった理由について、本発明者らは以下のように考えている。汚泥の可溶化方法では、従来、酸やアルカリ等の薬剤の添加、加温が行われているが、汚泥の温度を上昇させることは熱エネルギーを要し、経済的には好ましくない方法と考えられており、できるだけ低い温度で汚泥の減量化を行うことが求められていた。しかしながら、本発明者らが実施系で長期間にわたって汚泥の減量化の状態を観察した結果、酸やアルカリやその他の薬剤を大量に使用し、或いはこれらに加えて汚泥を40〜50℃に加温することを行った場合、初期段階では問題がなく良好な処理が行えるが、処理が、例えば、1年間以上の長期間におよぶと、次第に汚泥の沈降性が悪化する傾向があることがわかった。この原因について、本発明者らは、従来の方法で汚泥を可溶化した場合、活性汚泥を構成している細菌の細胞壁の破壊や、細胞壁内の多糖類や蛋白質等の溶出が行われるが、従来の条件によっては容易に可溶化できない耐熱性や耐薬剤性に優れる細菌等が残留し、これらが次第に増殖したことが、汚泥の沈降性を徐々に悪化させる原因となったものと考えている。これに対し、被処理汚泥のpHを2〜5又は9〜12とし、かつ、処理温度を60〜130℃、より好ましくは75〜105℃とする過激な条件を採用すれば、短時間の可溶化処理によって、可溶化されにくい細菌等が十分に可溶化し、BODで示される有機汚濁成分に変化させることができ、この結果、長期間にわたって、沈降性の悪化を生じることなく、安定して効果的な余剰汚泥の減量化が達成できたものと考えている。
本発明の有機性廃水の処理方法おける可溶化処理工程について具体的に説明する。
本発明においては、先ず、原水のBODおよびSSの値から、可溶化処理処理槽に導入する活性汚泥の量を、汚泥を処理しない通常の活性汚泥処理時の余剰汚泥量(kg−DrySS)に対して、0.5〜4倍の範囲内で決定する。可溶化処理処理槽に導入する被処理汚泥は、通常、沈殿槽からの返送汚泥の一部とするが、活性汚泥槽内のものであってもよい。可溶化処理処理槽内における処理は、まず、導入した被処理汚泥が入っている処理槽内のpH値を2〜5或いは9〜12に調整する。そして、処理槽内の温度を60〜130℃、より好ましくは75〜105℃に保ち、10分以上、例えば、1〜2時間処理する。そして、処理した汚泥を、MLSS濃度が5,000〜40,000mg/Lとなるように調整して、通常の処理系に戻すようにする。なお、処理槽内の温度を高温に維持するためには、設定温度にもよるが、工場内等からの排熱を有効利用することが好ましい。また、適宜に加圧加熱する等の従来の方法を用いればよい。
このような処理の結果、本発明の有機性廃水の生物処理方法によれば、通常の、汚泥の可溶化工程をもたない活性汚泥法で発生する余剰汚泥の量と比較して、初期段階から2年後まで継続処理した場合に、減量化率を70%程度に安定して維持させることができる。これに対し、処理槽内のpH値を2〜5或いは9〜12に調整し、処理槽内の温度を40〜50℃として処理した場合も減量化率を70%以上とできるものの、先に述べたように、処理が長期化するにつれて汚泥の沈降性の悪化を生じ、そのまま処理を継続すると処理水にSSが流出し、処理水のCOD値に悪化が見られるようになる。さらに、余剰汚泥の減量化の点でも、本発明で規定する要件で処理を行った場合の方が若干減量化率を高くでき、しかも長期間の処理にわたって、より安定した減量化率が維持されることがわかった。
本発明においては、可溶化処理する対象の被処理汚泥は、いずれの処理段階のものでもよい。一般的には、例えば、図1に示した例のように、沈殿槽から曝気槽へと返送される返送汚泥の一部を抜き出して可溶化処理槽へと導き、該槽内で可溶化処理し、その後、処理汚泥を曝気槽へと戻して更に処理を継続するように構成する。また、別の態様として、沈殿槽を設けない回分式の活性汚泥法または膜分離活性汚泥法等(図6参照)によって処理が行なわれている場合には、曝気槽内または膜分離槽内の被処理水の一部を抜き出して可溶化処理槽へと導いて活性汚泥を可溶化処理してもよい。
次に実施例及び比較例を挙げて本発明をさらに詳細に説明するが、これらの実施例は本発明の例示であって、本発明の限定を意図するものではない。
[実施例1、2]
図1に示したフローにしたがって、有機性廃水を含む被処理水に対し、後述するようにして活性汚泥処理槽で生物処理を行った。この際、被処理水として、豆乳を主成分とする合成廃水を用いた。表1に、被処理水とした原水の性状を示した。試験は2年間にわたって行った。
Figure 2013202469
活性汚泥処理には実用量10Lの生物処理槽(曝気槽)を用い、BOD容積負荷0.6kg/m3・日で処理を行い、活性汚泥処理水を沈殿槽に導入して固液分離を行って生物処理した。本実施例では、図1に示したように、沈殿槽から活性汚泥槽へ返送する返送汚泥の一部を可溶化処理するための可溶化処理槽に導入し、処理した処理汚泥を曝気槽へと戻す系を設け、下記の条件で可溶化処理を行った。なお、上記した汚泥の可溶化処理工程を設けた以外は通常の活性汚泥を用いての生物処理と同様にして、継続的に被処理水を処理した。可溶化処理の具体的な条件は、返送汚泥を含む汚泥を可溶化するための被処理液のpHを、廃硝酸を用いてpHが2.5となるように調整し、かつ、該液を、実施例1では70℃に加温し、実施例2では90℃に加温し、さらに、この状態を1時間保つことでそれぞれ可溶化処理を行った。可溶化処理終了後、処理した汚泥を中和した後に活性汚泥槽に戻し、通常の活性汚泥処理の系での処理を行った。この際、可溶化処理槽へと導入する汚泥量を、汚泥を全く処理しない通常の活性汚泥処理時の余剰汚泥量(kg−DrySS)に対して、1.5倍となるようにした。また、汚泥の可溶化処理後に活性汚泥槽に戻した処理汚泥のMLSS濃度は、5,000mg/Lであった。
上記した条件での2年間にわたっての処理中、1週間毎に、下記に述べるようにして、沈殿槽における活性汚泥の沈降性を調べた。具体的には、汚泥の沈降性を示す指標であるSVI(活性汚泥容量指数:sludge volume index)を用いて調べた。上記SVIは、1gの活性汚泥が占める容積をmlで表すものであるが、より具体的には、式「SVI=(SV×10.000)/MLSS」で求められる。該式中のSVは、活性汚泥沈殿率であり、また、MLSSは、槽内の汚泥量を表す値であり、SSをmg/Lで表したものである。さらに、上記したと同様の間隔で、処理水におけるCOD値と、余剰汚泥の量を測定した。そして、図2に、上記のようにして調べた、2年間にわたる処理におけるSVIの変化をグラフ化して示した。また、図3に、2年間にわたって処理した際における、処理水のCOD値の変化をグラフ化して示した。
さらに、2年間にわたって測定した余剰汚泥の量の平均値を用い、並行して行った、図7に示した、汚泥の可溶化処理工程を設けていない比較系の通常の処理フローで処理した場合に発生した余剰汚泥の量の平均値と比べて、余剰汚泥の減量化率をそれぞれ求めた。そして、結果として、得られた余剰汚泥の減量化率を、可溶化処理の条件と、処理水のCOD値及び沈降性の評価とともに表2に示した。この際、処理水のCOD値は、2年間にわたって、処理水中のCODが20mg/Lを超えた場合があったか否かで示した。また、汚泥の沈降性については、図2に示したSVIの変化状況を、可溶化処理工程を有さない比較系のフローで処理した場合と比べて、相対的に、○、△及び×の3段階で評価して、結果を表2に示した。また、処理水の性状と余剰汚泥の減量率並びに汚泥転換率から、総合的に、◎、○、△及び×の4段階で評価して、結果を表2にまとめて示した。
[実施例3、4]
実施例1、2で行った可溶化処理において、可溶化の被処理液を、水酸化ナトリウムを用いてpH12.0となるように調整した以外は、実施例1、2と同様にして、図1に示したフローにしたがって活性汚泥による生物処理を行った。この際、活性汚泥槽に戻した処理汚泥のMLSS濃度は、5,200mg/Lであった。そして、実施例1、2の場合と同様に、上記したアルカリ性側の処理条件で、2年間にわたって継続処理を行った。そして、実施例1、2の場合と同様にして、各測定及び評価を行い、評価結果を、可溶化の処理条件とともに、まとめて表3に示した。また、実施例1、2の場合と同様に、図4に、2年間にわたる処理におけるSVIの変化をグラフ化して示し、また、図5に、2年間にわたって処理した際に得られた、処理水のCOD値の変化をグラフ化して示した。
[比較例1]
比較例1では、実施例1で行った可溶化処理の条件において、可溶化の被処理液を50℃に加温した以外は実施例1と同様にして、図1のフローにしたがって活性汚泥による生物処理を行った。この際、活性汚泥槽に戻した処理汚泥のMLSS濃度は5,100mg/Lであった。そして、実施例1、2の場合と同様に、酸性側の処理条件で並行して継続処理を行った。そして、実施例1と同様に評価し、その評価結果を、可溶化の処理条件とともに、まとめて表2に示した。さらに、図2中に、上記処理の際におけるSVIの変化をグラフ化して併せて示し、また、図3中に、上記処理の際における、処理水のCOD値の変化をグラフ化して併せて示した。なお、比較例1でも実施例1、2の場合と同様に長期間にわたって継続処理を行ったが、図2、3に示したように、1年を過ぎるとSVI及びCOD値のいずれもが悪化し始め、1年半を過ぎると悪化の程度が顕著になったため、測定するのを中止した。
[比較例2]
比較例2では、実施例3で行った可溶化処理の条件において、可溶化の被処理液を50℃に加温した以外は実施例3と同様にして、図1のフローにしたがって活性汚泥による生物処理を行った。この際、活性汚泥槽に戻した処理汚泥のMLSS濃度は、5,050mg/Lであった。そして、実施例3、4の場合と同様に、アルカリ性側の処理条件で並行して継続処理を行った。そして、実施例3と同様に評価し、その評価結果を、可溶化の処理条件とともに、まとめて表3に示した。さらに、図4中に、上記処理の際におけるSVIの変化をグラフ化して併せて示し、また、図5に、上記処理の際における、処理水のCOD値の変化をグラフ化して併せて示した。なお、比較例1の場合と同様に、1年を過ぎるとSVI及びCOD値のいずれもが悪化し始め、1年半を過ぎると悪化の程度が顕著になったため、測定するのを中止した。
[比較系]
比較系では、実施例及び比較例で行った可溶化処理をしなかった以外は、実施例及び比較例で行ったのと同様にして、図7のフローにしたがって活性汚泥による生物処理を行った。そして、実施例1の場合と同様に、処理を2年間にわたって行った。そして、実施例及び比較例における評価の基準とした。さらに、図2、4に、2年間にわたっての処理における汚泥の沈降性の変化を示すSVIをグラフ化して示した。また、図3、5に、2年間にわたっての処理における処理水のCOD値の変化をグラフ化して示した。
Figure 2013202469
Figure 2013202469
表2、3及び図2〜5に示したように、実施例では、酸性側でもアルカリ性側のいずれの処理でも、可溶化処理の温度を従来よりも高くしたことで、実施例の場合よりも低い温度で可溶化処理を行って長期間処理をした比較例の場合に生じた、汚泥の沈降性の悪化の問題が明らかに改善された。さらに、余剰汚泥に対する減量化の効果も、比較例に比べて高くなることが確認された。

Claims (6)

  1. 活性汚泥の一部を加熱条件下で処理した後、処理した汚泥を活性汚泥処理槽に戻す汚泥の可溶化工程を有する有機性廃水の生物処理方法であって、上記可溶化工程において、活性汚泥の一部を、下記の(1)〜(5)を全て満たす条件下で処理することを特徴とする有機性廃水の生物処理方法。
    (1)処理温度を60〜130℃とする
    (2)酸又はアルカリの薬剤を添加して、被処理汚泥のpHを2〜5又は9〜12とする
    (3)可溶化処理槽へと導入する汚泥量を、汚泥を処理しない通常の活性汚泥処理時の余剰汚泥量(kg−DrySS)に対して、0.5〜4倍とする
    (4)活性汚泥処理槽に戻す汚泥のMLSS濃度を5,000〜40,000mg/Lとする
    (5)可溶化処理する時間を10分以上とする
  2. 前記条件(1)の処理温度が75〜105℃である請求項1に記載の有機性廃水の生物処理方法。
  3. 前記条件(3)の倍率が1〜3倍である請求項1又は2に記載の有機性廃水の生物処理方法。
  4. 前記条件(5)の可溶化処理する時間が30分以上3時間以内である請求項1〜3のいずれか1項に記載の有機性廃水の生物処理方法。
  5. 少なくとも1年以上にわたって継続的に処理を行う請求項1〜4のいずれか1項に記載の有機性廃水の生物処理方法。
  6. 前記酸が、硝酸、硫酸、塩酸、廃硝酸、廃塩酸、及びこれらの混合物からなる群から選ばれる少なくともいずれかを主体とし、前記アルカリが、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、アンモニア、及びこれらの混合物からなる群から選ばれる少なくともいずれかを主体とする請求項1〜5のいずれか1項に記載の有機性廃水の生物処理方法。
JP2012072741A 2012-03-28 2012-03-28 有機性廃水の生物処理方法 Active JP6059443B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012072741A JP6059443B2 (ja) 2012-03-28 2012-03-28 有機性廃水の生物処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012072741A JP6059443B2 (ja) 2012-03-28 2012-03-28 有機性廃水の生物処理方法

Publications (2)

Publication Number Publication Date
JP2013202469A true JP2013202469A (ja) 2013-10-07
JP6059443B2 JP6059443B2 (ja) 2017-01-11

Family

ID=49522177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072741A Active JP6059443B2 (ja) 2012-03-28 2012-03-28 有機性廃水の生物処理方法

Country Status (1)

Country Link
JP (1) JP6059443B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110908A (ja) * 2013-09-27 2014-06-19 Sankyo Co Ltd 遊技機
CN105000660A (zh) * 2015-07-18 2015-10-28 东北电力大学 一种同步实现石化废水深度处理和剩余污泥减量的方法
CN110606619A (zh) * 2019-07-31 2019-12-24 北京航天国环技术有限公司 一种废硝酸的处理方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293095A (ja) * 1989-05-02 1990-12-04 Ebara Infilco Co Ltd 有機性汚水の処理方法
JP2001029983A (ja) * 1999-07-23 2001-02-06 Ebara Corp 食品廃水の処理方法とその装置
JP2003001300A (ja) * 2001-06-25 2003-01-07 Hitachi Kiden Kogyo Ltd 汚泥の処理方法
JP2006075779A (ja) * 2004-09-10 2006-03-23 Nikkan Tokushu Kk 汚泥減容装置とその方法と有機性排水処理システム
JP2006334593A (ja) * 2000-08-03 2006-12-14 Cosmo Oil Co Ltd 有機性排水の処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293095A (ja) * 1989-05-02 1990-12-04 Ebara Infilco Co Ltd 有機性汚水の処理方法
JP2001029983A (ja) * 1999-07-23 2001-02-06 Ebara Corp 食品廃水の処理方法とその装置
JP2006334593A (ja) * 2000-08-03 2006-12-14 Cosmo Oil Co Ltd 有機性排水の処理方法
JP2003001300A (ja) * 2001-06-25 2003-01-07 Hitachi Kiden Kogyo Ltd 汚泥の処理方法
JP2006075779A (ja) * 2004-09-10 2006-03-23 Nikkan Tokushu Kk 汚泥減容装置とその方法と有機性排水処理システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110908A (ja) * 2013-09-27 2014-06-19 Sankyo Co Ltd 遊技機
CN105000660A (zh) * 2015-07-18 2015-10-28 东北电力大学 一种同步实现石化废水深度处理和剩余污泥减量的方法
CN110606619A (zh) * 2019-07-31 2019-12-24 北京航天国环技术有限公司 一种废硝酸的处理方法及系统

Also Published As

Publication number Publication date
JP6059443B2 (ja) 2017-01-11

Similar Documents

Publication Publication Date Title
JP5951986B2 (ja) 有機性廃水の生物処理方法
Ma et al. Free nitrous acid pretreatment of wasted activated sludge to exploit internal carbon source for enhanced denitrification
Wang et al. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation
Wang et al. Enhancing the digestion of waste activated sludge through nitrite addition: insight on mechanism through profiles of extracellular polymeric substances (EPS) and microbial communities
JP4474930B2 (ja) 有機性排水の生物処理方法
JP6059443B2 (ja) 有機性廃水の生物処理方法
JP6203560B2 (ja) 有機性廃水処理方法及び有機性廃水処理装置
JP5184249B2 (ja) 有機性廃水の処理方法
JP4404976B2 (ja) 有機性廃水の処理方法及び有機性廃水の処理装置
WO2020080244A1 (ja) 被処理物の処理方法
JP5951984B2 (ja) 有機性廃水の生物処理方法
JP4406749B2 (ja) 有機性廃水の処理方法及び有機性廃水の処理装置
JP5536894B2 (ja) 順時間欠的なオゾン投入による余剰汚泥の消化方法
JP2007209889A (ja) 余剰汚泥の処理方法
JP2010069482A (ja) 有機性排水の生物処理方法
JP2008155075A (ja) 汚水の処理方法および処理装置
JP5438883B2 (ja) 有機性廃水の処理方法及び該方法に用いる薬剤
JP2004188356A (ja) 有機性廃水の処理方法
JP2007061743A (ja) 有機性廃水の生物処理方法および生物処理装置
Khor et al. Comparison of submerged membrane bioreactor in different SRT conditions
JP2001205291A (ja) ポリエチレングリコール含有排水の処理方法
JP2012076023A (ja) テレフタル酸含有排水の嫌気性処理方法および処理装置
Kamenev11 et al. Aerobic bio-oxidation combined with ozonation in the treatment of landfill leachates
JPH10128376A (ja) 有機性廃水の処理方法
JP7181251B2 (ja) 有機性廃水の処理方法及び有機性廃水の処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161209

R150 Certificate of patent or registration of utility model

Ref document number: 6059443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250