JP2013192777A - 放射線撮影装置 - Google Patents

放射線撮影装置 Download PDF

Info

Publication number
JP2013192777A
JP2013192777A JP2012063530A JP2012063530A JP2013192777A JP 2013192777 A JP2013192777 A JP 2013192777A JP 2012063530 A JP2012063530 A JP 2012063530A JP 2012063530 A JP2012063530 A JP 2012063530A JP 2013192777 A JP2013192777 A JP 2013192777A
Authority
JP
Japan
Prior art keywords
image
grid
foil
radiation
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012063530A
Other languages
English (en)
Other versions
JP5928043B2 (ja
Inventor
Shiro Oikawa
四郎 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2012063530A priority Critical patent/JP5928043B2/ja
Publication of JP2013192777A publication Critical patent/JP2013192777A/ja
Application granted granted Critical
Publication of JP5928043B2 publication Critical patent/JP5928043B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】グリッドズレを考慮して箔影を除去することができる放射線撮影装置を提供することを目的とする。
【解決手段】グリッド用マーカーの溝の幅だけ離間した箇所でそれぞれ検出された2つのX線検出信号の値の差分を求めることで、被検体の情報などがX線検出信号に入っていたとしても差分により排除することができて、かかる差分のプロファイルは、箔影の全体のズレ特性やフラットパネル型X線検出手段(FPD)3に対するX線管の相対的なズレ特性を反映する情報となる。したがって、プロファイルのシフト量として、グリッドズレによる観測量DXg,X線管の焦点横ズレによる観測量DXfをそれぞれ求めることになる。その結果、観測量DXg,DXfに基づいてグリッドズレを考慮して箔影を除去することができる。
【選択図】図6

Description

この発明は、放射線画像を得る放射線撮影装置に係り、特に、放射線グリッドを用いて散乱放射線を除去する技術に関する。
従来の放射線撮影装置では、被検体からの散乱放射線がフラットパネル型放射線検出器(放射線検出手段)に入射するのを防止するために、散乱放射線を除去する放射線グリッドを備えている。放射線グリッドは、散乱放射線を吸収するグリッド箔と放射線を透過する中間層とを交互に並べて構成されている。グリッド箔は、鉛などのようにX線に代表される放射線を吸収する物質で形成され、中間層は、アルミニウムや有機物質などのようにX線に代表される放射線を透過させる中間物質で形成されている。ただし、中間層を放射線が通過する際に、散乱放射線以外の放射線(直接放射線)も中間物質によって吸収されてしまう。そこで、中間層を空隙にすることで、散乱放射線以外の放射線(直接放射線)を確実に透過させるエアグリッドが、放射線グリッドとして近年用いられている。
ところで、直接放射線がグリッド箔によって遮られる部分では、グリッド箔による箔影が放射線画像に映り込む。そこで、箔影に起因した偽像を除去する偽像除去処理法が本出願人から提案されている(例えば、特許文献1、2参照)。
国際公開第WO2010−064287号 特開2011−167334号公報
しかしながら、エアグリッドでは上述した中間層が空隙となっている関係で、エアグリッドをフラットパネル型放射線検出器(FPD: Flat Panel Detector)に対して着脱する際のフラットパネル型放射線検出器(FPD)・エアグリッド間着脱ズレ起因偽像が大きい。ズレとしては、図15(a)に示すようにFPDに対するエアグリッドの横ズレ、図15(b)に示すようにFPDに対するエアグリッドの回転ズレがある。
この発明は、このような事情に鑑みてなされたものであって、グリッドズレを考慮して箔影を除去することができる放射線撮影装置を提供することを目的とする。
この発明は、このような目的を達成するために、次のような構成をとる。
すなわち、この発明の放射線撮影装置(前者の発明)は、放射線画像を得る放射線撮影装置であって、放射線を照射する放射線源と、照射された放射線を検出する放射線検出手段と、その放射線検出手段の検出側に設けられ、散乱放射線を吸収するグリッド箔を並べて構成された放射線グリッドとを備え、前記グリッド箔を並設した方向においてグリッド箔よりも厚みを有し、溝を有したグリッド用マーカーを前記放射線グリッドに設けて備え、さらに、前記放射線撮影装置は、グリッドズレによる観測量をDXg、前記放射線源のズレによる観測量をDXfとしたときに、前記溝の幅だけ離間した箇所でそれぞれ検出された2つの放射線検出信号の値の差分に関するプロファイルのシフト量として前記観測量DXg,DXfをそれぞれ求める観測量算出手段と、被検体のある状態で検出された放射線検出信号に基づいて実際の撮影像を収集する撮影像収集手段とを備え、前記観測量算出手段と前記撮影像収集手段とに基づいて前記グリッド箔による箔影を除去して放射線画像を最終的に得ることを特徴とするものである。
[作用・効果]この発明の放射線撮影装置(前者の発明)によれば、放射線源,放射線検出手段および放射線グリッドの他に、グリッド箔を並設した方向においてグリッド箔よりも厚みを有し、溝を有したグリッド用マーカーを放射線グリッドに設けて備えている。このようなグリッド用マーカーを備えることにより箔影の全体のズレ特性を検出し易くする。また、グリッド箔を並設した方向においてグリッド箔よりもグリッド用マーカーの方が厚みを有しているので、箔影がボケて放射線画像に映り込んだとしてもグリッド用マーカーによる影を明確に検出することができる。このようなグリッド用マーカーを備えた場合において、グリッドズレによる観測量をDXg、放射線源のズレによる観測量をDXfとしたときに、(グリッド用マーカーの)溝の幅だけ離間した箇所でそれぞれ検出された2つの放射線検出信号の値の差分に関するプロファイルのシフト量として観測量DXg,DXfをそれぞれ求める観測量算出手段を備えている。そして、被検体のある状態で検出された放射線検出信号に基づいて実際の撮影像を収集する撮影像収集手段を備え、上述した観測量算出手段と上述した撮影像収集手段とに基づいてグリッド箔による箔影を除去して放射線画像を最終的に得る。グリッド用マーカーの溝の幅だけ離間した箇所でそれぞれ検出された2つの放射線検出信号の値の差分を求めることで、被検体の情報などが放射線検出信号に入っていたとしても差分により排除することができて、かかる差分のプロファイルは、箔影の全体のズレ特性や放射線検出手段に対する放射線源の相対的なズレ特性を反映する情報となる。したがって、プロファイルのシフト量として、グリッドズレによる観測量DXg,放射線源のズレによる観測量DXfをそれぞれ求めることになる。その結果、観測量DXg,DXfに基づいてグリッドズレを考慮して箔影を除去することができる。
また、前者の発明と別の放射線撮影装置(後者の発明)は、放射線画像を得る放射線撮影装置であって、放射線を照射する放射線源と、照射された放射線を検出する放射線検出手段と、その放射線検出手段の検出側に設けられ、散乱放射線を吸収するグリッド箔を並べて構成された放射線グリッドとを備え、さらに、前記放射線撮影装置は、(a)被検体のない状態で検出された放射線検出信号に基づく基準校正データ、(b)グリッドズレに関する情報であるグリッドズレ情報に基づいて、実際の撮影焦点からグリッドズレ量分シフトした計算焦点からの射線として当該射線に対応した対応校正像を求める対応校正像算出手段と、被検体のある状態で検出された放射線検出信号に基づいて実際の撮影像を収集する撮影像収集手段とを備え、前記対応校正像算出手段と前記撮影像収集手段とに基づいて前記グリッド箔による箔影を除去して放射線画像を最終的に得ることを特徴とするものである。
[作用・効果]この発明の放射線撮影装置(後者の発明)によれば、放射線源,放射線検出手段および放射線グリッドの他に、(a)被検体のない状態で検出された放射線検出信号に基づく基準校正データ、(b)グリッドズレに関する情報であるグリッドズレ情報に基づいて、実際の撮影焦点からグリッドズレ量分シフトした計算焦点からの射線として当該射線に対応した対応校正像を求める対応校正像算出手段を備えている。そして、被検体のある状態で検出された放射線検出信号に基づいて実際の撮影像を収集する撮影像収集手段を備え、上述した対応校正像算出手段と上述した撮影像収集手段とに基づいてグリッド箔による箔影を除去して放射線画像を最終的に得る。グリッドズレの無い状態で収集された基準校正データを用いて実際の撮影焦点からグリッドズレ量分シフトした計算焦点からの射線として当該射線に対応した対応校正像を求め、かかる対応校正像は実際の撮影焦点にも対応した校正像となる。したがって、実際の撮影焦点にも対応した対応校正像と、実際の撮影像とを突き合わせることにより、グリッドズレを考慮した放射線画像が最終的に得られることになる。その結果、グリッドズレ情報に基づいてグリッドズレを考慮して箔影を除去することができる。
また、前者の発明と後者の発明とを両方組み合わせることもできる。
すなわち、前者の発明において、(a)被検体のない状態で検出された放射線検出信号に基づく基準校正データ、(b)前記グリッドズレに関する情報であるグリッドズレ情報に基づいて、実際の撮影焦点からグリッドズレ量分シフトした計算焦点からの射線として当該射線に対応した対応校正像を求める対応校正像算出手段を備え、前記観測量算出手段と前記対応校正像算出手段と前記撮影像収集手段とに基づいて前記グリッド箔による箔影を除去して放射線画像を最終的に得ることを特徴とするものである。
前者の発明と後者の発明とを両方組み合わせた発明によれば、前者の発明における観測量DXg,DXfの他に、後者の発明におけるグリッドズレ情報に基づいてグリッドズレをより一層考慮して箔影を除去することができる。
また、後者の発明において、グリッドズレによる観測量をDXgとしたときに、観測量DXgに基づいて、グリッド箔を並設した方向に撮影像をスライド移動することで箔影が整列した撮影像である箔影整列像を生成する箔影整列像生成手段を備えるのが好ましい。放射線グリッドのズレ(例えば横ズレ、回転ズレ)が生じたときに、特に回転ズレを解消するために撮影像を回転する手法も考えられるが、その場合には演算量が膨大になる。そこで、観測量DXgに基づいて、グリッド箔を並設した方向に撮影像をスライド移動することで箔影整列像を簡易に生成することができ、撮影像を回転したときによりも演算量を低減させることができる。なお、グリッド箔の延在方向に対するシフト量(ズレ量)は残っているが、かかるシフト量は僅かであるので無視することができる。
かかる箔影整列像生成手段を備えた場合において、箔影整列像に対して箔影を強調して被検体の情報を除去した箔影強調像を生成する箔影強調像生成手段と、その箔影強調像生成手段で生成された箔影強調像と、対応校正像とに基づいて、箔影に起因した偽像を除去する偽像除去処理用箔影像を生成する偽像除去処理用箔影像生成手段とを備えるのがより好ましい。箔影整列像から生成された箔影強調像と対応校正像とは位置的にそれぞれ対応するので、両画像に基づいて偽像除去処理用箔影像が生成し易くなる。
上述した箔影強調像生成手段の一例は、グリッド箔の延在方向に対して低域領域を通過させる低域通過型フィルタ(LPF: Low Pass Filter)である。被検体の情報はグリッド箔の延在方向に対して高域であり、それに対してグリッド箔はその延在方向に対しては変化が少なく低域である。したがって、低域通過型フィルタ(LPF)により被検体の情報を除去した箔影強調像を簡易に生成することができる。もちろん、箔影強調像生成手段は低域通過型フィルタ(LPF)に限定されない。例えば、箔影強調像生成手段を、高域通過型フィルタ(HPF: High Pass Filter)と減算器とで構成し、高域通過型フィルタ(HPF)により箔影を除去して被検体の情報を強調した画像を生成して、高域通過型フィルタ(HPF)を通す前の元の画像から、被検体の情報を強調した画像を減算器により減算することにより、被検体の情報を除去した箔影強調像を生成することができる。
上述した偽像除去処理用箔影像生成手段は、複数の画素での積算値を箔影強調像および対応校正像についてそれぞれ求め、各々の積算値に基づいて偽像除去処理用箔影像を生成する。グリッド箔による箔影はその幅に応じて複数の画素を跨っている場合があり、その場合には箔影が複数の画素を跨っている箇所での積算値を箔影強調像および対応校正像についてそれぞれ求め、各々の積算値に基づいて偽像除去処理用箔影像を生成することで、偽像除去処理用箔影像を精密に生成することができる。なお、個々のグリッド箔のたわみにより箔影が必ずしも当該複数の画素を跨っているとは限らない。箔影が跨っているであろうと思われる箇所での画素を箔影強調像や対応校正像から認定し、箔影の跨りの状況によらずに一様に当該複数の画素での積算値を箔影強調像および対応校正像についてそれぞれ求めるということに留意されたい。
具体的には、かかる偽像除去処理用箔影像に基づいて、グリッド箔による箔影を除去した偽像除去処理済像を生成する偽像除去処理済像生成手段を備え、その偽像除去処理済像生成手段で生成された偽像除去処理済像を放射線画像として最終的に得る。これにより、グリッドズレを考慮して箔影を除去することができる。
この発明に係る放射線撮影装置(前者の発明)によれば、グリッド箔を並設した方向においてグリッド箔よりも厚みを有し、溝を有したグリッド用マーカーを放射線グリッドに設けて備えている。このようなグリッド用マーカーを備えることにより箔影の全体のズレ特性を検出し易くする。また、グリッド箔を並設した方向においてグリッド箔よりもグリッド用マーカーの方が厚みを有しているので、箔影がボケて放射線画像に映り込んだとしてもグリッド用マーカーによる影を明確に検出することができる。このようなグリッド用マーカーを備えた場合において、グリッドズレによる観測量をDXg、放射線源のズレによる観測量をDXfとしたときに、(グリッド用マーカーの)溝の幅だけ離間した箇所でそれぞれ検出された2つの放射線検出信号の値の差分に関するプロファイルのシフト量として観測量DXg,DXfをそれぞれ求める観測量算出手段を備えている。グリッド用マーカーの溝の幅だけ離間した箇所でそれぞれ検出された2つの放射線検出信号の値の差分を求めることで、被検体の情報などが放射線検出信号に入っていたとしても差分により排除することができて、かかる差分のプロファイルは、箔影の全体のズレ特性や放射線検出手段に対する放射線源の相対的なズレ特性を反映する情報となる。したがって、プロファイルのシフト量として、グリッドズレによる観測量DXg,放射線源のズレによる観測量DXfをそれぞれ求めることになる。その結果、観測量DXg,DXfに基づいてグリッドズレを考慮して箔影を除去することができる。
また、この発明に係る放射線撮影装置(後者の発明)によれば、(a)被検体のない状態で検出された放射線検出信号に基づく基準校正データ、(b)グリッドズレに関する情報であるグリッドズレ情報に基づいて、実際の撮影焦点からグリッドズレ量分シフトした計算焦点からの射線として当該射線に対応した対応校正像を求める対応校正像算出手段を備えている。グリッドズレの無い状態で収集された基準校正データを用いて実際の撮影焦点からグリッドズレ量分シフトした計算焦点からの射線として当該射線に対応した対応校正像を求め、かかる対応校正像は実際の撮影焦点にも対応した校正像となる。したがって、実際の撮影焦点にも対応した対応校正像と、実際の撮影像とを突き合わせることにより、グリッドズレを考慮した放射線画像が最終的に得られることになる。その結果、グリッドズレ情報に基づいてグリッドズレを考慮して箔影を除去することができる。
実施例に係るX線撮影装置の概略構成図およびブロック図である。 フラットパネル型X線検出器(FPD)の検出面の模式図である。 X線グリッドの概略図である。 グリッド用マーカーの配置箇所を示す各概略図である。 グリッド用マーカーの拡大図である。 実施例に係る具体的な画像処理部のブロック図である。 一連の画像処理のフローを各画像と併せて図示した模式図である。 CVS装置でのグリッド用マーカーによるマーカー影収集モードの一覧表である。 各々のズレの位置関係を示す概略図である。 プロファイルの作成処理の一例である。 基準校正データの収集を模式的に示した概略図である。 対応校正像を求めるときの位置関係を示す概略図である。 対応校正像算出用の各基準校正データ重み関数のグラフである。 箔影整列像の生成を模式的に示した概略図である。 フラットパネル型放射線検出器(FPD)に対するエアグリッドのズレを模式的に示した概略図である。
以下、図面を参照してこの発明の実施例を説明する。
図1は、実施例に係るX線撮影装置の概略構成図およびブロック図であり、図2は、フラットパネル型X線検出器(FPD)の検出面の模式図であり、図3は、X線グリッドの概略図であり、図4は、グリッド用マーカーの配置箇所を示す各概略図であり、図5は、グリッド用マーカーの拡大図である。本実施例では、放射線としてX線を例に採って説明するとともに、放射線撮影装置として、例えば心臓血管の診断に用いられる装置(CVS: cardiovascular systems)に実施するためのCアームを備えたX線撮影装置を例に採って説明する。また、放射線グリッドとして、X線管の焦点を結ぶ射線に沿ってグリッド箔を配置した集束グリッドで、中間層を空隙としたエアグリッドを例に採って説明する。
本実施例に係るX線撮影装置は、図1に示すように、被検体Mを載置した天板1と、X線を照射するX線管2と、照射されたX線を検出するフラットパネル型X線検出器(以下、「FPD」と略記する)3と、そのFPD3の検出側に設けられ、散乱X線を吸収するグリッド箔4a(図3などを参照)を並べて構成されたX線グリッド4とを備えている。X線管2は、この発明における放射線源に相当し、フラットパネル型X線検出器(FPD)3は、この発明における放射線検出手段に相当し、X線グリッド4は、この発明における放射線グリッドに相当する。
この他に、X線撮影装置は、一端でX線管2を保持し、他端でFPD3をX線グリッド4とともに保持するCアーム5を備えている。図1では、Cアーム5は、被検体Mの体軸方向に湾曲状に形成されている。Cアーム5は、Cアーム5自身に沿って被検体Mの体軸と直交する回転中心軸の軸心周りに回転することで、Cアーム5に保持されたX線管2,FPD3およびX線グリッド4も同方向に回転することが可能である。さらに、Cアーム5は体軸と直交する回転中心軸の軸心周りに回転することで、X線管2,FPD3およびX線グリッド4も同方向に回転することが可能である。
具体的には、Cアーム5は、床面に固定配置された基台6に、支柱7およびアーム保持部8を介して保持される。基台6に対して支柱7は、鉛直軸の軸心周りに回転可能で、この回転により支柱7に保持されたCアーム5ごとX線管2,FPD3およびX線グリッド4も同方向に回転することが可能である。また、支柱7に対してアーム保持部8を被検体Mの体軸の軸心周りに回転可能に保持することで、アーム保持部8に保持されたCアーム5ごとX線管2,FPD3およびX線グリッド4も同方向に回転することができる。また、アーム保持部8に対してCアーム5を回転中心軸の軸心周りに回転可能に保持することで、CアームごとX線管2,FPD3およびX線グリッド4も同方向に回転することができる。
さらに、FPD3を、X線管2とFPD3とを結ぶX線の照射軸に沿って接近・離反させる、あるいは照射軸と直交する集束ライン方向に接近・離反させるように構成してもよい。また、X線管2,FPD3およびX線グリッド4の位置関係が一定である筈の条件でも、Cアーム5の回転などにより、X線管2,FPD3およびX線グリッド4の位置関係にズレが生じる場合がある(後述の焦点横ズレ量=Xf)。
さらに、X線撮影装置は、FPD3で検出されたX線検出信号に基づいて各種の画像処理を行う画像処理部11と、X線撮影に先だって得られた基準校正データや、画像処理部11で得られた各画像などのデータを書き込んで記憶するメモリ部12と、データや命令を入力する入力部13と、画像処理部11で得られた画像を表示する表示部14と、これらを統括制御するコントローラ15とを備えている。その他にも、高電圧を発生して管電流や管電圧をX線管2に与える高電圧発生部などを備えているが、この発明の特徴部分あるいは特徴部分に関連する構成でないので、図示を省略する。
メモリ部12は、コントローラ15を介して、基準校正データや、画像処理部11で得られた各画像などのデータを書き込んで記憶し、適宜必要に応じて読み出して、コントローラ15を介して、これらのデータを表示部14に送り込んで表示する。メモリ部12は、ROM(Read-only Memory)やRAM(Random-Access Memory)やハードディスクなどに代表される記憶媒体で構成されている。
入力部13は、オペレータが入力したデータや命令をコントローラ15に送り込む。入力部13は、マウスやキーボードやジョイスティックやトラックボールやタッチパネルなどに代表されるポインティングデバイスで構成されている。表示部14は、モニタで構成されている。
上述の画像処理部11やコントローラ15は、中央演算処理装置(CPU)などで構成されている。画像処理部11で得られた各画像などのデータを、コントローラ15を介して、メモリ部12に書き込んで記憶、あるいは表示部14に送り込んで表示する。画像処理部11の具体的な構成については詳しく後述する。
FPD3は、図2に示すように、その検出面にはX線に有感な複数の検出素子dを2次元マトリックス状に配列して構成されている。検出素子dは、被検体Mを透過したX線をX線検出信号(電気信号)に変換して一旦蓄積して、その蓄積されたX線検出信号を読み出すことで、X線を検出する。各々の検出素子dでそれぞれ検出されたX線検出信号を、X線検出信号に応じた画素値に変換して、検出素子dの位置にそれぞれ対応した画素にその画素値を割り当てることでX線画像を出力して、画像処理部11にX線画像を送り込む。
X線グリッド4は、図3に示すように、散乱X線を吸収するグリッド箔4aとX線を透過させる中間層4bとを交互に並べて構成されている。グリッド箔4a,中間層4bを覆うグリッドカバー4cは、X線の入射面および逆側の面からグリッド箔4a,中間層4bを挟み込む。グリッド箔4aの図示を明確にするために、グリッドカバー4cについては二点鎖線で図示し、その他のX線グリッド4の構成(グリッド箔4aを支持する機構等)については図示を省略する。グリッド箔4aは、この発明におけるグリッド箔に相当する。
また、図3に示すように各々のグリッド箔4aをFPD3の検出面に対して平行に配置してX線グリッド4を配置している。なお、本実施例では中間層4bは空隙となっており、X線グリッド4はエアグリッドでもある。グリッド箔4aについては、鉛などのようにX線に代表される放射線を吸収する物質であれば、特に限定されない。また、本実施例では、X線管2(図1を参照)の焦点を結ぶ射線に沿ってグリッド箔4aを配置した集束グリッドであるが、図3では図示の便宜上、各々のグリッド箔4aを平行配置としている。
図3に示すように各々の画素サイズをΔXとすると、本実施例ではわかり易くするために各々の画素に同期してグリッド箔4aが配置されている。つまり4画素毎に同期してグリッド箔4aが配置されている。したがって、X線をグリッド箔4aが吸収することによりFPD3に箔影が生じて、箔影がX線画像に映り込むが、各々の画素に同期して箔影が映り込むようにグリッド箔4aが配置される。
本実施例では、図4に示すようにグリッド箔4a(図5(a)の拡大図を参照)を並設した方向においてグリッド箔4aよりも厚みを有し、図5(b)の拡大図に示すように溝21aを有したグリッド用マーカー21をX線グリッド4に設けて備えている。グリッド用マーカー21については、X線グリッド4のX線の入射面に接着して設けてもよいし、X線の入射面とは逆側の面に接着して設けてもよいし、X線の入射面および逆側の面にともに接着して設けてもよい。グリッド用マーカー21を形成する物質は、一例としてタングステンであるが、グリッド箔4aと同じ物質でもよいし、グリッド箔4aと違う物質でもよい。グリッド用マーカー21は、この発明におけるグリッド用マーカーに相当する。
グリッド用マーカー21の配置箇所については特に限定されない。例えば、図4(a)に示すようにX線グリッド4の中心付近に上部マーカー21Aおよび下部マーカー21Bを配置してもよいし、図4(b)に示すようにX線グリッド4の4隅に、右上隅マーカー21C,左上隅マーカー21D,右下隅マーカー21Eおよび左下隅マーカー21Fをそれぞれ配置してもよい。なお、被検体の撮影部位の邪魔(すなわち診断の障害)にならないことを考慮すれば、図4(b)に示す配置箇所がより好ましい。
グリッド用マーカー21は、図5(b)に示すように複数の溝21aを有している。図5(b)では、例えば左右対称な計12本の溝21aを有しており、各々の溝21aは、X線グリッド4に配置したときには、図5(a)に示すように1本のグリッド箔4aを跨ぐ配置になっている。また、画素とX線グリッド4とはあらゆる場合が想定され、画像処理上でそのことに対応するために交互に半画素ずれた溝21aを形成している。
このとき、グリッド用マーカー21の中心線(例えばケガキ線)よりも左側において、やや右側(中心線から見れば内側)にずらした内ズレ溝と、やや左側(中心線から見れば外側)にずらした外ズレ溝とを交互に形成し、中心線よりも右側において、やや左側(中心線から見れば内側)にずらした内ズレ溝と、やや右側(中心線から見れば外側)にずらした外ズレ溝とを交互に形成する。溝21aの長さについては特に限定されないが、後述する平均プロファイルを作成するために複数の画素行(例えば20行からなる画素行)を少なくとも含む程度の長さが好ましい。溝21aの幅についても、特に限定されないが、4画素列分〜6画素列分の幅が好ましい。箔影干渉の点では溝21の幅を5画素列分あるいは6画素列にすると箔影干渉のマージンが広くなり欠点があまり見当たらないことが評価用のプロファイルから確認された。
次に、画像処理部および一連の画像処理のフローについて、図6〜図15を参照して説明する。図6は、実施例に係る具体的な画像処理部のブロック図であり、図7は、一連の画像処理のフローを各画像と併せて図示した模式図であり、図8は、CVS装置でのグリッド用マーカーによるマーカー影収集モードの一覧表であり、図9は、各々のズレの位置関係を示す概略図であり、図10は、プロファイルの作成処理の一例であり、図11は、基準校正データの収集を模式的に示した概略図であり、図12は、対応校正像を求めるときの位置関係を示す概略図であり、図13は、対応校正像算出用の各基準校正データ重み関数のグラフであり、図14は、箔影整列像の生成を模式的に示した概略図であり、図15は、フラットパネル型放射線検出器(FPD)に対するエアグリッドのズレを模式的に示した概略図である。
画像処理部4は、図6に示すように、観測量算出部31と撮影像収集部32と対応校正像算出部33と箔影整列像生成部34と低域通過型フィルタ(以下、「LPF」と略記する)35と偽像除去処理用箔影像生成部36と偽像除去処理済像生成部37とを備えている。観測量算出部31は、この発明における観測量算出手段に相当し、撮影像収集部32は、この発明における撮影像収集手段に相当し、対応校正像算出部33は、この発明における対応校正像算出手段に相当し、箔影整列像生成部34は、この発明における箔影整列像生成手段に相当し、低域通過型フィルタ(LPF)35は、この発明における箔影強調像生成手段に相当し、偽像除去処理用箔影像生成部36は、この発明における偽像除去処理用箔影像生成手段に相当し、偽像除去処理済像生成部37は、この発明における偽像除去処理済像生成手段に相当する。
観測量算出部31は、図6および図7に示すように、プロファイルをPro、グリッドズレによる観測量をDXg、X線管2(図1を参照)の焦点横ズレによる観測量をDXfとしたときに、溝21a(図5(b)を参照)の幅だけ離間した箇所でそれぞれ検出された2つのX線検出信号の値の差分に関するプロファイルProのシフト量として観測量DXg,DXfをそれぞれ求める。なお、CVS装置において、グリッド用マーカー21(図4および図5を参照)によるマーカー影を収集するときには観測量DXg,DXfは、図8に示すような関係となる。
X線撮影に先だって得られた基準校正データは、X線グリッド4(図1および図3〜図5を参照)の出荷前に収集され、CVS装置としてX線撮影装置が用いられる客先ではX線管2(図1を参照)の焦点位置は、実際の撮影まではホームポジション(HP: Home Position)の位置で焦点ズレが起きないと想定する。ここで、「ホームポジション」とは、グリッド箔4aにたわみやねじれがなく理想的な場合の集束位置であって、例えば図9に示すようにFPD3やX線グリッド4の中心線上に位置し、FPD3からSIDの距離に位置する焦点位置HPを指す。なお、SIDは、X線管2の焦点位置からFPD3に垂線を下ろしたときに、当該垂線方向の焦点位置からFPD3までの距離(SID: Source Image Distance)である。本実施例ではSIDは1010mmと設定される。
図9に示すように、ホームポジションHPの座標を(0,0)としたときに、垂線方向と直交するFPD3やX線グリッド4の設置面方向に沿ったホームポジションHPからの焦点横ズレ量をXfとし、垂線方向に沿ったホームポジションHPからの焦点縦ズレ量をdrとすると、実際の撮影焦点の座標は(Xf,dr)となる。また、FPD3やX線グリッド4の中心線に基準となるグリッド箔4aが位置するとしたときに、当該グリッド箔4aがグリッド着脱等によりずれたときにそのズレ量をXgとする。
上述したように、X線管2(図1を参照)の焦点位置は、実際の撮影まではホームポジションHP(0,0)の位置で焦点ズレが生じない。したがって、図8に示すように、初期設定では校正時と同じ配置であるので、マーカー観測量DXg,DXfはともに“0”,“0”である。X線グリッド4(図9を参照)を再装着(図8では「Grid再装着」で表記)したときには、図15に示すようにズレが生じるので、マーカー観測量DXfは“0”のままであるが、マーカー観測量DXgはDXg(≠0)となる。したがって、マーカー観測量DXgを求めれば、下記(1)式の幾何学的な位置関係に基づいて、グリッドズレ量Xgを求めることができる。
Xg=DXg・(SID―MG)/SID …(1)
ここで、MGは、図9に示すようにFPD3の検出面・グリッド用マーカー21(図4および図5を参照)の配置面間の距離である。マーカー観測量DXgを求めれば、MGも含めて上記(1)式の右辺は既知であるので、グリッドズレ量Xgを求めることができる。
また、ホームポジションHP(0,0)で撮影を行った場合(図8では「撮影後」で表記)には、X線グリッド4(図9を参照)を再装着することによりさらにドリフト(図8では「Grid再装着後ドリフト」)して、マーカー観測量DXgがDXg´(≠DXg)となるが、この場合においてもマーカー観測量DXg´を求めれば、上記(1)式に基づいてグリッドズレ量Xg´(図9を参照)を求めることができる。
被検体Mを用いて実際の撮影を行うと、Cアーム5(図1を参照)の回転などによりX線管2,FPD3およびX線グリッド4(いずれも図1を参照)の位置関係にズレが生じる。特にX線管2は他の機器よりも重量があり、Cアーム5のたわみなどによりズレが生じやすい。なお、X線グリッド4とFPD3との位置関係はズレが生じにくく、X線グリッド4を再装着しない限りは同じ位置に位置する。図8や図9ではX線管2のみがずれたとすると、上述したように実際の撮影焦点の座標は(Xf,dr)となる。
実際の撮影時(図8では「撮影焦点(Xf,dr)」で表記)には、再装着しない限りはX線グリッド4(図9を参照)はFPD3に対して同じ位置関係にあるので、マーカー観測量DXgは一定だと想定する。一方、実際の撮影時には焦点ズレが生じるので、マーカー観測量DXfはDXf(≠0)となる。したがって、マーカー観測量DXfを求めれば、下記(2)式の幾何学的な位置関係に基づいて、焦点横ズレ量Xfを求めることができる。
Xf={Xg−(DXg−DXf)}・{SID+dr}/MG
+DXg−DXf …(2)
ここで、垂線方向に沿ったホームポジションHPからの焦点縦ズレ量drはX線撮影装置の使用状況として設定されるので装置から読み取れる量であり既知である。マーカー観測量DXgも上記(1)式で既に求まっている。したがって、マーカー観測量DXfを求めれば、上記(2)式の右辺は既知であるので、焦点横ズレ量Xfを求めることができる。なお、実際の撮影焦点(Xf,dr)からグリッドズレ量Xg分だけシフトした焦点を計算焦点とすると、図9に示すように計算焦点の座標は(Xf−Xg,dr)となる。
続いて、観測量DXg,DXfの具体的な算出方法について説明する。出荷前の基準校正データに基づくプロファイル、被検体がない状態でX線グリッド4の再装着時で得られたX線画像に基づくプロファイルおよび実際の撮影で得られた被検体M(図1を参照)の情報も含まれたX線画像(撮影像)に基づくプロファイルをそれぞれ作成する。各々のプロファイルの作成方法については、同じ演算を用いる。したがって、図10ではホームポジションHP(図8および図9を参照)時に焦点を配置したときの基準校正データに基づいてプロファイルを作成する場合を代表して、以下を説明する。
なお、基準校正データを収集する場合には、被検体のない状態で、図11に示すようにホームポジションHPから集束ラインLcに沿って所定間隔(例えば1mm程度)に焦点を動かして、FPD3によって各々の焦点位置毎のX線画像を基準校正データとして収集する。このとき、実際の撮影で用いられるX線撮影装置とは別の装置で、位置関係のズレが生じにくい校正データ収集装置を用いて基準校正データを収集する。もちろん、各々の撮影毎に焦点ズレが生じにくいタイプのX線撮影装置を用いた場合には、同じX線撮影装置を用いて基準校正データを収集してもよい。
この基準校正データの中から、グリッド用マーカー21(図4および図5を参照)付近のX線検出信号のプロファイルを作成する。図10は、上部マーカー21A(図4(a)を参照)付近に関するプロファイルである。先ず、上部マーカー21Aの溝21a(図5(b)を参照)に位置する複数の画素行(例えば20行からなる画素行)でのX線検出信号の値の平均値を求めて平均プロファイルを作成する(図10(a)を参照)。なお、箔影は2画素間に跨っているので、平均プロファイルから、互いに隣接する2画素列のX線検出信号の値を加算する2画素束ねプロファイルを作成する(図10(b)を参照)。
さらに、2画素束ねプロファイルから、溝21a(図5(b)を参照)の幅だけ離間した箇所でそれぞれ検出された2つのX線検出信号の値の差分に関するプロファイルを作成する(図10(c)を参照)。溝21の幅を5画素列分とすると、図10(c)では5画素列分だけ離間した箇所での各信号の差分値を求めることで、5画素列違い差分プロファイルを作成する。
図10と同様の作成方法で、被検体がない状態でX線グリッド4の再装着時で得られた5画素列違い差分プロファイル、および実際の撮影で得られた5画素列違い差分プロファイルをそれぞれ作成する。なお、図10(c)の5画素列違い差分プロファイルの縦軸は差分値であり、値の大小関係によって正の値あるいは負の値になる。したがって、差分値が“0”となるポイントを「0クロスポイント」として、その0クロスポイントを基準とすれば、各プロファイルにおける0クロスポイントからのシフト量を、観測量DXg,DXfとして求めることができる。
つまり、ホームポジションHP(図8および図9を参照)時に焦点を配置したときの基準校正データで得られた5画素列違い差分プロファイルにおける0クロスポイントと、被検体がない状態でX線グリッド4の再装着時で得られた5画素列違い差分プロファイルにおける0クロスポイントとを比較すれば、そのシフト量がわかり、そのシフト量から観測量DXgを求めることができる。また、被検体がない状態でX線グリッド4の再装着時で得られた5画素列違い差分プロファイルにおける0クロスポイントと、実際の撮影で得られた5画素列違い差分プロファイルにおける0クロスポイントとを比較すれば、そのシフト量がわかり、そのシフト量から観測量DXfを求めることができる。
このようにして、観測量算出部31は、図6に示すように観測量DXg,DXfをそれぞれ求め、さらに上記(1)および(2)式によりグリッドズレ量Xg,焦点横ズレ量Xfをそれぞれ求める。観測量算出部31で求められたそれらの量を、対応校正像算出部33や箔影整列像生成部34に送り込む。
撮影像収集部32は、図6および図7に示すように、実際の撮影像をIとしたときに、被検体M(図1を参照)のある状態で検出されたX線検出信号に基づいて実際の撮影像Iを収集する。図7では、図4(a)に示すように上部マーカー21Aおよび下部マーカー21Bを配置したときにマーカー影が映り込んだ撮影像Iを図示している。撮影像収集部32で収集された実際の撮影像Iを箔影整列像生成部34に送り込む。
対応校正像算出部33は、図6および図7に示すように、基準校正データをD、対応校正像をCとしたときに、被検体のない状態で検出されたX線検出信号に基づく基準校正データD、グリッドズレに関する情報であるグリッドズレ情報に基づいて、実際の撮影焦点からグリッドズレ量Xg分シフトした計算焦点からの射線として当該射線に対応した対応校正像Cを求める。なお、対応校正像Cを求めるときには、図12に示す位置関係および図13に示す重み関数を用いる。
上述したように、基準校正データは、図11および図12に示すように、ホームポジションHPから集束ラインLcに沿って所定間隔に焦点を動かして得られたX線画像である。図9でも述べたように、実際の撮影焦点(Xf,dr)からグリッドズレ量Xg分シフトした計算焦点の座標は(Xf−Xg,dr)となる。なお、図12で画素nは、ホームポジションHPからFPD3への垂線交点対応画素である。
このとき、対象となる画素をnとしたときに、計算焦点(Xf−Xg,dr)からの射線のうち、画素nを結ぶ射線をLfとする。この射線Lfと集束ラインLcとが交わった焦点(図12では白抜きの方形:「□」で表記)での基準校正データを用いれば、そのときの対応校正像を求めることができる。なお、射線Lfと集束ラインLcとが交わった焦点と中心線との距離をLnとすると、下記(3)式の幾何学的な位置関係に基づいて、距離Lnを求めることができる。
Ln=Xf−Xg+{(n−n)・ΔX−Xf+Xg}・dr/
(SID+dr) …(3)
ここで、ΔXは、図3でも述べたように各々の画素サイズであり、ΔXは既知である。ΔX以外の上記(3)式の右辺は、既に求まっているか、あるいは既知であるので、距離Lnを求めることができる。
この距離Lnを求めることで、射線Lfと集束ラインLcとが交わった焦点が、基準校正データを収集したときの焦点位置(図12では、…Xf−2,Xf−1,HP,Xf,Xf,Xf,Xf,Xf,…で表記)に一致するか否かがわかる。例えば、射線Lfと集束ラインLcとが交わった焦点が、基準校正データを収集したときの焦点位置Xfに一致する場合には、焦点位置Xfでの基準校正データ(X線画像)をそのまま対応校正像とすればよい。
ただし、射線Lfと集束ラインLcとが交わった焦点は、基準校正データを収集したときの焦点位置に必ずしも一致するとは限らない。図12の場合を例に採ると、射線Lfと集束ラインLcとが交わった焦点に最も近接しているのは、基準校正データを収集したときの焦点位置の一群の中からは焦点位置Xf,Xfである。よって、焦点位置Xfでの基準校正データ(X線画像)と、焦点位置Xfでの基準校正データ(X線画像)と、さらに図13に示す重み関数とに基づいて、重み付け補正を行えば校正対応像を求めることができる。重み関数は、焦点距離を横軸にとり、重み付けを縦軸にとっている。
例えば、焦点位置Xf,Xf,Xf,Xf,Xf,…での重み関数を、図13に示すように、Wf,Wf,Wf,Wf,Wf,…とそれぞれすれば、図12の場合には、焦点位置Xfでの基準校正データとそのときの重み関数Wfの積と、焦点位置Xfでの基準校正データとそのときの重み関数Wfの積とを合計した画素値(X線検出信号の値)を各画素に応じて割り当てれば、校正対応像を求めることができる。
このようにして、対応校正像算出部33は、図6に示すように対応校正像Cを求める。対応校正像算出部33で求められた対応校正像Cを、偽像除去処理用箔影像生成部36に送り込む。
箔影整列像生成部34は、図6および図7に示すように、箔影整列像をGとしたときに、グリッド箔4aを並設した方向(図7では横方向)に撮影像Iをスライド移動することで箔影が整列した撮影像である箔影整列像Gを生成する。箔影整列像Gを生成するときには、図14に示すように行う。
図14に示すように、被検体の情報ごと撮影像Iをスライド移動する。X線グリッド4全体が横ズレを起こしている場合には、同じシフト量(例えばグリッドズレ量Xg)分だけ撮影像Iをスライド移動すればよいが、X線グリッド4が回転ズレを起こしている場合には、例えば上部マーカー21A(図4(a)を参照)でのシフト量と下部マーカー21B(図4(a)を参照)でのシフト量との間でスライドする方向の正負が逆転する。その場合には、上部マーカー21Aでのシフト量をXguとし、下部マーカー21Bでのシフト量をXglとすれば、上部マーカー21A付近では被検体の情報ごと撮影像Iを(図7や図14の場合には右方向に)シフト量Xguだけ移動して、下部マーカー21B付近では被検体の情報ごと撮影像Iを(図7や図14の場合には左方向に)シフト量Xglだけ移動する。そして、中央の画素行付近では被検体の情報ごと撮影像Iを、シフト量の差分の絶対値から求められた平均値、|Xgu−Xgl|/2だけ移動すればよい。
このようにして、図14(a)に示す撮影像Iから、スライド移動により図14(b)に示す箔影整列像Gを生成することができる。なお、より精密な箔影整列像Gを生成する場合には、上部マーカー21Aでのシフト量、中央の画素行付近でのシフト量および下部マーカー21Bでのシフト量と3つに分割せずに、細かく分割して分割された各画素行毎のシフト量を線形補間して求めればよい。
例えば、図14(c)に示すように画素行を横軸にとり、シフト量を縦軸にとった場合には、上部マーカー21Aでのシフト量と下部マーカー21Bでのシフト量とは既知であるので、そのシフト量を結んで線形補間をすれば、線形補間により各画素行毎のシフト量をより精密に求めることができ、ひいてはより精密な箔影整列像Gを生成することができる。なお、図14(b)に示すようにグリッド箔4aの延在方向(図7や図14では縦方向)に対するシフト量(ズレ量)は残っているが、かかるシフト量は僅かであるので無視することができる。
このようにして、箔影整列像生成部34は、図6に示すように箔影整列像Gを生成する。箔影整列像生成部34で生成された箔影整列像Gを、LPF35や偽像除去処理済像生成部37に送り込む。
LPF35は、図6および図7に示すように、箔影強調像をEとしたときに、箔影整列像Gに対して箔影を強調して被検体M(図1を参照)の情報を除去した箔影強調像Eを生成するために、グリッド箔4aの延在方向(図7では縦方向)に対して低域領域を通過させる。LPF35で生成された箔影強調像Eを、偽像除去処理用箔影像生成部36に送り込む。
偽像除去処理用箔影像生成部36は、図6および図7に示すように、偽像除去処理用箔影像をCorとしたときに、LPF35で生成された箔影強調像Eと、対応校正像Cとに基づいて、箔影に起因した偽像を除去する偽像除去処理用箔影像Corを生成する。箔影は2画素間に跨っているので、当該箇所での積算値を箔影強調像Eおよび対応校正像Cについて行毎にそれぞれ求める。図7に示すように、箔影強調像Eにおける積算値をEsum,対応校正像Cにおける積算値をCsumとすると、積算値の比率で偽像除去処理用箔影像Corを生成することができる(Cor=E・Csum/Esum)。
なお、上述したように、個々のグリッド箔4aのたわみにより箔影が必ずしも当該複数の画素(本実施例では2画素)を跨っているとは限らない。たわみ状況によっては、箔影が1画素分のみ覆っている、あるいは1画素すら覆っておらずに別の画素(例えば隣接画素)を箔影が覆っている可能性もある。その場合には、箔影が跨っているであろうと思われる箇所での画素を箔影強調像Eや対応校正像Cから認定し、箔影の跨りの状況によらずに一様に当該複数の画素(ここでは2画素)での積算値Csum,Esumをそれぞれ求める。
このようにして、偽像除去処理用箔影像生成部36は、図6に示すように偽像除去処理用箔影像Corを生成する。偽像除去処理用箔影像生成部36で生成された偽像除去処理用箔影像Corを、偽像除去処理済像生成部37に送り込む。
偽像除去処理済像生成部37は、図6および図7に示すように、箔影を除去したことにより最終的に得られるX線画像をIafterとしたときに、偽像除去処理用箔影像Corに基づいて、グリッド箔4aによる箔影を除去した偽像除去処理済像を生成する。そして、その偽像除去処理済像生成部37で生成された偽像除去処理済像をX線画像Iafterとして最終的に得る。各画素毎に、箔影整列像Gから偽像除去処理用箔影像Corを除算することでX線画像Iafterを得ることができる(Iafter=G/Cor)。
なお、エアグリッドの場合には中間層が空隙である関係で、箔影の跨る画素と跨らない画素とのコントラストが強く偽像が目立ちやすい。上述した画像処理部および一連の画像処理のフローをエアグリッドに適用することにより発明の課題を解決することができる。
本実施例に係るX線撮影装置によれば、X線管2,FPD3およびX線グリッド4の他に、グリッド箔4aを並設した方向においてグリッド箔4aよりも厚みを有し、溝21aを有したグリッド用マーカー21をX線グリッド4に設けて備えている。このようなグリッド用マーカー21を備えることにより箔影の全体のズレ特性を検出し易くする。また、グリッド箔4aを並設した方向においてグリッド箔4aよりもグリッド用マーカー21の方が厚みを有しているので、箔影がボケてX線画像に映り込んだとしてもグリッド用マーカー21による影を明確に検出することができる。このようなグリッド用マーカー21を備えた場合において、グリッドズレによる観測量をDXg、X線管2のズレによる観測量をDXfとしたときに、(グリッド用マーカー21の)溝21aの幅だけ離間した箇所でそれぞれ検出された2つのX線検出信号の値の差分に関するプロファイルのシフト量として観測量DXg,DXfをそれぞれ求める観測量算出部31を備えている。そして、被検体Mのある状態で検出されたX線検出信号に基づいて実際の撮影像を収集する撮影像収集部32を備え、上述した観測量算出部31と上述した撮影像収集部32とに基づいてグリッド箔4aによる箔影を除去してX線画像を最終的に得る。グリッド用マーカー21の溝21aの幅だけ離間した箇所でそれぞれ検出された2つのX線検出信号の値の差分を求めることで、被検体の情報などがX線検出信号に入っていたとしても差分により排除することができて、かかる差分のプロファイルは、箔影の全体のズレ特性やFPD3に対するX線管2の相対的なズレ特性を反映する情報となる。したがって、プロファイルのシフト量として、グリッドズレによる観測量DXg,X線管2の焦点横ズレによる観測量DXfをそれぞれ求めることになる。その結果、観測量DXg,DXfに基づいてグリッドズレを考慮して箔影を除去することができる。
また、本実施例に係るX線撮影装置によれば、被検体のない状態で検出されたX線検出信号に基づく基準校正データ、グリッドズレに関する情報であるグリッドズレ情報に基づいて、実際の撮影焦点からグリッドズレ量Xg分シフトした計算焦点からの射線として当該射線に対応した対応校正像を求める対応校正像算出部33を備えている。そして、上述した対応校正像算出部33と上述した撮影像収集部32とに基づいてグリッド箔4aによる箔影を除去してX線画像を最終的に得る。グリッドズレの無い状態で収集された基準校正データを用いて実際の撮影焦点からグリッドズレ量Xg分シフトした計算焦点からの射線として当該射線に対応した対応校正像を求め、かかる対応校正像は実際の撮影焦点にも対応した校正像となる。したがって、実際の撮影焦点にも対応した対応校正像と、実際の撮影像とを突き合わせることにより、グリッドズレを考慮したX線画像が最終的に得られることになる。その結果、グリッドズレ情報に基づいてグリッドズレを考慮して箔影を除去することができる。
また、本実施例では、観測量算出部31と対応校正像算出部33とをともに備えている。したがって、観測量DXg,DXfの他に、グリッドズレ情報に基づいてグリッドズレをより一層考慮して箔影を除去することができる。
また、本実施例では、観測量算出部31と対応校正像算出部33とをともに備えた場合において、観測量DXgに基づいて、グリッド箔4aを並設した方向に撮影像をスライド移動することで箔影が整列した撮影像である箔影整列像を生成する箔影整列像生成部34を備えるのが好ましい。X線グリッド4のズレ(例えば横ズレ、回転ズレ)が生じたときに、特に回転ズレを解消するために撮影像を回転する手法も考えられるが、その場合には演算量が膨大になる。そこで、観測量DXgに基づいて、グリッド箔4aを並設した方向に撮影像をスライド移動することで箔影整列像を簡易に生成することができ、撮影像を回転したときによりも演算量を低減させることができる。上述したように、グリッド箔4aの延在方向に対するシフト量(ズレ量)は残っているが、かかるシフト量は僅かであるので無視することができる。
かかる箔影整列像生成部34を備えた場合において、箔影整列像に対して箔影を強調して被検体の情報を除去した箔影強調像を生成する箔影強調像生成手段としてLPF35と、そのLPF35で生成された箔影強調像と、対応校正像とに基づいて、箔影に起因した偽像を除去する偽像除去処理用箔影像を生成する偽像除去処理用箔影像生成部36とを備えるのがより好ましい。箔影整列像から生成された箔影強調像と対応校正像とは位置的にそれぞれ対応するので、両画像に基づいて偽像除去処理用箔影像が生成し易くなる。
本実施例では、箔影強調像生成手段は、グリッド箔4aの延在方向に対して低域領域を通過させる低域通過型フィルタ(LPF)35である。被検体の情報はグリッド箔4aの延在方向に対して高域であり、それに対してグリッド箔4aはその延在方向に対しては変化が少なく低域である。したがって、低域通過型フィルタ(LPF)35により被検体の情報を除去した箔影強調像を簡易に生成することができる。
もちろん、箔影強調像生成手段は、本実施例のような低域通過型フィルタ(LPF)に限定されない。例えば、箔影強調像生成手段を、高域通過型フィルタ(HPF)と減算器とで構成し、高域通過型フィルタ(HPF)により箔影を除去して被検体の情報を強調した画像を生成して、高域通過型フィルタ(HPF)を通す前の元の画像から、被検体の情報を強調した画像を減算器により減算することにより、被検体の情報を除去した箔影強調像を生成することができる。
上述した偽像除去処理用箔影像生成部36は、複数の画素(本実施例では2つの画素)での積算値を箔影強調像および対応校正像についてそれぞれ求め、各々の積算値に基づいて偽像除去処理用箔影像を生成している。グリッド箔4aによる箔影はその幅に応じて複数の画素(ここでは2つの画素)を跨っている場合があり、その場合には箔影が複数の画素を跨っている箇所での積算値を箔影強調像および対応校正像についてそれぞれ求め、各々の積算値に基づいて偽像除去処理用箔影像を生成することで、偽像除去処理用箔影像を精密に生成することができる。
具体的には、かかる偽像除去処理用箔影像に基づいて、グリッド箔4aによる箔影を除去した偽像除去処理済像を生成する偽像除去処理済像生成部37を備え、その偽像除去処理済像生成部37で生成された偽像除去処理済像をX線画像として最終的に得る。これにより、グリッドズレを考慮して箔影を除去することができる。
この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
(1)上述した実施例では、放射線としてX線を例に採って説明したが、X線以外の放射線(例えばγ線など)に適用してもよい。
(2)上述した実施例では、X線撮影装置は、CVS装置に実施するためのCアームを備えた装置であったが、これに限定されない。例えば、工業用等に用いられる非破壊検査装置のように被検体(この場合には検査の対象物が被検体)をベルト上に運搬させて撮影を行う構造であってもよいし、医用等に用いられるX線CT装置などのような構造であってもよい。
(3)上述した実施例では、放射線グリッドとしてエアグリッドを採用したが、これに限定されない。空隙の他に、アルミニウムや有機物質などのようにX線に代表される放射線を透過させる中間物質で構成されたグリッドでもよい。また、クロスグリッドでもよい。なお、クロスグリッドの場合には、一方向のみにグリッド箔が延在したエアグリッドのときよりも、グリッドズレは生じにくいが、もちろん適用することができる。この場合には、ズレの方向を一方向から二方向にそれぞれ拡張して求めればよい。
(4)上述した実施例では、集束グリッドであったが、平行配置されたグリッドにも適用することができる。
(5)上述した実施例では、画素に対して同期なグリッド(同期型グリッド)について述べたが、非同期型グリッドに適用してもよい。また、エアグリッド以外のグリッドの場合には、1つの画素に複数のグリッド箔が並設される構造のグリッドに適用してもよい。
(6)上述した実施例では、観測量算出手段(実施例では観測量算出部31)と対応校正像算出手段(実施例では対応校正像算出部33)とをともに備えたが、グリッドズレを考慮して箔影を除去するという課題を鑑みれば、いずれか一方のみを備えてもよい。例えば、対応校正像を求めずに観測量のみを求めてもよいし、逆に観測量を求めずに対応校正像のみを求めてもよい。また、観測量(特に観測量Xg)については、グリッド用マーカー21から求めなくとも、箔影による相関処理などにより求めることが可能である。
(7)上述した実施例では、グリッドズレが大きいと見なして箔影整列像生成手段(実施例では箔影整列像生成部34)を備えたが、箔影整列像を必ずしも生成する必要はない。例えば、対応校正像算出手段(実施例では対応校正像算出部33)を備えた場合において、(箔影整列像を生成せずに)撮影像に対して箔影を強調して被検体の情報を除去した箔影強調像を生成する箔影強調像生成手段(実施例ではLPF35)と、その箔影強調像生成手段(LPF35)で生成された箔影強調像と、対応校正像とに基づいて、箔影に起因した偽像を除去する偽像除去処理用箔影像を生成する偽像除去処理用箔影像生成手段(実施例では偽像除去処理用箔影像生成部36)とを備えてもよい。この場合には箔影強調像の基となる画像が撮影像であるのに対して、実施例のように箔影整列像生成手段(箔影整列像生成部34)を備えた場合では箔影強調像の基となる画像が箔影整列像であるのを除けば、後の作用・効果は同じである。つまり、グリッドズレが小さければ撮影像から生成された箔影強調像と対応校正像とは位置的にそれぞれ対応するので、両画像に基づいて偽像除去処理用箔影像が生成し易くなる。
2 … X線管
3 … フラットパネル型X線検出器(FPD)
4 … X線グリッド
4a … グリッド箔
21 … グリッド用マーカー
21a … 溝
31 … 観測量算出部
32 … 撮影像収集部
33 … 対応校正像算出部
34 … 箔影整列像生成部
35 … 低域通過型フィルタ(LPF)
36 … 偽像除去処理用箔影像生成部
37 … 偽像除去処理済像生成部
M … 被検体

Claims (8)

  1. 放射線画像を得る放射線撮影装置であって、
    放射線を照射する放射線源と、
    照射された放射線を検出する放射線検出手段と、
    その放射線検出手段の検出側に設けられ、散乱放射線を吸収するグリッド箔を並べて構成された放射線グリッドと
    を備え、
    前記グリッド箔を並設した方向においてグリッド箔よりも厚みを有し、溝を有したグリッド用マーカーを前記放射線グリッドに設けて備え、
    さらに、前記放射線撮影装置は、
    グリッドズレによる観測量をDXg、前記放射線源のズレによる観測量をDXfとしたときに、前記溝の幅だけ離間した箇所でそれぞれ検出された2つの放射線検出信号の値の差分に関するプロファイルのシフト量として前記観測量DXg,DXfをそれぞれ求める観測量算出手段と、
    被検体のある状態で検出された放射線検出信号に基づいて実際の撮影像を収集する撮影像収集手段と
    を備え、
    前記観測量算出手段と前記撮影像収集手段とに基づいて前記グリッド箔による箔影を除去して放射線画像を最終的に得ることを特徴とする放射線撮影装置。
  2. 放射線画像を得る放射線撮影装置であって、
    放射線を照射する放射線源と、
    照射された放射線を検出する放射線検出手段と、
    その放射線検出手段の検出側に設けられ、散乱放射線を吸収するグリッド箔を並べて構成された放射線グリッドと
    を備え、
    さらに、前記放射線撮影装置は、
    (a)被検体のない状態で検出された放射線検出信号に基づく基準校正データ、(b)グリッドズレに関する情報であるグリッドズレ情報に基づいて、実際の撮影焦点からグリッドズレ量分シフトした計算焦点からの射線として当該射線に対応した対応校正像を求める対応校正像算出手段と、
    被検体のある状態で検出された放射線検出信号に基づいて実際の撮影像を収集する撮影像収集手段と
    を備え、
    前記対応校正像算出手段と前記撮影像収集手段とに基づいて前記グリッド箔による箔影を除去して放射線画像を最終的に得ることを特徴とする放射線撮影装置。
  3. 請求項1に記載の放射線撮影装置において、
    (a)被検体のない状態で検出された放射線検出信号に基づく基準校正データ、(b)前記グリッドズレに関する情報であるグリッドズレ情報に基づいて、実際の撮影焦点からグリッドズレ量分シフトした計算焦点からの射線として当該射線に対応した対応校正像を求める対応校正像算出手段を備え、
    前記観測量算出手段と前記対応校正像算出手段と前記撮影像収集手段とに基づいて前記グリッド箔による箔影を除去して放射線画像を最終的に得ることを特徴とする放射線撮影装置。
  4. 請求項2または請求項3に記載の放射線撮影装置において、
    グリッドズレによる観測量をDXgとしたときに、観測量DXgに基づいて、前記グリッド箔を並設した方向に前記撮影像をスライド移動することで前記箔影が整列した撮影像である箔影整列像を生成する箔影整列像生成手段を備えることを特徴とする放射線撮影装置。
  5. 請求項4に記載の放射線撮影装置において、
    前記箔影整列像に対して前記箔影を強調して前記被検体の情報を除去した箔影強調像を生成する箔影強調像生成手段と、
    その箔影強調像生成手段で生成された前記箔影強調像と、前記対応校正像とに基づいて、箔影に起因した偽像を除去する偽像除去処理用箔影像を生成する偽像除去処理用箔影像生成手段と
    を備えることを特徴とする放射線撮影装置。
  6. 請求項5に記載の放射線撮影装置において、
    前記箔影強調像生成手段は、前記グリッド箔の延在方向に対して低域領域を通過させる低域通過型フィルタであることを特徴とする放射線撮影装置。
  7. 請求項5または請求項6に記載の放射線撮影装置において、
    前記偽像除去処理用箔影像生成手段は、複数の画素での積算値を前記箔影強調像および前記対応校正像についてそれぞれ求め、各々の積算値に基づいて前記偽像除去処理用箔影像を生成することを特徴とする放射線撮影装置。
  8. 請求項5から請求項7のいずれかに記載の放射線撮影装置において、
    前記偽像除去処理用箔影像に基づいて、前記グリッド箔による箔影を除去した偽像除去処理済像を生成する偽像除去処理済像生成手段を備え、
    その偽像除去処理済像生成手段で生成された前記偽像除去処理済像を前記放射線画像として最終的に得ることを特徴とする放射線撮影装置。
JP2012063530A 2012-03-21 2012-03-21 放射線撮影装置 Active JP5928043B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012063530A JP5928043B2 (ja) 2012-03-21 2012-03-21 放射線撮影装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012063530A JP5928043B2 (ja) 2012-03-21 2012-03-21 放射線撮影装置

Publications (2)

Publication Number Publication Date
JP2013192777A true JP2013192777A (ja) 2013-09-30
JP5928043B2 JP5928043B2 (ja) 2016-06-01

Family

ID=49392429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063530A Active JP5928043B2 (ja) 2012-03-21 2012-03-21 放射線撮影装置

Country Status (1)

Country Link
JP (1) JP5928043B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104199082A (zh) * 2014-07-09 2014-12-10 中国计量科学研究院 X射线与激光同轴系统
CN107789000A (zh) * 2016-09-06 2018-03-13 佳能株式会社 放射线摄像装置、系统、方法和计算机可读介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139115A1 (ja) * 2006-05-31 2007-12-06 Shimadzu Corporation 放射線撮像装置
WO2010092615A1 (ja) * 2009-02-10 2010-08-19 株式会社島津製作所 放射線撮像装置
JP2011167334A (ja) * 2010-02-18 2011-09-01 Shimadzu Corp 放射線撮影装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139115A1 (ja) * 2006-05-31 2007-12-06 Shimadzu Corporation 放射線撮像装置
JP4840446B2 (ja) * 2006-05-31 2011-12-21 株式会社島津製作所 放射線撮像装置
WO2010092615A1 (ja) * 2009-02-10 2010-08-19 株式会社島津製作所 放射線撮像装置
JP2011167334A (ja) * 2010-02-18 2011-09-01 Shimadzu Corp 放射線撮影装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104199082A (zh) * 2014-07-09 2014-12-10 中国计量科学研究院 X射线与激光同轴系统
CN107789000A (zh) * 2016-09-06 2018-03-13 佳能株式会社 放射线摄像装置、系统、方法和计算机可读介质

Also Published As

Publication number Publication date
JP5928043B2 (ja) 2016-06-01

Similar Documents

Publication Publication Date Title
JP6549535B2 (ja) 放射線画像撮影システム、画像処理方法、及び画像処理プログラム
JP5407774B2 (ja) 放射線撮影装置
JP5375655B2 (ja) 放射線撮影装置
JP5152346B2 (ja) 放射線撮像装置
JP2012200567A (ja) 放射線撮影システム及び放射線撮影方法
JP2012090945A (ja) 放射線検出装置、放射線撮影装置、放射線撮影システム
JP2013078464A (ja) 放射線撮影装置及び画像処理方法
JP2015150185A (ja) X線撮影システム及び画像処理方法
WO2014192889A1 (ja) X線エネルギー別画像再構成装置及び方法並びにx線三次元測定装置及び方法
JP2005013738A (ja) トモシンセシス用途における対象物を走査するためのシステム及び方法
JP5526775B2 (ja) 放射線撮像装置
JP4935895B2 (ja) エッジ評価方法とエッジ検出方法と画像補正方法と画像処理システム
JP5928043B2 (ja) 放射線撮影装置
JP3926574B2 (ja) 断層撮影装置
JP5768932B2 (ja) 放射線撮影装置
JP2014155508A (ja) 放射線撮影システム
JP4636258B2 (ja) X線撮影装置
JP4823780B2 (ja) パノラマ断層像生成装置及びパノラマ断層像生成プログラム
JP5206426B2 (ja) 放射線撮像装置
JP4045443B2 (ja) 傾斜型x線ct装置における回転中心軸の較正方法および傾斜型x線ct装置
JP5939163B2 (ja) 放射線撮影装置
JP6783702B2 (ja) X線断層撮影装置
JP6500016B2 (ja) 試験対象物とx線検査システムとの間の危険領域を決定する方法
JP7387814B2 (ja) X方向及びy方向の両方向での焦点スポット運動の検出及び補正のためのシステム及び方法
JP2014132913A (ja) 放射線撮影システム及び放射線撮影方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R151 Written notification of patent or utility model registration

Ref document number: 5928043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151