JP2013191709A - Method of manufacturing three-dimensional circuit board - Google Patents

Method of manufacturing three-dimensional circuit board Download PDF

Info

Publication number
JP2013191709A
JP2013191709A JP2012056538A JP2012056538A JP2013191709A JP 2013191709 A JP2013191709 A JP 2013191709A JP 2012056538 A JP2012056538 A JP 2012056538A JP 2012056538 A JP2012056538 A JP 2012056538A JP 2013191709 A JP2013191709 A JP 2013191709A
Authority
JP
Japan
Prior art keywords
circuit board
film
wiring
substrate
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012056538A
Other languages
Japanese (ja)
Inventor
Hiroshi Okada
浩 岡田
Tetsushi Kawakami
哲史 川上
Kan Yoshida
堪 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012056538A priority Critical patent/JP2013191709A/en
Publication of JP2013191709A publication Critical patent/JP2013191709A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a three-dimensional circuit board in which occurrence of a gap in a joint due to bonding of a film-like circuit board to a substrate is eliminated, not by bonding the film-like circuit board to the substrate but by forming the wiring directly on the surface of the substrate.SOLUTION: The method of manufacturing the three-dimensional circuit board in which the wiring is formed on the peripheral surface of a cylindrical or columnar substrate 10, includes a step for preparing a film-like circuit board 50 in which a metal film 40 is formed on one surface of an insulating film 30, a step for preparing the substrate 10 in which an adhesive layer 20 is formed on the peripheral surface, and a step for forming the wiring by compression bonding the surface of the film-like circuit board 50, on which the metal film 40 is formed, to the peripheral surface of the substrate 10, thereby transferring the metal film 40 to the peripheral surface of the substrate 10.

Description

本発明は、立体的回路基板の製造方法に関し、特に、円筒形状又は円柱形状を有する基体の周面に配線が形成された立体的回路基板の製造方法に関する。   The present invention relates to a method for manufacturing a three-dimensional circuit board, and more particularly, to a method for manufacturing a three-dimensional circuit board in which wiring is formed on a peripheral surface of a substrate having a cylindrical shape or a columnar shape.

近年、携帯電話などの電子機器の小型化、多機能化及び低コスト化に伴い、その基体の内面や外面に、回路基板をコンパクトに実装することが要求されている。このため、回路基板として平面的なものではなく、立体的なものが必要とされる場合がある。また、複写機の分野でも、現像用ローラなどの金属製又は樹脂製の円柱形状又は円筒形状の基体の表面の全周に亘って回路基板を形成し、立体的回路基板を製造することが提案されている(例えば、特許文献1参照)。   In recent years, along with the downsizing, multifunctionalization, and cost reduction of electronic devices such as mobile phones, it has been required to mount circuit boards in a compact manner on the inner and outer surfaces of the substrate. For this reason, not a planar circuit board but a three-dimensional one may be required. Also, in the field of copying machines, it is proposed that a circuit board be formed over the entire circumference of the surface of a cylindrical or cylindrical substrate made of metal or resin such as a developing roller to produce a three-dimensional circuit board. (For example, refer to Patent Document 1).

このような基体の表面全周に回路基板を形成する手段として、ポリイミド、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などの絶縁性フィルムの表面に電極配線を設けたフィルム状回路基板を基体の外周に貼り付ける方法がある。このようなフィルム状回路基板は、多量に、かつ、安価に製造することができるため、フィルム状回路基板を基体に貼り付ける方法は、基体に電極配線を直接形成する方法よりも容易と考えられる。   As a means for forming a circuit board around the entire surface of such a base, a film-like circuit board in which electrode wiring is provided on the surface of an insulating film such as polyimide, polyethylene terephthalate (PET), or polyethylene naphthalate (PEN) is used as the base. There is a method of sticking to the outer periphery of the. Since such a film-like circuit board can be produced in a large amount and at a low cost, it is considered that the method of attaching the film-like circuit board to the substrate is easier than the method of directly forming the electrode wiring on the substrate. .

ところで、フィルムを缶体にラミネートする方法として、フィルムを円柱形状又は円筒形状である缶体にロータリカッタ方式で貼り付ける方法が提案されている(例えば、特許文献2参照)。この方法では、自立保持不能な柔軟性のあるフィルムを、高い精度で所定の長さに切断し、得られたフィルムを缶体に供給してラミネートを行うことにより、缶体へのフィルムの貼り付けを可能としている。   By the way, as a method of laminating a film on a can body, a method of sticking a film to a cylindrical or cylindrical can body by a rotary cutter method has been proposed (for example, see Patent Document 2). In this method, a flexible film that cannot be held on its own is cut into a predetermined length with high accuracy, and the obtained film is supplied to the can body for lamination, whereby the film is attached to the can body. It is possible to attach.

特許文献2に記載されたロータリカッタ方式による貼付け方法は、缶体やボトルなどの飲料容器の表面にラベルを貼ることを目的として開発されたものである。そのため、ラベルを貼る位置精度などを厳密に管理する必要がなく、また、飲料容器の表面全周にラベルを貼り付ける場合は、フィルムに重なりやフィルム端部に間隙が生じても問題となることはない。   The sticking method by the rotary cutter method described in Patent Document 2 has been developed for the purpose of sticking a label on the surface of a beverage container such as a can or a bottle. For this reason, it is not necessary to strictly manage the positional accuracy of the label, and when a label is applied to the entire surface of the beverage container, it may cause a problem even if the film overlaps or a gap occurs at the end of the film. There is no.

これに対して、電子機器用のフィルム状回路基板を円柱形状又は円筒形状の基体の表面全周に貼り付ける場合には、フィルム状回路基板に重なりや大きな間隙があると、回路を構成する配線に短絡や導通不良が発生したり、トナーがこの間隙に入り込むなどしたりして、回路の電気的特性に影響を及ぼすため大きな問題となる。よって、フィルム状回路基板を、重なることなく、かつ、回路基板の端部間の間隙が許容される程度に小さくなるように、貼り付けることが要求される。   On the other hand, when a film-like circuit board for electronic equipment is attached to the entire surface of a columnar or cylindrical substrate, if there is an overlap or a large gap on the film-like circuit board, the wiring constituting the circuit This causes a serious problem because a short circuit or a conduction failure occurs, or toner enters the gaps and affects the electrical characteristics of the circuit. Therefore, it is required to attach the film-like circuit board so that it does not overlap and is small enough to allow the gap between the ends of the circuit board.

特開平6−59568号公報JP-A-6-59568 特開平10−236446号公報Japanese Patent Laid-Open No. 10-236446 特開2009−267014号公報JP 2009-267014 A

しかしながら、上述の要求に応じるべく、フィルム状回路基板を精度よく切断し、貼付け時に重なりや大きな間隙が生じないように貼り付けた場合でも、フィルム状回路基板の切断によるバラツキは存在し、かつ、基体自体にも仕上がり径のバラツキが存在するため、フィルム状回路基板の重なりや端部間における許容範囲を超えた間隙の発生を阻止できていないのが現状である。   However, in order to meet the above-mentioned requirements, even when the film-like circuit board is cut with high accuracy and pasted so that there is no overlap or large gap at the time of sticking, there is variation due to the cutting of the film-like circuit board, and Since there are variations in the finished diameter of the substrate itself, the present situation is that the occurrence of a gap exceeding the allowable range between the overlapping of the film-like circuit boards and the end portions cannot be prevented.

また、かかる間隙については、貼り付けた回路基板の表面保護用に樹脂を塗布して間隙を埋設できれば、短絡や導通不良の防止に有効であるが、現状では、表面保護用の樹脂を塗布したとしても間隙の段差を完全に埋めきれずに、フィルム状回路基板の端部が露出してしまう場合がある。この問題点を解消するために、生じたつなぎ目の隙間部分に樹脂を充填するなどの方法も提案されている(特許文献3)。   In addition, for such a gap, if a resin can be applied for surface protection of the circuit board that is pasted and the gap can be embedded, it is effective in preventing short circuits and poor conduction, but currently, a resin for surface protection is applied. However, the step of the gap may not be completely filled, and the end of the film-like circuit board may be exposed. In order to solve this problem, a method has been proposed in which resin is filled in the gap portion of the generated joint (Patent Document 3).

しかしながら、つなぎ目の隙間部分に樹脂を充填しても、樹脂は厚さの薄い部分が厚い部分に引っ張られる特性があるため、窪みから外側に樹脂が引っ張られ、つなぎ目の隙間部分にあまり樹脂を留めておくことができず、隙間部分に残る樹脂が少なってしまい、やはり段差が解消されないという問題があった。   However, even if the gap is filled with resin, the resin has the property that the thin part is pulled to the thick part. In other words, there is a problem that the resin remains in the gap portion and the step is not solved.

そこで、本発明は、フィルム状回路基板を基体に貼り付けるのではなく、基体の表面に配線を直接的に形成し、フィルム状回路基板を基体に貼り付けることにより生じるつなぎ目の隙間部分を発生させない立体的回路基板の製造方法を提供することを目的とする。   In view of this, the present invention does not generate a gap portion between joints formed by directly forming the wiring on the surface of the substrate and affixing the film circuit substrate to the substrate, instead of attaching the film circuit substrate to the substrate. An object of the present invention is to provide a method for manufacturing a three-dimensional circuit board.

上記目的を達成するため、本発明の一態様に係る立体的回路基板の製造方法は、円筒形状又は円柱形状を有する基体の周面に配線が形成された立体的回路基板の製造方法であって、
絶縁性フィルムの片面に金属膜が形成されているフィルム状基板を用意する工程と、
前記周面に接着剤層が形成された前記基体を用意する工程と、
前記基体の前記周面に前記フィルム状基板の前記金属膜が形成された面を圧着させ、前記金属膜を前記基体の前記周面に転写して前記配線を形成する工程と、を有することを特徴とする。
In order to achieve the above object, a method for manufacturing a three-dimensional circuit board according to one aspect of the present invention is a method for manufacturing a three-dimensional circuit board in which wiring is formed on a peripheral surface of a base having a cylindrical shape or a columnar shape. ,
Preparing a film-like substrate in which a metal film is formed on one side of the insulating film;
Preparing the base having an adhesive layer formed on the peripheral surface;
Pressing the surface of the film substrate on which the metal film is formed on the peripheral surface of the base, and transferring the metal film to the peripheral surface of the base to form the wiring. Features.

また、前記金属膜は、前記絶縁性フィルムの片面の略全面に形成され、
前記配線は、前記金属膜の一部が、前記配線と同一パターンの凸部を有する押圧部材を用いて転写されることにより形成されてもよい。
The metal film is formed on substantially the entire surface of one side of the insulating film,
The wiring may be formed by transferring a part of the metal film using a pressing member having a convex portion having the same pattern as the wiring.

この場合、前記金属膜は、1μm以下の厚さであることが好ましい。   In this case, the metal film preferably has a thickness of 1 μm or less.

また、前記金属膜は、前記配線と同一パターンに形成され、
前記配線は、前記金属膜がそのまま転写されることにより形成されてもよい。
Further, the metal film is formed in the same pattern as the wiring,
The wiring may be formed by transferring the metal film as it is.

ここで、前記絶縁性フィルムは、ポリエチレンテレフタレート又はポリエチレンナフタレートであることが好ましい。   Here, the insulating film is preferably polyethylene terephthalate or polyethylene naphthalate.

また、前記接着剤層は、熱硬化型の接着剤により構成されており、前記金属膜を前記基体に圧着させる際に加熱されて粘着性を発揮することが好ましい。   The adhesive layer is preferably composed of a thermosetting adhesive, and is preferably heated to exert pressure-sensitive adhesiveness when the metal film is pressure-bonded to the substrate.

更に、前記接着剤層は、スプレー塗布により形成されることが好ましい。   Furthermore, the adhesive layer is preferably formed by spray coating.

また、前記金属膜の前記基体への転写の度合いは、前記絶縁性フィルムと前記金属膜との密着性を変化させることにより調整され得る。   The degree of transfer of the metal film to the substrate can be adjusted by changing the adhesion between the insulating film and the metal film.

ここで、前記密着性は、ピール強度98N/m〜361N/mの範囲で調整されることが好ましい。   Here, the adhesiveness is preferably adjusted in a range of peel strength of 98 N / m to 361 N / m.

本発明によれば、周面に段差が無く、全周に亘り平坦な立体的回路基板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, there is no level | step difference in a surrounding surface, and a flat three-dimensional circuit board can be provided over a perimeter.

本発明の実施形態1に係る立体的回路基板の製造方法の一例を示した図である。It is the figure which showed an example of the manufacturing method of the three-dimensional circuit board which concerns on Embodiment 1 of this invention. 本実施形態に係る立体的回路基板の製造方法により製造された立体的回路基板の一例を示した図である。It is the figure which showed an example of the three-dimensional circuit board manufactured by the manufacturing method of the three-dimensional circuit board which concerns on this embodiment. 本発明の実施形態2に係る立体的回路基板の製造方法の一例を示した図である。It is the figure which showed an example of the manufacturing method of the three-dimensional circuit board which concerns on Embodiment 2 of this invention. 実施例1において立体的回路基板の周面に形成される配線のパターンを示した図である。FIG. 3 is a diagram showing a wiring pattern formed on the peripheral surface of a three-dimensional circuit board in Example 1.

以下、図面を参照して、本発明を実施するための形態の説明を行う。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

〔実施形態1〕
図1は、本発明の実施形態1に係る立体的回路基板の製造方法の一例を示した図である。図1に示すように、実施形態1に係る立体的回路基板の製造方法においては、基体10と、接着剤層20と、フィルム状基板50と、凸状押圧部材60とを用いる。なお、フィルム状基板50は、絶縁性フィルム30と、金属膜40とを有する。
Embodiment 1
FIG. 1 is a diagram showing an example of a manufacturing method of a three-dimensional circuit board according to Embodiment 1 of the present invention. As shown in FIG. 1, in the method for manufacturing a three-dimensional circuit board according to the first embodiment, a base body 10, an adhesive layer 20, a film-like substrate 50, and a convex pressing member 60 are used. The film-like substrate 50 has an insulating film 30 and a metal film 40.

基体10は、円筒形状、円柱形状又はローラ形状を有する回路形成対象媒体である。基体10の外周面に配線が形成されることにより、立体的回路基板として構成される。基体10は、金属や樹脂等の種々の材料により構成されてよいが、例えば、アルミニウムのパイプにより構成されてもよい。   The substrate 10 is a circuit formation target medium having a cylindrical shape, a columnar shape, or a roller shape. A wiring is formed on the outer peripheral surface of the base 10 to form a three-dimensional circuit board. The base 10 may be composed of various materials such as metal and resin, but may be composed of, for example, an aluminum pipe.

接着剤層20は、基体10の周面に配線を接着して固定するための接合手段であり、基体10の外周面上のほぼ全領域に形成される。接着剤層20に用いられる接着剤は、ムラ無く基体10の外周面上に形成でき、配線を接着固定できれば種々の接着剤を用いることができるが、例えば、熱硬化型の接着剤を用いることが好ましい。熱硬化タイプの接着剤は、常温では固体でありタック性(粘着性)を有しないが、加熱するとタック性(粘着性)を発揮する。よって、常温下で固体状の接着剤層20を基体10の周面上に形成し、配線の接着が必要なときに加熱して接着剤として機能するようにすれば、基体10の表面に塗布される接着剤層20の取り扱いを容易に行うことができる。   The adhesive layer 20 is a bonding means for adhering and fixing the wiring to the peripheral surface of the base 10, and is formed in almost the entire region on the outer peripheral surface of the base 10. The adhesive used for the adhesive layer 20 can be formed on the outer peripheral surface of the substrate 10 without unevenness, and various adhesives can be used as long as the wiring can be bonded and fixed. For example, a thermosetting adhesive is used. Is preferred. Thermosetting adhesives are solid at room temperature and do not have tackiness (adhesiveness), but exhibit tackiness (adhesiveness) when heated. Therefore, if a solid adhesive layer 20 is formed on the peripheral surface of the base 10 at room temperature and heated to function as an adhesive when wiring bonding is required, it can be applied to the surface of the base 10. The adhesive layer 20 to be handled can be easily handled.

接着剤層20の形成方法は、基体10の外周面上に、接着剤層20を段差及びムラ無く形成できれば、種々の接着剤層20の形成方法を用いることができるが、例えば、スプレーにより接着剤を噴霧して塗布するようにしてもよい。スプレーによる塗布は、基体10の表面に段差無く均一な塗布が可能であるので、本実施形態に係る立体的回路基板の製造方法に好適に用いることができる。   As the method for forming the adhesive layer 20, various methods for forming the adhesive layer 20 can be used as long as the adhesive layer 20 can be formed on the outer peripheral surface of the substrate 10 without any level difference and unevenness. You may make it apply | coat by spraying an agent. The application by spraying can be applied uniformly to the surface of the substrate 10 without a step, and thus can be suitably used in the method for manufacturing a three-dimensional circuit board according to the present embodiment.

なお、接着剤層20は、段差の無い均一な形成さえ可能であれば、両面テープのような粘着剤を用いることも可能である。両面テープを用いる場合には、例えば、熱硬化型の接着性のフィルムを用い、加熱させてタック性を発揮させるようにしてもよい。このように、本実施形態に係る立体的回路基板の製造方法における接着剤層20は、粘着剤層を除外した狭義の接着剤層20に限るのではなく、粘着剤層も含んでよい。   The adhesive layer 20 can be made of a pressure sensitive adhesive such as a double-sided tape as long as it can be uniformly formed without a step. When a double-sided tape is used, for example, a thermosetting adhesive film may be used and heated to exhibit tackiness. Thus, the adhesive layer 20 in the manufacturing method of the three-dimensional circuit board according to the present embodiment is not limited to the adhesive layer 20 in a narrow sense excluding the adhesive layer, and may also include an adhesive layer.

接着剤層20は、仮硬化と本硬化の2段階で硬化する熱硬化性の接着剤から構成されてもよい。例えば、150〜160℃で仮硬化してタック性を発揮し、180℃で本硬化するような接着剤を用いるようにしてもよい。この場合には、基体10の表面に配線を転写する際には、仮硬化させてタック性を発揮させ、配線の転写が終了してから本硬化を行い、配線を固定させれば、スムーズに転写を行うことができる。なお、このような2段階に硬化する接着剤層20は、スプレー式で形成される接着剤と接着性フィルムで形成される接両面テープの双方について既に市販されており、両方とも利用可能であるので、用途に応じて、このような2段階で硬化する接着剤層20を用いるようにしてよい。   The adhesive layer 20 may be composed of a thermosetting adhesive that cures in two stages of temporary curing and main curing. For example, an adhesive that temporarily cures at 150 to 160 [deg.] C. to exhibit tackiness and that is cured at 180 [deg.] C. may be used. In this case, when the wiring is transferred to the surface of the substrate 10, it is temporarily cured to exhibit tackiness, and after the transfer of the wiring is completed, the main curing is performed and the wiring is fixed, so that the wiring can be smoothly performed. Transcription can be performed. Note that such an adhesive layer 20 that cures in two stages is already commercially available for both adhesives formed by spraying and adhesive double-sided tapes formed by adhesive films, and both can be used. Therefore, the adhesive layer 20 that cures in two steps may be used depending on the application.

フィルム状基板50は、基体10の表面に配線を形成するための金属膜40を保持するための基材である。フィルム状基板50は、絶縁性フィルム30の片側の表面に、金属膜40が形成されて構成される。   The film substrate 50 is a base material for holding the metal film 40 for forming wiring on the surface of the base 10. The film-like substrate 50 is configured by forming a metal film 40 on the surface of one side of the insulating film 30.

絶縁性フィルム30は、フィルム状の絶縁体であれば、種々の材料から構成され得るが、金属膜40との密着度があまり高くない材料から構成されることが好ましい。これは、本実施形態に係る立体的回路基板の製造方法においては、絶縁性フィルム30の片面に形成された金属膜40を基体10の表面に圧着により転写するが、その際、金属膜40と絶縁性フィルム30との密着性が高すぎると、絶縁性フィルム30から金属膜40が離れず、転写がスムーズに行われないという事態が発生し得る。よって、絶縁性フィルム30の材料は、金属膜40との密着度があまり高くない材料が選択され、例えば、ポリエチレンテレフタレート(PET)や、ポリエチレンナフタレート(PEN)等が用いられる。   The insulating film 30 can be made of various materials as long as it is a film-like insulator, but is preferably made of a material that does not have a high degree of adhesion with the metal film 40. This is because the metal film 40 formed on one surface of the insulating film 30 is transferred onto the surface of the substrate 10 by pressure bonding in the manufacturing method of the three-dimensional circuit board according to the present embodiment. If the adhesiveness with the insulating film 30 is too high, the metal film 40 is not separated from the insulating film 30, and a situation in which transfer is not performed smoothly may occur. Therefore, the material of the insulating film 30 is selected so that the degree of adhesion with the metal film 40 is not so high. For example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or the like is used.

また、絶縁性フィルム30と金属膜40との密着度は、例えば、ピール強度98N/m〜361N/mの範囲内にあることが好ましい。この程度の密着度であれば、絶縁性フィルム30上に金属膜40が形成された状態を圧着が開始される前まで維持でき、圧着が開始されてからは容易に金属膜40を絶縁性フィルム30から乖離させて基体10に転写することができる。上述のポリエチレンテレフタレート及びポリエチレンナフタレートは、上述のピール強度98N/m以上361N/m以下の金属膜40との密着度を満たすことができる材料であり、本実施形態に係る立体的回路基板の製造方法に好適に利用することができる。   Moreover, it is preferable that the adhesiveness of the insulating film 30 and the metal film 40 exists in the range of the peel strength 98N / m-361N / m, for example. With this degree of adhesion, the state in which the metal film 40 is formed on the insulating film 30 can be maintained until the pressure bonding is started, and the metal film 40 can be easily attached to the insulating film after the pressure bonding is started. The image can be transferred to the substrate 10 by being separated from 30. The above-mentioned polyethylene terephthalate and polyethylene naphthalate are materials that can satisfy the adhesion with the metal film 40 having the above-mentioned peel strength of 98 N / m or more and 361 N / m or less, and the manufacture of the three-dimensional circuit board according to this embodiment. It can utilize suitably for a method.

金属膜40は、導電性の高い配線材料として用いられる金属材料であれば、種々の材料が用いられ得るが、例えば、銅、アルミニウム、銀等の配線材料を、用途に応じて用いることができる。   Various materials can be used for the metal film 40 as long as it is a metal material used as a highly conductive wiring material. For example, a wiring material such as copper, aluminum, or silver can be used according to the application. .

金属膜40は、絶縁性フィルム30の片面の略全面を覆うように形成される。本実施形態に係る立体的回路基板の製造方法においては、凸状押圧部材60を用いて配線パターンを形成するため、凸状押圧部材60の凸部に対応する箇所には総て金属膜40が存在する必要がある。よって、金属膜40は、絶縁性フィルムの片面のほぼ総ての領域を覆うように形成される。なお、金属膜40の形成は、蒸着、スパッタリング、無電解めっき等、種々の方法により行われてよい。   The metal film 40 is formed so as to cover substantially the entire one surface of the insulating film 30. In the manufacturing method of the three-dimensional circuit board according to the present embodiment, since the wiring pattern is formed using the convex pressing member 60, the metal film 40 is entirely formed at locations corresponding to the convex portions of the convex pressing member 60. Must exist. Therefore, the metal film 40 is formed so as to cover almost all regions on one side of the insulating film. In addition, formation of the metal film 40 may be performed by various methods, such as vapor deposition, sputtering, and electroless plating.

金属膜40の厚さは、用途に応じて定めてよいが、例えば、1μm以下となるように設定する。本実施形態においては、転写の際、配線を形成する部分のみを基体10に転写するので、金属膜40の一部を切断して基体10に転写するが、金属膜40が厚すぎると、金属膜40の強度が増して切断が困難になり、適切な転写が行えなくなるおそれがあるからである。なお、金属膜40の厚さが薄過ぎて転写が困難になるということは無いので、金属膜40の厚さは、0μmより大きく40μm以下であればよい。   The thickness of the metal film 40 may be determined according to the application, but is set to be 1 μm or less, for example. In the present embodiment, at the time of transfer, only the portion for forming the wiring is transferred to the base 10, so a part of the metal film 40 is cut and transferred to the base 10. If the metal film 40 is too thick, This is because the strength of the film 40 increases so that the cutting becomes difficult, and there is a possibility that proper transfer cannot be performed. Since the metal film 40 is not too thin and transfer is not difficult, the thickness of the metal film 40 may be greater than 0 μm and 40 μm or less.

フィルム状基板50の金属膜40が存在する側の面が、基体10の外周面に圧着されることにより金属膜40が基体10に転写されるため、フィルム状回路基板50は、基体10の外周面を覆う大きさ及び形状を有して構成される。具体的には、横幅が基体10の幅とほぼ同じであり、縦の長さが基体10の円筒部又は円柱部の円周の長さより長いことが必要である。   Since the metal film 40 is transferred to the base 10 by pressing the surface of the film-like board 50 on the side where the metal film 40 exists to the outer peripheral face of the base 10, the film-like circuit board 50 has the outer periphery of the base 10. It has a size and shape that covers the surface. Specifically, it is necessary that the lateral width is substantially the same as the width of the base 10 and the vertical length is longer than the circumferential length of the cylindrical portion or the columnar portion of the base 10.

凸状押圧部材60は、フィルム状基板50を基体10に対して圧着し、金属膜40を基体10に転写し、所定の配線パターンを基体10の周面上に形成するための圧着手段である。凸状押圧部材60の表面には、所定の配線パターンに対応した凹凸形状が形成され、凹凸形状の凸部61がフィルム状基板50を基体10に圧着し、金属膜40を基体10の周面に転写する。つまり、凸状押圧部材60は、基体10の外周面に形成する配線パターンと同一の凸部61が形成され、凸部61に圧着された部分の金属膜40が基体10に転写される。よって、転写されない部分は、凹凸形状の凹部62として形成される。凸状押圧部材60は、横幅(紙面に垂直な方向)が基体10の横幅の配線の形成をカバーでき、縦の長さが基体10の外周面の円周長さをカバーできるような長方形の板状に構成されてよい。凸状押圧部材60の材質は、一般的なプレス加工等に利用されている金型、押圧部材に用いられている材料が用いられてよい。   The convex pressing member 60 is a pressure-bonding means for pressure-bonding the film-like substrate 50 to the base 10, transferring the metal film 40 to the base 10, and forming a predetermined wiring pattern on the peripheral surface of the base 10. . An uneven shape corresponding to a predetermined wiring pattern is formed on the surface of the convex pressing member 60, the uneven convex portion 61 presses the film substrate 50 to the base 10, and the metal film 40 is attached to the peripheral surface of the base 10. Transcript to. That is, the convex pressing member 60 is formed with the same convex portion 61 as the wiring pattern formed on the outer peripheral surface of the base body 10, and the metal film 40 at the portion crimped to the convex portion 61 is transferred to the base body 10. Therefore, the portion that is not transferred is formed as a concave-convex concave portion 62. The convex pressing member 60 has a rectangular shape whose horizontal width (direction perpendicular to the paper surface) can cover the formation of the wiring having the horizontal width of the substrate 10 and whose vertical length can cover the circumferential length of the outer peripheral surface of the substrate 10. You may comprise in plate shape. The material of the convex pressing member 60 may be a mold used for general pressing or the like, or a material used for the pressing member.

次に、引き続き図1を用いて、かかる構成要素を用いた実施形態1に係る立体的回路基板の製造方法の具体的な加工方法について説明する。   Next, a specific processing method of the manufacturing method of the three-dimensional circuit board according to Embodiment 1 using such components will be described with reference to FIG.

まず、周面に接着剤層20が形成された円筒形状又は円柱形状の基体10が用意される。同時に、絶縁性フィルム30の表面に金属膜40が形成されたフィルム状基板50が用意され、金属膜40が形成された面が基体10側となるように、凸状押圧部材60の凹凸面と基体10の外周面との間に挟まれるようにして配置される。   First, a cylindrical or columnar substrate 10 having an adhesive layer 20 formed on the peripheral surface is prepared. At the same time, a film-like substrate 50 in which the metal film 40 is formed on the surface of the insulating film 30 is prepared, and the uneven surface of the convex pressing member 60 is arranged so that the surface on which the metal film 40 is formed is on the substrate 10 side. It arrange | positions so that it may be pinched | interposed between the outer peripheral surfaces of the base | substrate 10. As shown in FIG.

次いで、図1に示すように、凸状押圧部材60を基体10側に向かって押圧(プレス)し、フィルム状基板50を基体10に押し当てる。凸状押圧部材60の凸部61は、絶縁性フィルム30を押圧し、押圧した部分の下の金属膜40が、接着剤層20に圧着され、基体10側に金属膜40が転写される。その際、接着剤層20がタック性を有する温度に加熱した状態で圧着が行われる。また、基体10を回転させるとともに、凸状押圧部材60を基体10の回転方向と同じ方向に前進させ、基体10の外周全面に金属膜40の転写を行う。   Next, as shown in FIG. 1, the convex pressing member 60 is pressed (pressed) toward the substrate 10, and the film substrate 50 is pressed against the substrate 10. The convex part 61 of the convex pressing member 60 presses the insulating film 30, the metal film 40 under the pressed part is pressed against the adhesive layer 20, and the metal film 40 is transferred to the base 10 side. At that time, pressure bonding is performed in a state where the adhesive layer 20 is heated to a temperature having tackiness. Further, the base 10 is rotated and the convex pressing member 60 is advanced in the same direction as the rotation direction of the base 10 to transfer the metal film 40 to the entire outer periphery of the base 10.

また、転写後は、必要に応じて接着剤層20の硬化のための加熱等を行うようにしてよい。   Further, after the transfer, heating for curing the adhesive layer 20 may be performed as necessary.

このようにして、周面に配線が形成された立体的回路基板が製造される。配線が形成されたフィルム状の基板を基体10の表面に貼り付けるのではなく、金属膜40が直接基体10の表面に転写されるため、フィルム状の基板の間隙による段差が無く、全周面に均一に配線を形成することができる。   In this way, a three-dimensional circuit board having a wiring formed on the peripheral surface is manufactured. The metal film 40 is directly transferred to the surface of the substrate 10 instead of attaching the film substrate on which the wiring is formed to the surface of the substrate 10, so that there is no step due to the gap between the film substrates, and the entire circumferential surface Wiring can be formed uniformly.

図2は、本実施形態に係る立体的回路基板の製造方法により製造された立体的回路基板の一例を示した図である。図2において、円筒形状又は円柱形状の基体10の外周表面には、段差が無く均一な接着剤層20が形成され、接着剤層20の表面には、配線41を形成する金属膜40が貼り付けられている。このように、実施形態1に係る立体的回路基板の製造方法によれば、周面に段差の無い立体的回路基板を製造することができる。   FIG. 2 is a diagram illustrating an example of a three-dimensional circuit board manufactured by the method of manufacturing a three-dimensional circuit board according to the present embodiment. In FIG. 2, a uniform adhesive layer 20 without a step is formed on the outer peripheral surface of a cylindrical or columnar substrate 10, and a metal film 40 for forming a wiring 41 is pasted on the surface of the adhesive layer 20. It is attached. Thus, according to the manufacturing method of the three-dimensional circuit board concerning Embodiment 1, the three-dimensional circuit board without a level | step difference can be manufactured on a surrounding surface.

なお、本実施形態に係る立体的回路基板は、プリンタの現像ローラに用いられる場合が多く、例えば、当該現像ローラに用いられる場合には、配線は、軸に平行に延在する櫛歯の配線パターンであったり、横断歩道のようなスリットの配線パターンであったりする場合が多い。よって、凸状押圧部材60の凸部61及び凹部62の形状は、必ずしも複雑なパターンでなくてもよく、加工精度的にも問題なく凸状押圧部材60を作製することができる。   The three-dimensional circuit board according to the present embodiment is often used for a developing roller of a printer. For example, when the three-dimensional circuit board is used for the developing roller, the wiring is a comb-shaped wiring extending in parallel to the axis. It is often a pattern or a wiring pattern of a slit like a pedestrian crossing. Therefore, the shape of the convex part 61 and the recessed part 62 of the convex pressing member 60 does not necessarily need to be a complicated pattern, and the convex pressing member 60 can be produced without a problem in terms of processing accuracy.

〔実施形態2〕
図3は、本発明の実施形態2に係る立体的回路基板の製造方法の一例を示した図である。なお、図3において、図1に示した実施形態1に係る立体的回路基板の製造方法に用いる構成要素と同様の構成要素については、同一の参照符号を付し、その説明を省略するものとする。
[Embodiment 2]
FIG. 3 is a diagram showing an example of a manufacturing method of a three-dimensional circuit board according to Embodiment 2 of the present invention. In FIG. 3, the same components as those used in the manufacturing method of the three-dimensional circuit board according to Embodiment 1 shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. To do.

図3において、実施形態2に係る立体的回路基板の製造方法に用いる構成要素は、基体10と、接着剤層20と、フィルム状基板51と、平面状押圧部材63を含む。また、フィルム状基板51は、絶縁性フィルム30と、配線41とを有する。   In FIG. 3, the components used in the method for manufacturing a three-dimensional circuit board according to the second embodiment include a base 10, an adhesive layer 20, a film-like substrate 51, and a planar pressing member 63. The film substrate 51 includes an insulating film 30 and wirings 41.

図3において、基体10及び接着剤層20は実施形態1と共通するが、フィルム状基板51の構成が実施形態1と異なっており、また、凸状押圧部材60が平面状押圧部材63に置き換わっている点で、実施形態1と異なっている。   In FIG. 3, the substrate 10 and the adhesive layer 20 are the same as those in the first embodiment, but the configuration of the film-like substrate 51 is different from that in the first embodiment, and the convex pressing member 60 is replaced with the planar pressing member 63. This is different from the first embodiment.

フィルム状基板51の片面には、金属膜42が形成されているが、金属膜42は既に配線43を構成している。実施形態1においては、フィルム状基板50の片面には、略全面を覆う金属膜40が形成されていたが、実施形態2においては、部分的に金属膜42が形成され、既にパターンが構成された配線43が形成されている。このように、フィルム状基板51に既に配線43を形成しておき、配線43をそのまま基体10の表面に転写するようにしてもよい。   A metal film 42 is formed on one surface of the film-like substrate 51, and the metal film 42 already constitutes the wiring 43. In the first embodiment, the metal film 40 covering substantially the entire surface is formed on one surface of the film-like substrate 50. However, in the second embodiment, the metal film 42 is partially formed and the pattern is already formed. Wiring 43 is formed. Thus, the wiring 43 may already be formed on the film-like substrate 51, and the wiring 43 may be transferred to the surface of the substrate 10 as it is.

平面状押圧部材63は、配線43の基体10への圧着を行うため、フィルム状基板51を基体10に押圧するための手段である。平面状押圧部材63の下面は、凹凸形状は形成されておらず、平坦面となっている。これは、既にフィルム状基板51の表面上に配線43が形成されているため、平面状押圧部材63は配線43をそのまま基体10に圧着して転写すれば足りるからであり、配線パターンに対応する凹凸形状を形成する必要が無いからである。   The planar pressing member 63 is a means for pressing the film-like substrate 51 against the substrate 10 in order to crimp the wiring 43 to the substrate 10. The lower surface of the planar pressing member 63 is not formed with an uneven shape, and is a flat surface. This is because the wiring 43 has already been formed on the surface of the film-like substrate 51, and it is sufficient for the planar pressing member 63 to squeeze and transfer the wiring 43 to the substrate 10 as it is, which corresponds to the wiring pattern. This is because it is not necessary to form an uneven shape.

このように、絶縁性フィルム30の表面上に、既に配線43を構成する金属膜42を形成しておき、平坦面を有する平面状押圧部材63で金属膜43を基体10にそのまま圧着して転写するようにしてもよい。かかるプロセスを用いても、外周面に配線43が形成された立体的回路基板を製造することができる。   As described above, the metal film 42 constituting the wiring 43 has already been formed on the surface of the insulating film 30, and the metal film 43 is directly pressure-bonded and transferred to the substrate 10 with the flat pressing member 63 having a flat surface. You may make it do. Even if such a process is used, a three-dimensional circuit board in which the wiring 43 is formed on the outer peripheral surface can be manufactured.

なお、実施形態2に係る立体的回路基板の製造方法においては、金属膜42の幅に制限は無く、1μm以上の横幅を有してもよい。これは、実施形態2に係る立体的回路基板の製造方法においては、圧着時に金属膜42の切断を行わないため、金属膜42の強度に関係なく転写を行えるためである。   In the method for manufacturing a three-dimensional circuit board according to the second embodiment, the width of the metal film 42 is not limited and may have a lateral width of 1 μm or more. This is because, in the method for manufacturing a three-dimensional circuit board according to the second embodiment, the metal film 42 is not cut at the time of pressure bonding, so that the transfer can be performed regardless of the strength of the metal film 42.

その他、金属膜42の材質、絶縁性フィルム30の材質等は、実施形態1に係る立体的回路基板の製造方法と同様であるので、その説明を省略する。   In addition, since the material of the metal film 42, the material of the insulating film 30, etc. are the same as that of the manufacturing method of the three-dimensional circuit board concerning Embodiment 1, the description is abbreviate | omitted.

また、平面状押圧部材63についても、表面が平坦である点が異なる以外は、凸状押圧部材60と同様の材質等で構成することができる。但し、図3には、実施形態1の凸状押圧部材60の表面を平坦にした形状の平面状押圧部材63が記載されているが、平面状押圧部材63は、基体10とフィルム状基板51の接触領域を押圧できれば足りるので、平面状押圧部材63の長さをもっと短くしたり、接触領域をカバーできる程度の径を有するローラ形状としたりすることも可能である。   The planar pressing member 63 can also be made of the same material as the convex pressing member 60 except that the surface is flat. However, in FIG. 3, the planar pressing member 63 having a shape in which the surface of the convex pressing member 60 of the first embodiment is flattened is described. However, the planar pressing member 63 includes the base 10 and the film substrate 51. It is sufficient that the contact area can be pressed, so that the length of the planar pressing member 63 can be further shortened, or a roller shape having a diameter that can cover the contact area can be formed.

また、基体10及び接着剤層20の構成及び材料、圧着の手順、金属膜42の横幅以外の種々の条件についても、実施形態1と同様であるので、その説明を省略する。   Further, since the various conditions other than the configuration and materials of the base 10 and the adhesive layer 20, the procedure of pressure bonding, and the lateral width of the metal film 42 are the same as those in the first embodiment, the description thereof is omitted.

また、実施形態2に係る立体的回路基板の製造方法により製造された立体的回路基板は、図2で示した立体的回路基板の金属膜40を金属膜42、配線41を配線43に置き換えたものと同様であるので、その説明を省略する。   In the three-dimensional circuit board manufactured by the method for manufacturing a three-dimensional circuit board according to the second embodiment, the metal film 40 and the wiring 41 of the three-dimensional circuit board shown in FIG. Since it is the same as that of a thing, the description is abbreviate | omitted.

実施形態2に係る立体的回路基板の製造方法によれば、凹凸形状が形成された押圧部材を用いることなく、基体10の表面に段差無く配線43を形成することができる。   According to the manufacturing method of the three-dimensional circuit board according to the second embodiment, the wiring 43 can be formed without a step on the surface of the base body 10 without using a pressing member having an uneven shape.

次に、実施形態1及び実施形態2に係る立体的回路基板の製造方法を実施した実施例について説明する。   Next, an example in which the manufacturing method of the three-dimensional circuit board according to the first and second embodiments is performed will be described.

〔実施例1〕
実施例1においては、実施形態1に係る立体的回路基板の製造方法を実施した。
[Example 1]
In Example 1, the manufacturing method of the three-dimensional circuit board which concerns on Embodiment 1 was implemented.

まず、厚さ12μmのポリエチレンナフタレート(PEN)(帝人製 商品名Q51)の表面に、蒸着法によってCu皮膜を0.8μmの厚さで形成した。この時の密着性を測定すると、211N/mのピール強度であった。   First, a Cu film with a thickness of 0.8 μm was formed on the surface of 12 μm thick polyethylene naphthalate (PEN) (trade name Q51 manufactured by Teijin) by vapor deposition. When the adhesion at this time was measured, the peel strength was 211 N / m.

図4は、実施例1において立体的回路基板の周面に形成される配線41のパターンを示した図である。図4に示す形状の配線パターンで、配線幅が500μm、250μm、100μm、75μmになる押圧部材を用いて、実施形態1の図1に示す方法で、ロール表面に押圧部材を熱圧着(温度150℃、押圧力10kg/cmの条件下)してCu皮膜を転写した。 FIG. 4 is a diagram illustrating a pattern of the wiring 41 formed on the peripheral surface of the three-dimensional circuit board in the first embodiment. Using the pressing member having a wiring width of 500 μm, 250 μm, 100 μm, and 75 μm in the wiring pattern having the shape shown in FIG. 4, the pressing member is thermocompression bonded to the roll surface by the method shown in FIG. The Cu film was transferred under the conditions of 0 ° C. and a pressing force of 10 kg / cm 2 .

なお、ロールは直径16mm、長さ300mmのアルミパイプを用い、これを基体としてこの周面にCu皮膜を転写する試験を行った。この基体表面全面に接着剤(テサテープ製 商品名8405)を貼り付け、実施形態1の図1に係る立体的回路基板の製造方法で転写を行った。この時、配線がどの程度転写できているかを確認した。   The roll was an aluminum pipe having a diameter of 16 mm and a length of 300 mm, and this was used as a base, and a test was conducted to transfer a Cu film onto the peripheral surface. An adhesive (trade name 8405 manufactured by Tessa Tape) was attached to the entire surface of the substrate, and transfer was performed by the method for manufacturing a three-dimensional circuit board according to FIG. At this time, it was confirmed how much the wiring was transferred.

表1は、各実施例の実施結果を示している。   Table 1 shows the results of each example.

Figure 2013191709
表1の上から2段目に、実施例1に係る立体的回路基板の製造方法の結果が示されている。密着性を示すピール強度は211N/mであり、転写された配線は、総ての配線幅において、縦又は横に形成した配線41が完全に基体に転写できていることが確認された。
Figure 2013191709
In the second row from the top of Table 1, the result of the manufacturing method of the three-dimensional circuit board according to Example 1 is shown. The peel strength indicating adhesion was 211 N / m, and it was confirmed that the wiring 41 formed in the vertical or horizontal direction was completely transferred to the substrate in all wiring widths.

〔実施例2〕
実施例2においては、実施形態1に係る立体的回路基板の製造方法を、実施例1と条件を変えて実施した。
[Example 2]
In Example 2, the manufacturing method of the three-dimensional circuit board according to Embodiment 1 was carried out by changing the conditions from Example 1.

まず、厚さ25μmのポリエチレンテレフタレート(PET)(東レ製 商品名S10)の表面に、スパッタ法によってCu皮膜を0.3μmの厚さで形成した。Cu皮膜形成後、120℃の温度で15分間加熱した。この時の密着性を測定すると、98N/mのピール強度であった。   First, a Cu film having a thickness of 0.3 μm was formed on the surface of 25 μm thick polyethylene terephthalate (PET) (trade name S10 manufactured by Toray Industries, Inc.) by sputtering. After forming the Cu film, it was heated at a temperature of 120 ° C. for 15 minutes. When the adhesion at this time was measured, the peel strength was 98 N / m.

次に、図4に示す形状の配線パターンとなるように、配線幅が500μm、250μm、100μm、75μmになる押圧部材を用いて、図1に示す方法でロール表面に押圧部材を熱圧着(温度120℃、押圧力10kg/cmの条件下)してCu皮膜を転写した。ロールは、直径16mm、長さ300mmのアルミパイプを基体とし、これにCu皮膜を転写する試験を行った。この基体の外周表面全面に、接着剤(スリーボンド製 商品名1571)層を、スプレー塗装で厚さ50μmになるよう形成し、実施形態1の図1の方法で転写を行った。 Next, using a pressing member having a wiring width of 500 μm, 250 μm, 100 μm, and 75 μm so that the wiring pattern having the shape shown in FIG. 4 is obtained, the pressing member is thermocompression bonded to the roll surface by the method shown in FIG. The Cu film was transferred under a condition of 120 ° C. and a pressing force of 10 kg / cm 2 . The roll was tested by transferring a Cu film onto an aluminum pipe having a diameter of 16 mm and a length of 300 mm as a base. An adhesive (trade name 1571 manufactured by ThreeBond) layer was formed on the entire outer peripheral surface of the substrate so as to have a thickness of 50 μm by spray coating, and transferred by the method of FIG.

この後、回路の金属層を厚くするため、硫酸銅めっき(荏原ユージライト製 商品名キューブライト21)によってCu膜厚8μmまでめっきを行った。この時、配線がどの程度転写できているかを確認した。   Thereafter, in order to thicken the metal layer of the circuit, plating was performed to a Cu film thickness of 8 μm by copper sulfate plating (trade name Cubelite 21 manufactured by Sugawara Eugelite). At this time, it was confirmed how much the wiring was transferred.

実施例2の結果を、表1の1段目に示す。転写された配線は、縦又は横に形成した配線が完全に筐体に転写できていることが確認された。   The results of Example 2 are shown in the first row of Table 1. As for the transferred wiring, it was confirmed that the wiring formed vertically or horizontally was completely transferred to the housing.

〔実施例3〕
実施例3においては、実施形態1に係る立体的回路基板の製造方法を、実施例1、2と更に条件を変えて実施した。
Example 3
In Example 3, the manufacturing method of the three-dimensional circuit board according to the first embodiment was performed under the same conditions as in Examples 1 and 2.

厚さ25μmのポリエチレンテレフタレート(PET)(東レ製 商品名S10)の表面に、密着性を制御又は調整するために樹脂(十条ケミカル製 商品名GA4100)を塗布し、乾燥後スパッタ法によって、Cu皮膜を0.3μmの厚さで形成した。この時の密着性を測定すると361N/mのピール強度であった。   A resin (product name: GA4100, manufactured by Jujo Chemical Co., Ltd.) was applied to the surface of 25 μm thick polyethylene terephthalate (PET) (product name: S10 manufactured by Toray Industries) to control or adjust the adhesion, and after drying, a Cu film was formed by sputtering Was formed with a thickness of 0.3 μm. The adhesion at this time was measured, and the peel strength was 361 N / m.

次に、図4に示す形状の配線パターンとなるように、配線幅が500μm、250μm、100μm、75μmになる押圧部材を用いて、実施形態1の図1に示す方法で、ロール表面に押圧部材を熱圧着(温度120℃、押圧力10kg/cmの条件下)してCu皮膜を転写した。ロールは、直径16mm、長さ300mmのアルミパイプを基体として用い、基体にCu皮膜を転写する試験を行った。この基体の外周表面全面に、接着剤(スリーボンド製 商品名1571)をスプレー塗装で厚さ50μmになるよう形成し、実施形態1の図1の方法で転写を行った。この時、配線がどの程度転写できているかを確認した。 Next, using a pressing member having a wiring width of 500 μm, 250 μm, 100 μm, and 75 μm so that a wiring pattern having the shape shown in FIG. 4 is obtained, the pressing member is applied to the roll surface by the method shown in FIG. The Cu film was transferred by thermocompression bonding (temperature of 120 ° C. and pressing force of 10 kg / cm 2 ). The roll was tested using an aluminum pipe with a diameter of 16 mm and a length of 300 mm as a substrate, and transferring a Cu film onto the substrate. An adhesive (trade name 1571, manufactured by ThreeBond Co., Ltd.) was formed on the entire outer peripheral surface of the substrate by spray coating so as to have a thickness of 50 μm, and transferred by the method shown in FIG. At this time, it was confirmed how much the wiring was transferred.

実施例3の結果を表1の3段目に示す。転写された、100μm以上の配線は、縦又は横に形成した配線が完全に筐体に転写できていることが確認された。   The results of Example 3 are shown in the third row of Table 1. As for the transferred wiring of 100 μm or more, it was confirmed that the wiring formed vertically or horizontally could be completely transferred to the housing.

〔実施例4〕
ポリエチレンナフタレート(PEN)(帝人製 商品名Q51)の表面に、蒸着法によってCu皮膜を0.3μmの厚さで形成した後、硫酸銅めっき(荏原ユージライト製 商品名キューブライト21)によってCu膜厚8μmまでめっきを行った。
Example 4
After forming a Cu film with a thickness of 0.3 μm on the surface of polyethylene naphthalate (PEN) (trade name Q51, manufactured by Teijin) by a vapor deposition method, copper sulfate plating (trade name Cubelite 21, manufactured by Sugawara Eugleite) is used to form Cu. Plating was performed to a film thickness of 8 μm.

そのCu皮膜に、ドライフィルムレジスト(旭化成製 AQ−1558)を用いたフォトレジスト法によって、配線幅が500μm、250μm、100μm、75μmになるように配線を形成した。   Wirings were formed on the Cu film by a photoresist method using a dry film resist (AQ-1558 manufactured by Asahi Kasei) so that the wiring widths were 500 μm, 250 μm, 100 μm, and 75 μm.

次に、実施形態2の図3に示した方法で、表面に凹凸の無い平坦面を有する押圧部材を用いて、ロールの周面にPENを熱圧着(温度120℃、押圧力10kg/cmの条件下)して、PEN上に形成した配線をロールに転写した。ロールは、直径16mm、長さ300mmのアルミパイプを基体として用い、基体にCu皮膜の配線を転写する試験を行った。 Next, PEN is thermocompression-bonded to the peripheral surface of the roll (temperature 120 ° C., pressing force 10 kg / cm 2) using a pressing member having a flat surface with no irregularities on the surface by the method shown in FIG. Then, the wiring formed on the PEN was transferred to a roll. For the roll, an aluminum pipe having a diameter of 16 mm and a length of 300 mm was used as a base, and a test was conducted in which the wiring of the Cu film was transferred to the base.

この基体の外周表面全面に、接着剤(スリーボンド製 商品名1571)をスプレー塗装で厚さ50μmになるよう形成し、実施形態2の図3の方法で転写を行った。この時、配線がどの程度転写できているかを確認した。   An adhesive (trade name 1571 manufactured by ThreeBond) was formed on the entire outer peripheral surface of the substrate by spray coating so as to have a thickness of 50 μm, and transfer was performed by the method of FIG. At this time, it was confirmed how much the wiring was transferred.

実施例4の結果を表1の4段目に示す。転写された配線は、縦又は横に形成した配線が完全に筐体に転写できていることが確認された。   The results of Example 4 are shown in the fourth row of Table 1. As for the transferred wiring, it was confirmed that the wiring formed vertically or horizontally was completely transferred to the housing.

表1に示す通り、ピール強度が98N/m〜361N/mの範囲内にある実施例1〜4に係る立体的回路基板の製造方法の総てにおいて、配線幅100μm以上500μm以下では、転写が完全に行われ良好な結果が得られた。よって、本発明に係る立体的回路基板の製造方法では、密着度は、ピール強度98N/m〜361N/mの範囲内で調整することが好ましい。   As shown in Table 1, in all the manufacturing methods of the three-dimensional circuit boards according to Examples 1 to 4 in which the peel strength is in the range of 98 N / m to 361 N / m, the transfer is performed when the wiring width is 100 μm or more and 500 μm or less. Completely done and gave good results. Therefore, in the manufacturing method of the three-dimensional circuit board according to the present invention, the degree of adhesion is preferably adjusted within a range of peel strength of 98 N / m to 361 N / m.

また、ピール強度が361N/mの実施例3においては、配線幅が75μmのときに転写が完全でなかったが、ピール強度が98N/m〜211N/mの範囲内にある実施例1、2及び4においては、配線幅75μmの場合でも転写が完全であった。よって、本発明に係る立体的回路基板の製造方法では、密着度は、ピール強度98N/m〜211N/mの範囲内で調整することがより好ましい。   In Example 3 where the peel strength was 361 N / m, the transfer was not complete when the wiring width was 75 μm, but Examples 1 and 2 in which the peel strength was in the range of 98 N / m to 211 N / m. No. 4 and No. 4 were completely transferred even when the wiring width was 75 μm. Therefore, in the manufacturing method of the three-dimensional circuit board according to the present invention, the adhesion degree is more preferably adjusted within a range of peel strength of 98 N / m to 211 N / m.

実施形態1において説明したように、絶縁性フィルムと金属膜の密着度は低い方が好ましいので、361N/m以下であることが好ましく、211N/m以下であることがより好ましいことになる。   As described in the first embodiment, the lower the degree of adhesion between the insulating film and the metal film, the better. Therefore, it is preferably 361 N / m or less, and more preferably 211 N / m or less.

以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.

本発明は、種々の電子機器に利用することができ、例えば、プリンタに用いられる現像ローラに利用することができる。   The present invention can be used for various electronic devices, for example, a developing roller used in a printer.

10 基体
20 接着剤層
30 絶縁性フィルム
40、42 金属膜
41、43 配線
50、51 フィルム状基板
60 凸状押圧部材
61 凸部
62 凹部
63 平面状押圧部材
DESCRIPTION OF SYMBOLS 10 Substrate 20 Adhesive layer 30 Insulating film 40, 42 Metal film 41, 43 Wiring 50, 51 Film-like substrate 60 Convex pressing member 61 Convex part 62 Concave part 63 Flat pressing member

Claims (9)

円筒形状又は円柱形状を有する基体の周面に配線が形成された立体的回路基板の製造方法であって、
絶縁性フィルムの片面に金属膜が形成されているフィルム状基板を用意する工程と、
前記周面に接着剤層が形成された前記基体を用意する工程と、
前記基体の前記周面に前記フィルム状基板の前記金属膜が形成された面を圧着させ、前記金属膜を前記基体の前記周面に転写して前記配線を形成する工程と、を有することを特徴とする立体的回路基板の製造方法。
A method of manufacturing a three-dimensional circuit board in which wiring is formed on a peripheral surface of a base body having a cylindrical shape or a columnar shape,
Preparing a film-like substrate in which a metal film is formed on one side of the insulating film;
Preparing the base having an adhesive layer formed on the peripheral surface;
Pressing the surface of the film substrate on which the metal film is formed on the peripheral surface of the base, and transferring the metal film to the peripheral surface of the base to form the wiring. A method for manufacturing a three-dimensional circuit board.
前記金属膜は、前記絶縁性フィルムの片面の略全面に形成され、
前記配線は、前記金属膜の一部が、前記配線と同一パターンの凸部を有する押圧部材を用いて転写されることにより形成されることを特徴とする請求項1に記載の立体的回路基板の製造方法。
The metal film is formed on substantially the entire surface of one side of the insulating film,
The three-dimensional circuit board according to claim 1, wherein the wiring is formed by transferring a part of the metal film using a pressing member having a convex portion having the same pattern as the wiring. Manufacturing method.
前記金属膜は、1μm以下の厚さであることを特徴とする請求項2に記載の立体的回路基板の製造方法。   3. The method of manufacturing a three-dimensional circuit board according to claim 2, wherein the metal film has a thickness of 1 [mu] m or less. 前記金属膜は、前記配線と同一パターンに形成され、
前記配線は、前記金属膜がそのまま転写されることにより形成されることを特徴とする請求項1に記載の立体的回路基板の製造方法。
The metal film is formed in the same pattern as the wiring,
2. The method of manufacturing a three-dimensional circuit board according to claim 1, wherein the wiring is formed by transferring the metal film as it is.
前記絶縁性フィルムは、ポリエチレンテレフタレート又はポリエチレンナフタレートであることを特徴とする請求項1乃至4のいずれか一項に記載の立体的回路基板の製造方法。   The method for manufacturing a three-dimensional circuit board according to any one of claims 1 to 4, wherein the insulating film is polyethylene terephthalate or polyethylene naphthalate. 前記接着剤層は、熱硬化型の接着剤により構成されており、前記金属膜を前記基体に圧着させる際に加熱されて粘着性を発揮することを特徴とする請求項1乃至5のいずれか一項に記載の立体的回路基板の製造方法。   6. The adhesive layer according to claim 1, wherein the adhesive layer is composed of a thermosetting adhesive, and is heated to exhibit adhesiveness when the metal film is pressure-bonded to the substrate. A method for manufacturing a three-dimensional circuit board according to one item. 前記接着剤層は、スプレー塗布により形成されたことを特徴とする請求項1乃至6のいずれか一項に記載の立体的回路基板の製造方法。   The method for manufacturing a three-dimensional circuit board according to any one of claims 1 to 6, wherein the adhesive layer is formed by spray coating. 前記金属膜の前記基体への転写の度合いは、前記絶縁性フィルムと前記金属膜との密着性を変化させることにより調整されることを特徴とする請求項1乃至7のいずれか一項に記載の立体的回路基板の製造方法。   The degree of transfer of the metal film to the substrate is adjusted by changing the adhesion between the insulating film and the metal film. Manufacturing method of three-dimensional circuit board. 前記密着性は、ピール強度98N/m〜361N/mの範囲で調整されることを特徴とする請求項8に記載の立体的回路基板の製造方法。   The method for manufacturing a three-dimensional circuit board according to claim 8, wherein the adhesion is adjusted in a range of peel strength of 98 N / m to 361 N / m.
JP2012056538A 2012-03-13 2012-03-13 Method of manufacturing three-dimensional circuit board Pending JP2013191709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012056538A JP2013191709A (en) 2012-03-13 2012-03-13 Method of manufacturing three-dimensional circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012056538A JP2013191709A (en) 2012-03-13 2012-03-13 Method of manufacturing three-dimensional circuit board

Publications (1)

Publication Number Publication Date
JP2013191709A true JP2013191709A (en) 2013-09-26

Family

ID=49391675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012056538A Pending JP2013191709A (en) 2012-03-13 2012-03-13 Method of manufacturing three-dimensional circuit board

Country Status (1)

Country Link
JP (1) JP2013191709A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129759A (en) * 1991-11-07 1993-05-25 Matsushita Electric Ind Co Ltd Manufacture of printed wiring board
JPH0697633A (en) * 1992-01-23 1994-04-08 Nitto Denko Corp Method of forming circuit pattern
JP2004095882A (en) * 2002-08-30 2004-03-25 Toppan Printing Co Ltd Object to be transferred and method for manufacturing thick film pattern
JP2011091304A (en) * 2009-10-26 2011-05-06 Sumitomo Metal Mining Co Ltd Method of manufacturing three-dimensional circuit board
JP2011238684A (en) * 2010-05-07 2011-11-24 Sumitomo Metal Mining Co Ltd Manufacturing method of three-dimensional circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129759A (en) * 1991-11-07 1993-05-25 Matsushita Electric Ind Co Ltd Manufacture of printed wiring board
JPH0697633A (en) * 1992-01-23 1994-04-08 Nitto Denko Corp Method of forming circuit pattern
JP2004095882A (en) * 2002-08-30 2004-03-25 Toppan Printing Co Ltd Object to be transferred and method for manufacturing thick film pattern
JP2011091304A (en) * 2009-10-26 2011-05-06 Sumitomo Metal Mining Co Ltd Method of manufacturing three-dimensional circuit board
JP2011238684A (en) * 2010-05-07 2011-11-24 Sumitomo Metal Mining Co Ltd Manufacturing method of three-dimensional circuit board

Similar Documents

Publication Publication Date Title
JP6151597B2 (en) Manufacturing method of conductive adhesive film, conductive adhesive film, and manufacturing method of connector
JP2023168351A (en) Method for manufacturing conductive film
JP4434281B2 (en) Adhesive tape connection method and adhesive tape connector
TW200306768A (en) Printed circuit board and method of producing the same
TW200810243A (en) Conducting particles placement sheet and anisotropic conductive film
CN110619815B (en) Display panel and display device
JP2007042087A (en) Rfid tag and production method therefor
JP2011049175A (en) Connection method and connection structure for electronic component
TWI614856B (en) Cof semiconductor package, and liquid crystal device
KR101808347B1 (en) Film laminate, sticking method of film laminate, connection method using film laminate and connection structure
JP4993877B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP2013191709A (en) Method of manufacturing three-dimensional circuit board
TWI494956B (en) An anisotropic conductive film, an anisotropic conductive film manufacturing method, a connection method between electronic members, and a connection structure
JP3582654B2 (en) Connection member
TWI608778B (en) Multilayer printed wiring board manufacturing method
KR20140101562A (en) Method for attaching cover lay film to flexible printed circuit borad
TW201813458A (en) Hollow flexible circuit board and method for manufacturing same
JP5251828B2 (en) Three-dimensional circuit board manufacturing method
JP2008124029A (en) Connecting member
JP2011187641A (en) Method for manufacturing flexible board
JP6329669B2 (en) Manufacturing method of conductive adhesive film, conductive adhesive film, and manufacturing method of connector
JP2004196540A (en) Method of connecting adhesive tape
JP6370562B2 (en) CONNECTION MANUFACTURING METHOD, FLEXIBLE BOARD CONNECTION METHOD, CONNECTION BODY AND FLEXIBLE SUBSTRATE
KR20160011436A (en) Conductible layer clad flim, manufacturing method thereof and manufacturing method for file type antenna using the same
JP2007331949A (en) Adhesive reel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160628