JP5251828B2 - Three-dimensional circuit board manufacturing method - Google Patents

Three-dimensional circuit board manufacturing method Download PDF

Info

Publication number
JP5251828B2
JP5251828B2 JP2009245360A JP2009245360A JP5251828B2 JP 5251828 B2 JP5251828 B2 JP 5251828B2 JP 2009245360 A JP2009245360 A JP 2009245360A JP 2009245360 A JP2009245360 A JP 2009245360A JP 5251828 B2 JP5251828 B2 JP 5251828B2
Authority
JP
Japan
Prior art keywords
circuit board
film
layer
wiring layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009245360A
Other languages
Japanese (ja)
Other versions
JP2011091304A (en
Inventor
堪 吉田
浩 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009245360A priority Critical patent/JP5251828B2/en
Publication of JP2011091304A publication Critical patent/JP2011091304A/en
Application granted granted Critical
Publication of JP5251828B2 publication Critical patent/JP5251828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、立体的回路基板の製造方法に関し、更に詳しくは円筒体外周面に金属配線層を転写して立体的回路基板を製造する方法に関する。   The present invention relates to a method for manufacturing a three-dimensional circuit board, and more particularly, to a method for manufacturing a three-dimensional circuit board by transferring a metal wiring layer to an outer peripheral surface of a cylindrical body.

携帯電話などの電子機器の小型化、多機能化、及び低コスト化に伴い、電子機器の円筒体部品の内面や外面に回路基板をコンパクトに実装することが要求されている。そのための回路基板として、平面的なものではなく、立体的な回路基板が必要とされる場合が出てきている。   As electronic devices such as mobile phones become smaller, more functional, and lower in cost, it is required to mount a circuit board in a compact manner on the inner and outer surfaces of cylindrical parts of the electronic device. As a circuit board for that purpose, there is a case where a three-dimensional circuit board is required instead of a planar one.

また、複写機の分野においても、例えば特開2003−084560号公報(特許文献1)に立体的回路基板を用いることが提案されているように、金属製又は樹脂製等の円筒体の外周面全体にわたって配線回路を形成した現像剤担持体(現像用ローラ)を用いることが検討されている。   Also in the field of copying machines, for example, as proposed in Japanese Patent Application Laid-Open No. 2003-084560 (Patent Document 1), the outer peripheral surface of a cylindrical body made of metal or resin is proposed. The use of a developer carrying member (developing roller) in which a wiring circuit is formed throughout has been studied.

このような円筒体の外周面に回路基板を形成する手段として、ポリイミドなどの絶縁性フィルム表面に電極配線を設けたフィルム状回路基板を円筒体の外周面に貼り付ける方法が考えられる。この方法は立体的回路基板を多量に且つ安価に製造することができるため、円筒体外周面に電極配線を直接形成する方法よりも簡単且つ容易な方法であるといえる。   As a means for forming a circuit board on the outer peripheral surface of such a cylindrical body, a method of sticking a film-like circuit board provided with electrode wiring on the surface of an insulating film such as polyimide to the outer peripheral surface of the cylindrical body is conceivable. Since this method can manufacture a three-dimensional circuit board in a large amount and at low cost, it can be said that this method is simpler and easier than the method of directly forming electrode wiring on the outer peripheral surface of the cylindrical body.

しかし、フィルム状回路基板を円筒体の外周面に貼り付ける場合には、貼り付けたフィルム状回路基板の両端部に重なりや大きな間隙が生じやすいという欠点があった。フィルム状回路基板の両端部に重なりや大きな間隙があると、回路を構成する配線に短絡や導通不良が発生し、複写機の場合には間隙にトナーが入り込むなどの問題を抱えていた。   However, when the film-like circuit board is attached to the outer peripheral surface of the cylindrical body, there is a drawback that an overlap or a large gap tends to occur at both ends of the attached film-like circuit board. If there are overlaps or large gaps at both ends of the film-like circuit board, the wiring constituting the circuit may be short-circuited or poorly connected, and in the case of a copying machine, toner may enter the gap.

そのため、円筒体の外周面にフィルム状回路基板を貼り付ける際には、フィルム状回路基板の両端部が重なることがなく、且つ端部間の間隙を許容される程度に小さくすることが必要となる。しかしながら、フィルム状回路基板を精度よく切断して正確に貼り付けた場合でも、フィルム状回路基板の切断による寸法のバラツキは存在し、円筒体自体にも仕上がり径のバラツキが残るため、フィルム状回路基板の両端部に許容範囲を超えた重なりや間隙の発生を防止することは極めて困難であった。   Therefore, when the film-like circuit board is attached to the outer peripheral surface of the cylindrical body, it is necessary that both ends of the film-like circuit board do not overlap and that the gap between the ends is allowed to be small enough. Become. However, even when the film-like circuit board is cut accurately and pasted accurately, there is a variation in dimensions due to the cutting of the film-like circuit board, and the variation in the finished diameter remains in the cylindrical body itself. It has been extremely difficult to prevent the occurrence of overlapping and gaps exceeding the allowable range at both ends of the substrate.

一方、特開平10−051108号公報(特許文献2)には、樹脂フィルムの表面に接着層を介して金属層を貼りあわせた後、エッチングにより配線パターンを形成した転写シートを用い、通常の平面的な絶縁基板に金属配線を転写する技術が記載されている。この方法によれば平面的な絶縁基板の正確な位置に金属配線を転写することはできるが、円筒体外周面への転写による立体的回路基板の形成については記載されていない。   On the other hand, Japanese Patent Laid-Open No. 10-051108 (Patent Document 2) uses a transfer sheet in which a metal layer is bonded to the surface of a resin film via an adhesive layer, and then a wiring pattern is formed by etching. A technique for transferring metal wiring onto a typical insulating substrate is described. According to this method, the metal wiring can be transferred to an accurate position of the planar insulating substrate, but the formation of the three-dimensional circuit substrate by transfer to the outer peripheral surface of the cylindrical body is not described.

また、樹脂フィルム表面に接着層を介して金属層を貼り付ける場合、金属層の厚さが10μm以下になると張力をかけることができないため、貼り付けた薄い金属層にシワが発生するという問題があった。また、金属配線を絶縁基板に転写する際に樹脂フィルムを剥離すると、接着層が金属配線と共に剥離して転写され、得られる回路基板の接点部に接着層(接着剤)が存在して導通不良が起こりやすかった。   In addition, when a metal layer is attached to the resin film surface via an adhesive layer, there is a problem that wrinkles are generated in the attached thin metal layer because tension cannot be applied when the thickness of the metal layer is 10 μm or less. there were. Also, if the resin film is peeled off when transferring the metal wiring to the insulating substrate, the adhesive layer is peeled off and transferred together with the metal wiring, and there is an adhesive layer (adhesive) at the contact part of the resulting circuit board, resulting in poor conduction It was easy to happen.

特開2003−084560号公報JP 2003-084560 A 特開平10−051108号公報JP-A-10-051108

本発明は、上記した従来技術の問題点に鑑み、円筒体外周面に金属配線層を形成して立体的回路基板を製造する場合に、金属配線層の両端部で重なりや間隙が発生する問題を解消すると同時に、金属配線層にシワなどが発生することなく、また接着剤などの付着による導通不良を防ぐことができる立体的回路基板の製造方法を提供することを目的とする。   In view of the above-described problems of the prior art, the present invention has a problem that overlaps and gaps are generated at both ends of a metal wiring layer when a metal wiring layer is formed on the outer peripheral surface of a cylindrical body to manufacture a three-dimensional circuit board. An object of the present invention is to provide a method for manufacturing a three-dimensional circuit board that can eliminate the occurrence of wrinkles and the like in a metal wiring layer and can prevent conduction failure due to adhesion of an adhesive or the like.

上記目的を達成するため、本発明が提供する立体的回路基板の製造方法は、円筒体外周面に形成した絶縁性接着層に対し、絶縁性フィルム表面に金属配線層を直接形成したフィルム状回路基板の配線パターン端部を押し当て、この状態からフィルム状回路基板の表面に沿って円筒体を一回転させることにより、絶縁性フィルム表面の金属配線層を円筒体外周面の絶縁性接着層上に転写することを特徴とする。   In order to achieve the above object, a method for manufacturing a three-dimensional circuit board provided by the present invention is a film-like circuit in which a metal wiring layer is directly formed on an insulating film surface with respect to an insulating adhesive layer formed on an outer peripheral surface of a cylindrical body. The metal wiring layer on the surface of the insulating film is placed on the insulating adhesive layer on the outer peripheral surface of the cylindrical body by pressing the end of the wiring pattern on the substrate and rotating the cylindrical body along the surface of the film-like circuit board from this state. It is characterized by being transferred to.

また、上記本発明による立体的回路基板の製造方法において、前記フィルム状回路基板は、蒸着法あるいはスパッタリング法により絶縁性フィルム表面に金属薄膜を直接形成し、その上に電気めっき法により金属層を形成した後、エッチング処理して所定の配線パターンの金属配線層を形成することにより得られるものである。   In the method for manufacturing a three-dimensional circuit board according to the present invention, the film-like circuit board is formed by directly forming a metal thin film on the surface of the insulating film by vapor deposition or sputtering, and forming a metal layer thereon by electroplating. After the formation, it is obtained by etching to form a metal wiring layer having a predetermined wiring pattern.

本発明によれば、従来のフィルム状回路基板を円筒体外周面に貼り付ける方法では避けられなかったフィルム状回路基板の両端部での重なりや間隙の発生をなくすことができる。更に、円筒体外周面に形成する金属配線層にシワなどが発生せず、しかも接着剤などの付着による導通不良が生じることもないので、高精度で且つ高性能な立体的回路基板を得ることができる。   According to the present invention, it is possible to eliminate the occurrence of overlapping and gaps at both ends of the film-like circuit board, which is inevitable by the conventional method of attaching the film-like circuit board to the outer peripheral surface of the cylindrical body. Furthermore, no wrinkles or the like occur in the metal wiring layer formed on the outer peripheral surface of the cylindrical body, and there is no conduction failure due to adhesion of an adhesive or the like, so that a high-precision and high-performance three-dimensional circuit board can be obtained. Can do.

本発明による立体的回路基板の製造方法を示す図面であり、(a)は貼付装置のプレートに保持したフィルム状回路基板の配線パターン端部を円筒体の絶縁性接着層に押し当てた状態を示す概略の断面図、(b)はフィルム状回路基板の表面に沿って円筒体を一回転させながら金属配線層を絶縁性接着層へ転写している状態を示す概略の断面図である。It is drawing which shows the manufacturing method of the three-dimensional circuit board by this invention, (a) is the state which pressed the wiring pattern edge part of the film-form circuit board hold | maintained to the plate of the sticking apparatus on the insulating adhesive layer of the cylindrical body. FIG. 4B is a schematic cross-sectional view showing a state where the metal wiring layer is transferred to the insulating adhesive layer while rotating the cylindrical body along the surface of the film-like circuit board.

立体的回路基板を説明するための図面であり、(a)は本発明により得られる立体的回路基板を示す概略の断面図、(b)は従来のフィルム状回路基板を円筒体外周面に貼り付ける方法により得られる立体的回路基板を示す概略の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is drawing for demonstrating a three-dimensional circuit board, (a) is general | schematic sectional drawing which shows the three-dimensional circuit board obtained by this invention, (b) is sticking the conventional film-like circuit board on a cylindrical body outer peripheral surface. It is a schematic sectional drawing which shows the three-dimensional circuit board obtained by the attaching method.

実施例1で使用した絶縁性フィルム表面に金属配線層を直接形成したフィルム状回路基板を示す概略の平面図である。1 is a schematic plan view showing a film-like circuit board in which a metal wiring layer is directly formed on the surface of an insulating film used in Example 1. FIG.

図3のフィルム状回路基板の金属配線層を円筒体外周面に転写して得られた立体的回路基板を示す概略の平面図である。FIG. 4 is a schematic plan view showing a three-dimensional circuit board obtained by transferring a metal wiring layer of the film-like circuit board of FIG. 3 to a cylindrical outer peripheral surface.

本発明の立体的回路基板の製造方法では、絶縁性フィルム表面に接着剤などを用いることなく金属配線層を直接形成したフィルム状回路基板を使用して、そのフィルム状回路基板の金属配線層を円筒体外周面に形成した絶縁性接着層上に転写する。従って、金属配線層を絶縁性フィルムの表面に直接形成しているので、その形成の際や転写の際に金属配線層にシワなどが発生せず、導通不良の原因となる接着剤の付着も生じることがないうえ、転写を用いることで金属配線層の両端部での重なりや間隙の発生をなくすことができる。   In the method for manufacturing a three-dimensional circuit board according to the present invention, a film-like circuit board in which a metal wiring layer is directly formed on an insulating film surface without using an adhesive or the like is used, and the metal wiring layer of the film-like circuit board is formed. It transfers on the insulating adhesive layer formed in the cylindrical outer peripheral surface. Therefore, since the metal wiring layer is formed directly on the surface of the insulating film, the metal wiring layer does not wrinkle during the formation or transfer, and adhesion of an adhesive that causes poor conduction is also possible. In addition, by using transfer, it is possible to eliminate the occurrence of overlapping and gaps at both ends of the metal wiring layer.

上記フィルム状回路基板の製造は、蒸着法又はスパッタリング法により、絶縁性フィルムの表面に銅やニッケルなどの金属薄膜を直接形成し、その金属薄膜上に電気めっき法により所定厚さの金属層を形成する。その後、この金属層と下地の金属薄膜をエッチング処理し、所定の配線パターンを有する金属配線層を形成することによって、フィルム状回路基板を得ることができる。   The film-like circuit board is manufactured by directly forming a metal thin film such as copper or nickel on the surface of the insulating film by vapor deposition or sputtering, and forming a metal layer having a predetermined thickness on the metal thin film by electroplating. Form. Thereafter, the metal layer and the underlying metal thin film are etched to form a metal wiring layer having a predetermined wiring pattern, whereby a film-like circuit board can be obtained.

好ましい具体例により更に詳しく説明すると、まず、厚さが25μm以上の絶縁性フィルムの片面に、スパッタリング法又は真空蒸着法によって、金属薄膜として厚さ0.01〜1.0μmのCu薄膜を直接形成する。尚、絶縁性フィルムの厚さは、極端に薄いと剛性が不足するため、50μm程度が使い勝手がよい。また、Cu薄膜の膜厚は、厚く形成するためには加工時間が必要であることから、0.05〜0.1μm程度が望ましい。   To explain in more detail by a preferred embodiment, first, a Cu thin film having a thickness of 0.01 to 1.0 μm is directly formed as a metal thin film on one side of an insulating film having a thickness of 25 μm or more by a sputtering method or a vacuum deposition method. To do. In addition, since the rigidity of the insulating film is insufficient if it is extremely thin, about 50 μm is convenient. Moreover, since the processing time is required for forming the Cu thin film to be thick, it is preferably about 0.05 to 0.1 μm.

次に、電気めっき法によりCuめっきを施し、上記Cu薄膜の上に所定の厚さ、例えば厚さ1〜10μm程度のCu層を形成する。このCu層の上にレジスト層を形成し、配線パターン用のマスクを用いて露光、現像することによりCu層上にレジストマスクを形成する。その後、エッチング処理を行い、レジストマスクを剥離することによって、Cu金属層(=Cu薄膜+Cu層)による所定の配線パターンが形成されたCu配線層を有するフィルム状回路基板を得ることができる。   Next, Cu plating is performed by electroplating to form a Cu layer having a predetermined thickness, for example, about 1 to 10 μm, on the Cu thin film. A resist layer is formed on the Cu layer, and a resist mask is formed on the Cu layer by exposing and developing using a wiring pattern mask. Thereafter, an etching process is performed and the resist mask is peeled off, whereby a film-like circuit board having a Cu wiring layer on which a predetermined wiring pattern is formed by a Cu metal layer (= Cu thin film + Cu layer) can be obtained.

一方、フィルム状回路基板から金属配線層を転写するための円筒体としては、用途に応じて金属製あるいは樹脂製のものを用いることができる。また、円筒体の外周面には、金属配線層を接着保持するための絶縁性接着層を予め形成する。絶縁性接着層の形成には、液状の接着剤を塗布してもよいが、一定の厚さが容易に得られる点でテープ状の絶縁性両面接着材を用いることが好ましい。   On the other hand, as the cylindrical body for transferring the metal wiring layer from the film-like circuit board, a metal or a resin can be used depending on the application. Further, an insulating adhesive layer for adhering and holding the metal wiring layer is formed in advance on the outer peripheral surface of the cylindrical body. In forming the insulating adhesive layer, a liquid adhesive may be applied, but it is preferable to use a tape-like insulating double-sided adhesive in that a certain thickness can be easily obtained.

具体的には、テープ状の絶縁性両面接着材を、円筒体の外周に合わせた長さで且つフィルム状回路基板の配線パターンよりも少し広い幅に切断し、円筒体の外周面に巻きつけることによって、絶縁性接着層を形成することができる。また、テープ状の絶縁性両面接着材は、常温で接着性を発揮するタイプでもよいし、加熱することで接着性を発揮するタイプでもよい。尚、絶縁性接着層の厚さは、転写すべき金属配線層の厚さよりも厚いことが好ましい。   Specifically, a tape-like insulating double-sided adhesive is cut to a length that matches the outer periphery of the cylindrical body and slightly wider than the wiring pattern of the film-like circuit board, and is wound around the outer peripheral surface of the cylindrical body Thus, an insulating adhesive layer can be formed. The tape-like insulating double-sided adhesive may be a type that exhibits adhesiveness at room temperature or a type that exhibits adhesiveness by heating. The insulating adhesive layer is preferably thicker than the metal wiring layer to be transferred.

次に、図1を参照して、フィルム状回路基板の金属配線層を円筒体外周面に形成した絶縁性接着層上に転写する方法を具体的に説明する。まず、絶縁性フィルム1の表面に金属配線層2を直接形成したフィルム状回路基板10を、貼付装置のプレート11に保持する。プレート11への保持手段としては、フィルム状回路基板10の裏面を吸着する方法、又は裏面を接着する方法などがある。一方、円筒体12の外周面には、テープ状の絶縁性両面接着材を貼り付けて絶縁性接着層3を形成する。   Next, a method for transferring the metal wiring layer of the film-like circuit board onto the insulating adhesive layer formed on the outer peripheral surface of the cylindrical body will be specifically described with reference to FIG. First, the film-like circuit board 10 in which the metal wiring layer 2 is directly formed on the surface of the insulating film 1 is held on the plate 11 of the sticking device. As a holding means to the plate 11, there are a method of adsorbing the back surface of the film-like circuit board 10, a method of adhering the back surface, and the like. On the other hand, the insulating adhesive layer 3 is formed on the outer peripheral surface of the cylindrical body 12 by attaching a tape-like insulating double-sided adhesive.

この円筒体12の絶縁性接着層3を、図1(a)に示すように、プレート11に保持したフィルム状回路基板10の金属配線層の配線パターン端部に押し当てる。引き続き、図1(b)に示すように、円筒体12を回転させながらプレート11を水平方向に移動させ、フィルム状回路基板11の表面に沿って円筒体12を一回転させることによって、金属配線層2が下地の金属薄膜の部分で絶縁性フィルム1から剥離して円筒体12の絶縁性接着層3に転写される。尚、上記の転写工程において、金属配線層2を絶縁性接着層3に押し当てる際の圧力は0.1〜1.0MPaの範囲が好ましい。   As shown in FIG. 1A, the insulating adhesive layer 3 of the cylindrical body 12 is pressed against the end of the wiring pattern of the metal wiring layer of the film-like circuit board 10 held on the plate 11. Subsequently, as shown in FIG. 1B, the plate 11 is moved in the horizontal direction while rotating the cylindrical body 12, and the cylindrical body 12 is rotated once along the surface of the film-like circuit board 11. The layer 2 is peeled off from the insulating film 1 at the base metal thin film portion and transferred to the insulating adhesive layer 3 of the cylindrical body 12. In the above transfer step, the pressure when pressing the metal wiring layer 2 against the insulating adhesive layer 3 is preferably in the range of 0.1 to 1.0 MPa.

上記した本発明方法により得られる立体的回路基板は、図2(a)に示すように、円筒体12の外周面上の絶縁性接着層3に、所定の配線パターンを有する金属配線層2が接着保持された構造を有している。特に、絶縁性フィルム表面の金属配線層を円筒体外周面の絶縁性接着層上に転写する方法の採用によって、金属配線層の配線パターン両端部間の長さを円筒体外周面に形成した接着層の外周長さと等しくするだけで、転写された配線パターン両端部での重なりや間隙の発生を簡単になくすことができる。   As shown in FIG. 2A, the three-dimensional circuit board obtained by the above-described method of the present invention has a metal wiring layer 2 having a predetermined wiring pattern on the insulating adhesive layer 3 on the outer peripheral surface of the cylindrical body 12. It has an adhesively held structure. In particular, by adopting a method of transferring the metal wiring layer on the surface of the insulating film onto the insulating adhesive layer on the outer peripheral surface of the cylindrical body, the length between the both ends of the wiring pattern of the metal wiring layer is formed on the outer peripheral surface of the cylindrical body. By making it equal to the outer peripheral length of the layer, it is possible to easily eliminate the occurrence of overlap and gaps at both ends of the transferred wiring pattern.

これに対し、上述し且つ図2(b)に示すように、フィルム状回路基板10を円筒体12の外周面に貼り付ける従来の方法で作製した立体的回路基板では、フィルム状回路基板10の切断による寸法のバラツキや、円筒体12の仕上がり径のバラツキが存在するために、フィルム状回路基板10の両端部に重なりや大きな間隙4が発生する頻度が極めて高いものである。   On the other hand, as described above and as shown in FIG. 2B, in the three-dimensional circuit board produced by the conventional method of attaching the film-like circuit board 10 to the outer peripheral surface of the cylindrical body 12, the film-like circuit board 10 Since there are variations in dimensions due to cutting and variations in the finished diameter of the cylindrical body 12, the frequency of occurrence of overlapping and large gaps 4 at both ends of the film-like circuit board 10 is extremely high.

絶縁性フィルムから円筒体の絶縁性接着層に金属配線層を転写する場合、絶縁性フィルムからの金属配線層の剥離しやすさ、即ち金属配線層と絶縁性フィルムの密着性が影響する。転写可能な密着性の下限は、配線パターンを形成するまでの工程で、例えばエッチング液のシャワーによる金属層(下地の金属薄膜を含む、以下同じ)の剥がれや、レジストマスクを剥離する際に金属層の剥がれが起きない程度である。また、密着性の上限は、金属配線層のみが残渣を残さずに剥離する程度である。   When the metal wiring layer is transferred from the insulating film to the insulating adhesive layer of the cylindrical body, the ease of peeling of the metal wiring layer from the insulating film, that is, the adhesion between the metal wiring layer and the insulating film is affected. The lower limit of the adhesiveness that can be transferred is the process up to the formation of the wiring pattern. For example, the metal layer (including the underlying metal thin film, the same applies hereinafter) is peeled off by the etchant shower or the resist mask is peeled off. That is, the layer does not peel off. Moreover, the upper limit of adhesiveness is a grade which only a metal wiring layer peels, without leaving a residue.

上記絶縁性フィルムと金属配線層の密着性は、具体的には、金属配線層の配線パターンのピッチが一般的な50〜500μmの範囲の場合、パターン化前の金属層のピール強度で98〜321N/mの範囲が好ましい。尚、金属配線層の密着性の評価に用いたピール強度は、金属層をエッチングにより線幅10mmに形成し、その端部を把持して絶縁性フィルムに対し90°の方向に引き剥がすときに必要な力(単位N/m)を言う。   Specifically, when the pitch of the wiring pattern of the metal wiring layer is in a general range of 50 to 500 μm, the adhesion between the insulating film and the metal wiring layer is 98 to 98 in terms of peel strength of the metal layer before patterning. A range of 321 N / m is preferred. The peel strength used for the evaluation of the adhesion of the metal wiring layer is determined when the metal layer is formed by etching to have a line width of 10 mm, the end is gripped and peeled off in a 90 ° direction with respect to the insulating film. It refers to the required force (unit N / m).

良好な転写を行うためには、絶縁性フィルムと金属配線層の密着性をコントロールすることが望ましい。密着性をコントロールする方法としては、例えば、絶縁性フィルムに金属薄膜あるいは金属層を形成した後、加熱して樹脂と金属との界面の接着力を低下させる方法、あるいは成膜前の絶縁性フィルムに樹脂を塗布して接着力を高くし又は低くする方法などがある。尚、蒸着法又はスパッタリング法と電気めっき法により絶縁性フィルム上に形成した金属層は、一般的な条件の下では、転写ための好ましい密着性を備えている。   In order to perform good transfer, it is desirable to control the adhesion between the insulating film and the metal wiring layer. As a method for controlling adhesion, for example, after forming a metal thin film or metal layer on an insulating film, heating is performed to reduce the adhesive force at the interface between the resin and the metal, or the insulating film before film formation There is a method in which a resin is applied to increase or decrease the adhesive strength. In addition, the metal layer formed on the insulating film by the vapor deposition method or the sputtering method and the electroplating method has preferable adhesion for transfer under general conditions.

また、円筒体の外周面に設ける絶縁性接着層は、上記密着力を備えた金属配線層を接着して絶縁性フィルムから剥離し得る接着力を備えていることが必要である。絶縁性を備えた接着材として一般的に使用されているテープ状の両面接着材は、このような接着力を備えたものであり、金属配線層を接着して絶縁性フィルムから剥離することができる。   In addition, the insulating adhesive layer provided on the outer peripheral surface of the cylindrical body needs to have an adhesive force that allows the metal wiring layer having the above-described adhesion to be adhered and peeled from the insulating film. The tape-like double-sided adhesive that is generally used as an adhesive with insulation has such an adhesive force, and can be peeled off from the insulation film by bonding the metal wiring layer. it can.

[実施例1]
厚さ50μmのポリエチレンテレフタレート(PET)フィルム(東レ製:T60)の表面に、スパッタリング法により厚さ0.1μmのCu薄膜を形成した後、密着性をコントロールするために120℃で1時間加熱した。次に、硫酸銅めっき(荏原ユージライト製:キューブライト21)によって、Cu薄膜上に厚さ8μmのCu層を形成した。
[Example 1]
A 0.1 μm thick Cu thin film was formed by sputtering on the surface of a 50 μm thick polyethylene terephthalate (PET) film (Toray: T60), and then heated at 120 ° C. for 1 hour to control adhesion. . Next, a Cu layer having a thickness of 8 μm was formed on the Cu thin film by copper sulfate plating (manufactured by Sugawara Eugelite: Cube Light 21).

得られた複合材料について、Cu金属層(=Cu薄膜+Cu層)とPETフィルムの密着性を評価した。即ち、この複合材料をエッチングしてCu金属層の線幅を10mmに形成し、そのCu金属層の端部を把持してPETフィルムに対し90°の方向に引き剥がすことにより、引き剥がし時のピール強度を測定したところ98N/mであった。   About the obtained composite material, the adhesiveness of Cu metal layer (= Cu thin film + Cu layer) and PET film was evaluated. That is, this composite material is etched to form a line width of the Cu metal layer to 10 mm, and the end of the Cu metal layer is gripped and peeled off in a direction of 90 ° with respect to the PET film. The peel strength was measured and found to be 98 N / m.

次に、上記複合材料のCu金属層上にドライフィルムレジスト(旭化成製:AQ−1158)を貼り、所定のマスクを用いて露光、現像を行ってレジストマスクを形成した。引き続き、エッチング処理を施して配線パターンを形成した後、残存するレジストマスクを剥離して、図3に示す櫛歯状の配線パターンのCu配線層を有するフィルム状回路基板を得た。   Next, a dry film resist (Asahi Kasei Co., Ltd .: AQ-1158) was attached on the Cu metal layer of the composite material, and exposure and development were performed using a predetermined mask to form a resist mask. Subsequently, after performing an etching process to form a wiring pattern, the remaining resist mask was peeled off to obtain a film-like circuit board having a Cu wiring layer of a comb-like wiring pattern shown in FIG.

このとき、ピール強度98N/mの上記複合材料を用いて、Cu配線層の配線パターンのピッチが異なる3種類のフィルム状回路基板を作製した。即ち、ピッチ500μm(線幅250μm、間隔250μm)、ピッチ100μm(線幅50μm、間隔50μm)、及びピッチ50μm(線幅25μm、間隔25μm)の3種類とした。   At this time, using the composite material having a peel strength of 98 N / m, three types of film-like circuit boards having different wiring pattern pitches of the Cu wiring layer were produced. That is, the pitch was 500 μm (line width 250 μm, interval 250 μm), pitch 100 μm (line width 50 μm, interval 50 μm), and pitch 50 μm (line width 25 μm, interval 25 μm).

しかし、ピッチ100μmとピッチ50μmのCu配線層は、エッチング処理時かあるいはレジストマスク剥離時かは不明であるが、Cu配線層の一部に剥がれが生じていた。そのため、剥がれのないピッチ500μmの配線パターンのCu配線層を有するフィルム状回路基板についてのみ、転写による立体的回路基板の製造と評価を進めた。   However, although it is unclear whether the Cu wiring layer with a pitch of 100 μm and a pitch of 50 μm is in the etching process or the resist mask is peeled off, a part of the Cu wiring layer is peeled off. Therefore, production and evaluation of a three-dimensional circuit board by transfer were advanced only for a film-like circuit board having a Cu wiring layer having a wiring pattern with a pitch of 500 μm without peeling.

即ち、アルミパイプ(直径16mm、長さ300mm)の外周面に、テープ状の絶縁性両面接着材(テサテープ製:熱硬化タイプ8405)を用いて絶縁性接着層を形成した。このアルミパイプ外周面の絶縁性接着層に、図1の貼付装置を使用して、上記フィルム状回路基板のCu配線層を転写した。   That is, an insulating adhesive layer was formed on the outer peripheral surface of an aluminum pipe (diameter 16 mm, length 300 mm) using a tape-like insulating double-sided adhesive (manufactured by Tessa Tape: thermosetting type 8405). The Cu wiring layer of the film-like circuit board was transferred to the insulating adhesive layer on the outer peripheral surface of the aluminum pipe using the sticking apparatus shown in FIG.

具体的には、接着層が形成されたアルミパイプを赤外線ヒーターで90℃に加熱し、貼付装置のプレートにPETフィルム側を吸引固定したフィルム状回路基板のCu配線層の配線パターン端部を0.2MPaの圧力で押し当てた。引き続き、フィルム状回路基板の表面に沿って円筒体を一回転させることにより、Cu配線層をPETフィルムから剥離してアルミパイプの絶縁性接着層に転写させることができた。   Specifically, the aluminum pipe on which the adhesive layer is formed is heated to 90 ° C. with an infrared heater, and the end of the wiring pattern of the Cu wiring layer of the film-like circuit board in which the PET film side is sucked and fixed to the plate of the sticking device is set to 0. The pressure was applied at a pressure of 2 MPa. Subsequently, the Cu wiring layer was peeled off from the PET film and transferred to the insulating adhesive layer of the aluminum pipe by rotating the cylindrical body once along the surface of the film-like circuit board.

アルミパイプが常温に戻った後、アルミパイプの絶縁性接着層上に転写されたCu配線層を観察したところ、Cu配線層の両端部に重なりや間隙の発生はなかった。また、顕微鏡検査(20倍)での外観確認により、配線パターンにシワや断線などは存在せず、Cu配線層の全てを完全に転写できたことが確認された。更に、円筒体外周面のCu配線層に接着剤などの付着は認められず、良好な導通性が得られた。   After the aluminum pipe returned to room temperature, the Cu wiring layer transferred onto the insulating adhesive layer of the aluminum pipe was observed, and no overlap or gap was generated at both ends of the Cu wiring layer. Moreover, it was confirmed by the external appearance confirmation by microscopic inspection (20 times) that there was no wrinkle or disconnection in the wiring pattern, and that the entire Cu wiring layer could be completely transferred. Furthermore, adhesion of an adhesive or the like was not observed on the Cu wiring layer on the outer peripheral surface of the cylindrical body, and good conductivity was obtained.

[実施例2]
上記実施例1と同じ厚さ50μmのPETフィルム(東レ製:T60)の表面に真空蒸着法により厚さ0.1μmのCu薄膜を形成した。次に、上記実施例1と同様に、硫酸銅めっきによりCu薄膜上に厚さ8μmのCu層を形成した。得られた複合材料について、Cu金属層とPETフィルムの密着性を上記実施例1と同様に評価したところ、ピール強度は211N/mであった。
[Example 2]
A Cu thin film having a thickness of 0.1 μm was formed on the surface of a PET film having a thickness of 50 μm as in Example 1 (Toray: T60) by vacuum deposition. Next, as in Example 1, a Cu layer having a thickness of 8 μm was formed on the Cu thin film by copper sulfate plating. About the obtained composite material, when the adhesiveness of Cu metal layer and PET film was evaluated similarly to the said Example 1, the peel strength was 211 N / m.

この複合材料のCu金属層を上記実施例1と同様にパターン化して、配線パターンのピッチが500μm、100μm及び50μmの異なるピッチの3種類のフィルム状回路基板を作製した。しかし、ピッチが50μmのCu配線層は一部に剥がれが生じていた。そこで、剥がれのないピッチが500μmと100μmの配線パターンのCu配線層を有するフィルム状回路基板について、上記実施例1と同様にして、転写による立体的回路基板の製造と評価を行った。   The Cu metal layer of this composite material was patterned in the same manner as in Example 1 to produce three types of film-like circuit boards with different pitches of wiring patterns of 500 μm, 100 μm, and 50 μm. However, a part of the Cu wiring layer with a pitch of 50 μm was peeled off. Thus, for a film-like circuit board having a Cu wiring layer with wiring patterns having a peeling pitch of 500 μm and 100 μm, a three-dimensional circuit board was manufactured and evaluated by transfer in the same manner as in Example 1 above.

アルミパイプの絶縁性接着層上に転写されたCu配線層を観察したところ、ピッチ500μm及び100μmの2種類とも、Cu配線層の両端部に重なりや間隙の発生はなかった。また、顕微鏡検査(20倍)での外観確認により、配線パターンにシワや断線などは存在せず、Cu配線層の全てを完全に転写できたことが確認された。更に、円筒体外周面のCu配線層に接着剤などの付着は認められず、良好な導通性が得られた。   When the Cu wiring layer transferred onto the insulating adhesive layer of the aluminum pipe was observed, no overlap or gap was generated at both ends of the Cu wiring layer in both types of pitches of 500 μm and 100 μm. Moreover, it was confirmed by the external appearance confirmation by microscopic inspection (20 times) that there was no wrinkle or disconnection in the wiring pattern, and that the entire Cu wiring layer could be completely transferred. Furthermore, adhesion of an adhesive or the like was not recognized on the Cu wiring layer on the outer peripheral surface of the cylindrical body, and good electrical conductivity was obtained.

[実施例3]
上記実施例1と同じ厚さ50μmのPETフィルム(東レ製:T60)の表面に、密着性をコントロールするために樹脂(十条ケミカル製:GA4100)を塗布して乾燥した後、スパッタリング法により厚さ0.1μmのCu薄膜を形成した。次に、上記実施例1と同様に、硫酸銅めっきによりCu薄膜上に厚さ8μmのCu層を形成した。得られた複合材料について、Cu金属層とPETフィルムの密着性を上記実施例1と同様に評価したところ、ピール強度は321N/mであった。
[Example 3]
In order to control adhesion, a resin (Jujo Chemical: GA4100) was applied to the surface of a PET film (Toray: T60) having the same thickness of 50 μm as in Example 1 and dried. A 0.1 μm Cu thin film was formed. Next, as in Example 1, a Cu layer having a thickness of 8 μm was formed on the Cu thin film by copper sulfate plating. About the obtained composite material, when the adhesiveness of Cu metal layer and PET film was evaluated similarly to the said Example 1, the peel strength was 321 N / m.

この複合材料のCu金属層を上記実施例1と同様にパターン化して、配線パターンのピッチが500μm、100μm及び50μmの異なるピッチの3種類のフィルム状回路基板を作製した。その結果、3種類の全てのピッチでCu配線層に剥がれは発生しなかった。そこで、それぞれの配線パターンのCu配線層を有する3種類のフィルム状回路基板について、上記実施例1と同様にして、転写による立体的回路基板の製造と評価を行った。   The Cu metal layer of this composite material was patterned in the same manner as in Example 1 to produce three types of film-like circuit boards with different pitches of wiring patterns of 500 μm, 100 μm, and 50 μm. As a result, the Cu wiring layer did not peel off at all three pitches. Thus, three types of film-like circuit boards having Cu wiring layers of respective wiring patterns were manufactured and evaluated by transfer in the same manner as in Example 1 above.

アルミパイプの絶縁性接着層上に転写されたCu配線層を観察したところ、ピッチ500μm、200μm及び100μmの3種類とも、Cu配線層の両端部に重なりや間隙の発生はなかった。また、顕微鏡検査(20倍)での外観確認により、配線パターンにシワや断線などは存在せず、Cu配線層の全てを完全に転写できたことが確認された。更に、円筒体外周面のCu配線層に接着剤などの付着は認められず、良好な導通性が得られた。   When the Cu wiring layer transferred onto the insulating adhesive layer of the aluminum pipe was observed, there was no overlap or generation of gaps at both ends of the Cu wiring layer in the three types of pitches of 500 μm, 200 μm and 100 μm. Moreover, it was confirmed by the external appearance confirmation by microscopic inspection (20 times) that there was no wrinkle or disconnection in the wiring pattern, and that the entire Cu wiring layer could be completely transferred. Furthermore, adhesion of an adhesive or the like was not observed on the Cu wiring layer on the outer peripheral surface of the cylindrical body, and good conductivity was obtained.

1 絶縁性フィルム
2 金属層
3 絶縁性接着層
4 間隙
10 フィルム状回路基板
11 プレート
12 円筒体
DESCRIPTION OF SYMBOLS 1 Insulating film 2 Metal layer 3 Insulating adhesive layer 4 Gap 10 Film-like circuit board 11 Plate 12 Cylindrical body

Claims (4)

絶縁性フィルムの表面に金属配線層を直接形成した後、加熱して界面の接着力を低下させることにより絶縁性フィルムと金属配線層の密着性をコントロールしたフィルム状回路基板を用い、このフィルム状回路基板の配線パターン端部を円筒体外周面に形成した絶縁性接着層に対して押し当て、この状態からフィルム状回路基板の表面に沿って円筒体を一回転させることにより、絶縁性フィルム表面の金属配線層を円筒体外周面の絶縁性接着層上に転写することを特徴とする立体的回路基板の製造方法。 After forming the metal wiring layer directly on the surface of the insulating film, this film-like circuit board is used by controlling the adhesion between the insulating film and the metal wiring layer by heating and reducing the adhesive strength at the interface. By pressing the end of the circuit board wiring pattern against the insulating adhesive layer formed on the outer peripheral surface of the cylindrical body, and rotating the cylindrical body along the surface of the film-like circuit board from this state, the surface of the insulating film A method of manufacturing a three-dimensional circuit board, comprising transferring the metal wiring layer onto an insulating adhesive layer on an outer peripheral surface of a cylindrical body. 前記フィルム状回路基板は、蒸着法あるいはスパッタリング法により絶縁性フィルム表面に金属薄膜を直接形成し、その上に電気めっきにより金属層を形成した後、エッチング処理して所定の配線パターンの金属配線層を形成することにより得られることを特徴とする、請求項1に記載の立体的回路基板の製造方法。   The film-like circuit board is formed by directly forming a metal thin film on the surface of the insulating film by vapor deposition or sputtering, forming a metal layer thereon by electroplating, and then etching to form a metal wiring layer having a predetermined wiring pattern. The method for manufacturing a three-dimensional circuit board according to claim 1, wherein the three-dimensional circuit board is obtained by forming the step. 前記フィルム状回路基板において、金属配線層の配線パターンのピッチが50〜500μmのとき、該金属配線層にパターン化する前の金属層のピール強度が98〜321N/mであることを特徴とする、請求項1又は2に記載の立体的回路基板の製造方法。   In the film-like circuit board, when the pitch of the wiring pattern of the metal wiring layer is 50 to 500 μm, the peel strength of the metal layer before patterning to the metal wiring layer is 98 to 321 N / m. The manufacturing method of the three-dimensional circuit board of Claim 1 or 2. 前記絶縁性フィルム表面に直接形成した金属配線層の配線パターンの両端部間の長さが、前記円筒体外周面に形成した絶縁性接着層の外周長さに等しいことを特徴とする、請求項1〜3のいずれかに記載の立体的回路基板の製造方法。   The length between both ends of the wiring pattern of the metal wiring layer directly formed on the surface of the insulating film is equal to the outer peripheral length of the insulating adhesive layer formed on the outer peripheral surface of the cylindrical body. The manufacturing method of the three-dimensional circuit board in any one of 1-3.
JP2009245360A 2009-10-26 2009-10-26 Three-dimensional circuit board manufacturing method Expired - Fee Related JP5251828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009245360A JP5251828B2 (en) 2009-10-26 2009-10-26 Three-dimensional circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009245360A JP5251828B2 (en) 2009-10-26 2009-10-26 Three-dimensional circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JP2011091304A JP2011091304A (en) 2011-05-06
JP5251828B2 true JP5251828B2 (en) 2013-07-31

Family

ID=44109270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009245360A Expired - Fee Related JP5251828B2 (en) 2009-10-26 2009-10-26 Three-dimensional circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP5251828B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191709A (en) * 2012-03-13 2013-09-26 Sumitomo Metal Mining Co Ltd Method of manufacturing three-dimensional circuit board

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150896A (en) * 1985-12-25 1987-07-04 シャープ株式会社 Formation of wiring on wiring circuit board
JPH0541572A (en) * 1990-09-28 1993-02-19 Toshiba Corp Manufacture of printed circuit board and manufacture of multilayer printed circuit board
JP2003060329A (en) * 2001-08-09 2003-02-28 Toray Ind Inc Transfer sheet for forming wiring board
JP2004088039A (en) * 2002-06-26 2004-03-18 Sekisui Chem Co Ltd Manufacturing method of circuit board
JP2004207425A (en) * 2002-12-25 2004-07-22 Panac Co Ltd Conductive layer transfer sheet for printed wiring excellent in heat-resistant shrinkage characteristics
JP4844729B2 (en) * 2005-08-17 2011-12-28 独立行政法人産業技術総合研究所 Nanoimprint method and apparatus

Also Published As

Publication number Publication date
JP2011091304A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
US7476812B2 (en) Printed circuit board and manufacturing method thereof
US8435376B2 (en) Carrier for manufacturing substrate and method of manufacturing substrate using the same
US8881381B2 (en) Method of manufacturing printed circuit board
TW201132268A (en) Method of manufacturing multilayer wiring substrate, and multilayer wiring substrate
TWM517410U (en) Electronic package and package carrier
US8377317B2 (en) Method for manufacturing printed circuit board with thick traces
TWI429361B (en) Producing method of wired circuit board
JP4400673B2 (en) Three-dimensional circuit board forming apparatus and forming method
JP5175779B2 (en) Method for manufacturing printed circuit board
JP5251828B2 (en) Three-dimensional circuit board manufacturing method
TWI656819B (en) Flexible circuit board manufacturing method
TWI676404B (en) Hollow flexible circuit board and method for manufacturing same
US20100018638A1 (en) Method for manufacturing flexible printed circuit board
CN113260740A (en) Pattern plate for plating and method for manufacturing wiring substrate
JPH04127492A (en) Material for printed wiring, manufacture thereof and printed wiring board
TWI608778B (en) Multilayer printed wiring board manufacturing method
JP2006202849A (en) Method of manufacturing wiring circuit board with stiffening plate
JPH11145205A (en) Manufacture of tape for tab
KR101989798B1 (en) Method for manufacturing flexible printed circuit board, and flexible printed circuit board manufactured by the method
JP4449228B2 (en) Manufacturing method of inspection jig
CN113227460A (en) Pattern plate for plating and method for manufacturing wiring substrate
TW202025870A (en) Circuit board and method for making the same
JP4090559B2 (en) Multilayer wiring board manufacturing method and transfer vacuum apparatus
TWI420990B (en) Method for manufacturing printed circuit board
JP7435734B2 (en) resin multilayer board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5251828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees