JP2013174443A - 距離測定システムおよび距離測定方法 - Google Patents

距離測定システムおよび距離測定方法 Download PDF

Info

Publication number
JP2013174443A
JP2013174443A JP2011271758A JP2011271758A JP2013174443A JP 2013174443 A JP2013174443 A JP 2013174443A JP 2011271758 A JP2011271758 A JP 2011271758A JP 2011271758 A JP2011271758 A JP 2011271758A JP 2013174443 A JP2013174443 A JP 2013174443A
Authority
JP
Japan
Prior art keywords
distance
optical module
light beams
optical
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011271758A
Other languages
English (en)
Inventor
Xinjun Wan
シンジュン・ワン
Guiju Song
グイジュ・ソン
George Harding Kevin
ケヴィン・ジョージ・ハーディング
Shukuan Xu
シュクアン・シュ
Steven Robert Hayashi
スティーヴン・ロバート・ハヤシ
William Tait Robert
ロバート・ウィリアム・タイト
Joseph Hoffman James
ジェームズ・ジュセフ・ホフマン
Walter Muchmore Charles
チャールズ・ウォルター・マッチモア
Michael Gluesenkamp Matthew
マシュー・マイケル・グルーセンカンプ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to JP2011271758A priority Critical patent/JP2013174443A/ja
Publication of JP2013174443A publication Critical patent/JP2013174443A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】被加工物を工作機械上に乗せたまま、それらまでの距離をはかる。
【解決手段】測定システムは、光ビーム発生器、光学式距離センサ、光学モジュール、およびプロセッサを含む。光学モジュールは、光ビームを受信するように構成され、対象物における1つまたは複数の点に投射するために、異なる光経路を有する複数の光ビームを発生させ、それらを選択的に送信して、対象物における1つまたは複数のそれぞれの点から散乱した1つまたは複数の反射光ビームを発生させるように構成され、また、対象物における1つまたは複数のそれぞれの点までの複数の距離データを取り出すために、1つまたは複数の反射光ビームを取り込み、それらを光学式距離センサに送信するように構成されている。プロセッサは、対象物における1つまたは複数のそれぞれの点に関する位置情報を求めるために距離データを処理するように構成されている。さらに、距離測定方法が提示される。
【選択図】図2

Description

本発明の実施形態は、概して測定システムおよび測定方法に関する。より詳細には、本発明の実施形態は、対象物における点までの距離を測定するための距離測定システムおよび距離測定方法に関する。
コンピュータ数値制御(CNC)機械(または「マシニングセンタ」)などの機械加工システムは、対象物を機械加工するために広く用いられている。機械加工の間、機械加工される対象物における所望の点までの距離などの寸法を測定することが必要な場合があり、それによって機械加工システムは、機械加工パラメータを調整して、以降の機械加工を続けることができる。対象物が、所望の品質を達成するように適切に構成または形成されることを確実にするために、対象物における点までの距離を測定することが望ましい。
対象物における点までの距離を測定することが試みられている。例えば、対象物における点までの距離を測定するために、いくつかの既存の座標測定機(CMM)が用いられている。しかし、座標測定機における対象物の測定は、通常オフラインで行われる。対象物の大きさを測定するためには、測定を行う座標測定機に対象物が取り付けられるように、その対象物の機械加工プロセスを中断する必要がある。
測定後には、測定結果に基づいて、対象物の機械加工プロセスを再開することができる。しかし、高精度の対象物の場合、工作機械から対象物を取り外し、その工作機械に対象物を付け直すことは、工作機械に対象物を再度位置合わせすることに関係する誤差により、実用的ではない。一般に、このような測定は、対象物を所望の寸法に機械加工するために何度か行われる場合があり、対象物を付け直すことに起因する生産性の低下、品質の低下を招き、また時間を浪費する。
現行のいくつかの用途では、タッチプローブも用いられている。タッチプローブは、部品を直接的には測定しないが、測定を行うために用いられるトリガを与えて、工作機械自体のスケールを使って測定を行う。オンマシンタッチプローブを用いることによって、対象物を機械の上に置いたままにしておくことができるため、対象物を付け直すことに起因する品質の損失は起こらない。このような測定法は、タッチプローブによる測定によって機械加工デバイスから対象物を取り外す必要がなくなるために生産性を向上させるが、対象物上におけるタッチプローブの動きが比較的遅いために、依然として時間を浪費する可能性がある。
したがって、対象物を工作機械の上に置いたまま、その対象物における点までの距離を測定するための、新しく、また向上した距離測定システムおよび距離測定方法が必要である。
本発明の一実施形態による距離測定システムが提供される。この距離測定システムは、光ビームを発生させるように構成された光学式距離センサ、第1の光学モジュール、およびプロセッサを含む。第1の光学モジュールは、光ビームを受信するように構成され、対象物における1つまたは複数の点に投射するために、異なる光経路を有する複数の光ビームを発生させ、それらを選択的に送信して、対象物における1つまたは複数のそれぞれの点から散乱した1つまたは複数の反射光ビームを発生させるように構成され、また、対象物における1つまたは複数のそれぞれの点までの複数の距離データを取り出すために、1つまたは複数の反射光ビームを取り込み、それらを光学式距離センサに送信するように構成されている。プロセッサは、対象物における1つまたは複数のそれぞれの点に関する位置情報を求めるために距離データを処理するように構成されている。
本発明の別の実施形態による距離測定方法が提供される。この方法は、光学式距離センサから第1の光学モジュールに光ビームを導入するステップと、対象物における1つまたは複数の点に投射するために、異なる光経路を有する複数の光ビームを発生させ、それらを選択的に送信して、対象物における1つまたは複数のそれぞれの点から散乱した1つまたは複数の反射光ビームを発生させるステップと、対象物における1つまたは複数のそれぞれの点までの複数の距離データを取り出すために、1つまたは複数の反射光ビームを取り込み、それらを光学式距離センサに送信するステップと、距離データを処理して、対象物における1つまたは複数のそれぞれの点に関する位置情報を求めるステップとを含む。
これらおよび他の利点ならびに特徴は、添付図面に関連して提供される本発明の好ましい実施形態に関する以下の詳細な説明から、さらに良く理解されよう。
本発明の一実施形態による距離測定システムの概略図である。 本発明の一実施形態による距離測定システムのレーザ三角測量センサの動作を示す概略図である。 本発明の一実施形態による距離測定システムの例示的な第1の光学モジュールの概略図である。 本発明の一実施形態による距離測定システムの例示的な第1の光学モジュールの概略図である。 本発明の一実施形態による距離測定システムの例示的な第2の光学モジュールの概略図である。 本発明の一実施形態による距離測定システムの例示的な第3の光学モジュールの概略図である。 一実施形態による、対象物における点までの距離の測定を示す概略図である。 一実施形態による、対象物における点までの距離の測定を示す概略図である。 一実施形態による、対象物における点までの距離の測定を示す概略図である。 一実施形態による、対象物における点までの距離の測定を示す概略図である。 一実施形態による、対象物における点までの距離の測定を示す概略図である。
添付図面を参照して、本開示の好ましい実施形態を以下に説明する。以降の説明では、不要な細部によって本開示を不明瞭にすることのないように、周知の機能または構造は、詳細には説明しない。
図1は、本発明の一実施形態による、対象物100における点までの距離、および/または、対象物100における2点間の距離などの位置情報を測定するための距離測定システム10の概略図を示す。図1に示されているように、距離測定システム10は、光学式距離センサ11、第1の光学モジュール12、およびプロセッサ13を含む。
いくつかの実施形態では、光学式距離センサ11は、(図2に示されている)離間距離d1および測定範囲d2を定めることができ、それらは、光学式距離センサ11の測定範囲d2の中に置かれた対象物における点に関する距離測定用のものである。本発明の実施形態では、光学式距離センサ11は、対象物100における点(標示せず)に投射するために光ビーム14を発生させてそれを送信するように構成され、また、対象物100における点から後方に散乱した反射光ビームを受信して、対象物100における点までの距離などの位置情報を取り出すように構成されている。説明を簡単にするために単一の対象物100が図示されているが、様々な用途に応じて、距離測定システム10におけるそれぞれの光ビームによって、他の対象物を測定することもできる。
光学式距離センサ11の非限定の例には、レーザ三角測量センサ、白色干渉法センサ(white light interferometry sensor)、または、距離測定用の他の好適な光学式距離センサが含まれ得る。非限定の一例では、光学式距離センサ11には、LMI technologies、British Columbia、Canadaより、Selcom SLS5000の商品名で販売されているレーザ三角測量センサが含まれる。
図2は、対象物100における所望の点に関する距離測定のためのレーザ三角測量センサ11の動作を示す概略図である。一例では、レーザ三角測量センサ11の離間距離d1は、140mmである。レーザ三角測量センサ11の測定範囲d2は、0mmから220mmまでの範囲である。他の例では、離間距離d1および測定範囲d2は、様々な用途に応じて異なっていてもよい。
図2に示されているように、レーザ三角測量センサ11は、レーザ発生源15、レンズユニット16、および距離プロセッサ17を含む。レーザ発生源15は、対象物100における点に投射するために、レーザ14を発生させてそれを送信するように構成されている。レンズユニット16は、対物レンズを含むことができ、対象物100における点からの反射光ビーム18を取り込んで、それを、対象物100における点までの距離を取り出す距離プロセッサ17に送信するように構成されている。非限定のいくつかの例では、距離プロセッサ17は、1次元または2次元において均一な抵抗を有するモノリシックのPINフォトダイオードを含む位置感応検出器を含むことができる。
したがって、動作の間、レーザ発生源15は、対象物100における所望の点に投射するためにレーザ14を発生させてそれを送信する。次に、レンズユニット16は、対象物100における点からの反射光ビーム18を取り込んで、それを、対象物100における点までの距離を取り出す位置感応検出器17に送信する。三角測量距離測定法と呼ばれることがある図示構成の場合、レンズユニット16は、レーザ発生源15から投射されたレーザ14の軸(図示せず)に対してある角度で配置された光軸(図示せず)を含む。
さらに図2に示されているように、対象物100が測定範囲d2の中で動く場合、測定範囲d2の中における対象物100の位置に応じて、対象物100における点までの複数の距離を取り出すことができる。図2のレーザ三角測量センサ11の構成が例示に過ぎない点に留意されたい。レンズユニット16は、1つまたは複数の光学素子を含むことができる。さらに、距離の測定を行うために、他の光学式距離センサが、他の好適な素子を含むことができる。
図1の構成の場合、第1の光学モジュール12は、光ビーム14を受信し、対象物におけるそれぞれの点に投射するために4つの光ビーム20、21、22、23を発生させて、それらを4つの異なる光経路24、25、26、27に沿って送信するように構成されている。非限定の例では、第1の光学モジュール12は、単一の光ビーム14を受信し、2つ以上の光ビームを、2つ以上のそれぞれの異なる光経路に沿って発生させることができる。
図3は、本発明の一実施形態による距離測定システム10の例示的な第1の光学モジュール12の概略図を示す。図3に示されているように、第1の光学モジュール12は、第1、第2、および第3のビーム分割素子30、31、32、ならびにビーム反射素子33を含む。ビーム分割素子30、31、32は、分割面74、75、76を含み、ビーム反射素子33は、反射面77を含む。図示されている例では、ビーム分割素子30、31、32は、限定されないが、平らなビーム分割ミラーを含む、平らなビーム分割素子を含む。ビーム反射素子33は、限定されないが、平らなビーム反射ミラーを含む、平らなビーム反射素子を含む。
図3に示されているように、非限定の一例では、ビーム分割素子30がある位置に配置されており、それによって光ビーム14は、光ビーム34に分割され、光ビーム34は、光ビーム14の投射方向「A」に垂直な方向に沿って送信され、光ビーム35は、ビーム分割素子30の分割面74を通り、投射方向「A」に沿ってビーム分割素子30を通過する。
ビーム反射素子33の反射面77は、ビーム分割素子30の分割面74と同一平面になるように配置されている。ビーム分割素子31、32は、ビーム分割素子30に対して上側の位置、および下側の位置に配置されており、ビーム分割素子31の分割面75は、ビーム分割素子30の分割面74に平行に配置されており、また、ビーム分割素子32の分割面76は、ビーム分割素子30の分割面74に垂直に配置されている。
したがって、動作の間、光ビーム14は、第1の光学モジュール12に送信され、ビーム分割素子30によって光ビーム34、35に分割される。光ビーム35は、光ビーム14の投射方向に沿ってビーム分割素子32に投射される。その後、光ビーム35は、第1の光ビーム20と第2の光ビーム21に分割される。第1の光ビーム20は、ビーム分割素子32を通過し、投射方向と重なり得る第1の光経路24に沿って、第1の光学モジュール12の外に送信される。第2の光ビーム21は、ビーム分割素子32によって、第1の光学モジュール12の左側から第1の光学モジュール12の外に、投射方向に垂直な第2の光経路25に沿って反射される。
一方、光ビーム34は、投射方向「A」に垂直な方向に沿ってビーム分割素子31に投射され、第3の光ビーム22と第4の光ビーム23に分割される。第3の光ビーム22は、ビーム分割素子31によって、光ビーム34に垂直な方向に沿ってビーム反射素子33に反射され、次に、投射方向に垂直な第3の光経路26に沿って第1の光学モジュール12の外に反射される。第4の光ビーム23は、ビーム分割素子31を通過し、第3の光経路から離れており、また第3の光経路に平行な第4の光ビームに沿って、第1の光学モジュール12の外へ送信される。
いくつかの用途では、光ビーム20、21、22、23は、対象物におけるそれぞれの点に投射するために選択的に送信することができる。非限定の一例では、対象物に時間ごとに投射するために、光ビーム20、21、22、23の1つを選択的に送信することができる。したがって、図3に示されているように、第1の光学モジュール12は、それぞれの光経路24、25、26、27を開閉するために配置された複数の可動シャッター40、41、42、43をさらに含む。例えば、光ビーム20が対象物100に選択的に投射される場合、可動シャッター40は光経路24を解放し、また可動シャッター41、42、43は、それぞれの光経路25、26、27を閉じる。
いくつかの構成に対しては、光ビーム20、21、22、23がそれぞれの対象物に投射された後、それぞれの対象物における点までの距離を取り出すために、それぞれの対象物から後方に散乱した反射光ビーム(図示せず)を第1の光学モジュール12によって取り込み、それらを光学式距離センサ11に送信することができる。図示されている例では、説明を簡単にするために一部の反射光ビームが示されていない場合がある。レーザ三角測量センサなどの光学式距離センサ11の動作は、図2に説明用に示されている。いくつかの用途では、光ビーム20、21、22、23、および、それぞれの反射光ビームは、第1の光学モジュール12における同じ光学素子によって送信することができる。
図3の構成が例示に過ぎない点に留意されたい。いくつかの例では、第1の光学モジュール12は、2つ以上の光ビームを発生させる1つまたは複数のビーム分割素子を含むことができる。また、1つまたは複数のビーム反射素子を用いることができる。1つまたは複数のビーム分割素子の位置、および、1つまたは複数のビーム反射素子の位置は、様々な用途に応じて異なっていてもよい。
図4は、本発明の別の実施形態による距離測定システム10の例示的な第1の光学モジュール12の概略図である。図4の構成は、図3の構成と類似している。これらの2つの構成は、図4では複数のビーム分割プリズム44〜49とビーム反射プリズム50が、図3に示されているビーム分割ミラー30〜32とビーム反射ミラー33の代わりに用いられている点で異なる。いくかの用途では、ビーム分割プリズム44、46、および/または48は用いられなくてもよい。
したがって、動作の間、光ビーム14が第1の光学モジュール12に投射された後、ビーム分割プリズム44、45、46、47を介して、第1および第2の光ビーム20、21が発生する。さらに、ビーム分割プリズム44、45、48、49、およびビーム反射プリズム50を介して、第3および第4の光ビーム22、23が発生する。同様に、第1、第2、第3、および第4の光ビーム20、21、22、23のそれぞれを選択的に開閉するために、複数の可動シャッター40、41、42、43を用いることもできる。
図1に示されている例では、光学式距離センサ11は、対象物100における点までの複数の距離データを取り出すことができる。したがって、プロセッサ13は、光学式距離センサ11から距離データを取り出し、それを、対象物における点までの平均距離などの位置情報を生成するために、例えば平均するための処理を行うように構成することができる。
特定の用途では、光学式距離センサ11は、対象物における2つ以上のそれぞれの点までの複数の距離データを取り出すこともできる。それによって、プロセッサ13は、対象物における2点間の距離などの位置情報を計算することができる。他の用途では、対象物における同じ1点の距離を測定する場合、プロセッサ13は、光学式距離センサ11によって取り出された複数の距離データから最大距離と最小距離を特定し、最大距離と最小距離の距離差などの位置情報を生成することもできる。非限定の例では、距離差が所定のしきい値距離を超えない場合、対象物は正常に機械加工されている可能性がある。距離差が所定のしきい値距離を超える場合には、対象物は異常に機械加工されている可能性がある。
いくつかの構成に対しては、本発明の処理タスクを実行するプロセッサ13は、いかなる特定のプロセッサにも限定されない場合がある。「プロセッサ」という用語は、その用語が本明細書で用いられる場合には、本発明のタスクを実行するために必要な計算または演算を行うことが可能な任意の機械を指すように考えられている。「プロセッサ」という用語は、当業者によって理解されるように、体系化された入力を受け取り、出力を生み出すために所定のルールに従ってその入力を処理することが可能な任意の機械を指すように考えられている。
いくつかの用途では、図1に示されている構成の場合、距離測定システム10は、光学式距離センサ11およびプロセッサ13に通電するバッテリーなどの電源28をさらに含むことができる。モニタ(図示せず)は、プロセッサ13に接続されていてもよく、また、対象物における所望の点どうしの間の距離、または所望の点までの距離を表示するために、液晶ディスプレイ(LCD)などのディスプレイを含むことができる。他の用途では、電源28およびモニタは、距離測定システム10に用いられなくてもよい。
図1に示されているように、いくつかの構成に対しては、距離測定システム10は、第2の光学モジュール51、および第3の光学モジュール52をさらに含むことができる。第2の光学モジュール51は、第1の光学モジュール12の一方の側に配置されて、第2の光ビーム21を受信する。第3の光学モジュール52は、第1の光学モジュール12の他方の側に配置されて、第3の光ビーム22を受信する。特定の用途では、第2および第3の光学モジュール51、52の位置は、第1の光学モジュール12から所望の光ビームを受信する様々な用途に応じて異なっていてもよい。他の用途では、第2の光学モジュール51および/または第3の光学モジュール52は、用いられても用いられなくてもよい。
図1に示されている構成の場合、第2の光学モジュール51は、第2の光ビーム21を受信し、第2の光学モジュール51の左側と右側からそれぞれ外部に送信される光ビーム53、54を発生させる。第3の光学モジュール52は、第3の光ビーム22を受信し、第3の光学モジュール52の上側と下側から外部に送信される光ビーム55、56を発生させる。
図5〜図6は、本発明の一実施形態による距離測定システム10の第2および第3の光学モジュール51、52の概略図を示す。図5に示されているように、第2の光学モジュール51は、ビーム反射素子57、一対のビーム分割プリズム58、59、およびビーム反射プリズム60を含む。非限定の例では、反射素子57は、反射ミラーを含むことができる。他の用途では、ビーム反射素子57は、ビーム反射プリズムを含むことができ、また、ビーム分割プリズム58、59の代わりに複数のビーム分割ミラーを用いることもできる。ビーム分割プリズム58は用いられなくてもよい。
したがって、動作の間、第2の光ビーム21は、ビーム反射素子57によって反射し、次に、ビーム分割プリズム59によって光ビーム53、54に分割される。光ビーム53は、反射した光ビーム21に垂直な方向に沿って対象物(図示せず)に投射される。光ビーム54は、反射して、光ビーム53の方向と反対の方向に沿って、ビーム反射プリズム60によって対象物(図示せず)に投射される。
対象物のそれぞれの点に対する光ビーム53、54を投射した後、光学式距離センサ11による検出のために、第2の光学モジュール51によって、それぞれの対象物から散乱したそれぞれの反射光ビーム(図示せず)を取り込み、第1の光学モジュール12に送信することができる。したがって、第2の光ビーム21は、第2の光学モジュール51を通過した後、距離測定システム10を動かさずに、対象物における1つまたは複数の点に選択的に投射することができる。特定の用途では、光ビーム53、54、およびそれぞれの反射光ビームは、第1および第2の光学モジュール12、51における同じ光学素子によって、光学式距離センサ11とそれぞれの対象物との間を伝わることができる。
図6に示されている構成の場合、第3の光学モジュール52は、一対のビーム分割プリズム61、62、および、ビーム分割プリズム61、62の後方に配置されたビーム反射プリズム63を含む。いくつかの用途では、ビーム分割プリズム61、62、およびビーム反射プリズム63の代わりに、ビーム分割ミラーとビーム反射ミラーを用いることができる。特定の用途では、ビーム分割プリズム61は、用いられても用いられなくてもよい。
したがって、動作の間、第3の光ビーム22は、ビーム分割プリズム62によって光ビーム55、56に分割される。光ビーム55は、第3の光ビーム22に垂直な方向に沿って対象物に投射される。光ビーム56は、反射して、光ビーム55の方向と反対の方向に沿って、ビーム反射プリズム63によって対象物に投射される。
同様に、それぞれの対象物に光ビーム55、56を投射した後、光学式距離センサ11による検出のために、第3の光学モジュール52によって、それぞれの対象物から散乱したそれぞれの反射光ビーム(図示せず)を取り込み、第1の光学モジュール12に送信することができる。したがって、距離測定システム10を動かさずに、第3の光ビーム22も同様に、第3の光学モジュール51を通過した後に、対象物における1つまたは複数の点に選択的に投射することができる。特定の用途では、光ビーム55、56、およびそれぞれの反射光ビームは、第1および第3の光学モジュール12、52における同じ光学素子によって、光学式距離センサ11とそれぞれの対象物との間を伝わることができる。
特定の構成の場合、光ビーム53〜56の1つを、それぞれの対象物に選択的に投射することができる。図3〜図4の構成と同様であるいくつかの例では、それぞれの光ビーム53〜56の光経路を開閉するために複数のシャッター(図示せず)を用いることができる。
他の例では、ビーム分割プリズム59、62は、偏光ビーム分割プリズムを含むことができ、また距離測定システム10は、図1に示されているように、光学式距離センサ11と第1の光学モジュール12との間に配置された直線偏光子64、および可動半波長素子65をさらに含む。いくつかの例では、半波長素子65は、光ビーム14の光学経路(標示せず)に入ることができ、その光学経路から出ることができ、また、光ビーム14の偏光方向に対して例えば45度の角度をもつ固定軸を有する半波長プレートを含むことができる。
したがって、図5に示されているように、動作の間、第2の光ビーム21が第2の光学モジュール51に送信される場合には、直線偏光子64と偏光ビーム分割プリズム59があることによって、光ビーム53を発生させることはできるが、光ビーム54を発生させることはできない。半波長素子65が光ビーム14の光学経路に入ると、直線偏光子64を通過した後の光ビーム14の偏光状態を変化させることができ、それによって、光ビーム53を発生させることができなくなり、また、光ビーム54を発生させることができるようになる。
同様に、図6の構成の場合には、直線偏光子64、半波長素子65、および偏光ビーム分割プリズム62の連携を介して、光ビーム55、56をそれぞれの対象物における点に選択的に投射することができる。特定の用途では、図4の構成の場合、1つまたは複数のビーム分割プリズムは、1つまたは複数のそれぞれの偏光ビーム分割プリズムを含むこともできる。
図7〜図11は、様々な実施形態による対象物における点どうしの間の距離、および/または、対象物における点までの距離の測定を示す概略図である。図7に示されているように、距離測定システム10は、段66の高さを測定する。測定の間、上部面67における点(標示せず)までの距離データを求めるために、上部面67における点に第1の光ビーム20を投射することができる。次に、第1の光ビーム20を低い方の上部面68における点に移して、下部面68における点までの距離データを生成する。最後に、上部面67と下部面68の間の段66の高さを、上部面67における点と下部面68における点について求められた距離データに基づき、プロセッサ13によって求めることができる。
特定の用途では、光学式距離センサ11は、2つ以上の、例えば数千個を上まわる、対象物における点までの距離データを取り出すことができる。したがって、上部面67における点までの距離を測定する間、光学式距離センサ11によって2つ以上の距離データを取り出し、それらを、処理された第1の距離を生成するための処理を行うためにプロセッサ13に送信することができる。非限定の一例では、プロセッサ13は、平均距離を生成するために2つ以上の距離データを平均することができる。
同様に、下部面68における点までの距離を測定する間、プロセッサ13は、光学式距離センサ11によって取り出された、下部面68における点までの2つ以上の距離データを処理し、処理された第2の距離を生成する。最後に、プロセッサ13は、処理された第1の距離と、処理された第2の距離との差を計算することによって、段66の高さを求めることができる。特定の用途では、プロセッサ13は、上部面67および下部面68における2つの点のそれぞれに対して2つ以上の距離データが取り出された後に、それらの距離データを処理することができる。
図7の構成と同様に、距離測定システム10は、光ビーム55、56による(図8に示されている)段69の厚さ、光ビーム55、56による(図9に示されている)溝70の高さ、および、光ビーム53、54による(図10に示されている)溝71の幅をそれぞれ求めるために用いることができる。
図11に示されているように、対象物100の直径を求めるために、第1の光ビーム20または第4の光ビーム23を用いることができる。同様に、対象物100の回転の間に、第1の光ビーム20または第4の光ビーム23を対象物100に投射することができる。光学式距離センサ11は、対象物100からの反射光ビームに基づき、複数の直径データを取り出し、それらを、処理された直径データを得るための処理を行うために、プロセッサ13に送信することができる。
いくつかの用途では、プロセッサ13は、光学式距離センサ11によって取り出される直径データから、最大直径データと最小直径データを特定することができ、また、最大データと最小データの直径差が所定のしきい値より大きいかどうかを判定することができる。非限定の一例では、直径差が所定のしきい値を超えない場合、その対象物は正常に機械加工されている可能性がある。直径差が所定のしきい値を超える場合、その対象物は異常に機械加工されている可能性がある。
同様に、図7〜図10の構成に対して、各点に対する距離を測定する間、プロセッサ13は、光学式距離センサ11によって取り出された距離データから、最大距離データと最小距離データを特定することもできる。
いくつかの用途では、異なる光経路を有する光ビームに基づいて距離を測定することができるため、例えば、コンピュータ数値制御(CNC)機械加工システムと容易に通信を行えるように、異なる光経路を有する光ビームを介して測定可能な、ある点までの距離が、同じ1つの座標系において認識し得るように距離測定システム10を較正することができるすなわち、較正後には、異なる光経路を有する光ビームを介して距離測定システム10によって測定することができる、ある点までの距離が同じとなり得る。いくつかの例では、距離測定システム10の較正は、実験および/または経験によって行うことができる。
いくつかの実施形態では、図1に示されているように、距離測定システム10のプロセッサ13は、コンピュータ数値制御(CNC)機械加工システム72と通信して、機械加工される対象物における所望の点どうしの間の距離、および/または所望の点までの距離などの寸法情報を提供することができ、それによって機械加工システム72は、機械加工パラメータを調整して、以降の機械加工を続けることができる。特定の用途では、プロセッサ13は、無線接続またはケーブル接続を介して、機械加工システム72と通信することができる。
図1に示されている構成の場合、距離測定システム10は、保持用素子73をさらに含むことができ、この保持用素子73によって、距離測定システム10を機械加工システム72に取り外し可能に取り付けることができ、そのため測定の間には、機械加工される対象物は機械加工システム72から外れることがなく、また従来の測定システムに比べて多くの時間を節約することができる。
本発明の実施形態では、距離測定システム10は、異なる光経路に沿って複数の光ビームを発生させることができる。したがって、例えば段や溝などの様々な部分の外形測定である、様々な用途に応じて、効率的である可能性があり、また、様々な部分の外形測定に対して良好なアクセス能力を提供可能な所望の光ビームを、測定を行うために選択的に発生させることができる。距離測定システム10は、従来の測定システムに比べて高品質の位置情報を提供するように処理される、対象物における点までの2つ以上の距離データを生成することができる。さらに、距離測定システム10は、機械加工品質を確実なものとするためにCNC機械加工システムと通信することができ、また、従来のCNC機械加工システムに後付けすることができる。
本開示が示され、典型的な実施形態について説明されたが、いかなる方法においても、本開示の主旨から逸脱することなく様々な変更および代用がなされ得るため、本開示は、示された細部に限定されるようには考えられていない。したがって、本明細書における開示に関するさらなる変更および等価物は、当業者には日常的程度の実験によって思い浮かぶ可能性があり、このような全ての変更および等価物は、以降の特許請求の範囲によって定義される本開示の主旨および範囲に含まれるものと考えられる。
10 距離測定システム
11 光学式距離センサ
12 第1の光学モジュール
13 プロセッサ
14 光ビーム
15 レーザ発生源
16 レンズユニット
17 距離プロセッサ
18 反射光ビーム
20 第1の光ビーム
21 第2の光ビーム
22 第3の光ビーム
23 第4の光ビーム
24 第1の光経路
25 第2の光経路
26 第3の光経路
27 第4の光経路
28 電源
30 第1のビーム分割素子
31 第2のビーム分割素子
32 第3のビーム分割素子
33 ビーム反射素子
34 光ビーム
35 光ビーム
40 可動シャッター
41 可動シャッター
42 可動シャッター
43 可動シャッター
44 ビーム分割プリズム
45 ビーム分割プリズム
46 ビーム分割プリズム
47 ビーム分割プリズム
48 ビーム分割プリズム
49 ビーム分割プリズム
50 ビーム反射プリズム
51 第2の光学モジュール
52 第3の光学モジュール
53 光ビーム
54 光ビーム
55 光ビーム
56 光ビーム
57 ビーム反射素子
58 ビーム分割プリズム
59 ビーム分割プリズム
60 ビーム反射プリズム
61 ビーム分割プリズム
62 ビーム分割プリズム
63 ビーム反射プリズム
64 直線偏光子
65 可動半波長素子
66 段
67 上部面
68 下部面
69 段
70 溝
71 溝
72 コンピュータ数値制御機械加工システム
73 保持用素子
74 分割面
75 分割面
76 分割面
77 反射面
100 対象物
A 投射方向
d1 離間距離
d2 測定範囲

Claims (24)

  1. 光ビームを発生させるように構成された光学式距離センサと、
    光ビームを受信して、異なる光経路を有する複数の光ビームを発生させるように構成され、対象物における1つまたは複数の点に投射するために、異なる光経路を有する光ビームを選択的に送信して、前記対象物における1つまたは複数のそれぞれの点から散乱した1つまたは複数の反射光ビームを発生させるように構成され、また、前記対象物における1つまたは複数のそれぞれの点までの複数の距離データを取り出すために、前記1つまたは複数の反射光ビームを取り込み、それらを前記光学式距離センサに送信するように構成された第1の光学モジュールと、
    前記対象物における1つまたは複数のそれぞれの点に関する位置情報を求めるために、前記距離データを処理するように構成されたプロセッサと
    を含む距離測定システム。
  2. 前記第1の光学モジュールが、1つまたは複数のビーム分割素子を含む、請求項1記載の距離測定システム。
  3. 前記第1の光学モジュールが、前記1つまたは複数のビーム分割素子と連携する1つまたは複数のビーム反射素子を含む、請求項2記載の距離測定システム。
  4. 前記第1の光学モジュールが、第1、第2、および第3のビーム分割素子、ならびに1つのビーム反射素子を含む、請求項3記載の距離測定システム。
  5. 前記第1のビーム分割素子が、前記光学式距離センサからの光ビームを、前記光ビームの投射方向に垂直な方向に沿って送信される光ビームと、前記投射方向に沿って送信される光ビームとに分割するように配置されている、請求項4記載の距離測定システム。
  6. 前記第2のビーム分割素子の分割面が、前記第1のビーム分割素子の分割面に平行に配置されており、前記第3のビーム分割素子の分割面が、前記第1のビーム分割素子の分割面に垂直に配置されており、前記ビーム反射素子の反射面が、前記第1のビーム分割素子の分割面と同一平面になるように配置されている、請求項5記載の距離測定システム。
  7. 第2の光学モジュールであって、前記第1の光学モジュールからの光ビームの1つを受信し、2つの光ビームを発生させ、前記対象物における1つまたは複数のそれぞれの点に投射するために前記第2の光学モジュールの右側および左側のそれぞれから前記2つの光ビームを選択的に送信するように構成された、第2の光学モジュールをさらに含む、請求項1記載の距離測定システム。
  8. 前記第2の光学モジュールが、ビーム反射ミラー、ビーム反射プリズム、および、前記ビーム反射ミラーと前記ビーム反射プリズムの間に配置された1つまたは複数のビーム分割プリズムを含む、請求項7記載の距離測定システム。
  9. 第3の光学モジュールであって、前記第1の光学モジュールからの光ビームの1つを受信し、2つの光ビームを発生させ、前記対象物における1つまたは複数のそれぞれの点に投射するために前記第3の光学モジュールの上側および下側のそれぞれから前記2つの光ビームを選択的に送信するように構成された、第3の光学モジュールをさらに含む、請求項1記載の距離測定システム。
  10. 前記第3の光学モジュールが、1つまたは複数のビーム分割プリズム、および、前記1つまたは複数のビーム分割プリズムの後方に配置されたビーム反射プリズムを含む、請求項9記載の距離測定システム。
  11. 前記光学式距離センサと前記第1の光学モジュールとの間に配置された直線偏光子および可動半波長素子をさらに含む、請求項1記載の距離測定システム。
  12. 前記第1の光学モジュールが、前記第1の光学モジュールの光ビームの光経路を開閉するために配置された複数のシャッターを含む、請求項1記載の距離測定システム。
  13. 前記距離測定システムをコンピュータ数値制御機械加工システムに取り付けるための保持用素子をさらに含み、前記プロセッサが前記コンピュータ数値制御機械加工システムと通信する、請求項1記載の距離測定システム。
  14. 前記光学式距離センサがレーザ三角測量センサを含む、請求項1記載の距離測定システム。
  15. 光学式距離センサから第1の光学モジュールに光ビームを導入するステップと、
    対象物における1つまたは複数の点に投射するために、異なる光経路を有する複数の光ビームを発生させ、それらを選択的に送信して、前記対象物における1つまたは複数のそれぞれの点から散乱した1つまたは複数の反射光ビームを発生させるステップと、
    前記対象物における1つまたは複数のそれぞれの点までの複数の距離データを取り出すために、前記1つまたは複数の反射光ビームを取り込み、それらを前記光学式距離センサに送信するステップと、
    前記距離データを処理して、前記対象物における1つまたは複数のそれぞれの点に関する位置情報を求めるステップと
    を含む距離測定方法。
  16. 異なる光経路を有する光ビームの1つが、前記対象物における1つまたは複数の点に毎度選択的に投射される、請求項15記載の距離測定方法。
  17. 異なる光経路を有する光ビームを発生させ、それらを前記対象物における1つまたは複数の点に選択的に投射するステップと、前記1つまたは複数の反射光ビームを取り込み、それらを前記光学式距離センサに送信するステップとが、前記第1の光学モジュールを介して行われる、請求項15記載の距離測定方法。
  18. 異なる光経路を有する光ビームの1つを第2の光学モジュールに導入して、2つの光ビームを発生させ、前記第2の光学モジュールの右側および左側のそれぞれから前記対象物における1つまたは複数のそれぞれの点に前記2つの光ビームを選択的に投射するステップをさらに含む、請求項15記載の距離測定方法。
  19. 異なる光経路を有する光ビームの1つを第3の光学モジュールに導入して、2つの光ビームを発生させ、前記第3の光学モジュールの上側および下側のそれぞれから前記対象物における1つまたは複数のそれぞれの点に前記2つの光ビームを選択的に投射するステップをさらに含む、請求項15記載の距離測定方法。
  20. 前記距離データを処理するステップが、前記距離データを平均して、前記対象物における1つまたは複数のそれぞれの点までの平均距離を求めるステップを含む、請求項15記載の距離測定方法。
  21. 前記距離データを処理するステップが、前記対象物における1つまたは複数の点のそれぞれに対する前記距離データの中から、最大データと最小データを特定するステップを含む、請求項20記載の距離測定方法。
  22. 前記距離データを処理するステップが、前記対象物における2つの点のそれぞれに対する平均距離に基づき、前記対象物における2つの点の距離差を計算するステップを含む、請求項21記載の距離測定方法。
  23. 前記光学式センサからの光ビームが前記第1の光学モジュールに導入される前に、前記光学式距離センサと前記第1の光学モジュールとの間に配置される直線偏光子および可動半波長素子を設けるステップをさらに含む、請求項15記載の距離測定方法。
  24. 前記位置情報をコンピュータ数値制御機械加工システムに導入するステップをさらに含む、請求項15記載の距離測定方法。
JP2011271758A 2011-12-12 2011-12-12 距離測定システムおよび距離測定方法 Pending JP2013174443A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011271758A JP2013174443A (ja) 2011-12-12 2011-12-12 距離測定システムおよび距離測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011271758A JP2013174443A (ja) 2011-12-12 2011-12-12 距離測定システムおよび距離測定方法

Publications (1)

Publication Number Publication Date
JP2013174443A true JP2013174443A (ja) 2013-09-05

Family

ID=49267483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011271758A Pending JP2013174443A (ja) 2011-12-12 2011-12-12 距離測定システムおよび距離測定方法

Country Status (1)

Country Link
JP (1) JP2013174443A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116447A (ja) * 2015-12-25 2017-06-29 大和ハウス工業株式会社 検査装置及び検査方法
CN107228637A (zh) * 2017-07-31 2017-10-03 中国人民解放军军械工程学院 基于激光三角法的管状物内轮廓测量方法
CN107702657A (zh) * 2017-10-31 2018-02-16 北京汽车研究总院有限公司 一种间距测量装置
CN114719746A (zh) * 2022-03-04 2022-07-08 华南理工大学 一种激光三角测量系统的测量方法、装置及介质

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116447A (ja) * 2015-12-25 2017-06-29 大和ハウス工業株式会社 検査装置及び検査方法
CN107228637A (zh) * 2017-07-31 2017-10-03 中国人民解放军军械工程学院 基于激光三角法的管状物内轮廓测量方法
CN107228637B (zh) * 2017-07-31 2019-04-16 中国人民解放军军械工程学院 基于激光三角法的管状物内轮廓测量方法
CN107702657A (zh) * 2017-10-31 2018-02-16 北京汽车研究总院有限公司 一种间距测量装置
CN107702657B (zh) * 2017-10-31 2024-03-22 北京汽车集团越野车有限公司 一种间距测量装置
CN114719746A (zh) * 2022-03-04 2022-07-08 华南理工大学 一种激光三角测量系统的测量方法、装置及介质

Similar Documents

Publication Publication Date Title
US20120149281A1 (en) Distance measurement systems and methods
US10481264B2 (en) Laser processing device and laser processing system
WO2012061122A1 (en) Automated warm-up and stability check for laser trackers
JP5648903B2 (ja) 形状測定装置、形状測定制御プログラム及び形状測定方法
US8772688B2 (en) Autofocus device including line image forming unit and rotation unit that rotates line image
JP2013174443A (ja) 距離測定システムおよび距離測定方法
US11709228B2 (en) Laser positioning apparatus and laser positioning method
US8643844B2 (en) Laser distance measuring apparatus with beam switch
US10989524B2 (en) Asymmetric optical interference measurement method and apparatus
US20140148008A1 (en) Multi-point chemical mechanical polishing end point detection system and method of using
CN108731593B (zh) 一种前后双目的位置姿态光学测量结构与方法
KR20100041024A (ko) 2차원 회절 격자를 이용한 6 자유도 측정 장치
CN207540510U (zh) 一种用于检测透镜中心偏离的装置
CN110023025B (zh) 调芯方法
KR20110010513A (ko) 레이저를 이용한 압연롤 정렬 측정 장치
KR102353291B1 (ko) 레이저 빔 품질 측정장치
JP4897586B2 (ja) 形状測定装置
US10215558B2 (en) Rotation angle measuring system and machining system comprising the same
JP2010066090A (ja) 光学測定装置
JP5054592B2 (ja) 形状算出装置,形状算出プログラム,形状算出方法,形状測定装置
JPH11194011A (ja) 干渉装置
CN110793468B (zh) 一种光学元件位置检测装置、控制装置及检测方法
US9869540B1 (en) Displacement measuring system and machining system comprising the same
JP2016017749A (ja) 干渉計測装置系の調整システムおよびその調整方法
JP2014002026A (ja) レンズ形状測定装置およびレンズ形状測定方法