JP2013173729A - Trisphenol methanes, method of producing the same and use of the same - Google Patents

Trisphenol methanes, method of producing the same and use of the same Download PDF

Info

Publication number
JP2013173729A
JP2013173729A JP2012254952A JP2012254952A JP2013173729A JP 2013173729 A JP2013173729 A JP 2013173729A JP 2012254952 A JP2012254952 A JP 2012254952A JP 2012254952 A JP2012254952 A JP 2012254952A JP 2013173729 A JP2013173729 A JP 2013173729A
Authority
JP
Japan
Prior art keywords
reaction
trisphenolmethanes
temperature
epoxy resin
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012254952A
Other languages
Japanese (ja)
Other versions
JP6059515B2 (en
Inventor
Kazuya Takemura
一也 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2012254952A priority Critical patent/JP6059515B2/en
Priority to PCT/JP2013/000269 priority patent/WO2013111563A1/en
Priority to CN201380006631.8A priority patent/CN104302606B/en
Priority to MYPI2014702058A priority patent/MY169455A/en
Priority to KR1020147019320A priority patent/KR101667126B1/en
Priority to TW102102681A priority patent/TWI465420B/en
Publication of JP2013173729A publication Critical patent/JP2013173729A/en
Application granted granted Critical
Publication of JP6059515B2 publication Critical patent/JP6059515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/32Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide low color trisphenol methanes, a method of producing the same and use of the same.SOLUTION: When phenols and aromatic hydroxy aldehydes are reacted with each other by using acid catalyst under heat, the reaction is performed at a temperature of 100°C or less from the start of the reaction until a reaction rate reaches 90%, subsequently, the temperature is raised and the reaction is performed at a temperature more than 100°C and 130°C or less in order to produce trisphenol methanes. Thereby, the trisphenol methanes having a Gardner color scale of 9 or less (as a 0.5 mass% THF solution) and further a low color epoxy resin can be obtained.

Description

本発明は、着色の少ないトリスフェノールメタン類、その製造方法およびその用途に関する。   The present invention relates to trisphenolmethanes with little coloring, a method for producing the same, and uses thereof.

トリスフェノールメタン類は、従来、特に、耐熱性エポキシ樹脂の製造原料またはその硬化剤などとして、塗料やプリント配線基板材の用途に利用されている。トリスフェノールメタン類は、フェノール類と芳香族ヒドロキシアルデヒド類との酸触媒下での加熱反応物であり、通常、p−トルエンスルホン酸などの酸触媒下、フェノール類と芳香族ヒドロキシアルデヒド類とを、窒素気流下、所定温度(たとえば105℃)で加熱することにより得られる(特許文献1参照)。   Trisphenol methane has been used for paints and printed wiring board materials, particularly as a raw material for producing a heat-resistant epoxy resin or a curing agent thereof. Trisphenol methanes are heating reaction products of phenols and aromatic hydroxy aldehydes under an acid catalyst. Usually, phenols and aromatic hydroxy aldehydes are reacted with an acid catalyst such as p-toluenesulfonic acid. It is obtained by heating at a predetermined temperature (for example, 105 ° C.) under a nitrogen stream (see Patent Document 1).

上記加熱反応の過程では、加熱や空気との接触による酸化反応などの副反応により赤く着色した(ガードナー色数が大きい)トリスフェノールメタン類が得られることがある。トリスフェノールメタン類の着色は、これを用いるエポキシ樹脂の色調を濃くし、その用途を制限してしまう問題がある。   In the process of the heating reaction, trisphenolmethanes colored in red (having a large Gardner color number) may be obtained due to side reactions such as heating or oxidation reaction by contact with air. The coloring of trisphenolmethanes has a problem that the color tone of the epoxy resin using the trisphenolmethanes is deepened and the use thereof is limited.

特開2008−184417号公報JP 2008-184417 A

本発明の目的は、フェノール類と芳香族ヒドロキシアルデヒド類との加熱反応後に、着色の少ないトリスフェノールメタン類を得ることができる製造方法、および該トリスフェノールメタン類、ならびにその用途を提供することである。   An object of the present invention is to provide a production method capable of obtaining trisphenolmethanes with little coloration after heating reaction of phenols and aromatic hydroxyaldehydes, the trisphenolmethanes, and uses thereof. is there.

フェノール類と芳香族ヒドロキシアルデヒド類との酸触媒下での反応は、100℃以下の加熱温度では、加熱時間を長くしても熱反応が進行しにくく、充分な反応率を得られないことから、通常、100℃以上の所定温度(典型的には、上記105℃)で加熱する必要がある。本発明者は、このような加熱反応について検討し、該反応系では、反応初期に、まず、易酸化性の不安定な反応中間体を生成するとの知見を得た。これに基づいて、反応初期の加熱を100℃以下の低温に制御して、不安定な反応中間体の酸化を抑制しつつ反応を進行させれば、ある程度の反応率に達したところで、不安定な反応中間体の割合が少なくなり、比較的酸化されにくい安定な反応生成物の割合が増えることを見出した。したがってそのような反応率に達した後には、加熱温度を高めて反応を進行させることができ、酸化物の副生のおそれ少なく所望の反応率で着色の少ないトリスフェノールメタン類を得ることができることを見出した。
また、反応装置は、反応系との接触面が、遷移金属を含まないかまたは溶出の可能性のない材料からなるものが、反応装置材料からの遷移金属の混入に起因するトリスフェノールメタン類の着色を避ける上で好適であることも知見した。これら知見に基づいて、以下のような本発明を提供する。
The reaction under the acid catalyst between phenols and aromatic hydroxy aldehydes is difficult to proceed at a heating temperature of 100 ° C. or less even if the heating time is prolonged, and a sufficient reaction rate cannot be obtained. Usually, it is necessary to heat at a predetermined temperature of 100 ° C. or higher (typically, 105 ° C.). The present inventor examined such a heating reaction, and in the reaction system, firstly obtained knowledge that an easily oxidizable unstable reaction intermediate was generated in the initial stage of the reaction. Based on this, if the reaction is allowed to proceed while suppressing the oxidation of the unstable reaction intermediate by controlling the heating at the initial reaction to a low temperature of 100 ° C. or lower, It has been found that the proportion of the reaction intermediate is reduced and the proportion of the stable reaction product which is relatively difficult to oxidize is increased. Therefore, after reaching such a reaction rate, it is possible to increase the heating temperature to advance the reaction, and to obtain trisphenolmethanes with little coloration at a desired reaction rate with less risk of by-product formation of oxides. I found.
In the reactor, the contact surface with the reaction system is made of a material that does not contain a transition metal or has no possibility of elution. It has also been found that it is suitable for avoiding coloring. Based on these findings, the following invention is provided.

本発明は、フェノール類と芳香族ヒドロキシアルデヒド類とを、酸触媒下、加熱下に反応させてトリスフェノールメタン類を生成させるに際して、
該加熱を、反応の当初から反応率が90%に達するまでは100℃以下の温度で行った後、次いで昇温し、100℃超、130℃以下の温度で行うトリスフェノールメタン類の製造方法を提供する。
上記において、最終的な前記反応率は98%以上であることが望ましい。
上記方法で用いられる反応装置は、反応系との接触面が、ガラス、ハステロイ、チタンから選ばれる少なくとも1種の材質からなるものが望ましい。
In the present invention, when phenols and aromatic hydroxyaldehydes are reacted under heating under an acid catalyst to produce trisphenolmethanes,
A process for producing trisphenolmethanes, which is carried out at a temperature of 100 ° C. or lower from the beginning of the reaction until the reaction rate reaches 90%, and then heated to a temperature of more than 100 ° C. and 130 ° C. or lower. I will provide a.
In the above, the final reaction rate is desirably 98% or more.
The reactor used in the above method preferably has at least one material selected from the group consisting of glass, hastelloy and titanium as the contact surface with the reaction system.

また、本発明は、0.5質量%テトラヒドロフラン溶液として測定されるガードナー色数が9以下であるトリスフェノールメタン類を提供することができる。
このような着色の少ないトリスフェノールメタン類は、上記方法により得ることができる。
また本発明では、トリスフェノールメタン類は、遷移金属の含有量が300質量ppm以下であることが望ましい。
Moreover, this invention can provide the trisphenol methane whose Gardner color number measured as a 0.5 mass% tetrahydrofuran solution is 9 or less.
Such trisphenolmethanes with little coloration can be obtained by the above method.
In the present invention, the trisphenolmethanes preferably have a transition metal content of 300 mass ppm or less.

さらに、本発明は、上記のようなトリスフェノールメタン類から得られ、0.5質量%テトラヒドロフラン溶液として測定されるガードナー色数が7以下のエポキシ樹脂を提供することができる。
上記のようなトリスフェノールメタン類は、エポキシ樹脂の硬化剤としても用いることができる。
Furthermore, the present invention can provide an epoxy resin obtained from the above trisphenolmethanes and having a Gardner color number of 7 or less measured as a 0.5 mass% tetrahydrofuran solution.
The above trisphenolmethanes can also be used as a curing agent for epoxy resins.

本発明では、加熱温度の制御により、さらに好ましくは反応装置材料の選択により、製造過程での着色の少ないトリスフェノールメタン類を容易に得ることができる。このようなトリスフェノールメタン類からは、着色の少ないエポキシ樹脂を得ることができ、耐熱性エポキシ樹脂の原料または硬化剤として有用であり、塗料やプリント配線基板材の用途に、着色に基づく制限なく利用することができる。   In the present invention, trisphenolmethanes with less coloring during the production process can be easily obtained by controlling the heating temperature, more preferably by selecting the reactor material. From such trisphenolmethanes, it is possible to obtain an epoxy resin with little coloration, which is useful as a raw material or curing agent for heat-resistant epoxy resins, and for paint and printed wiring board materials without any restrictions based on coloration. Can be used.

以下、本発明をトリスフェノールメタン類の製造方法に従って詳細に説明する。
反応原料のフェノール類および芳香族ヒドロキシアルデヒド類は、目的のトリスフェノールメタン類の構造に対応して、メチンに対するヒドロキシ基の位置を選択することができ、また各種の置換基を特に制限なく有することができる。
フェノール類としては、たとえば、フェノール、m−クレゾール、o−クレゾール、p−クレゾール、β−ナフトール、α−ナフトール、ジヒドロキシナフトールなどが挙げられる。これらの中でも、フェノールは安価に入手可能である。
芳香族ヒドロキシアルデヒド類としては、たとえば、サリチルアルデヒド(o−ヒドロキシベンズアルデヒド)、p−ヒドロキシベンズアルデヒドなどが挙げられる。
Hereinafter, the present invention will be described in detail according to a method for producing trisphenolmethanes.
The reaction raw material phenols and aromatic hydroxy aldehydes can select the position of the hydroxy group with respect to methine according to the structure of the target trisphenol methane, and have various substituents without any particular limitation. Can do.
Examples of phenols include phenol, m-cresol, o-cresol, p-cresol, β-naphthol, α-naphthol, dihydroxynaphthol and the like. Among these, phenol is available at a low cost.
Examples of the aromatic hydroxyaldehydes include salicylaldehyde (o-hydroxybenzaldehyde) and p-hydroxybenzaldehyde.

フェノール類と芳香族ヒドロキシアルデヒド類との反応によりメタン型トリスフェノールを生成させる場合には、通常、芳香族ヒドロキシアルデヒド類に対し、フェノール類を2倍以上(モル比)用いる。このフェノール類/芳香族ヒドロキシアルデヒド類の仕込み比(モル比)は、所望するトリスフェノールメタン類に応じてある程度変化させることができるが、仕込み比が小さいと、トリスフェノールメタン類の軟化点が高くなり、仕込み比が大きいと軟化点が低くなる傾向がある。軟化点が高くなり過ぎると反応装置から生成物を取り出すことが困難となり、一方、軟化点が低くなりすぎるとエポキシ樹脂の原料としての使用が困難になることから、上記仕込み比(モル比)は、2〜30が好ましく、2.5〜20がより好ましい。このような範囲内で、仕込み比を種々変化させれば、所望の軟化点を有するトリスフェノールメタン類を製造することが可能である。   When methane-type trisphenol is produced by reaction of phenols with aromatic hydroxy aldehydes, phenols are usually used twice or more (molar ratio) with respect to aromatic hydroxy aldehydes. The charging ratio (molar ratio) of the phenols / aromatic hydroxyaldehydes can be changed to some extent according to the desired trisphenolmethanes, but if the charging ratio is small, the softening point of the trisphenolmethanes is high. When the charging ratio is large, the softening point tends to be low. If the softening point is too high, it is difficult to take out the product from the reaction apparatus. On the other hand, if the softening point is too low, it is difficult to use the epoxy resin as a raw material. 2 to 30 are preferable, and 2.5 to 20 are more preferable. Within this range, trisphenolmethanes having a desired softening point can be produced by varying the charging ratio.

より具体的には、たとえば反応原料として、フェノールとサリチルアルデヒドとを用いる場合には、仕込比を10〜16の範囲で選択した場合には軟化点が100℃〜110℃のトリスフェノールメタン類を得ることができ、仕込比率を4〜6の範囲とした場合は、軟化点が120℃〜135℃のトリスフェノールメタン類が得られる。また、フェノール/芳香族ヒドロキシアルデヒド仕込比率を2〜3の範囲とした場合は、軟化点が135℃〜150℃のトリスフェノールメタン類を得ることができる。   More specifically, for example, when phenol and salicylaldehyde are used as reaction raw materials, trisphenol methanes having a softening point of 100 ° C. to 110 ° C. are selected when the charging ratio is selected in the range of 10 to 16. When the charge ratio is in the range of 4 to 6, trisphenolmethanes having a softening point of 120 ° C to 135 ° C are obtained. Moreover, when the phenol / aromatic hydroxyaldehyde feed ratio is in the range of 2 to 3, trisphenolmethanes having a softening point of 135 ° C to 150 ° C can be obtained.

酸触媒としては、通常、p−トルエンスルホン酸、シュウ酸、硫酸、塩酸、酢酸などが挙げられる。これらの中でも、p−トルエンスルホン酸は反応性に優れることから好ましい。
触媒量は、芳香族ヒドロキシアルデヒド類の仕込み量に対して、0.05〜20質量%、好ましくは、0.2〜5質量%の範囲である。この範囲よりも触媒量が少ないと反応の進行が遅くなり、一方、この範囲よりも触媒量が多いと、ステンレス製の反応容器や配管を用いた場合、Fe,Cr,Niなどの溶出が多くなり、好ましくない。
Examples of the acid catalyst usually include p-toluenesulfonic acid, oxalic acid, sulfuric acid, hydrochloric acid, acetic acid and the like. Among these, p-toluenesulfonic acid is preferable because of its excellent reactivity.
The catalyst amount is in the range of 0.05 to 20% by mass, preferably 0.2 to 5% by mass, based on the charged amount of aromatic hydroxyaldehydes. If the amount of catalyst is less than this range, the progress of the reaction will be slow. On the other hand, if the amount of catalyst is more than this range, elution of Fe, Cr, Ni, etc. will be large when a stainless steel reaction vessel or pipe is used. It is not preferable.

本発明では、上記反応の温度を反応率に基づいて制御する。ここで、反応率は、通常、反応原料の芳香族ヒドロキシアルデヒド類の反応率であり、ゲルパーミエーションクロマトグラフ(GPC)を用いて、反応系での芳香族ヒドロキシアルデヒド類の残存量を測定することにより、その面積%から求めることができる。
上記反応率が90%以下までは、100℃以下の温度、好ましくは70〜100℃で反応を行う。反応率が90%超になった後、100℃超130℃以下の温度、好ましくは105〜125℃、さらに好ましくは110〜125℃で反応を行う。このように反応率90%まで、100℃以下の低温で反応を行うと、反応の初期に生成する、易酸化性の不安定な反応中間体の酸化が抑制される。また、反応率が90%を超えると、不安定な反応中間体の割合が少なくなり、比較的酸化されにくい、安定な高分子量体の割合が増えるので、反応温度を高めて、反応速度を早くすることが生産性の点から好ましい。このような反応条件で行うと、良好な反応速度で色調の良好なトリスフェノールメタン類が得られる。
In the present invention, the temperature of the reaction is controlled based on the reaction rate. Here, the reaction rate is usually the reaction rate of aromatic hydroxyaldehydes as a reaction raw material, and the residual amount of aromatic hydroxyaldehydes in the reaction system is measured using a gel permeation chromatograph (GPC). Thus, it can be obtained from the area%.
The reaction is carried out at a temperature of 100 ° C. or lower, preferably 70-100 ° C., until the reaction rate is 90% or lower. After the reaction rate exceeds 90%, the reaction is carried out at a temperature exceeding 100 ° C. and 130 ° C. or less, preferably 105 to 125 ° C., more preferably 110 to 125 ° C. When the reaction is carried out at a low temperature of 100 ° C. or less up to a reaction rate of 90% in this way, the oxidation of the easily oxidizable unstable reaction intermediate produced at the beginning of the reaction is suppressed. When the reaction rate exceeds 90%, the proportion of unstable reaction intermediates decreases, and the proportion of stable high molecular weight substances that are relatively difficult to oxidize increases. Therefore, the reaction temperature is increased and the reaction rate is increased. It is preferable from the viewpoint of productivity. When carried out under such reaction conditions, trisphenolmethanes having good color tone and good reaction rate can be obtained.

上記前段の加熱時間は、通常3〜15時間、後段の加熱時間は、通常1〜10時間である。このような加熱条件により、後段の加熱では最終的に98%以上の反応率を達成することができる。   The heating time for the former stage is usually 3 to 15 hours, and the heating time for the latter stage is usually 1 to 10 hours. Under such heating conditions, a reaction rate of 98% or more can finally be achieved by subsequent heating.

また、上記反応において、耐食性があまりない金属製の反応装置を用いると、p−トルエンスルホン酸などの酸触媒による酸食により、Fe、Cr、Niなどの遷移金属の含有量が高くなり、トリスフェノールメタン類が着色しやすくなる。本発明において、トリスフェノールメタン類の遷移金属の含有量は、300質量ppm以下であるのが好ましく、さらに好ましくは250質量ppm以下である。遷移金属の含有量は、誘導結合プラズマ質量分析法により分析することができる。
このため、本発明では、反応器や配管などの反応装置の内面すなわち反応系との接触面が耐食性の高い材料であることが好ましく、具体的に、ガラス、ハステロイ、チタン製またはガラスライニングを施した反応装置を用いることが好ましい。このような反応装置を用いることにより、上記遷移金属の含有量の低値を達成することができる。
In addition, in the above reaction, when a metal reactor having little corrosion resistance is used, the content of transition metals such as Fe, Cr, Ni and the like increases due to acid corrosion caused by an acid catalyst such as p-toluenesulfonic acid. Phenolmethanes are easily colored. In the present invention, the content of the transition metal of trisphenolmethanes is preferably 300 ppm by mass or less, more preferably 250 ppm by mass or less. The content of the transition metal can be analyzed by inductively coupled plasma mass spectrometry.
Therefore, in the present invention, it is preferable that the inner surface of the reaction apparatus such as a reactor or piping, that is, the contact surface with the reaction system is a material having high corrosion resistance. Specifically, glass, hastelloy, titanium, or glass lining is applied. It is preferable to use a reactor that has been prepared. By using such a reactor, a low value of the transition metal content can be achieved.

上記後段の加熱により所定の反応率に達した後で、触媒中和剤を添加して触媒失活し反応を停止する。本発明においては、触媒中和剤は、アルカリ性の化合物であれば、特に制限されないが、たとえば、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸カルシウム、水酸化リチウムなどが好適に挙げられる。
触媒中和剤の添加量は、特に限定されないが、通常、触媒に対して、0.9〜1.1当量、好ましくは1.0当量である。
触媒中和剤は、前記後段の反応温度で添加することも可能であるが、通常、一旦70℃〜90℃、好ましくは75℃〜85℃に降温して添加することが望ましい。このような温度で添加することで、中和反応による発熱を抑制することができ、安全に反応を行なうことができる。
After reaching a predetermined reaction rate by the latter heating, a catalyst neutralizing agent is added to deactivate the catalyst and stop the reaction. In the present invention, the catalyst neutralizing agent is not particularly limited as long as it is an alkaline compound, and preferred examples include sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, calcium carbonate, lithium hydroxide and the like.
The addition amount of the catalyst neutralizing agent is not particularly limited, but is usually 0.9 to 1.1 equivalents, preferably 1.0 equivalents, relative to the catalyst.
Although it is possible to add the catalyst neutralizing agent at the reaction temperature of the latter stage, it is usually desirable that the catalyst neutralizing agent is once cooled to 70 ° C to 90 ° C, preferably 75 ° C to 85 ° C. By adding at such a temperature, heat generation due to the neutralization reaction can be suppressed, and the reaction can be performed safely.

反応終了後、未反応原料のうちでも、フェノール類は可能な限り除去することが望ましい。フェノール類の残留量が多いと、トリスフェノールメタン類を原料としてエポキシ樹脂を製造する過程で、ジメチルスルホキシドなどのエポキシ化反応溶媒にフェノールが溶解し、溶媒をリサイクル使用する過程でフェノール類が溶媒中に蓄積され、溶媒のリサイクル使用が困難となったり、溶媒のリサイクル使用の回数が少なくなり、コストが増加するなどの問題を生じる。
このため、トリスフェノールメタン類中のフェノール類の残留量が、通常、1質量%以下、好ましくは0.5質量%以下となるように精製する。
After the reaction is completed, it is desirable to remove phenols as much as possible among unreacted raw materials. If there is a large amount of residual phenols, the phenol is dissolved in the epoxidation reaction solvent such as dimethyl sulfoxide in the process of producing an epoxy resin from trisphenol methane, and the phenol is in the solvent in the process of recycling the solvent. In other words, it is difficult to recycle the solvent, the number of times the solvent is recycled is reduced, and the cost is increased.
For this reason, it refine | purifies so that the residual amount of phenols in trisphenol methane may become 1 mass% or less normally, Preferably it is 0.5 mass% or less.

この精製は、減圧蒸留または水蒸気蒸留などにより行うことができる。具体的に、減圧蒸留の場合には、通常、予め温度を120〜170℃程度まで上昇させて、上記反応生成物の常圧蒸留を行ない、常圧蒸留で可能なフェノール除去を充分に行った後、徐々に20torr(2.7kPa)程度まで減圧し、この減圧度を10分〜3時間好ましくは20分〜2時間保持する。
水蒸気蒸留の場合には、反応温度を105℃〜150℃程度に上昇させて、反応容器中に水蒸気を導入し、フェノールを共沸蒸留させる。水蒸気蒸留を行なうにあたっては、反応容器内を減圧としてもよい。
これらのうちでも、好ましい蒸留方法は水蒸気蒸留であり、フェノール類と水蒸気の共沸が起こるため、低い温度でフェノールの除去を可能とする。これにより、残留フェノールが少なく、着色が少なく、特に熱分解副生成物の少ないトリスフェノールメタン類を得ることができる。
This purification can be performed by vacuum distillation or steam distillation. Specifically, in the case of vacuum distillation, usually, the temperature was raised to about 120 to 170 ° C. in advance, and the reaction product was subjected to atmospheric distillation, and phenol removal possible by atmospheric distillation was sufficiently performed. Thereafter, the pressure is gradually reduced to about 20 torr (2.7 kPa), and this degree of pressure reduction is maintained for 10 minutes to 3 hours, preferably 20 minutes to 2 hours.
In the case of steam distillation, the reaction temperature is raised to about 105 ° C. to 150 ° C., steam is introduced into the reaction vessel, and phenol is azeotropically distilled. When performing steam distillation, the inside of the reaction vessel may be decompressed.
Among these, a preferable distillation method is steam distillation, and since azeotropic distillation of phenols and steam occurs, phenol can be removed at a low temperature. Thereby, trisphenol methanes with little residual phenol, little coloring, and especially few thermal decomposition by-products can be obtained.

蒸留終了後、精製したトリスフェノールメタン類を溶融状態で回収し、冷却固化後、適度な大きさに粉砕して提供することができる。   After the distillation is complete, the purified trisphenolmethanes can be recovered in a molten state, cooled and solidified, and then pulverized to an appropriate size.

本発明によれば、ガードナー色数9以下のトリスフェノールメタン類を提供しうる。また、このようなトリスフェノール類からは、ガードナー色数7以下のエポキシ樹脂を生成しうる。なお、ガードナー色数は、JISK0071−2(1998年)に準じて測定される。本発明でのガードナー色数は、対象物(トリスフェノールメタン類またはエポキシ樹脂)の0.5質量%THF溶液としての値である。   According to the present invention, trisphenol methanes having a Gardner color number of 9 or less can be provided. In addition, an epoxy resin having a Gardner color number of 7 or less can be produced from such trisphenols. The Gardner color number is measured according to JISK0071-2 (1998). The Gardner color number in the present invention is a value as a 0.5% by mass THF solution of an object (trisphenolmethanes or epoxy resin).

本発明において、上記のようにトリスフェノールメタン類とは、フェノール類と芳香族ヒドロキシアルデヒド類とを酸触媒下で加熱して得られる反応物である。したがって、本発明で提供するトリスフェノールメタン類は、上記反応における各条件によっても異なるが、通常、主として、フェノール類由来のフェノール骨格(a)2個と、芳香族ヒドロキシアルデヒド類由来のフェノール骨格(b)1個とがメチンに結合した構造のトリス(ヒドロキシフェニル)メタン(メタン型トリスフェノール単量体)と、高分子量化体を含む混合物である。高分子量化体は、たとえば上記フェノール骨格(b)2個とフェノール骨格(a)3個とを含む2量体や、フェノール骨格(b)3個とフェノール骨格(a)4個とを含む3量体などである。   In the present invention, as described above, trisphenolmethanes are a reaction product obtained by heating phenols and aromatic hydroxyaldehydes under an acid catalyst. Therefore, although the trisphenolmethanes provided in the present invention differ depending on the respective conditions in the above reaction, usually, mainly two phenol skeletons (a) derived from phenols and phenol skeletons derived from aromatic hydroxyaldehydes ( b) A mixture containing tris (hydroxyphenyl) methane (methane type trisphenol monomer) having a structure in which one is bonded to methine and a high molecular weight compound. The high molecular weight product is, for example, a dimer containing 2 phenol skeletons (b) and 3 phenol skeletons (a), or 3 containing 3 phenol skeletons (b) and 4 phenol skeletons (a). Such as a mass.

トリスフェノールメタン類は、単量体、2量体、3量体などの含有量によって、軟化点が変化する。比較的低い100℃〜130℃程度の軟化点のトリスフェノールメタン類は、たとえば、半導体封止剤用エポキシ樹脂の原料に用いられ、比較的高い140℃〜155℃程度の軟化点のトリスフェノールメタン類は、たとえば、プリント基板の耐熱コート剤であるソルダーレジスト用エポキシ樹脂の原料として用いられる。
なお、本発明で用いる軟化点は、JISK2425に記載された、環球式軟化点測定装置(メイテック社製25D5−ASP−MG型)を用いて、5℃/分の昇温速度で測定した時の軟化点である。
Trisphenol methanes have different softening points depending on the content of monomers, dimers, trimers and the like. Trisphenol methane having a relatively low softening point of about 100 ° C. to 130 ° C. is used, for example, as a raw material for epoxy resin for semiconductor encapsulants, and has a relatively high softening point of about 140 ° C. to 155 ° C. The kind is used as a raw material of an epoxy resin for solder resist, which is a heat-resistant coating agent for printed circuit boards, for example.
In addition, the softening point used by this invention is when it measures at a temperature increase rate of 5 degree-C / min using the ring and ball type softening point measuring apparatus (25D5-ASP-MG type | mold made by Meitec Co., Ltd.) described in JISK2425. Softening point.

以下に、本発明の実施例を示すが、これら実施例は本発明をより具体的に説明するための例であって、本発明の範囲を限定するものではないと理解されるべきである。
(実施例1)
<トリストリスフェノールメタン類の製造>
撹拌装置、温度計、還流装置、不活性ガス導入管、オイルバスを備えた1リットルのガラス製反応容器(セパラブルフラスコ)に、フェノール659g(7mol)、サリチルアルデヒド61g(0.5mol)、p−トルエンスルホン酸1.425g(サリチルアルデヒドに対して1.5モル%)を仕込んだ。
不活性ガス導入管から窒素をバブリングさせながら、反応温度を95℃に昇温して4時間反応させた。そのときの反応率はGPCによるサリチルアルデヒドの測定結果から90%であった。
その後、反応温度を105℃に昇温して2時間反応させた。反応率は、98%であった。
反応終了後、温度を80℃まで下げて、水酸化リチウム水和物0.315g(触媒に対して1当量)を添加し、触媒を中和した。次いで、内容物を1リットルのステンレス製反応装置に移し変え、蒸留装置を取り付けて、反応温度を170℃まで昇温させ、未反応のフェノールを除去した後、真空ポンプで20torrに減圧して、1時間減圧蒸留した。蒸留終了後、反応温度を150℃まで下げて、反応生成物を溶融した状態で取り出し、冷却・固化させた後、粉砕した。
このトリスフェノールメタン類の金属含有量を誘導結合プラズマ質量分析法により測定した。結果を表1に示す。このトリスフェノールメタン類をテトラヒドロフラン(THF)に溶解して、0.5質量%THF溶液を作成し、色調を調べた。この溶液のガードナー色数は5であった。
Examples of the present invention will be shown below. However, these examples are examples for explaining the present invention more specifically, and should be understood not to limit the scope of the present invention.
Example 1
<Production of Tristrisphenolmethanes>
In a 1 liter glass reaction vessel (separable flask) equipped with a stirrer, thermometer, reflux device, inert gas inlet tube, oil bath, phenol 659 g (7 mol), salicylaldehyde 61 g (0.5 mol), p -Charged 1.425 g of toluenesulfonic acid (1.5 mol% with respect to salicylaldehyde).
While bubbling nitrogen from the inert gas introduction tube, the reaction temperature was raised to 95 ° C. and reacted for 4 hours. The reaction rate at that time was 90% from the measurement result of salicylaldehyde by GPC.
Thereafter, the reaction temperature was raised to 105 ° C. and reacted for 2 hours. The reaction rate was 98%.
After completion of the reaction, the temperature was lowered to 80 ° C., and 0.315 g of lithium hydroxide hydrate (1 equivalent to the catalyst) was added to neutralize the catalyst. The contents were then transferred to a 1 liter stainless steel reactor, a distillation apparatus was attached, the reaction temperature was raised to 170 ° C., unreacted phenol was removed, and the pressure was reduced to 20 torr with a vacuum pump. Distilled under reduced pressure for 1 hour. After completion of the distillation, the reaction temperature was lowered to 150 ° C., the reaction product was taken out in a molten state, cooled and solidified, and then pulverized.
The metal content of the trisphenolmethanes was measured by inductively coupled plasma mass spectrometry. The results are shown in Table 1. This trisphenolmethane was dissolved in tetrahydrofuran (THF) to prepare a 0.5 mass% THF solution, and the color tone was examined. The Gardner color number of this solution was 5.

<エポキシ樹脂の製造>
上記で得られたトリスフェノールメタン類92.5gとエピクロロヒドリン27.5gをジメチルスルホキシドに溶解して、水酸化ナトリウム10.0gを添加し、40℃で2時間、70℃で1時間反応した。その後、減圧蒸留でジメチルスルホキシドを除去し、メチルイソブチルケトンと水酸化ナトリウムを添加して70℃で1時間反応させた。その後、水洗を行って、水層に生成したNaClを除去し、油層を回収して、メチルイソブチルケトンを70℃で減圧蒸留した。
得られたエポキシ樹脂のガードナー色数は3であった。
<Manufacture of epoxy resin>
Dissolve 92.5 g of the trisphenolmethanes obtained above and 27.5 g of epichlorohydrin in dimethyl sulfoxide, add 10.0 g of sodium hydroxide, and react at 40 ° C. for 2 hours and at 70 ° C. for 1 hour. did. Thereafter, dimethyl sulfoxide was removed by distillation under reduced pressure, methyl isobutyl ketone and sodium hydroxide were added and reacted at 70 ° C. for 1 hour. Then, it washed with water, NaCl produced | generated in the water layer was removed, the oil layer was collect | recovered, and methyl isobutyl ketone was distilled under reduced pressure at 70 degreeC.
The obtained epoxy resin had a Gardner color number of 3.

(実施例2)
実施例1において、反応温度を85℃に昇温して7時間反応させた(反応率:93%)その後、反応温度を120℃に昇温し5時間反応させた(反応率:99.3%)以外は、実施例1と同様にしてトリスフェノールメタン類とエポキシ樹脂を得た。
トリスフェノールメタン類の金属含有量およびガードナー色数とエポキシ樹脂のガードナー色数を表1に示す。
(Example 2)
In Example 1, the reaction temperature was raised to 85 ° C. and reacted for 7 hours (reaction rate: 93%). Thereafter, the reaction temperature was raised to 120 ° C. and reacted for 5 hours (reaction rate: 99.3). %), Trisphenol methanes and epoxy resin were obtained in the same manner as in Example 1.
Table 1 shows the metal content and the Gardner color number of the trisphenolmethanes and the Gardner color number of the epoxy resin.

(実施例3)
実施例1において、反応容器をステンレス製反応容器に代えた以外は、実施例1と同様にしてトリスフェノールメタン類とエポキシ樹脂を得た。
トリスフェノールメタン類の金属含有量およびガードナー色数とエポキシ樹脂のガードナー色数を表1に示す。
(Example 3)
In Example 1, trisphenolmethanes and an epoxy resin were obtained in the same manner as in Example 1 except that the reaction vessel was replaced with a stainless steel reaction vessel.
Table 1 shows the metal content and the Gardner color number of the trisphenolmethanes and the Gardner color number of the epoxy resin.

(比較例1)
実施例1において、「反応を105℃で6時間行う」以外は、実施例1と同様にしてトリスフェノールメタン類とエポキシ樹脂を得た。すなわち、比較例1では、第1段目の反応だけを行い、第2段目の反応を行わなかった。
トリスフェノールメタン類の金属含有量およびガードナー色数とエポキシ樹脂のガードナー色数を表1に示す。
(Comparative Example 1)
In Example 1, trisphenolmethanes and an epoxy resin were obtained in the same manner as in Example 1 except that “the reaction was performed at 105 ° C. for 6 hours”. That is, in Comparative Example 1, only the first stage reaction was performed, and the second stage reaction was not performed.
Table 1 shows the metal content and the Gardner color number of the trisphenolmethanes and the Gardner color number of the epoxy resin.

(実施例4)
実施例1において、第1段目と第2段目の反応条件を表1に示すように代えた以外は、実施例1と同様にしてトリスフェノールメタン類とエポキシ樹脂を得た。
トリスフェノールメタン類の金属含有量およびガードナー色数とエポキシ樹脂のガードナー色数を表1に示す。
Example 4
In Example 1, trisphenolmethanes and an epoxy resin were obtained in the same manner as in Example 1 except that the reaction conditions in the first and second stages were changed as shown in Table 1.
Table 1 shows the metal content and the Gardner color number of the trisphenolmethanes and the Gardner color number of the epoxy resin.

(実施例5)
実施例1において、反応容器をハステロイ製反応容器に代えた以外は、実施例1と同様にしてトリスフェノールメタン類とエポキシ樹脂を得た。
トリスフェノールメタン類の金属含有量およびガードナー色数とエポキシ樹脂のガードナー色数を表1に示す。
(Example 5)
In Example 1, trisphenolmethanes and an epoxy resin were obtained in the same manner as in Example 1 except that the reaction vessel was replaced with a Hastelloy reaction vessel.
Table 1 shows the metal content and the Gardner color number of the trisphenolmethanes and the Gardner color number of the epoxy resin.

(実施例6)
実施例1において、反応容器をチタン製反応容器に代えた以外は、実施例1と同様にしてトリスフェノールメタン類とエポキシ樹脂を得た。
トリスフェノールメタン類の金属含有量およびガードナー色数とエポキシ樹脂のガードナー色数を表1に示す。
(Example 6)
In Example 1, trisphenolmethanes and an epoxy resin were obtained in the same manner as in Example 1 except that the reaction vessel was replaced with a titanium reaction vessel.
Table 1 shows the metal content and the Gardner color number of the trisphenolmethanes and the Gardner color number of the epoxy resin.

(比較例2)
実施例1において、第1段目の反応条件を表1に示すように代えた以外は、実施例1と同様にしてトリスフェノールメタン類とエポキシ樹脂を得た。
トリスフェノールメタン類の金属含有量およびガードナー色数とエポキシ樹脂のガードナー色数を表1に示す。
(Comparative Example 2)
In Example 1, trisphenolmethanes and an epoxy resin were obtained in the same manner as in Example 1 except that the reaction conditions in the first stage were changed as shown in Table 1.
Table 1 shows the metal content and the Gardner color number of the trisphenolmethanes and the Gardner color number of the epoxy resin.

Figure 2013173729
Figure 2013173729

上記に示されるとおり、実施例のトリスフェノールメタン類は、比較例のトリスフェノールメタン類に比べて、ガードナー色数が小さく、着色の少ないものであった。また、本発明のトリスフェノール類を用いたエポキシ樹脂も着色の少ないものであった。したがって本発明のトリスフェノールメタン類をエポキシ樹脂の原料として用いると、電子部材や、塗料などの原料として有用なエポキシ樹脂を得ることができる。   As shown above, the trisphenol methanes of the examples had a smaller Gardner color number and less coloring than the trisphenol methanes of the comparative examples. Moreover, the epoxy resin using the trisphenols of the present invention was also less colored. Therefore, when the trisphenol methane of the present invention is used as a raw material for an epoxy resin, an epoxy resin useful as a raw material for electronic members and paints can be obtained.

Claims (6)

フェノール類と芳香族ヒドロキシアルデヒド類とを、酸触媒下、加熱下に反応させてトリスフェノールメタン類を生成させるに際して、
該加熱を、反応の当初から反応率が90%に達するまでは100℃以下の温度で行った後、次いで昇温し、100℃超、130℃以下の温度で行うトリスフェノールメタン類の製造方法。
When producing trisphenolmethanes by reacting phenols and aromatic hydroxyaldehydes with heating under an acid catalyst,
A process for producing trisphenolmethanes, which is carried out at a temperature of 100 ° C. or lower from the beginning of the reaction until the reaction rate reaches 90%, and then heated to a temperature of more than 100 ° C. and 130 ° C. or lower. .
前記反応の系との接触面が、ガラス、ハステロイ、チタンから選ばれる少なくとも1種の材質からなる反応装置を用いる請求項1に記載の方法。   The method according to claim 1, wherein a reaction device made of at least one material selected from glass, hastelloy, and titanium is used as a contact surface with the reaction system. 最終的な前記反応率が98%以上である請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the final reaction rate is 98% or more. 0.5質量%テトラヒドロフラン溶液として測定されるガードナー色数が9以下であるトリスフェノールメタン類。   Trisphenol methanes having a Gardner color number of 9 or less measured as a 0.5 mass% tetrahydrofuran solution. 遷移金属の含有量が300質量ppm以下である請求項4に記載のトリスフェノールメタン類。   The trisphenol methane according to claim 4, wherein the content of the transition metal is 300 mass ppm or less. 請求項4または5に記載のトリスフェノールメタン類から得られ、0.5質量%テトラヒドロフラン溶液として測定されるガードナー色数が7以下のエポキシ樹脂。   An epoxy resin obtained from the trisphenolmethanes according to claim 4 or 5 and having a Gardner color number of 7 or less measured as a 0.5 mass% tetrahydrofuran solution.
JP2012254952A 2012-01-26 2012-11-21 Method for producing trisphenol methane and method for producing epoxy resin Active JP6059515B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012254952A JP6059515B2 (en) 2012-01-26 2012-11-21 Method for producing trisphenol methane and method for producing epoxy resin
PCT/JP2013/000269 WO2013111563A1 (en) 2012-01-26 2013-01-22 Trisphenol methanes, method for producing same and use thereof
CN201380006631.8A CN104302606B (en) 2012-01-26 2013-01-22 Triphenol methylmethane class, its manufacturing method and application thereof
MYPI2014702058A MY169455A (en) 2012-01-26 2013-01-22 Producing method of trisphenolmethanes, and producing method of epoxy resins
KR1020147019320A KR101667126B1 (en) 2012-01-26 2013-01-22 Trisphenol methanes, method for producing same and use thereof
TW102102681A TWI465420B (en) 2012-01-26 2013-01-24 Producing method of trisphenolmethanes and producing method of epoxy resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012014026 2012-01-26
JP2012014026 2012-01-26
JP2012254952A JP6059515B2 (en) 2012-01-26 2012-11-21 Method for producing trisphenol methane and method for producing epoxy resin

Publications (2)

Publication Number Publication Date
JP2013173729A true JP2013173729A (en) 2013-09-05
JP6059515B2 JP6059515B2 (en) 2017-01-11

Family

ID=48873295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012254952A Active JP6059515B2 (en) 2012-01-26 2012-11-21 Method for producing trisphenol methane and method for producing epoxy resin

Country Status (6)

Country Link
JP (1) JP6059515B2 (en)
KR (1) KR101667126B1 (en)
CN (1) CN104302606B (en)
MY (1) MY169455A (en)
TW (1) TWI465420B (en)
WO (1) WO2013111563A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160137993A (en) * 2014-03-25 2016-12-02 디아이씨 가부시끼가이샤 Epoxy resin, method for producing epoxy resin, curable resin composition and cured product thereof, fiber-reinforced composite material, and molded article

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10138325B2 (en) * 2016-05-12 2018-11-27 Chang Chun Plastics Co., Ltd. Polyphenolic condensates and epoxy resins thereof
WO2023058301A1 (en) * 2021-10-06 2023-04-13 Jfeケミカル株式会社 Method for producing trisphenolmethane

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118603A (en) * 1993-10-22 1995-05-09 Kansai Paint Co Ltd Water-based coating composition
JPH07333842A (en) * 1994-04-11 1995-12-22 Sumitomo Chem Co Ltd Photosensitive resin composition
JPH08259484A (en) * 1995-03-24 1996-10-08 Honshu Chem Ind Co Ltd New trisphenol compound and its production
JPH09286847A (en) * 1996-04-18 1997-11-04 Nippon Ester Co Ltd Production of polyester resin for powder coating material
JPH10218815A (en) * 1997-02-14 1998-08-18 Honshu Chem Ind Co Ltd New trisphenol compound
JPH11199658A (en) * 1997-12-29 1999-07-27 Nippon Petrochem Co Ltd Production of phenolic resin
JP2005154719A (en) * 2003-04-25 2005-06-16 Mitsui Chemicals Inc Epoxy resin composition and its application
JP2006113136A (en) * 2004-10-12 2006-04-27 Sumitomo Bakelite Co Ltd Novolac type phenolic resin composition for photoresist
JP2006160663A (en) * 2004-12-07 2006-06-22 Honshu Chem Ind Co Ltd Method for producing 1,1'-bis(2-hydroxynaphthyl)
JP2008184417A (en) * 2007-01-30 2008-08-14 Jfe Chemical Corp Manufacturing method of trisphenolmethanes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483035A (en) * 1985-07-02 1989-03-28 Dow Chemical Co Manufacture of trisphenolmethanes
JP3791952B2 (en) * 1995-12-01 2006-06-28 本州化学工業株式会社 Novel trisphenol compound and method for producing the same
CN1312189C (en) * 2004-03-17 2007-04-25 中国科学院化学研究所 Epoxy resin with three functional groups and its derivatives, their preparation method and use
JP6483035B2 (en) * 2016-01-13 2019-03-13 日立オートモティブシステムズ株式会社 Internal combustion engine control device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118603A (en) * 1993-10-22 1995-05-09 Kansai Paint Co Ltd Water-based coating composition
JPH07333842A (en) * 1994-04-11 1995-12-22 Sumitomo Chem Co Ltd Photosensitive resin composition
JPH08259484A (en) * 1995-03-24 1996-10-08 Honshu Chem Ind Co Ltd New trisphenol compound and its production
JPH09286847A (en) * 1996-04-18 1997-11-04 Nippon Ester Co Ltd Production of polyester resin for powder coating material
JPH10218815A (en) * 1997-02-14 1998-08-18 Honshu Chem Ind Co Ltd New trisphenol compound
JPH11199658A (en) * 1997-12-29 1999-07-27 Nippon Petrochem Co Ltd Production of phenolic resin
JP2005154719A (en) * 2003-04-25 2005-06-16 Mitsui Chemicals Inc Epoxy resin composition and its application
JP2006113136A (en) * 2004-10-12 2006-04-27 Sumitomo Bakelite Co Ltd Novolac type phenolic resin composition for photoresist
JP2006160663A (en) * 2004-12-07 2006-06-22 Honshu Chem Ind Co Ltd Method for producing 1,1'-bis(2-hydroxynaphthyl)
JP2008184417A (en) * 2007-01-30 2008-08-14 Jfe Chemical Corp Manufacturing method of trisphenolmethanes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160137993A (en) * 2014-03-25 2016-12-02 디아이씨 가부시끼가이샤 Epoxy resin, method for producing epoxy resin, curable resin composition and cured product thereof, fiber-reinforced composite material, and molded article
JP2018003033A (en) * 2014-03-25 2018-01-11 Dic株式会社 Manufacturing method of epoxy resin
KR102309168B1 (en) * 2014-03-25 2021-10-08 디아이씨 가부시끼가이샤 Epoxy resin, method for producing epoxy resin, curable resin composition and cured product thereof, fiber-reinforced composite material, and molded article

Also Published As

Publication number Publication date
KR101667126B1 (en) 2016-10-17
TWI465420B (en) 2014-12-21
CN104302606B (en) 2019-06-28
JP6059515B2 (en) 2017-01-11
TW201339130A (en) 2013-10-01
KR20140108270A (en) 2014-09-05
MY169455A (en) 2019-04-11
CN104302606A (en) 2015-01-21
WO2013111563A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP6143332B2 (en) Allyl ether resin and method for producing the same
JP6059515B2 (en) Method for producing trisphenol methane and method for producing epoxy resin
JP4833877B2 (en) Method for producing trisphenol methanes
JP4435791B2 (en) Method for producing novolac-type phenolic resin and resin-coated sand
JP4951966B2 (en) Production method of polyfunctional (meth) acrylate
TWI812399B (en) Method for producing trisphenol methanes
JPH11255868A (en) Preparation of phenol aralkyl resin
JP6746430B2 (en) NOVEL AMINE COMPOUND, METHOD FOR PRODUCING THE SAME, AND INTERMEDIATE OBTAINED BY THE METHOD
JP2004131585A (en) Method for producing high-molecular-weight cresol novolak resin
JPH04275317A (en) New novolak type resin and its production
US20230374213A1 (en) Process for preparing branched phenolic novolak
JP4004787B2 (en) Phenol resin, epoxy resin, production method thereof, and resin composition for semiconductor encapsulant
TWI402291B (en) Method for manufacturing 4,4&#39;-biphenyldiylmethylene-phenol resin
EP0475605B1 (en) Phenolic resin and method for preparing same
JPS5974123A (en) Production of polyarylene ether
JP6644633B2 (en) Method for producing dicyclopentadiene-modified phenolic resin
JP4951967B2 (en) Production method of polyfunctional (meth) acrylate
JPH11279265A (en) Production of phenolic resin
JP3104915B2 (en) Novolak resin manufacturing method
JP4076710B2 (en) Hydroxynaphthalene resin and method for producing the same
JP3955199B2 (en) Phenol resin, epoxy resin, production method thereof, and resin composition for semiconductor encapsulant
JP3959604B2 (en) Method for producing phenolic resin and epoxy resin
JPH06116369A (en) Production of phenolic aralkyl resin
JP2003104923A (en) Method for producing allylated polyhydric phenol compound
JPH11279257A (en) Production of epoxy resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161209

R150 Certificate of patent or registration of utility model

Ref document number: 6059515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150