JP2013168396A - 静電型の荷電粒子線レンズ及び荷電粒子線装置 - Google Patents

静電型の荷電粒子線レンズ及び荷電粒子線装置 Download PDF

Info

Publication number
JP2013168396A
JP2013168396A JP2012029107A JP2012029107A JP2013168396A JP 2013168396 A JP2013168396 A JP 2013168396A JP 2012029107 A JP2012029107 A JP 2012029107A JP 2012029107 A JP2012029107 A JP 2012029107A JP 2013168396 A JP2013168396 A JP 2013168396A
Authority
JP
Japan
Prior art keywords
electrode
charged particle
lens
particle beam
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2012029107A
Other languages
English (en)
Other versions
JP2013168396A5 (ja
Inventor
Akira Shimazu
晃 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012029107A priority Critical patent/JP2013168396A/ja
Priority to US13/744,536 priority patent/US8558191B2/en
Publication of JP2013168396A publication Critical patent/JP2013168396A/ja
Publication of JP2013168396A5 publication Critical patent/JP2013168396A5/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/14Arrangements for focusing or reflecting ray or beam
    • H01J3/18Electrostatic lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3007Electron or ion-optical systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/1205Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/18Vacuum control means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electron Beam Exposure (AREA)

Abstract

【課題】レンズ内部の堆積物のクリーニング処理方法を提供する。
【解決手段】複数のレンズ電極を有する静電型の荷電粒子線レンズであって、荷電粒子線レンズは、光軸方向へ間隔規定部材により離間して配置される第一の電極と第二の電極を含み構成され、第一の電極1aと第二の電極1bと間隔規定部材により囲まれた空隙を有し、第一の電極と第二の電極は荷電粒子ビームが通過する第一の貫通孔2を有すると共に、少なくとも第二の電極は荷電粒子ビームが通過しない第二の貫通孔3を有し、第一の貫通孔及び第二の貫通孔がそれぞれ空隙に連通した構造を備え、空隙から第二の電極に設けられた貫通孔を通じてレンズ電極外へ通じる排気コンダクタンスの総量に対し、第一の電極の排気コンダクタンスの総量が小さくなるように構成されている。
【選択図】図1

Description

本発明は、静電型の荷電粒子線レンズ及び荷電粒子線装置に関する。
具体的には、半導体集積回路等の微小デバイスの露光に用いられる電子線露光装置やイオンビーム露光装置等の荷電粒子線露光装置に関する。特に、複数の荷電粒子線を用いてパターン描画を行う荷電粒子線露光装置および該装置に用いられる荷電粒子線レンズに関するものである。
半導体デバイスの生産において、電子ビーム露光技術は、0.1μm以下の微細パターン露光を可能とするリソグラフィの有力候補である。これらの装置では、電子ビームの光学特性を制御するための電子光学素子が用いられる。
電子ビーム露光技術において高精細化のためには、電子レンズへの高電圧印加とレンズの薄化の両立が必要であり、高い耐電圧構造が必要となる。
また、電子ビーム露光技術では、微細加工の限界が電子ビームの回折限界より主に電子光学素子の光学収差で決定されるので、収差の小さい電子光学素子を実現することが重要である。
そのためにはまず、レンズ加工形状の精度が高レベルで求められる。例えば、0.1μm以下の微細パターン露光を実現するためには、そのオーダー以下の形状精度が必要となる。
また、光学収差はレンズの各部材の帯電によっても生じる。
また、電子ビーム露光技術においては、レジストへの電子ビーム照射によって生じるレジスト起因のコンタミネーションの発生が避けられない。
電子レンズ等の電子光学系へのコンタミネーションの付着によって、レンズ開口形状の悪化や帯電が引き起こされ、収差や耐電圧を悪化させる。
安定的な微細加工を実現するためには、コンタミネーションへの対策が重要となる。
特許文献1には、電子ビ―ム集束用対物レンズ及び電子ビ―ム偏向器への試料表面からの蒸発物からなる汚れ付着を防止もしくは低減することによる帯電の低減を図るため、試料と対物レンズとの間に導電性板体を設けた電子ビ―ム露光装置の構成が示されている。
一方、このような先行例の対策以外にも、レジスト起因のコンタミネーションの付着を低減させるためには、真空度を上げてコンタミネーションの密度を減らすことが有効である。
特許文献2には、ダミー開口を設ける構成が示されている。
コンタミネーション付着の減少に効果があると考えられるが、この文献では、精度よく照射対象物にパターンを露光するために、複数の電子ビームの照射対象物に対する焦点等を均一にすることが目的である。
そのままの構成では、特にレンズ中央部付近のコンタミネーションの付着に対する効果は小さいと考えられる。
一方、付着してしまったコンタミネーションに対しての除去の方法については、プラズマ処理や加熱処理といった方法で除去するのが一般的である。
しかし、電子レンズの特に対物レンズのような複合的な部材からなり、高い形状精度を必要とするアレイに対しては、変形やダメージの観点から後者の方法は殆ど用いられていない。
また、電子ビーム露光技術においては、高スループット化の実現も大きな課題の一つとなっている。その対策として、マルチビーム化が挙げられる。
マルチビーム方式では、電子レンズを1次元または2次元のアレイ状に配列した電子レンズアレイとすることが提案されている。
マルチビーム化に伴い、光学収差の低減と併せた観点で帯電対策が必要となる。特に、電子レンズアレイでは、電極間の間隔規定部材(絶縁物)の帯電対策である。帯電対策として一般的な例としては、絶縁部材に帯電防止膜を成膜する、またはレンズの電極開口部から絶縁物を離間するなどの方法が挙げられる。
特許第3166946号公報 特許第4401614号公報
露光技術に対する高精細、高スループット化の要求に対応するために、電子ビーム露光装置においては、低収差化、マルチビーム化が必要となる。
静電レンズの中でも特に対物レンズについては、レンズとワークとの距離をより近づけ、電子ビームをマルチビーム化し、開口の小径化および短ピッチ化、高電界化に伴うより高い耐電圧構造、そして形状精度向上が必要となる。
一方で、電子ビームを用いて試料を露光すると、そのビームのエネルギーによって試料上のレジスト等が飛散又は蒸発する。
そのレジスト等の飛散又は蒸発したものは、試料から最も近い対物レンズにより多く付着する。
長時間露光を続けると、付着物の量はより多くなり、堆積していく。対物レンズの光学収差特性は開口の形状に非常に敏感である。
従って、レジスト等の飛散物又は蒸発物及びそれらからの生成物などのレジスト起因の付着物が開口に堆積していくと、それに伴い対物レンズの光学収差特性も悪化する。
これらの付着物の堆積による対物レンズの光学収差特性の悪化が問題となるため、これらへの対処としてレンズのクリーニング処理を行うことが必要となる。
特に、対物レンズの上部電極や下部電極に挟まれた中電極は光学収差特性に最も敏感であり、レジスト起因の付着物の堆積に対して、構造的に最もクリーニング効果が薄いという課題を有している。
本発明は、上記課題に鑑み、レンズ内部にレジストに起因して付着する堆積物を軽減することができ、
また、レンズの光学収差特性に最も敏感な電極開口部への上記堆積物に対するクリーニング処理の効果を向上させることが可能となる静電型の荷電粒子線レンズ及び荷電粒子線装置の提供を目的とする。
本発明は、複数のレンズ電極を有する静電型の荷電粒子線レンズであって、
前記荷電粒子線レンズは、光軸方向へ間隔規定部材により離間して配置される第一の電極と第二の電極を含み構成され、前記第一の電極と前記第二の電極と前記間隔規定部材により囲まれた空隙を有し、
前記第一の電極と前記第二の電極は荷電粒子ビームが通過する第一の貫通孔を有すると共に、少なくとも前記第二の電極は荷電粒子ビームが通過しない第二の貫通孔を有し、前記第一の貫通孔及び前記第二の貫通孔がそれぞれ前記空隙に連通した構造を備え、
前記空隙から前記第二の電極に設けられた貫通孔を通じてレンズ電極外へ通じる排気コンダクタンスの総量に対し、
前記空隙から前記第一の電極に設けられた貫通孔を通じてレンズ電極外へ通じる排気コンダクタンスの総量が小さくなるように構成されていることを特徴とする。
本発明によれば、レンズ内部にレジストに起因して付着する堆積物を軽減する静電型の荷電粒子線レンズ及び荷電粒子線装置を実現することができる。
また、レンズの光学収差特性に最も敏感な電極開口部への上記堆積物に対するクリーニング処理の効果を向上させることが可能となる荷電粒子線レンズ及び荷電粒子線装置を実現することができる。
本発明の実施の形態に係る静電型の荷電粒子線対物レンズの構成を説明する図。(a)はその概略上面図、(b)は(a)のA−A’の概略断面図。 本発明の実施例1に係る静電型の荷電粒子線対物レンズの構成を説明する図。(a)はその概略上面図、(b)は(a)のA−A’の概略断面図。 本発明の実施例2に係る静電型の荷電粒子線対物レンズの構成を説明する図。(a)はその上面図、(b)は(a)のB−B’の概略断面図。 本発明の実施例3に係る静電型の荷電粒子線対物レンズの概略断面図。 本発明の実施例4に係るマルチ荷電粒子ビーム露光装置の構成を示す図。
以下に、図1を参照して本発明の実施の形態における複数のレンズ電極を有する静電型の荷電粒子線レンズの構成例について説明する。
ただし、本実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の構成をそれらのみに限定する趣旨のものではない。
また、本実施形態において2枚の電極からなる静電型の荷電粒子線レンズを例にして説明を行なうが、この発明の構成をそれに限定する趣旨のものではない。
本実施形態における静電型の荷電粒子線レンズは、図1(a)に示すように、荷電粒子線ビームが通過するパターン及びその他のパターンが形成された静電レンズが構成されている。
また、図1(b)に示すように、荷電粒子ビーム6の光軸方向へ間隔規定部材4により離間して対向電極1a及び1bが配置され、これらによって囲まれた空隙5が形成されている。
ここで、1aは第一の電極、1bは第二の電極である。
電極1a及び1bは第一の貫通孔2を有しており、電極1bは第二の貫通孔3を有している。
なお、第一の貫通孔2とは荷電粒子ビーム6が通過する貫通孔のことで、空隙5と連通している。
また、第二の貫通孔3は第二の電極に形成され、空隙5と連通する貫通孔であり、電子ビームの通過しない貫通孔である。また、レンズ部材同士は、電極1a及び1bの一部領域で間隔規定部材4と固定される。
つぎに、本実施形態における荷電粒子線レンズの構成、作用効果等について説明する。
図1では、荷電粒子線レンズは間隔規定部材4を挟む2枚の電極からなるとしているが、電極の枚数について特に限定するものではない。
電極の厚さについては、高精細を実現するための形状維持とレンズ強度を保つ観点から、10〜300μm程度が好ましいが、特に限定はしない。
各電極には第一の貫通孔2が複数存在しており、その開口穴径が0.5〜200μmの真円状の円筒状の穴形状が好ましいが、収差と加工上に問題を生じないのであれば、特に開口穴径や穴形状を限定するものではない。
第一の貫通孔2の配置については、図1では正方格子の4×4のアレイ配列を例として挙げているが、貫通孔2の数、配列、形成位置ともにそれに限定するものではなく、その荷電粒子線レンズを用いる荷電粒子線露光装置等の仕様によって決定される。
また、電極1a及び1bの外形についても、図1(a)では四角形形状としているが、寸法、形状ともに特に限定するものではなく、同様に決定される。
電極1a及び1bの基板として用いる部材としては、加工性の良さなどから、シリコンが好ましいが、導電性を持つ部材を含むものであれば、原料物質、構成等は限定しない。
また、第二の貫通孔3については、光学収差特性が敏感な電極中に設けることが好ましい。
ここで、光学収差特性に敏感な電極とは、光学収差に対して開口部形状が及ぼす寄与率が高い電極のことである。一般的に、光学収差は減速用電極の開口部形状に敏感になる。
例えば、電極1bに対して電極1aより強い負の電位を与える場合、電極1bの第一の貫通孔2の形状変化に対して光学収差特性が敏感になる。
また、第二の貫通孔3は電極1bの第一の領域を挟んで存在する空隙5に面している電極1bの第二の領域に少なくとも1つ設けることが好ましいが、電極1bより照射対象物7側に位置する電極1aに設けてもよい。
但し、電極1aに設ける第二の貫通孔3の形状は、光学収差特性に敏感な電極1bと比較して電極内の全貫通孔の排気コンダクタンスの総量が小さくなるようにする。
すなわち、前記空隙から第二の電極である電極1bに設けられた貫通孔を通じてレンズ電極外へ通じる排気コンダクタンスの総量に対し、
前記空隙から第一の電極である電極1aに設けられた貫通孔を通じてレンズ電極外へ通じる排気コンダクタンスの総量が小さくなるようにする。
また、より枚数の多いレンズの場合は、光学収差特性に最も敏感な電極より照射対象物側に位置する電極のうちで光学収差に影響の少ない電極の少なくとも1枚に第二の貫通孔を設けない、もしくは電極内の全貫通孔の排気コンダクタンスの総量を最小とする構成とする。
好ましくは、最も照射対象物に近い電極に第二の貫通孔を設けない構成がよいが、上記条件を満たしているのであれば特に限定はしない。
加えて、前記条件を満たす範囲内であれば、荷電粒子ビームが通過する空隙5に面しない電極1a及び1bに貫通孔を設け、対応した位置の間隔規定部材にも貫通孔を形成してもよい。
各第二の貫通孔3の開口面積は各第一の貫通孔2の開口面積より十分に大きいことが好ましいが、必ずしもそれに限定するものではない。第二の貫通孔3の形状についても、限定はしない。
また、同一レンズアレイ内の各第二の貫通孔3の開口面積及び形状は、同じである必要はなく、場所及び電極によって異なっていてもよい。第二の貫通孔3の位置については、上記条件を満たす範囲であれば限定はしない。
また、同一レンズアレイ内の各第二の貫通孔3の位置についても、場所及び電極によって異なってもよい。
上記の構成とすることで、照射対象物7からのレジスト起因の付着物がレンズ内部の特に光学収差特性に敏感な電極1bのレンズ開口部に付着することを最小限に抑えることができる。
それによって、収差の悪化を緩やかにすることができ、クリーニング処理までの動作時間を長くとれるだけでなく、クリーニングの回数を減らすことができる。さらに、排気コンダクタンスを大きくしたことで、クリーニング時にはレンズ内部にある光学収差特性に敏感な電極1bに対しても十分なクリーニング効果が得られ、クリーニング処理の短時間化とクリーニングによるレンズアレイへのダメージの軽減が見込める。
ところで、排気コンダクタンスについては、以下のような定義がなされている。オリフィスや管の中を気体が流れる時に生じる抵抗を排気抵抗と呼び、この抵抗の逆数を(排気)コンダクタンスという。気体の流れやすさを表している。
このコンダクタンスC(m3・s-1)のオリフィスや管の両端の圧力がP0、P1(Pa)の時に、この間を通って流れる気体の流量Qは

Q = C(P1−P0) (Pa・m3・s-1

で与えられる。つまり、コンダクタンスCは以下の式で与えられる。

C = Q/(P1−P0) (Pa-1・m3・s-1

間隔規定部材4自身に、空隙5とレンズの外部空間とを連通する開口部が存在してもかまわない。
ただし、一般的に、高精細対物レンズ向けの間隔規定部材では、静電力に対する構造上の強度及び電極の変形許容値を考慮すると、レンズ外周部での部材板厚に対する部材開口幅の比は10倍以上になり、開口の長さとの比では20倍以上であると考えられる。
このため、外部と連通する開口部が存在しても排気コンダクタンスは極めて小さく、電極1a及び1bの排気コンダクタンスを超えるケースは稀であり、本発明の効果に与える影響は限定的である。
また、レンズ外周部の開口が一定の排気コンダクタンスを持つことで、クリーニング時にラジカルがレンズ中央部に届きにくくなり、クリーニング効果に不均一な分布が生じる。したがって、間隔規定部材のレンズ外周部には不要な開口やスペースを設けないことが好ましい。
ここで、図には示されていないが、パターン露光用及びレンズ組立時の電極−間隔規定部材間のアライメントマーク等、その他必要なパターンの薄膜、溝、貫通孔などは適宜電極及び間隔規定部材に形成してもよい。
また、間隔規定部材4の厚さは、50〜1000μmが好ましいが、その荷電粒子レンズを用いる荷電粒子線露光装置等の仕様によって決定されるもので、それらに限定するものではない。
間隔規定部材4は二酸化珪素(SiO2)、青板ガラス、硼珪酸ガラス、低アルカリガラス、無アルカリガラス、アルミナなどのセラミックスなどの絶縁物もしくはそれら絶縁物を含む部材からなることが好ましいが、必ずしもそれらに限定するものではない。
また、空隙5の内壁形状は、図1(b)では垂直断面となっている。
しかし、帯電を防止して耐電圧特性を向上させるためには、凹凸断面形状やテーパー形状を有していることが好ましいが、帯電の影響が微小で耐電圧の仕様を満たしていれば、特に形状を限定するものではない。
この部材により、荷電粒子線レンズアレイは強度及び形状精度、耐電圧構造を維持することができる。
図には示されていないが、給電パッドや、パターン露光用及びレンズ組立時の電極間及び電極−間隔規定部材間のアライメントマーク等、その他必要なパターンの薄膜、溝、貫通孔などは適宜電極上に形成してもよい。
また、帯電防止膜8を形成するようにしてもよい。ここで帯電防止膜は、絶縁性材質の表面を導電性膜で被覆することにより、絶縁性材質表面に蓄積した電荷を除去するものである。
通常、帯電防止膜の表面抵抗は、1012Ω以下であることが必要である。
さらに十分な帯電防止効果を得るためにはより低い抵抗値であれば除電効果が向上するが、その抵抗値を低くすることで発熱量も大きくなるため、異種部材からなるデバイスにおいては形状の変形を伴う場合がある。
その膜を形成するデバイスに要求される形状変化の許容量及び帯電防止効果などの仕様によって決定されることが好ましい。
また、図1に図示された本実施形態にて、少なくとも電極1a及び1bの貫通孔2の内壁及び近傍の電極表裏面の領域に、プラズマ耐性膜9を有していても良い。
プラズマ耐性膜9については、次のような材料を挙げることができる。
すなわち、Au、Ru、Rh、Pd、Os、Ir、Pt、Mo、
Crや酸化亜鉛(ZnO)、二酸化モリブデン(MoO2)、
二酸化パラジウム(PdO2)、二酸化白金(PtO2)等の導電性金属酸化物、ランタンニッケル複合酸化物(LaNiO3)やクロム酸カルシウム(CaCrO3)、
ルテニウム酸ストロンチウム(SrRuO3)等の導電性複合酸化物、
TiN、TaNなどの導電性金属窒化物、導電性金属炭化物、導電性金属硼化物、等を候補として挙げられる。
しかし、上記電極を構成する部材以上にプラズマ耐性を備えた、プラズマ処理後も導電性を維持する部材であれば、上記部材に限定するものではない。
この膜の形成により、電極の酸化による帯電を防止でき、例えば、プラズマを用いたクリーニング処理による電極へのダメージを軽減し、複数回の処理を経ても帯電を防止できる。
つぎに、本実施形態における静電型の荷電粒子線対物レンズの製造方法について説明する。
電極1a及び1bの加工方法は以下のとおりである。
貫通孔2及び3を形成する方法については、一般的なフォトリソグラフィ技術と深掘ドライエッチング技術を用いて加工することが可能で、特に限定はしない。例えば、シリコンウエハやSOI(シリコン・オン・インシュレータ)ウエハを部材として用いた場合、貫通孔形成はウエハ表面へのマスク材成膜後に一般的なフォトリソグラフィによるパターニングをし、エッチングによるマスク加工する。そして、その後にBOSCH法による深掘ドライエッチングで貫通孔を形成し、マスク剥離を行なうことで形成することができる。
給電パッドや、アライメントマーク等、その他必要なパターンは適宜電極上に形成する。
間隔規定部材4の空隙5などについては、ドリル加工やブラスト加工など機械加工やそれ以外にも一般的なフォトリソグラフィ技術とエッチング技術を用いて形成することができるが、特に限定はしない。
帯電防止膜8やプラズマ耐性膜9の形成については、成膜技術の限定は行わない。
貫通孔内壁へも十分な膜形成が必要であることを考慮して、CVD法などの等方的な成膜手法が好ましいが、貫通孔形状や成膜材料などによって適宜成膜方法を選択する必要がある。
また、レンズの各部材間の固定方法に関しては、各部材の開口部のアライメント後に一般的な接合技術を用いて接合するのが好ましいが、装置動作中にアライメントがずれてしまうことがない方法であれば、固定の要、不要の選択も含めて特に限定するものではない。
上記構成を採ることで、例えば、対物レンズ内部等における、特に、光学収差特性に敏感な開口へのレジスト起因の付着物の堆積を軽減することができる。
また、上記対物レンズの光学収差特性に最も敏感な中電極の開口への上記付着堆積物に対するクリーニング処理の効果を高めることができる。
さらに、荷電粒子線レンズ内の真空度を向上させることができ、それに伴い、電極へのレジスト起因の付着物の堆積を少なくすることができ、また耐電圧や光学収差特性について良好な状態が長時間にわたって持続することができる。
これらにより、プロセス時間に対してクリーニング処理や交換などのメンテナンスに要する時間を少なくすることができ、スループットを向上させることが可能となる。
また、活性ガスのラジカル等を用いたクリーニング処理の際、対物レンズ内に多くのラジカルを導くことができるため、レンズ電極表面を効率的にクリーニングすることができる。それにより良好なレンズ特性を繰り返しより多く再現することができる。
以下に、本発明の実施例について説明する。
[実施例1]
実施例1として、本発明を適用した静電型の荷電粒子線対物レンズの構成例を、図2を用いて説明する。
ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、この発明の範囲をそれらのみに限定する趣旨のものではない。尚、上記してきた内容と同じ機能を有する個所には同じ記号を付し、重複する部分は説明を省略する。
本実施例の電子レンズは、間隔規定部材4を挟む3枚の電極1a、1b及び1cから構成される。
電極は接地電極である下部電極1a及び上部電極1cと陰極であり、負の高電圧−4.0kVを印加する中電極1bの3枚からなる。
3枚の電極1a、1b及び1cは、ともに厚さ150μmでシリコンウエハから加工されている。
なお、上部電極1cは電子源側、下部電極1aは照射対象物7側とする。各電極には電子ビーム6’が通過する貫通孔2が直径100μmの円筒形状で、ピッチ200μmの正方格子の4×4のアレイ配列が2個並んだ形で計32個有する。中電極1b及び上部電極1cには、レンズ内の排気コンダクタンスを大きくするための400μm×1500μmの大きさの第二の貫通孔3をともに計4個づつ有する。
下部電極1aについては第二の貫通孔3を設けない。なお、それら第一の貫通孔2及び第二の貫通孔3は、一般的なフォトリソグラフィ技術と、エッチング技術及びBOSCH法による深掘RIE技術によって形成する。
また、間隔規定部材4には、対向する電極1a、1b及び1cの上記第一の貫通孔2及び第二の貫通孔3を含む領域に挟まれた電子ビーム6’が通過する空隙5が2.0mm角の大きさで形成される。
なお、間隔規定部材4は、厚さ500μmであり、絶縁物であるTEMPAXフロート(ショット社製)ガラスからなる。空隙5の形成はドリル加工によって行った。
また、電極1a−間隔規定部材4間及び間隔規定部材4−電極1b間、間隔規定部材4−電極1c間は、不図示のアライメントマークを用いてアライメントした上で、陽極接合によって接合している。その後、アライメントマークを含む領域をダイシングにより切除している。
また、下部電極1a―照射対象物7間の間隔は100μmとなっている。
上記構成をとることで、光学収差特性に敏感な電極1bへの照射対象物7からのレジスト起因の付着物を減少させることができ、長く収差の小さい電子レンズ特性を保つことができる。
また、プラズマクリーニング処理時においても均一に短時間で処理を行なうことが可能である。安定的に高精細で長寿命な電子レンズアレイを供給することが可能である。
[実施例2]
実施例2として、上記実施例1におけるマルチ荷電粒子ビーム露光装置と異なる形態の静電型の荷電粒子線対物レンズの構成例を、図3を用いて説明する。
ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などについては、この発明の範囲をそれらのみに限定する趣旨のものではない。尚、上記してきた内容と同じ機能を有する個所には同じ記号を付し、重複する部分は説明を省略する場合がある。
図3(a)は本発明に係る電子レンズアレイの概略上面図であり、図3(b)は図3(a)のB−B’の概略断面図である。電子レンズは、3枚の電極1a、1b及び1cからなり、電極1a−電極1b間及び電極1b−電極1c間それぞれに間隔規定部材4を挟んで形成される。
電極は接地電極である上部電極1c及び下部電極1aと、陰極であり、負の高電圧−3.7kVを印加する中電極1bの3枚からなる。3枚の電極1a、1b及び1cは、ともに厚さ100μmでシリコンウエハから加工されている。なお、上部電極1cが電子源側、下部電極1aが照射対象物7側とする。
各電極には第一の貫通孔2が直径100μmの円筒形状で、ピッチ300μmの正方格子の4×4のアレイ配列が2個並んだ形で計32個形成される。
上部電極1c及び中電極1bには、500μm×1500μmの大きさの第二の貫通孔3を計4個づつ形成される。
また、前記第一の電極と第二の電極間を前記光軸方向へ貫通する第三の貫通孔が、前記空隙の外側に、該空隙と連通しないように構成されている。
具体的には、下部電極1a−照射対象物7間の排気コンダクタンスを大きくするために、直径が300μmで電子ビームの光軸方向に貫通した第三の貫通孔3’を間隔規定部材4の空隙5外の角近辺の位置に計6個設ける。
なお、それら貫通孔は、一般的なフォトリソグラフィ技術と、エッチング技術及びBOSCH法による深掘RIE技術によって形成している。
また、間隔規定部材4には、対向する電極1a、1b及び1cの上記第一の貫通孔2及び第二の貫通孔3を含む領域に挟まれた電子ビーム6’が通過する空隙5が2.6mm角の大きさで形成される。
また、第三の貫通孔3’についての間隔規定部材4の貫通孔は、上記電極と同径、同位置となるように形成される。なお、間隔規定部材4は、厚さ400μmであり、絶縁物であるEagleXG(コーニング社製)ガラスからなる。
空隙5及び第三の貫通孔3’に対応した間隔規定部材4の貫通孔の形成はドリル加工によって行った。
また、電極1a−間隔規定部材4間及び間隔規定部材4−電極1b間は、各貫通孔2をアライメントした上で、フュージョンボンディングによって接合している。また、下部電極1a−照射対象物7間の間隔は100μmとなっている。
上記構成をとることで、電極の第一の貫通孔2内壁及びその貫通孔近辺への、特に光学収差特性に敏感な電極1bへの照射対象物7からのレジスト起因の付着物を実施例1の構成と比較しても減少させることができ、長く収差の小さい電子レンズ特性を保つことができる。
また、プラズマクリーニング処理時においても均一に短時間で処理を行なうことが可能になる。安定的に高精細で長寿命な電子レンズアレイを供給することが可能である。
[実施例3]
実施例3として、上記各実施例と異なる形態の静電型の荷電粒子線対物レンズの構成例を、図4を用いて説明する。
ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などについては、この発明の範囲をそれらのみに限定する趣旨のものではない。尚、上記してきた内容と同じ機能を有する個所には同じ記号を付し、重複する部分は説明を省略する場合がある。
図4は本実施例の電子レンズアレイの概略断面図である。
電子レンズは、3枚の電極1a、1b及び1cからなり、電極1a−電極1b間及び電極1b−電極1c間それぞれに間隔規定部材4を挟んで形成される。
電極は接地電極である上部電極1c及び下部電極1a、陰極であり、負の高電圧−3.7kVを印加する中電極1bの3枚からなる。
3枚の電極1a、1b及び1cは、ともに厚さ100μmでシリコンウエハから加工されている。
なお、上部電極1cが電子源側、下部電極1aが照射対象物7側とする。各電極には第一の貫通孔2が直径100μmの円筒形状で、ピッチ200μmの正方格子の4×4のアレイ配列が2個並んだ形で計32個有する。
上部電極1c及び中電極1bには、400μm×1200μmの大きさの第二の貫通孔3を計4個づつ有する。
なお、それら貫通孔は、一般的なフォトリソグラフィ技術と、エッチング技術及びBOSCH法による深掘RIE技術によって形成している。
また、間隔規定部材4には、対向する電極1a、1b及び1cの上記第一の貫通孔2及び第二の貫通孔3を含む領域に挟まれた電子ビーム6’が通過する空隙5が2.0mm角の大きさで形成される。
なお、間隔規定部材4は、厚さ400μmであり、絶縁物であるOA−21(日本電気硝子(株)製)ガラスからなる。
空隙5の形成はサンドブラスト加工によって行った。電極の帯電を防止する帯電防止膜8が、空隙5の内壁及び、該内壁の膜8と接続するように電極1a、1b及び1cの一部に、厚さ0.5μmで成膜されている。
材質は、AlNで、成膜はスパッタ成膜にて形成している。プラズマ耐性膜9が、第一の貫通孔2の内壁及び、第一の貫通孔2の近辺の電極1a、1b及び1cの表裏面に、1.1mm角の領域に厚さ200nmで成膜されている。材質は、Moで、成膜はCVD法にて形成している。
また、電極1a−間隔規定部材4間及び間隔規定部材4−電極1b間は、各貫通孔2をアライメントした上で、フュージョンボンディングによって接合している。また、下部電極1a−照射対象物7間の間隔は100μmとなっている。
上記構成をとることで、電極の第一の貫通孔2内壁及びその貫通孔近辺への、特に光学収差特性に敏感な電極1bへの照射対象物7からのレジスト起因の付着物を減少させることができ、長く収差の小さい電子レンズ特性を保つことができる。
また、プラズマクリーニング処理時においても均一に短時間で処理を行なうことが可能になる。加えて、プラズマ耐性膜9を成膜することにより、プラズマクリーニングを繰り返し行っても電子レンズ特性を保つことができ、より長寿命な電子レンズアレイとなる。
それにより、メンテナンスの回数を減らすことができ、装置停止時間を短くできることで、スループットも多く得られる。安定的に高精細で長寿命な電子レンズアレイを供給することが可能である。
[実施例4]
実施例4として、荷電粒子線露光装置(マルチ荷電粒子ビーム露光装置)の構成例を、図5を用いて説明する。
図5において、101はコントローラー、102は描画パターン発生回路、103はビットマップ変換回路、104は偏向信号発生回路、105はレンズ制御回路、106はブランキング指令回路、107はアライナー制御回路、108は電子源である。
109はガンアライナー、110はアノード電極、111はクロスオーバー調整光学系、112は照射光学系クロスオーバー、113はビーム軸、114は電子ビーム、115はコリメータレンズ、116はコリメートされた電子ビームである。
117はアパーチャアレイ、118はマルチ電子ビーム、119は集束レンズアレイ、120はアライナー、121は電子ビームである。
122はブランカーアレイ、123はストップアパーチャアレイ、124はビームON状態のマルチ電子ビーム、125はビームOFF状態のマルチ電子ビームである。
126は第二集束レンズアレイ、127は第二ブランカーアレイ、128は第二ストップアパーチャアレイ、129はビームOFF状態のマルチ電子ビーム、130は第三集束レンズアレイである。
131は偏向器、132は第四集束レンズアレイ、133はウエハ、134はステージ、135は電子ビーム、150はマルチソースモジュールである。
本実施例では、本発明の静電型の荷電粒子線レンズによって、静電対物レンズが構成されている荷電粒子線露光装置の構成例について説明する。
しかし、本実施例は、本発明の静電型の荷電粒子線レンズを、荷電粒子線露光装置に限定する趣旨のものではない。本発明は荷電粒子線装置全般に適用可能である。
また、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。尚、実施例1から3と同じ機能を有する個所には同じ記号を付し、重複する部分は説明を省略する。
図5は本実施例のマルチ荷電粒子線露光装置の構成を示す図である。
本実施例は個別に投影系をもついわゆるマルチカラム式である。
電子源108からアノード電極110によって引き出された放射電子ビームは、クロスオーバー調整光学系111によって照射光学系クロスオーバー112を形成する。
ここで電子源108としてはLaB6やBaO/W(ディスペンサーカソード)などのいわゆる熱電子型の電子源が用いられる。
クロスオーバー調整光学系111は2段の静電レンズで構成されており、1段目・2段目共に静電レンズは3枚の電極からなり、中間電極に負の電圧を印加し上下電極は接地する、いわゆるアインツェル型の静電レンズである。
照射光学系クロスオーバー112から広域に放射された電子ビームは、コリメータレンズ115によって平行ビームとなり、アパーチャアレイ117へと照射される。アパーチャアレイ117によって分割されたマルチ電子ビーム118は、集束レンズアレイ119によって個別に集束され、ブランカーアレイ122上に結像される。
ここで集束レンズアレイ119は3枚の多孔電極からなる静電レンズで、3枚の電極のうち中間の電極のみ負の電圧を印加し上下電極は接地する、アインツェル型の静電レンズアレイである。
また、アパーチャアレイ117はNA(収束半角)を規定する役割も持たせるため、集束レンズアレイ119の瞳面位置(集束レンズアレイの前側焦点面位置)に置かれている。
ブランカーアレイ122は個別の偏向電極を持ったデバイスで、描画パターン発生回路102、ビットマップ変換回路103、ブランキング指令回路106によって生成されるブランキング信号に基づき、描画パターンに応じて個別にビームのON/OFFを行う。
ビームがONの状態のときには、ブランカーアレイ122の偏向電極には電圧を印加せず、ビームがOFFの状態のときには、ブランカーアレイ122の偏向電極に電圧を印加してマルチ電子ビームを偏向する。ブランカーアレイ122によって偏向されたマルチ電子ビーム125は後段にあるストップアパーチャアレイ123によって遮断され、ビームがOFFの状態となる。
本実施例においてブランカーアレイは2段で構成されており、ブランカーアレイ122及びストップアパーチャアレイ123と同じ構造の、第二ブランカーアレイ127および第二ストップアパーチャアレイ128が後段に配置されている。
ブランカーアレイ122を通ったマルチ電子ビームは第二集束レンズアレイ126によって第二ブランカーアレイ127上に結像される。
さらに、マルチ電子ビームは第三・第四集束レンズによって集束されてウエハ133上に結像される。ここで、第二集束レンズアレイ126・第三集束レンズアレイ130・第四集束レンズアレイ132は集束レンズアレイ119同様に、アインツェル型の静電レンズアレイである。
特に、第四集束レンズアレイ132は対物レンズとなっており、その縮小率は100倍程度に設定される。これにより、ブランカーアレイ122の中間結像面上の電子ビーム121(スポット径がFWHMで2μm)が、ウエハ133面上で100分の1に縮小され、FWHMで20nm程度のマルチ電子ビームがウエハ上に結像される。第四集束レンズアレイ132は本発明の静電型の荷電粒子線レンズアレイを用いており、安定的に高精細で長寿命な電子レンズアレイを供給することが可能である。
ウエハ上のマルチ電子ビームのスキャンは偏向器131で行うことができる。偏向器131は対向電極によって形成されており、x、y方向について2段の偏向を行うために4段の対向電極で構成される(図中では簡単のため2段偏向器を1ユニットとして表記している)。偏向器131は偏向信号発生回路104の信号に従って駆動される。
パターン描画中はウエハ133はX方向にステージ134によって連続的に移動し、レーザー測長機による実時間での測長結果を基準としてウエハ面上の電子ビーム135が偏向器131によってY方向に偏向され、かつブランカーアレイ122及び第二ブランカーアレイ127によって描画パターンに応じてビームのON/OFFが個別になされる。
これにより、ウエハ133面上に所望のパターンを高速に描画することができる。
以上のように、本実施例の荷電粒子線レンズを用いたマルチ荷電粒子線露光装置では、安定的に高精細で長寿命な荷電粒子線露光装置を提供することができる。また、複数の荷電粒子線を用いて描画することに加えて、メンテナンスによる装置停止時間を短くできることによって、高解像度でさらに高スループットな荷電粒子線露光装置を提供することができる。
1a:第一の電極
1b:第二の電極
1c:電極
2:第一の貫通孔
3:第二の貫通孔
3’:第三の貫通孔
4:間隔規定部材
5:間隔規定部材の荷電粒子ビームが通過する空隙
6:荷電粒子ビーム
6’:電子ビーム
7:照射対象物
8:帯電防止膜
9:プラズマ耐性膜

Claims (6)

  1. 複数のレンズ電極を有する静電型の荷電粒子線レンズであって、
    前記荷電粒子線レンズは、光軸方向へ間隔規定部材により離間して配置される第一の電極と第二の電極を含み構成され、前記第一の電極と前記第二の電極と前記間隔規定部材により囲まれた空隙を有し、
    前記第一の電極と前記第二の電極は荷電粒子ビームが通過する第一の貫通孔を有すると共に、少なくとも前記第二の電極は荷電粒子ビームが通過しない第二の貫通孔を有し、前記第一の貫通孔及び前記第二の貫通孔がそれぞれ前記空隙に連通した構造を備え、
    前記空隙から前記第二の電極に設けられた貫通孔を通じてレンズ電極外へ通じる排気コンダクタンスの総量に対し、
    前記空隙から前記第一の電極に設けられた貫通孔を通じてレンズ電極外へ通じる排気コンダクタンスの総量が小さくなるように構成されていることを特徴とする静電型の荷電粒子線レンズ。
  2. 前記第一の貫通孔と前記第二の貫通孔とに加え、前記第一の電極と第二の電極間を前記光軸方向へ貫通する第三の貫通孔が、
    前記空隙の外側に、該空隙と連通しないように構成されていることを特徴とする請求項1に記載の静電型の荷電粒子線レンズ。
  3. 前記第一の電極は、照射対象物に最も近い電極であることを特徴とする請求項1または請求項2に記載の静電型の荷電粒子線レンズ。
  4. 前記第一の電極と前記第二の電極は、前記荷電粒子ビームが通過する第一の貫通孔を有する領域に、
    前記電極を構成する部材以上にプラズマ耐性を備えた導電性を維持する部材による膜が形成されていることを特徴とする請求項1から3のいずれか1項に記載の静電型の荷電粒子線レンズ。
  5. 前記第一の電極と前記第二の電極の帯電を防止する帯電防止膜が、前記空隙の内壁に形成されていることを特徴とする請求項1から4のいずれか1項に記載の静電型の荷電粒子線レンズ。
  6. 請求項1から5のいずれか1項に記載の静電型の荷電粒子線レンズによって、少なくとも静電対物レンズが構成されていることを特徴とする荷電粒子線装置。
JP2012029107A 2012-02-14 2012-02-14 静電型の荷電粒子線レンズ及び荷電粒子線装置 Abandoned JP2013168396A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012029107A JP2013168396A (ja) 2012-02-14 2012-02-14 静電型の荷電粒子線レンズ及び荷電粒子線装置
US13/744,536 US8558191B2 (en) 2012-02-14 2013-01-18 Charged particle beam lens and charged particle beam exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012029107A JP2013168396A (ja) 2012-02-14 2012-02-14 静電型の荷電粒子線レンズ及び荷電粒子線装置

Publications (2)

Publication Number Publication Date
JP2013168396A true JP2013168396A (ja) 2013-08-29
JP2013168396A5 JP2013168396A5 (ja) 2015-04-02

Family

ID=48944844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012029107A Abandoned JP2013168396A (ja) 2012-02-14 2012-02-14 静電型の荷電粒子線レンズ及び荷電粒子線装置

Country Status (2)

Country Link
US (1) US8558191B2 (ja)
JP (1) JP2013168396A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180132884A (ko) * 2016-04-21 2018-12-12 마퍼 리쏘그라피 아이피 비.브이. 대전 입자 빔 시스템들에서의 오염의 제거 및/또는 회피를 위한 방법 및 시스템
US11916236B2 (en) 2019-04-09 2024-02-27 Tdk Electronics Ag Ceramic component and method for manufacturing the ceramic component

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6500383B2 (ja) * 2014-10-03 2019-04-17 株式会社ニューフレアテクノロジー ブランキングアパーチャアレイ及び荷電粒子ビーム描画装置
WO2021045972A1 (en) * 2019-09-03 2021-03-11 Tae Technologies, Inc. Systems, devices, and methods for contaminant resistant insulative structures
EP4376048A1 (en) * 2022-11-23 2024-05-29 ASML Netherlands B.V. Charged particle optical device, assessment apparatus, method of assessing a sample

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209698A (en) * 1971-12-28 1980-06-24 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Transmission-type charged particle beam apparatus
US5006795A (en) * 1985-06-24 1991-04-09 Nippon Telephone and Telegraph Public Corporation Charged beam radiation apparatus
JP3166946B2 (ja) 1993-02-02 2001-05-14 日本電信電話株式会社 電子ビ―ム露光装置
JP4947841B2 (ja) * 2000-03-31 2012-06-06 キヤノン株式会社 荷電粒子線露光装置
KR20030028460A (ko) * 2000-04-04 2003-04-08 주식회사 아도반테스토 다축전자렌즈를 이용한 멀티 빔 노광 장치,다축전자렌즈의 제조방법, 반도체소자 제조방법
KR100465117B1 (ko) 2000-04-04 2005-01-05 주식회사 아도반테스토 다축전자렌즈를 이용한 멀티빔 노광장치, 복수의 전자빔을집속하는 다축전자렌즈, 반도체소자 제조방법
KR20030028461A (ko) * 2000-04-04 2003-04-08 주식회사 아도반테스토 다축전자렌즈를 이용한 멀티빔 노광장치, 반도체소자제조방법
WO2001075949A1 (fr) * 2000-04-04 2001-10-11 Advantest Corporation Appareil d'exposition multifaisceau comprenant une lentille electronique multiaxe, et procede de fabrication d'un dispositif a semi-conducteur
WO2001075947A1 (fr) * 2000-04-04 2001-10-11 Advantest Corporation Appareil d'exposition multifaisceau comprenant une lentille elctronique multi-axiale, une lentille electronique multi-axiale pour la focalisation de faisceaux d'electrons, et procede de fabrication de dispositif semi-conducteur
US6787780B2 (en) * 2000-04-04 2004-09-07 Advantest Corporation Multi-beam exposure apparatus using a multi-axis electron lens, fabrication method of a semiconductor device
US7420164B2 (en) * 2004-05-26 2008-09-02 Ebara Corporation Objective lens, electron beam system and method of inspecting defect
US8039813B2 (en) * 2005-09-06 2011-10-18 Carl Zeiss Smt Gmbh Charged particle-optical systems, methods and components
US7883839B2 (en) * 2005-12-08 2011-02-08 University Of Houston Method and apparatus for nano-pantography
US8134135B2 (en) * 2006-07-25 2012-03-13 Mapper Lithography Ip B.V. Multiple beam charged particle optical system
WO2009110179A1 (ja) * 2008-03-04 2009-09-11 パナソニック株式会社 マトリックス型冷陰極電子源装置
KR101649106B1 (ko) * 2008-10-01 2016-08-19 마퍼 리쏘그라피 아이피 비.브이. 정전기 렌즈 구조
DE102008062450B4 (de) * 2008-12-13 2012-05-03 Vistec Electron Beam Gmbh Anordnung zur Beleuchtung eines Substrats mit mehreren individuell geformten Partikelstrahlen zur hochauflösenden Lithographie von Strukturmustern
US8362441B2 (en) * 2009-10-09 2013-01-29 Mapper Lithography Ip B.V. Enhanced integrity projection lens assembly

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180132884A (ko) * 2016-04-21 2018-12-12 마퍼 리쏘그라피 아이피 비.브이. 대전 입자 빔 시스템들에서의 오염의 제거 및/또는 회피를 위한 방법 및 시스템
JP2019507951A (ja) * 2016-04-21 2019-03-22 マッパー・リソグラフィー・アイピー・ビー.ブイ. 荷電粒子ビームシステムにおける汚染の除去及び/又は回避のための方法及びシステム
US10632509B2 (en) 2016-04-21 2020-04-28 Asml Netherlands B.V. Method and system for the removal and/or avoidance of contamination in charged particle beam systems
US10987705B2 (en) 2016-04-21 2021-04-27 Asml Netherlands B.V. Method and system for the removal and/or avoidance of contamination in charged particle beam systems
JP7065027B2 (ja) 2016-04-21 2022-05-11 エーエスエムエル ネザーランズ ビー.ブイ. 荷電粒子ビームシステムにおける汚染の除去及び/又は回避のための方法及びシステム
KR102501182B1 (ko) * 2016-04-21 2023-02-20 에이에스엠엘 네델란즈 비.브이. 대전 입자 빔 시스템들에서의 오염의 제거 및/또는 회피를 위한 방법 및 시스템
KR20230027325A (ko) * 2016-04-21 2023-02-27 에이에스엠엘 네델란즈 비.브이. 대전 입자 빔 시스템들에서의 오염의 제거 및/또는 회피를 위한 방법 및 시스템
US11738376B2 (en) 2016-04-21 2023-08-29 Asml Netherlands, B.V. Method and system for the removal and/or avoidance of contamination in charged particle beam systems
KR102626796B1 (ko) 2016-04-21 2024-01-19 에이에스엠엘 네델란즈 비.브이. 대전 입자 빔 시스템들에서의 오염의 제거 및/또는 회피를 위한 방법 및 시스템
US11916236B2 (en) 2019-04-09 2024-02-27 Tdk Electronics Ag Ceramic component and method for manufacturing the ceramic component

Also Published As

Publication number Publication date
US20130206999A1 (en) 2013-08-15
US8558191B2 (en) 2013-10-15

Similar Documents

Publication Publication Date Title
TWI479530B (zh) 靜電透鏡結構、靜電透鏡陣列、帶電粒子的子束微影系統以及製造絕緣結構的方法
TWI480914B (zh) 末端模組及帶電粒子的多子束系統
US20140197325A1 (en) Charged particle beam lens and exposure apparatus using the same
US8110813B2 (en) Charged particle optical system comprising an electrostatic deflector
US8294117B2 (en) Multiple beam charged particle optical system
TWI691998B (zh) 靜電多極元件、靜電多極裝置及製造靜電多極元件的方法
US20120319001A1 (en) Charged particle beam lens
JP2013239667A (ja) 荷電粒子線静電レンズにおける電極とその製造方法、荷電粒子線静電レンズ、及び荷電粒子線露光装置
JP2013168396A (ja) 静電型の荷電粒子線レンズ及び荷電粒子線装置
JP2023517626A (ja) マルチビーム発生ユニットおよびマルチビーム偏向ユニットの特定の改善
JP2007266525A (ja) 荷電粒子線レンズアレイ、該荷電粒子線レンズアレイを用いた荷電粒子線露光装置
JP2013008534A (ja) 荷電粒子線レンズ用電極
JP2007019248A (ja) 偏向器、荷電粒子線露光装置およびデバイス製造方法
US8686378B2 (en) Charged particle beam drawing apparatus, and method of manufacturing article
JP2007123599A (ja) 荷電粒子線レンズアレイ及び該レンズアレイを用いた荷電粒子線露光装置
JP5744579B2 (ja) 荷電粒子線レンズおよびそれを用いた露光装置
US20140349235A1 (en) Drawing apparatus, and method of manufacturing article
US20140151571A1 (en) Charged particle beam lens and exposure apparatus using the same
EP4280252A1 (en) Charged particle optical device and method
TWI827124B (zh) 帶電粒子設備及方法
JP2013165200A (ja) 荷電粒子線レンズ
EP4354483A1 (en) Alignment of electron-optical elements
TW202328812A (zh) 帶電粒子裝置及方法
JP2013026582A (ja) 荷電粒子線レンズ
JP2013030567A (ja) 荷電粒子線レンズアレイ

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20131212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20150618