JP2007019248A - 偏向器、荷電粒子線露光装置およびデバイス製造方法 - Google Patents

偏向器、荷電粒子線露光装置およびデバイス製造方法 Download PDF

Info

Publication number
JP2007019248A
JP2007019248A JP2005198843A JP2005198843A JP2007019248A JP 2007019248 A JP2007019248 A JP 2007019248A JP 2005198843 A JP2005198843 A JP 2005198843A JP 2005198843 A JP2005198843 A JP 2005198843A JP 2007019248 A JP2007019248 A JP 2007019248A
Authority
JP
Japan
Prior art keywords
electrode
charged particle
particle beam
deflector
electrode substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005198843A
Other languages
English (en)
Inventor
Toshiyuki Ogawa
俊之 小川
Kenichi Osanaga
兼一 長永
Yoshinori Nakayama
義則 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Canon Inc
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Canon Inc, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005198843A priority Critical patent/JP2007019248A/ja
Publication of JP2007019248A publication Critical patent/JP2007019248A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】偏向電極と遮蔽電極との隙間へ侵入する荷電粒子を遮蔽電極へ引き付け、偏向電極近傍の帯電を防止し、荷電粒子線のシフトやボケを押さえ、高精度のパターン描画を行なえる偏向器と、及び荷電粒子線露光装置、デバイス製造方法を提供する。
【解決手段】電子源から放射される荷電粒子線が通過する開口517付近に浮遊する荷電粒子の極性と逆の極性の電圧が遮蔽電極502に印加される。例えば、浮遊する電子に対しては遮蔽電極に正の電圧を印加することとなり、偏向電極501と遮蔽電極との隙間へ侵入する荷電粒子を遮蔽電極へ引き付け、偏向電極近傍の帯電を防止でき、安定した動作が可能となる。このため、帯電による荷電粒子線555のシフトやボケが最小限に押さえられ、精度の高いパターン描画を行うことが可能となる。
【選択図】図1

Description

本発明は、半導体集積回路等の露光に使用される電子ビーム露光装置、イオンビーム露光装置に関し、特に、複数の荷電粒子線を用いてパターン描画を行う荷電粒子線露光装置に使用される偏向器、その偏向器を有する荷電粒子線露光装置およびその荷電粒子線露光装置を用いたデバイス製造方法に関するものである。
一般に、半導体デバイスの生産において、荷電粒子線リソグラフィー技術は、0.1um以下の微細パターンの露光を可能にするリソグラフィー技術として注目されている。このリソグラフィー技術は、従来の光リソグラフィー技術と比較して、0.05um以下の微細パターンが容易に描画できる、物理的なマスクを必要としないためマスクコストがかからず大幅なコスト削減が見込める、レイアウトデータを直接描画データに変換できるためTATが短縮する、といった優れた特長をもっている。その中で、複数本の荷電粒子線で同時にパターンを描画する「マルチビームシステム」の提案がなされている。( “安田 洋:応用物理 69、1135(1994)(非特許文献1)”、 “特開2001−332473号公報(特許文献1)”)。このシステムは、要素電子光学系により1000本以上の荷電粒子線(マルチビーム)の中間像を各々形成し、さらに各中間像を縮小電子光学系を介してウエハに投影してパターンの描画を行なうものであり、従来の一本ビーム方式と比較して、大幅なスループットの向上が期待される。
ここで、図9の断面図を参照して「マルチビームシステム」に用いられる従来例のブランカーアレイを説明する。
この従来例のブランカーアレイを構成する偏向器は、開口51、第1の偏向電極52、第2の偏向電極53から成り、ブランカーアレイは、偏向器をアレイ状に配列したものである。開口51を通過した荷電粒子ビームをウエハ上に照射する時には、第1及び第2の偏向電極52,53 に接地電位の信号を印加し、遮断する時には、第1及び第2の偏向電極52,53に正負の電位の信号を同時に印加することで、複数の荷電粒子線の照射を個別にON/OFF制御する機能を持っている。
また、露光装置の筐体内には、電子銃から発生される電子線以外にも、ブランキングアパーチャからの散乱電子、筐体内での反射電子や2次電子が存在する。このような筐体内の電子が、偏向電極近傍に露出した非導電材料と反応すると、非導電材料表面に帯電電位が発生する。この帯電による漏れ電界は、偏向電極内の電界の形状を歪ませる為、偏向電極内を通過する荷電粒子線の偏向制御及び位置制御を精度よく行うことが難しくなる。結果として、ウエハ上でのビームの位置ズレやピンボケを引き起こす。
この問題に対しては、偏向器の電極基板にグランド電位を与えるグランド基板を配置することで帯電を抑える提案がなされている。“特開2004−282038号公報(特許文献2)”
特開2001−332473号公報 特開2004−282038号公報 "安田 洋:応用物理 69、1135(1994)
しかし、従来のブランカーアレイは、以下の課題を有している。
露光装置の筐体内には、周囲の電界、あるいは磁界の僅かな変化によって運動が変化する、エネルギー状態の低い浮遊電子が存在する。このような筐体内の浮遊電子はその運動が直線的でないために、偏向器の電極基板にグランド電位を与えるグランド基板を配置することでは、基板間の隙間に浮遊電子が侵入する可能性があり、これによる偏向電極近傍の非導電材料表面の帯電を防ぐことは難しい。
一方、ブランカーアレイの偏向電極周囲を完全に導電性の材料で被覆することは、作製方法が非常に複雑になるため、素子の加工精度や歩留まりの観点から難しい。また材料の酸化や、荷電粒子線照射化でのコンタミ付着といった点からも大変難しいことが分かっている。そのため、電極近傍には、シリコン酸化膜などの絶縁材やカーボンなどの有機非導電物といった、様々な非導電材料が、微小ではあるが露出してしまう。
そこで、本発明は、偏向電極と遮蔽電極との隙間へ侵入する荷電粒子を遮蔽電極へ引き付け、偏向電極近傍の帯電を防止し、安定した動作が可能となり、帯電による荷電粒子線のシフトやボケが最小限に押さえられ、精度の高いパターン描画を行うことが可能となる偏向器と、その偏向器を有する荷電粒子線露光装置およびその荷電粒子線露光装置を用いたデバイス製造方法を提供することを目的とする。
上記課題を解決するために、本発明の偏向器は、荷電粒子線が通過する開口を挟み込むように対向して設けられた、偏向電極基板上の偏向電極と、
前記荷電粒子線の光路に沿って前記偏向電極基板の上側と下側の少なくとも一方に設けられた遮蔽電極基板上の遮蔽電極と、を有し、
前記開口付近に浮遊する荷電粒子の極性と逆の極性の電圧が前記遮蔽電極に印加されていることを特徴とする


さらに、本発明の偏向器は、前記浮遊する荷電粒子が電子の場合は、前記遮蔽電極に正の電圧が印加される。
さらに、本発明の偏向器は、前記遮蔽電極は複数の電極部から成り、各々、電圧が印加される。
さらに、本発明の偏向器は、
前記偏向電極基板に面し、かつ、前記開口に面しない前記遮蔽電極基板上に設けられ、前記浮遊する荷電粒子の極性と逆の極性の電圧が印加される第1の電極部と、
前記第1の電極部以外の前記遮蔽電極基板上に設けられ、接地電位に保たれる第2の電極部と、から前記遮蔽電極は成る。
さらに、本発明の偏向器は、前記遮蔽電極は、Au、Pt、Pd、Ir、Rhのいずれかで構成される。
さらに、本発明の偏向器は、アレイ状に配列される。
さらに、本発明の偏向器は、前記偏向電極基板と前記遮蔽電極基板は位置合わせされ、前記偏向電極基板と前記遮蔽電極基板とは電極バンプを介して機械的かつ電気的に接続される。
さらに、本発明の荷電粒子線露光装置は、荷電粒子線を用いてウエハを露光する荷電粒子線露光装置であって、
前記荷電粒子線を放射する電子源と、
前記電子源の中間像を複数形成する第1の電子光学系と、
前記第1の電子光学系によって形成される複数の中間像をウエハ上に投影する第2の電子光学系と、
前記ウエハを保持し所定の位置に駆動して位置決めする位置決め装置と、を有し、
前記第1の電子光学系が、請求項1から7のいずれかに記載の偏向器を有することを特徴とする。
さらに、本発明のデバイス製造方法は、前記荷電粒子線露光装置を用いて、露光対象に露光を行う工程と、露光された前記露光対象を現像する工程と、を具備することを特徴とする。
本発明の偏向器によれば、電子源から放射される荷電粒子線が通過する開口付近に浮遊する荷電粒子の極性と逆の極性の電圧が遮蔽電極に印加される。
ここで、浮遊する荷電粒子の極性と逆の極性電圧が印加されているとは、例えば、浮遊する電子に対しては遮蔽電極に正の電圧を印加することとなり、偏向電極と遮蔽電極との隙間へ侵入する荷電粒子を遮蔽電極へ引き付け、偏向電極近傍の帯電を防止でき、安定した動作が可能となる。
このため、帯電による荷電粒子線のシフトやボケが最小限に押さえられ、精度の高いパターン描画を行うことが可能となる。
さらに、本発明の偏向器によれば、前記遮蔽電極は複数の電極部から成り、各々、電圧が印加される。
このため、遮蔽電極に2種類以上の電圧を印加することにより遮蔽電極に電圧を印加したことにより発生する漏れ電場が偏向器に侵入することを最小限に抑えることができる。
このため、遮蔽電極からの漏れ電場による荷電粒子線の影響を低減できるため、さらに精度の高いパターン描画を行うことが可能になる。
さらに、本発明の偏向器によれば、前記偏向電極基板に面し、かつ、前記開口に面しない前記遮蔽電極基板上に設けられ、前記浮遊する荷電粒子の極性と逆の極性の電圧が印加される第1の電極部と、
前記第1の電極部以外の前記遮蔽電極基板上に設けられ、接地電位に保たれる第2の電極部と、から前記遮蔽電極は成る。

このため、遮蔽電極の一部である第2の電極部を接地電位とすることで、製造方法が容易となり、かつ遮蔽電極の漏れ電場が偏向器に侵入することを効果的に抑えることができる。これにより、より安価で信頼性のある偏向器が製造可能となる。
さらに、本発明の偏向器によれば、前記遮蔽電極は、Au、Pt、Pd、Ir、Rhのいずれかの貴金属材料で構成される。
このため、遮蔽電極の表面は酸化しないため、表面酸化膜による帯電を防止することが出来るため、より精度の高い偏向制御が実現可能である。
さらに、本発明の偏向器によれば、アレイ状に配列される。このため、複数の荷電粒子線を独立に且つ精度良く偏向制御することが可能になり、スループットの高いマルチ荷電粒子線描画露光装置を実現することができる。
さらに、本発明の偏向器によれば、前記偏向電極基板と前記遮蔽電極基板は位置合わせされ、前記偏向電極基板と前記遮蔽電極基板とは電極バンプを介して機械的かつ電気的に接続される。
このため、偏向電極基板と遮蔽電極基板を別々に用意して、電極バンプを介して両基板を接続して偏向器を作製することで、偏向器を加工精度良く、また歩留まり良く作製できる。
また、偏向電極と遮蔽電極間を空隙により絶縁することが出来る為、両電極を絶縁する部材の帯電を心配することは無くなる。
また、電極バンプの高さと遮蔽電極延長部の高さ制御により、偏向電極と遮蔽電極の空隙の幅を、umオーダーで制御することが出来るため、偏向電極と遮蔽電極との間への浮遊物の進入を最小限に抑えることができる。
さらに、本発明の荷電粒子線露光装置によれば、第1の電子光学系が、前記偏向器を有する。
このため、偏向器の部材による帯電による影響を低減できる為、安定した動作が可能となる。また、偏向器が簡単な構成のため、歩留まり良く安価に製造できる。
以下、本発明を、その実施例に基づいて、図面を参照して説明する。
次に、図1の概略構成図を参照して本発明の実施例1の偏向器500を説明する。
偏向器500は、荷電粒子線の光路520に沿って配置された平行平板型の偏向電極501と、光路520に沿って偏向電極501の上下(上側は図示省略)に配置された遮蔽電極502とから構成される。偏向電極501は、図示されない電子源から放射される荷電粒子線が通過する開口517を挟むように対向する偏向電極基板510上に設けられ、荷電粒子線の光路520を偏向制御する。遮蔽電極502は、光路520に沿って偏向電極基板510の上側(図示省略)と下側の少なくとも一方に、かつ、図示されない遮蔽電極基板上に設けられる。偏向電極501と遮蔽電極502間は、数μmの空隙により電気的に絶縁されている。
さらに、開口517付近に浮遊する荷電粒子555の極性と逆の極性の電圧が電源504によって遮蔽電極502に印加される。ここで、浮遊する荷電粒子555は、周囲の電界または磁界の微小な変化によって運動が変化するエネルギー状態の低い荷電粒子のことで、図1では浮遊する荷電粒子555が電子の場合が示される。
このような電極構成においては、偏向電極501と遮蔽電極502の間に侵入した浮遊する荷電粒子555は遮蔽電極502の電位に引き寄せられるため、偏向電極501近傍の絶縁膜等の部材が帯電することが防止され、帯電等の外部電界による荷電粒子線のシフトやボケが最小限に抑えられ、精度の高いパターン描画を行うことが可能となる。
次に、図6の詳細な構成図を参照して本発明の実施例1の偏向器500について説明する。
図6(a)は偏向器500の断面図、図6(b)は偏向器500を構成する偏向電極501の平面図、図6(c)は偏向器500を構成する遮蔽電極502、503の平面図である。なお、図6の断面図(a)は、平面図である図6(b)及び図6(c)のA−A’位置における断面が示される。
ここで、偏向器500をマトリックス状に配置すれば、マルチビームシステムに対応した偏向器アレイとなる。
偏向器500は偏向電極501a,501bを有し、第1の遮蔽電極基板511及び第2の遮蔽電極基板511が光路520方向に積層される。
なお、以後は第1の遮蔽電極基板511と第2の遮蔽電極基板511は、同一構造のものが上下反転して設置されていることから、同一基板として説明する。
偏向電極基板510は、光路520を挟んで配置された第1の偏向電極501aと第2の偏向電極501b、第1の偏向電極501aに電圧信号を送る第1の電圧印加手段504a、第2の偏向電極501bに電圧信号を印加する第2の電圧印加手段504b、絶縁層505、グランド層506を有する。
本実施例1の偏向器500においては、偏向電極501a、501bには銅を、電圧印加手段504a及び504b及びグランド層506には金を、偏向電極基板510には微細加工性の良いシリコンを、絶縁層505には絶縁性の高い二酸化シリコン及び窒化シリコンが用いられる。偏向電極501a、501bは、金・銅・アルミニウム・白金・パラジウム等の低抵抗の金属材料を用いることが出来る。電圧印加手段504a、504b及びグランド層506は、金・銅・アルミニウム・白金・パラジウム等の低抵抗の金属材料を用いることが出来るが、特に表面層は金を使用した。
その理由は、偏向電極基板510と遮蔽電極基板511,511を電極バンプを介して金常温接合により接続・積層することで、偏向電極基板510と遮蔽電極基板511,511を光路520方向及び基板平面方向において精度良く積層出来ることである。さらに、接着剤が不要な為コンタミ低下や製造歩留まり向上が期待できること、また熱処理が不要なため接合後の温度による材料の膨張率の違いによる変形が避けられ加工容易性が向上するためである。
第1の偏向電極501a及び第2の偏向電極501bの寸法は、例えば、幅10um×50um、高さ200umであり、第1の偏向電極501aと第2の偏向電極501b間の荷電粒子線が通過する開口517の寸法は幅30um×50umである。これらの寸法は所望の偏向感度により決定される。
その他、各主要な部材の寸法は図6に示される。
なお、第1の偏向電極501a及び第1の電圧印加手段504aは、絶縁層505を介して第2の偏向電極501b及び第2の電圧印加手段504b及びグランド層506とは電気的に絶縁される。
また、第2の偏向電極501b及び第2の電圧印加手段504bは、絶縁層505を介して第1の偏向電極501a及び第1の電圧印加手段504a及びグランド層506とは電気的に絶縁されている。
シリコンから成る遮蔽電極基板511,511は、40μmφの荷電粒子線が通過する開口518が開いた構造で、電極バンプ507、電圧印加層521、接地電位層522を有する。電極バンプ507とバリア層513との間に定着層523が配置されているが、これは遮蔽電極基板511,511の作製時に電極バンプ507のめっきシード層として機能する。また、電圧印加層521、接地電位層522、および、定着層523の間はバリア層513の露出部513a、513bのよって分離されており、それぞれの間は電気的に絶縁される。
本実施例1において、電圧印加層521には遮蔽電極502用の図1に示される電源504により浮遊する荷電粒子555と逆の極性の電圧が印加され、接地電位層522は接地電位に保たれる。偏向器500の構成では、遮蔽電極502に電圧を印加することで発生する漏れ電界が、荷電粒子線の光路520上に侵入し、ビームシフトやボケの原因となる可能性がある。
図6に示されるように遮蔽電極502上に電圧印加層521と接地電位層522を設置し、接地電位層522を接地電位に保つことは、電圧印加層521の電位によって発生する漏れ電界が、光路520上に侵入することを防ぐ。
図8は、図6に示される本発明の実施例1の偏向器500の構成において、電圧印加層521に電圧を印加し、それ以外の部位を接地電位としたときの、電圧印加層521より漏れる電界の等電位面をシミュレーションした結果である。
偏向電極基板510に面し、かつ、開口518に面しない遮蔽電極基板511上に設けられ、浮遊する荷電粒子555の極性と逆の極性の電圧が印加される第1の電極部である電圧印加層521と、第1の電極部である電圧印加層521以外の遮蔽電極基板511上に設けられ、接地電位に保たれる第2の電極部である接地電位層522とから遮蔽電極502は成る。
等電位面は開口517、518に侵入おらず、接地電位層522の設置により、電圧印加層521から漏れる電界による荷電粒子線のシフト、ボケは最小限に抑えられる。また、電極バンプ507には、偏向電極基板510と遮蔽電極基板511,511を電極バンプを介して金常温接合により接続・積層するため、金を使用した。その理由は上述した通りである。
また、電圧印加層521、接地電位層522には、酸化しないこと、機械強度が比較的高いこと、加工の容易性及びシリコンとの相性が比較的良いことからパラジウムを選択した。
なお、各電極材料は金、白金、イリジウム、ロジウム、パラジウムなどの貴金属材料も用いることが出来る。電極バンプの大きさは幅20um×20um、高さ15umであり、偏向電極基板510との積層後には、高さ6umまで塑性変形する。
また、遮蔽電極基板511,511上には、略線対称となる位置に電極バンプ507を全380個配置することで、偏向電極基板510と遮蔽電極基板511,511の積層・接続後の接合強度を確保した。電圧印加層521と接地電位層522は、厚さ最大約2umである。その他主要各部材の寸法は図示の通りである。
偏向器500は、電極バンプを介して、電気的且つ機械的に偏向電極基板501と、第1の遮蔽電極基板511、第2の遮蔽電極基板511が光路520方向に接続・積層されて形成されている。
本実施例1の場合は、偏向電極基板510上の金から成るグランド層506と遮蔽電極基板511,511上の金から成る電極バンプが接合されることで、各電極基板が電気的且つ機械的に接続されている。
次に、偏向器500の動作について説明する。
荷電粒子線が、第1の偏向電極501aと第2の偏向電極501b間を通過するように照射された時を考える、第1及び第2の偏向電極501a、501b に接地電位の信号を印加した場合には、両電極間を通過する荷電粒子線は軌道を変えることなく通過する。
一方、第1及び第2の偏向電極501a、501bに正負の電位の信号を同時に印加した場合には、両電極間に偏向電界が発生し、荷電粒子線を所望の方向に偏向することが出来る。
次に、本発明の実施例1の偏向器500の作製方法について図7(a)〜(k)を用いて説明する。
なお、偏向器500は主に半導体プロセスを用いて作製されるため、偏向器500をマトリックス状に配置したマスクパターンを使用すれば、同様のプロセスにて偏向器アレイが作製できる。
先ず、本実施例1の偏向器500を構成する偏向電極501の作製方法を、図7(a)〜(e)を参照にして説明する。
(1)偏向電極基板510を用意する。偏向電極基板510はシリコンより成り、厚さは例えば200μmのものを用いるが、偏向感度を決定する重要な要素である。(図7(a))
次に、熱酸化法を用いて、偏向電極基板510の表裏面に膜厚1.5μmの二酸化シリコン層を形成する(不図示)。偏向電極基板510の表面にノボラック系のレジストを用いて、フォトリソグラフィーを行い、エッチングのマスクを形成する(不図示)。
次に、CF4やCHF3等のガスを用いた反応性イオンエッチングを行い、二酸化シリコンをエッチングする。その後、レジストを除去する(不図示)。
(2)二酸化シリコン層をマスクとして、シリコンである偏向電極基板510に誘導結合型プラズマ及びBOSCHプロセスを用いた反応性イオンエッチングを行い、開口517aを形成する。この開口517aが第1の偏向電極501a及び第2の偏向電極501bのモールドとなる。
その後、マスクである二酸化シリコン層をバッファードフッ酸を用いて、除去する(不図示)。
その後、熱酸化法を用いて、偏向電極基板510の表裏面及び開口517aの側壁に膜厚1.5μmの二酸化シリコン層を成膜する。
さらにLPCVD法を用いて、0.5umの窒化シリコン層を同様に成膜し、2umの厚さの絶縁層505を形成する(図3(b))。
(3)CVDや電気めっき法を用いて、開口516内部に銅の埋め込み成膜を行い、偏向電極基板510の表裏面に銅を突出させる。(不図示)。
次に、偏向電極基板510の表裏面に突出した銅を化学機械研磨(CMP)を用いて平坦化する(図7(c))。
(4)偏向電極基板510の表面に対して、電圧印加手段504a、504b及びグランド層506となる金属層として、チタン/金をそれぞれ50nm/200nmの厚さで連続蒸着する。
その後。金属層上にノボラック系のレジストを用いて、フォトリソグラフィーを行い、エッチングのマスクを形成する(不図示)。
次に、塩素やアルゴン等のガスを用いた反応性イオンエッチングを行い、チタン/金をエッチングし、電圧印加手段504a、504b及びグランド層506を形成する。その後、レジストを除去する(不図示)。
同様に、偏向電極基板510の裏面に対して、グランド層506となる金属層としてチタン/金をそれぞれ50nm/200nmの厚さで連続蒸着し、その後反応性イオンエッチングを行い、チタン/金をエッチングし、グランド層506を形成する。(図7(d))。
(5)絶縁層505上にノボラック系のレジストであるAZP4620(クラリアントジャパン製)を8μmの厚さで塗布して、フォトリソグラフィーを行い、エッチングのマスクを形成する(不図示)。
次に、CF4やCHF3等のガスを用いた反応性イオンエッチングを行い、絶縁層505に開口517を形成する。
次に、誘導結合型プラズマ及びBOSCHプロセスを用いた反応性イオンエッチングを用いて、シリコンから成る偏向電極基板510をエッチングし底面の絶縁層505を露出させ、開口517を形成する。
次に、バッファードフッ酸及びCF4を用いたケミカルドライエッチングを行ない、開口内の二酸化シリコンと窒化シリコンから成る絶縁層505を除去し、開口517内部に第1の偏向電極501a及び第2の偏向電極501bを露出させる。その後、レジストを除去し、偏向電極基板501が完成する(図7(e))。
次に、本発明の実施例1の偏向器500を構成する遮蔽電極基板511の作製方法を図7(f)〜(j)を参照して説明する。
(1)基となる遮蔽電極基板511を用意する。遮蔽電極基板511はシリコンより成り、厚さは例えば200μmのものを用いる。
次に、熱酸化法を用いて、遮蔽電極基板511の表裏面に膜厚0.1μmの二酸化シリコンから成るバリア膜513を形成する。(不図示) バリア膜513は母材シリコンと、遮蔽電極502表面の電圧印加層521となる金属層との間を電気的に絶縁する役割を果たす。
次に、バリア膜513表面に対して、シード層512となる金属層としてチタン/パラジウムをそれぞれ50nm/500nmの厚さで連続蒸着し、その後、AZP4330(クラリアントジャパン製)を3μmの厚さで塗布して、フォトリソグラフィーを行い、レジストマスクを形成し、塩素やアルゴン等のガスを用いた反応性イオンエッチングにより、シード層512のチタン/パラジウムをエッチングし、その後レジストを除去する。シード層512はエッチングによってできた隙間により、電圧印加層521、接地電位層522、電極バンプ507の定着層523に分離され、それぞれの間は電気的に絶縁されている。(図7(f))
次に、シード層512表面に、ノボラック系のレジストであるAZP4903(クラリアントジャパン製)を15μmの厚さで塗布して、フォトリソグラフィーを行い、電極バンプ507の型となるレジストモールドを形成する(不図示)。
次に、シード層512をシード電極として、電気めっきにより、15μm厚さの電極バンプ507を形成する。その後レジストを除去する(図7(g))。
(2)次に、基板両面にノボラック系のレジストであるAZP4903(クラリアントジャパン製)を22μmの厚さで塗布して、フォトリソグラフィーを行い、40μmφの開口から成るレジストパターン514を形成する。
次に、レジストパターン514をマスクとして、遮蔽電極基板511の両面にCF4やCHF3等のガスを用いた反応性イオンエッチングを行い、SiO2バリア層513に開口を形成する。
その後、誘導結合型プラズマ及びBOSCHプロセスを用いた反応性イオンエッチングを行い、遮蔽電極基板511であるシリコンをエッチングし、荷電粒子線の通過用の開口518を形成する。(図7(h))。
(3)レジストパターン514を除去した後、AZP4330(クラリアントジャパン製)を3μmの厚さで塗布して、フォトリソグラフィーを行い、電極バンプ507の部分を保護するレジストパターン515を形成する。
次に、裏面からシード層となる金属層としてクロム/パラジウムを100/500nmの厚さで連続蒸着する。
その後、無電解メッキ法によりPdを1.5μmの厚さで形成する。このとき、裏面および荷電粒子線通過用開口518側壁の金属層は、荷電粒子線の通過用の開口518上端において接地電位層522となるシード層512と接して接地電位層522の一部となる。
その後レジストパターン515を除去し、遮蔽電極基板502aが完成する(図7(j))。
次に、本発明の実施例1の偏向器500の作製方法の最終工程にあたる基板接続工程について説明する。
上述の作製方法にて作製した、偏向電極基板501と遮蔽電極基板511を1枚ずつ用意し、市販の表面活性化ウエハボンダーに、電極バンプ507と偏向電極基板501上面とが向かい合う向きで装填する。
次に、各基板上のアライメントマーク(不図示)の画像処理により、荷電粒子線の光路520上に、偏向電極基板501の荷電粒子線が通過する開口517と遮蔽電極基板511の荷電粒子線が通過する開口518が配置されるように位置合わせを行う。なお、市販のウエハボンダーによれば、装置仕様で±2um、実質±1um以内の実装精度にて位置合わせをおこなうことが出来る。
次に、Arプラズマにて両基板のグランド層506、電極バンプ507の表面を洗浄・活性化後、直ちに光路520方向に、圧力換算で約420MPaの荷重を加えて電極バンプ507を塑性変形させ、グランド層506と電極バンプ507の表面を物理的に接合し、偏向電極基板501と遮蔽電極基板511を機械的かつ電気的に接続する。同様に、偏向電極基板501下面にも同様に遮蔽電極基板511を接続・積層し、偏向器500が完成する。
次に、図2の要部概略図を参照して、本発明の実施例2の荷電粒子線露光装置を説明する。
本発明の実施例2の荷電粒子線露光装置は、本発明の実施例1の荷電粒子線の偏向器アレイをブランカーアレイとして用いたものである。
なお、荷電粒子線に限らずイオンビームを用いた露光装置にも同様に適用できる。
図3において、マルチソースモジュール1は、複数の電子源像を形成し、その電子源像から荷電粒子線を放射する装置で、3x3に配列されていて、その詳細については後述する。
磁界レンズアレイ21、22、23,24は、3x3に配列された同一形状の開孔を有する磁性体円板MDを間隔を置いて上下に配置し、共通のコイルCCによって励磁する。その結果、各開口部分が各磁界レンズMLの磁極となり、設計上レンズ磁界を発生させる。
各マルチソースモジュール1の複数の電子源像は、磁界レンズアレイ21、22、23、24の対応する4つの磁界レンズ(ML1,ML2、ML3,ML4)によって、ウエハ4上に投影される。一つのマルチソースモジュール1からの荷電粒子線がウエハ4に照射するまでに、その荷電粒子線に作用する光学系をカラムと定義する。すなわち、本実施例2は、9カラム(col.1〜col.9)の構成である。
この時、磁界レンズアレイ21と磁界レンズアレイ22の対応する2つの磁界レンズで、一度、像を形成し、次にその像を磁界レンズアレイ23と磁界レンズアレイ24の対応する2つの磁界レンズでウエハ4上に投影している。そして、磁界レンズアレイ21、22、23、24のそれぞれの励磁条件を共通コイルで個別に制御することにより、各カラムの光学特性(焦点位置、像の回転、倍率)のそれぞれを略一様に言い換えれば同じ量だけ調整することができる。
主偏向器3は、マルチソースモジュール1からの複数の荷電粒子線を偏向させて、複数の電子源像をウエハ4上でX,Y方向に変位させる装置である。
ステージ5は、ウエハ4を載置し、光路AX(Z軸)と直交するXY方向とZ軸回りの回転方向に移動可能な装置であって、ステージ基準板6が固設される。
反射電子検出器7は、荷電粒子線によってステージ基準板6上のマークが照射された際に生じる反射電子を検出する装置である。
次に、図3は、ひとつのカラムの詳細図で、同図を用いてマルチソースモジュール1およびマルチモジュール1からウエハ4の照射される荷電粒子線の光学特性の調整機能について説明する。
電子源101は、電子銃からなりクロスオーバ像を形成する装置である。この電子源101から放射される荷電粒子線は、コンデンサーレンズ102によって略平行な荷電粒子線101aとなる。本実施例2を構成するコンデンサーレンズ102は、3枚の開口電極から成る静電レンズである。アパーチャアレイ103は、開孔が2次元配列して形成され、レンズアレイ104は、同一の光学パワーを有する静電レンズが2次元配列して形成され、偏向器アレイ105,106は、個別に駆動可能な静電の8極偏向器が2次元配列して形成され、ブランカーアレイ107は、個別に駆動可能な静電のブランカーが2次元配列して形成されたものである。
本発明の実施例1において説明した偏向器アレイはブランカーアレイとして用いられる。
次に、図4を用いて各機能を説明する。
コンデンサーレンズ102からの略平行な荷電粒子線は、アパーチャアレイ103によって複数の荷電粒子線に分割される。分割された荷電粒子線は、対応するレンズアレイ104の静電レンズを介して、ブランカーアレイ107の対応するブランカー上に、電子源の中間像101bを形成する。
この時、偏向器アレイ105、106は、ブランカーアレイ107上に形成される電子源の中間像101bの位置(光路と直交する面内の位置)を個別に調整する。また、ブランカーアレイ107で偏向された荷電粒子線は、図3のブランキングアパーチャAPによって遮断されるため、ウエハ4には照射されない。一方、ブランカーアレイ107で偏向されない荷電粒子線は、図3のブランキングアパーチャAPによって遮断されないため、ウエハ4には照射される。
図3に戻り、マルチソースモジュール1で形成された電子源の複数の中間像は、磁界レンズアレイ21と磁界レンズアレイ22の対応する2つの磁界レンズを介して、ウエハ4に投影される。
この時、複数の中間像がウエハ4に投影される際の光学特性のうち、像の回転、倍率は、ブランカーアレイ上の各中間像の位置を調整できる偏向器アレイ104、105で調整でき、焦点位置は、カラム毎に設けられたダイナミックフォーカスレンズ(静電若しくは磁界レンズ)108、109で調整できる。
次に、図5を参照して本発明の実施例2の荷電粒子線露光装置のシステム構成を説明する。
ブランカーアレイ制御回路41は、ブランカーアレイ107を構成する複数のブランカーを個別に制御する回路、偏向器アレイ制御回路42は、偏向器アレイ104、105を構成する偏向器を個別に制御する回路、D_FOCUS制御回路43は、ダイナミックフォーカスレンズ108、109を個別に制御する回路、主偏向器制御回路44は、主偏向器3を制御する回路、反射電子検出回路45は、反射電子検出器7からの信号を処理する回路である。
これらのブランカーアレイ制御回路41、偏向器アレイ制御回路42、D_FOCUS制御回路43、主偏向器制御回路44、反射電子検出回路45は、カラムの数(col.1〜col.9)と同じ数だけ装備される。
磁界レンズアレイ制御回路46は、磁界レンズアレイ21,22,23,24のそれぞれの共通コイルを制御する回路、ステージ駆動制御回路47は、ステージの位置を検出する不図示のレーザ干渉計と共同してステージ5を駆動制御する制御回路である。主制御系48は、上記複数の制御回路を制御し、荷電粒子線露光装置全体を管理する。
次に、本発明の実施例3として、本発明の実施例2の荷電粒子線露光装置を利用した半導体デバイスの製造プロセスを説明する。
図10は半導体デバイスの全体的な製造プロセスのフローを示す図である。
ステップ1(回路設計)では半導体デバイスの回路設計を行う。
ステップ2(EBデータ変換)では設計した回路パターンに基づいて露光装置の露光制御データを作成する。
一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、上記露光制御データが入力された露光装置とウエハを用い、リソグラフィ技術を利用してウエハ上に実際の回路を形成する。次のステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組み立て工程を含む。ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、ステップ7でこれを出荷する。
上記ステップ4のウエハプロセスは以下のステップを有する。ウエハの表面を酸化させる酸化ステップ、ウエハ表面に絶縁膜を成膜するCVDステップ、ウエハ上に電極を蒸着によって形成する電極形成ステップ、ウエハにイオンを打ち込むイオン打ち込みステップ、ウエハに感光剤を塗布するレジスト処理ステップ、上記の露光装置によって回路パターンをレジスト処理ステップ後のウエハに焼付け露光する露光ステップ、露光ステップで露光したウエハを現像する現像ステップ、現像ステップで現像したレジスト像以外の部分を削り取るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト剥離ステップ。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンを形成する。
本発明の実施例1の偏向器の構成図である。 本発明の実施例1の偏向器を有する本発明の実施例2の荷電粒子線露光装置の要部概略図である。 本発明の実施例1の偏向器を有する本発明の実施例2の荷電粒子線露光装置を構成するカラム毎の電子光学系の構成図である。 本発明の実施例1の偏向器を有する本発明の実施例2の荷電粒子線露光装置を構成するマルチソースモジュールの機能の説明図である。 本発明の実施例1の偏向器を有する本発明の実施例2の荷電粒子線露光装置のシステム構成の説明図である。 本発明の実施例1の偏向器の構成図である。 本発明の実施例1の偏向器の作製方法の説明図である。 本発明の実施例1の偏向器の効果の説明図である。 従来例の構成図である。 本発明の実施例2の荷電粒子線露光装置を用いた本発明の実施例3のデバイス製造方法の半導体デバイスの全体的な製造プロセスのフロー図である。
符号の説明
1 マルチソースモジュール
21,22,23,24 磁界レンズアレイ
3 主偏向器 4 ウエハ
5 ステージ 6 ステージ基準板
101 電子源 102 コンデンサーレンズ 103 アパーチャアレイ
104 レンズアレイ 105、106 偏向器アレイ
107 ブランカーアレイ
108、109 ダイナミックフォーカスレンズ
41 ブランカーアレイ制御回路
42 偏向器アレイ制御回路 43 D_FOCUS制御回路
44 主偏向制御回路 45 反射電子検出回路
46 磁界レンズアレイ制御回路 47 ステージ駆動制御回路
48 主制御系 51 開口 52 第1ブランキング電極
53 第2ブランキング電極 500 偏向器
501 偏向電極 502 遮蔽電極
504a,504b 電圧印加手段
505 絶縁層 506 グランド層
507 電極バンプ 510 偏向電極基板
511 遮蔽電極基板
512 シード層 513 開口
514 レジスト 515 レジスト
517、518 開口
520 光路 521 電圧印加層
522 接地電位層 523 定着層
525 等電位面 600 偏向器アレイ
601 偏向器基板 602a, 602b シールド電極基板
603a, 603b スペーサ 605a〜605d 溝
606 中心部 607 絶縁層
608 シールド電極 609 開口
704 パッド 707a, 707b 配線
706 偏向部 ES 電子源
MLA 磁界レンズアレイ ML 磁界レンズ
MD 磁性体円板 CC 共通コイル

Claims (9)

  1. 荷電粒子線が通過する開口を挟み込むように対向して設けられた、偏向電極基板上の偏向電極と、
    前記荷電粒子線の光路に沿って前記偏向電極基板の上側と下側の少なくとも一方に設けられた遮蔽電極基板上の遮蔽電極と、を有し、
    前記開口付近に浮遊する荷電粒子の極性と逆の極性の電圧が前記遮蔽電極に印加されていることを特徴とする偏向器。
  2. 前記浮遊する荷電粒子が電子の場合は、前記遮蔽電極に正の電圧が印加される請求項1記載の偏向器。
  3. 前記遮蔽電極は複数の電極部から成り、各々、電圧が印加される請求項1記載の偏向器。
  4. 前記偏向電極基板に面し、かつ、前記開口に面しない前記遮蔽電極基板上に設けられ、前記浮遊する荷電粒子の極性と逆の極性の電圧が印加される第1の電極部と、
    前記第1の電極部以外の前記遮蔽電極基板上に設けられ、接地電位に保たれる第2の電極部と、から前記遮蔽電極は成る請求項3記載の偏向器。
  5. 前記遮蔽電極は、Au、Pt、Pd、Ir、Rhのいずれかで構成される請求項1から4のいずれかに記載の偏向器。
  6. アレイ状に配列される請求項1から5のいずれかに記載の偏向器。
  7. 前記偏向電極基板と前記遮蔽電極基板は位置合わせされ、前記偏向電極基板と前記遮蔽電極基板とは電極バンプを介して機械的かつ電気的に接続される請求項1から6のいずれかに記載の偏向器。
  8. 荷電粒子線を用いてウエハを露光する荷電粒子線露光装置であって、
    前記荷電粒子線を放射する電子源と、
    前記電子源の中間像を複数形成する第1の電子光学系と、
    前記第1の電子光学系によって形成される複数の中間像をウエハ上に投影する第2の電子光学系と、
    前記ウエハを保持し所定の位置に駆動して位置決めする位置決め装置と、を有し、
    前記第1の電子光学系が、請求項1から7のいずれかに記載の偏向器を有することを特徴とする荷電粒子線露光装置。
  9. 請求項8記載の荷電粒子線露光装置を用いて、露光対象に露光を行う工程と、露光された前記露光対象を現像する工程と、を具備することを特徴とするデバイス製造方法。
JP2005198843A 2005-07-07 2005-07-07 偏向器、荷電粒子線露光装置およびデバイス製造方法 Pending JP2007019248A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198843A JP2007019248A (ja) 2005-07-07 2005-07-07 偏向器、荷電粒子線露光装置およびデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198843A JP2007019248A (ja) 2005-07-07 2005-07-07 偏向器、荷電粒子線露光装置およびデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2007019248A true JP2007019248A (ja) 2007-01-25

Family

ID=37756135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198843A Pending JP2007019248A (ja) 2005-07-07 2005-07-07 偏向器、荷電粒子線露光装置およびデバイス製造方法

Country Status (1)

Country Link
JP (1) JP2007019248A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2005583A (en) * 2009-10-26 2011-04-27 Mapper Lithography Ip Bv Modulation device and charged particle multi-beamlet lithography system using the same.
JP2014127568A (ja) * 2012-12-26 2014-07-07 Nuflare Technology Inc 荷電粒子ビーム描画装置
JP5816739B1 (ja) * 2014-12-02 2015-11-18 株式会社ニューフレアテクノロジー マルチビームのブランキングアパーチャアレイ装置、及びマルチビームのブランキングアパーチャアレイ装置の製造方法
JP2016054285A (ja) * 2014-09-01 2016-04-14 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム用のブランキング装置及びマルチ荷電粒子ビーム描画装置
JP2020044669A (ja) * 2018-09-14 2020-03-26 エスアイアイ・プリンテック株式会社 ヘッドチップ、液体噴射ヘッド、液体噴射記録装置およびヘッドチップの製造方法
WO2023044760A1 (zh) * 2021-09-24 2023-03-30 华为技术有限公司 带电粒子束系统、粒子束偏转器及其制作方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2005583A (en) * 2009-10-26 2011-04-27 Mapper Lithography Ip Bv Modulation device and charged particle multi-beamlet lithography system using the same.
WO2011051304A1 (en) * 2009-10-26 2011-05-05 Mapper Lithography Ip B.V. Modulation device and charged particle multi-beamlet lithography system using the same
CN102687232A (zh) * 2009-10-26 2012-09-19 迈普尔平版印刷Ip有限公司 调节装置及使用其的带电粒子多射束光刻系统
US8841636B2 (en) 2009-10-26 2014-09-23 Mapper Lithography Ip B.V. Modulation device and charged particle multi-beamlet lithography system using the same
JP2014127568A (ja) * 2012-12-26 2014-07-07 Nuflare Technology Inc 荷電粒子ビーム描画装置
JP2016054285A (ja) * 2014-09-01 2016-04-14 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム用のブランキング装置及びマルチ荷電粒子ビーム描画装置
JP5816739B1 (ja) * 2014-12-02 2015-11-18 株式会社ニューフレアテクノロジー マルチビームのブランキングアパーチャアレイ装置、及びマルチビームのブランキングアパーチャアレイ装置の製造方法
JP2020044669A (ja) * 2018-09-14 2020-03-26 エスアイアイ・プリンテック株式会社 ヘッドチップ、液体噴射ヘッド、液体噴射記録装置およびヘッドチップの製造方法
JP7185454B2 (ja) 2018-09-14 2022-12-07 エスアイアイ・プリンテック株式会社 ヘッドチップ、液体噴射ヘッド、液体噴射記録装置およびヘッドチップの製造方法
WO2023044760A1 (zh) * 2021-09-24 2023-03-30 华为技术有限公司 带电粒子束系统、粒子束偏转器及其制作方法

Similar Documents

Publication Publication Date Title
US7060984B2 (en) Multi-charged beam lens and charged beam exposure apparatus using the same
US7109494B2 (en) Deflector, method of manufacturing deflector, and charged particle beam exposure apparatus using deflector
US7126141B2 (en) Electrooptic system array, charged-particle beam exposure apparatus using the same, and device manufacturing method
JP4647820B2 (ja) 荷電粒子線描画装置、および、デバイスの製造方法
US6872951B2 (en) Electron optical system array, charged-particle beam exposure apparatus using the same, and device manufacturing method
US6818911B2 (en) Array structure and method of manufacturing the same, charged particle beam exposure apparatus, and device manufacturing method
US8143588B2 (en) Deflector array, exposure apparatus, and device manufacturing method
US6946662B2 (en) Multi-charged beam lens, charged-particle beam exposure apparatus using the same, and device manufacturing method
US6872952B2 (en) Electron optical system array, method of manufacturing the same, charged-particle beam exposure apparatus, and device manufacturing method
JP2007019248A (ja) 偏向器、荷電粒子線露光装置およびデバイス製造方法
JP2007266525A (ja) 荷電粒子線レンズアレイ、該荷電粒子線レンズアレイを用いた荷電粒子線露光装置
US10950410B2 (en) Multiple electron beam inspection apparatus with through-hole with spiral shape
JP4387755B2 (ja) 偏向器アレイおよびその製造方法、ならびに該偏向器アレイを用いた荷電粒子線露光装置
JP2007019242A (ja) 偏向器、荷電粒子線露光装置及びデバイス製造方法
JP2005136114A (ja) 電極基板およびその製造方法、ならびに該電極基板を用いた荷電ビーム露光装置
JP4143204B2 (ja) 荷電粒子線露光装置及び該装置を用いたデバイス製造方法
JP4477435B2 (ja) 偏向器作製方法、荷電粒子線露光装置及びデバイス製造方法
JP4532184B2 (ja) 電極およびその製造方法ならびに偏向器アレイ構造体の製造方法
JP4455846B2 (ja) 電極基板およびその製造方法、該電極基板を用いた偏向器、ならびに該偏向器を用いた荷電粒子線露光装置
JP2007019192A (ja) 荷電ビームレンズ、及び荷電ビーム露光装置
JP2007019250A (ja) 偏向器、荷電ビーム露光装置およびデバイス製造方法
JP2008034498A (ja) 偏向器、露光装置、及びデバイス製造方法
JP4421834B2 (ja) 露光装置及びデバイス製造方法
JP2005286346A (ja) 電子ビーム露光装置及び該電子ビーム露光装置を管理する管理装置