JP2013026582A - 荷電粒子線レンズ - Google Patents

荷電粒子線レンズ Download PDF

Info

Publication number
JP2013026582A
JP2013026582A JP2011162673A JP2011162673A JP2013026582A JP 2013026582 A JP2013026582 A JP 2013026582A JP 2011162673 A JP2011162673 A JP 2011162673A JP 2011162673 A JP2011162673 A JP 2011162673A JP 2013026582 A JP2013026582 A JP 2013026582A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
electrodes
beam lens
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011162673A
Other languages
English (en)
Inventor
Yoshio Suzuki
義勇 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011162673A priority Critical patent/JP2013026582A/ja
Publication of JP2013026582A publication Critical patent/JP2013026582A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

【課題】複数の電極が互いに間隔を隔てて対向して積層された構造の荷電粒子線レンズにおいて、クーロン引力による電極の変形を効果的に抑制することを可能とする技術を提供する。
【解決手段】静電型の荷電粒子線レンズにおいて、各電極2、4、8内には、荷電粒子線が通過するための複数の貫通孔の組3、5、9が少なくとも一組形成され、各対向電極2、4、8間にはスペーサとして少なくとも1本の線状の絶縁部材1、7が配置されている。線状の絶縁部材1、7は、電極2、4、8の面と平行方向に1回以上屈曲する屈曲部を有し、各電極2、4、8間の間隔を規定する。
【選択図】図2

Description

本発明は、電子ビーム等の荷電粒子線を用いた装置に使用される荷電粒子光学系の分野の技術に関し、特に露光装置などに用いられる静電型の荷電粒子線レンズ(静電レンズ)に関する。
半導体デバイスの生産において、電子ビーム露光技術は、0.1μm以下の微細パターンの露光を可能とするリソグラフィの有力候補である。この露光装置では、電子ビームの光学特性を制御するための電子レンズが用いられる。電子レンズには電磁型と静電型があり、特に静電型は、電磁型に比べ、コイルコアを設ける必要がなく構成が簡易であり小型化に有利である。また、電子ビーム露光技術のうち、マスクを用いずに複数本の電子ビームで同時にパターンを描画するマルチビームシステムの提案もなされている。このようなマルチビームシステムでは、個々の電子レンズを2次元的にアレイ状に配列した静電レンズアレイが用いられる。
こうした静電レンズアレイにおいては、総電極面積が大きくなるため電極間には大きな静電引力が働くことになる。このため、電極間の間隔を精密に保つためには、間隔規定部材を各電極間に配置する必要が生ずる。また、レンズとしての収差低減の観点から、電極自体が厚いことは不利であり厚みの薄化が進められている。このため、電極面積が大きくなると、剛性不足を補うため、レンズアレイ全体の外周部のみではなく、個別の静電レンズの周囲にも間隔規定部材(以下スペーサとも称する)設ける必要が生じていた。
さらに、静電レンズにおいて、電極間には、通常、1〜数10kV/mm程度の高電界が生じているため、スペーサの表面には高い沿面放電耐圧が要求される。この高い沿面放電耐圧を実現するためには、沿面の表面形状は平坦ではなく、電界と垂直方向に連なった凹凸を有する構造が有利であることは以前から知られていた(特許文献1参照)。この沿面の放電耐圧を向上させるための凹凸構造を有するスペーサを作製する手段としては、所定の形状に加工されたガラス母材を加熱延伸する方法などが知られていた(特許文献2参照)。
特開2006−49702号公報 特開2000−203857号公報
上記ガラス母材を加熱延伸する加工方法では、火造り面とよばれる、微視的な欠陥がない非常に滑らかな表面を有する線材が作製できる。この手法を用いれば、カケ、キズ、バリ等が無い凹凸断面を有する線状やテープ形状の連続体を形成することができる。しかし、この方法で作られたスペーサは、そのままでは直線状であるため、平行に整列させて配置する方式しか採れなかった。そのため、このような直線状のスペーサでは、アレイ状に配列された個々の静電レンズの近傍において、例えばX方向側とY方向側の両方といった複数の個所を支えることは容易ではないため、電極に微小な変形が生じてしまう可能性があった。よって、本発明の目的は、少なくとも、対向電極間に柔軟な配置パターンで配置できて対向電極間の間隔を精密に保つことができるスペーサを備えた静電型の荷電粒子線レンズ(静電レンズ)を提供することである。
複数の電極が互いに間隔を隔てて対向して積層された構造の本発明の静電レンズは、各電極内には、荷電粒子線が通過するための複数の貫通孔の組が少なくとも一組形成され、各対向電極間にはスペーサとして少なくとも1本の線状の絶縁部材が配置される。そして、前記線状の絶縁部材は、前記電極の面と平行方向に1回以上屈曲する屈曲部を有することを特徴とする。
本発明の静電レンズによれば、各対向電極間に線状の絶縁部材を柔軟な配置パターンで配置できるので、対向電極間の間隔を精密に保つことができる。例えば、静電レンズアレイ内の個々の静電レンズ近傍のX方向に伸びる領域とY方向に伸びる領域を通って配置して、静電レンズにおける対向電極間の間隔を精密に規定することができる。また、線状の絶縁部材(例えば、ガラス線材)を適切に加工することで、バルク絶縁耐圧、加工容易性、スペーサ部分からの荷電粒子の放出が少ない性質(沿面放電耐圧が大きい性質)等を満たすこともできる。
本発明の第1の実施例の静電レンズ(アインツェルレンズ)の平面図及び断面図。 本発明の第2の実施例を示す平面図及び断面図。 本発明の第3の実施例における凹凸を有するスペーサの図。 本発明の第4の実施例における各電極間のスペーサの配置の平面図及び断面図。 本発明の第5の実施例におけるスペーサの配置の平面図及び断面図。 本発明の第6の実施例と第7の実施例における各スペーサ配置の平面図。 本発明の第8の実施例のスペーサ保持枠と第9の実施例のスペーサ配置の平面図。 本発明の第10の実施例に係る荷電粒子線露光装置の構成図。
本発明の特徴は、電極の面と平行方向に1回以上屈曲されて伸びた少なくとも1本の線状の絶縁部材を各対向電極間にスペーサとして配置して、電極間の間隔を精密に保つことである。線状の絶縁部材の配置パターンとしては、複数の貫通孔の組(貫通孔群)の近傍を少なくとも通るパターン、複数の貫通孔の組(貫通孔群)の近傍の周囲において複数の方向(例えばX方向とY方向)に伸びる領域を通るパターンなどがある。線状の絶縁部材の屈曲部は、各対向電極間の空間内に配置して電極間の間隔を精密に保つのに好適な配置パターンを実現しても良いが(後述の実施例1から8参照)、屈曲部を各対向電極間の空間の外側に配置することもできる(後述の実施例9参照)。
以下、本発明の実施例を図1〜図8を用いて説明する。
(実施例1)
図1は本発明の静電型の荷電粒子線レンズの第1の実施例の最小の構成要素を模式的に示した平面図と断面図である。図1(B)は、図1(A)における破線A−A’での断面図である。本実施例の静電レンズは、平板状基板である上電極4、中電極2及び下電極8が間隔を隔ててして積層された構造を有し、各電極間には、荷電粒子線が通過するための複数の貫通孔からなる貫通孔群3、5、9が少なくとも一組形成(ここでは2組形成)されている。こうして、静電レンズアレイを構成している。そして、各対向電極間には、スペーサとして線状の絶縁部材1、7が延在して配置され、線状の絶縁部材は、電極の面と平行方向に1回以上(ここでは1回)屈曲する屈曲部を有している。
本実施例では、線状の絶縁部材1、7の屈曲部は、対向電極間の空間内にあって、貫通孔群3、5、9の近傍に配置されている。図1(B)中に示す光軸方向(Z方向)に進行する荷電粒子線は、貫通孔群3、5、9のこれら貫通孔を通過し、各電極間に印加された電界からレンズ作用を受ける。本実施例では、線状の絶縁部材は、少なくとも、貫通孔群のX方向に伸びる近傍領域とY方向に伸びる近傍領域を通過して伸びている。これにより、大きなクーロン引力が剛性の低い電極間に働いたとしても、電極間の間隔が変化するのを防いで電極間の間隔を精密に保持することができる。
(実施例2)
本発明の第2の実施例を説明する。図2(A)は、静電レンズアレイの3枚の電極2、4、8のうちの2枚の電極2、4とその2枚の電極の間隔を規定している線状絶縁部材のスペーサ1のXY面内での伸長配置パターンを示す平面図である。図2(B)は、図2(A)における破線A−A’での断面図である。本実施例でも、静電レンズの所定の電圧を印加する中電極2には荷電粒子線を通過させるための貫通孔群3が形成されている。この貫通孔群3は、電極2にアレイ状に配列して複数組形成されている。同様の構造を有する電極4、8が、上下に電極2と所定の間隔を保って設置されており、電極4、8上にも複数組の貫通孔群5、9が形成されている。電極2、4、8は、貫通孔群3、5、9が同一位置になるようにXY方向でアライメントして配置されており、電極2、4、8間に所定の高電圧を印加することにより静電レンズとして機能する。
電界強度が弱く電極が各々十分な剛性を有している場合は、電極間の外周部へ間隔規定のためのスペーサを設置する方法も選択可能である。しかし、より低収差の静電レンズを実現するためには高い電界強度と薄い電極が用いられるため、クーロン引力による電極間の間隔の変形が大きくなり、静電レンズの各貫通孔群の近傍で間隔を保持するためのスペーサが必要となる。本実施例はこうした必要性を満たすものである。
以下、ガラス母材から加熱延伸法によって作製された長尺の線状構造のスペーサの本実施例における配置例を説明する。図2(A)に示すように、電極2、4間のスペーサ1は、貫通孔群3、5の近傍で屈曲した状態で配置されている。また、図2(B)に示すように、電極2、8間のスペーサ7も、貫通孔群3、9の近傍で屈曲した状態で配置されている。この屈曲した配置により個々の静電レンズとして機能する貫通孔群3、5、9は、X、Y両方向に伸びる近傍領域においてZ方向の間隔を規定されることとなり、クーロン引力による変形を最小限に抑えることができる。本実施例においてスペーサ1、7の屈曲部の仕様は、電極基板面と平行な方向において1回の屈曲毎に屈曲方法を反転させる方式とした。長尺であるスペーサ1、7の両端部は、加熱延伸によって形成された表面ではないため他の部分に比べて、バリ、カケ、キズ等が生じやすく沿面の耐電圧が低くなる場合が多い。そのため、スペーサ1、7の端部は、高電界領域の外側(電極間の空間外)まで延長(延在)して設置している。こうして、静電レンズ全体の耐電圧をより向上させることができる。
本実施例における各構成部材の寸法と材料の例を列記する。
電極2、4、8は、1Ωcm〜100Ωcmの抵抗率のシリコン基板であり、厚さは200μmである。貫通孔群3、5、9は10×10の微小な貫通孔から構成されており、各孔の直径は50μmである。各孔の間隔は100μmである。貫通孔群間の間隔は7mmである。スペーサ1、7は低アルカリガラスを加熱延伸して形成された線材であり、電極面と平行な方向の厚さは200μm、電極面と垂直な方向の高さは600μmである。電極間への印加電圧は、上電極4がグランド電位0V、中電極2はバイアス電位−4kV、下電極8はグランド電位0Vとした。
線状の絶縁部材のスペーサ1、7の作製方法の概略を以下に示す。
延伸加工されるガラス母材は、例えば住田光学社製の「SK18」やショット社の「テンパックス」、コーニング社の「パイレックス(登録商標)」、低アルカリガラス、無アルカリガラスなどから適宜選択される。まず、所定の形状に加工されたガラス母材の一端を、ヒータを内包する加熱炉に送り込み、ガラス母材の当該他部を連続的に引き出して、延伸可能な温度まで加熱軟化させる。加熱温度は、軟化点温度以上の温度で適宜選択される。本実施例においては、軟化点温度770℃、ガラス転移点温度640℃のガラスを用いた。母材送り装置によるガラス母材の上記加熱炉内への送り込み速度は、通常、1〜5mm/min程度である。加熱炉内は、この中に送り込まれたガラス母材の端部の粘度が7.0ポアズ〜7.9ポアズとなるような温度に設定され、その温度は、延伸の安定性などの点から、±0.1℃の精度で制御される。
加熱炉内で上記温度に加熱されたガラス母材の端部は、軟化して下垂し、延伸されて延伸ガラス部材となり、延伸されながら線状となって加熱炉から連続して引き出される。延伸を完了した線状のガラス部材は、一対の引き取りローラーに挟まれて引き取られる。この引き取りローラーによる延伸ガラス部材の引き取り速度は、通常1000〜5000mm/min程度である。上記送り込み速度とこの引き取り速度との比〔(引き取り速度)/(送り込み速度)〕は、ガラス母材と延伸を完了した延伸ガラス部材の断面形状の相似性の確保などの点から、通常は200〜2000である。
加熱延伸により製造された線状絶縁部材のガラス線材の屈曲加工は概ね以下のように行った。屈曲処理は、ガラス線材を加熱炉に送りながら屈曲させる部分を逐次ガラス転移点温度まで加熱して屈曲加工を所定回数行う。屈曲点が形成されたガラス線材は、そのままでは、屈曲部において変形による厚み変化が生じており、また内部応力によって全体が歪んだ状態となっている。この屈曲点での厚み変化と全体の歪みを取り除くため、平坦性の高い常盤を平行に配置したホットプレス装置によって、上下より加圧しながら加熱処理を行う。使用されるガラス材料の歪点以上の温度を加えながら長時間処理を行い、冷却時は内部応力が残らないようゆっくりと徐冷される。この様にして作製されて屈曲点が形成された多数のガラス線材に対して、外観検査、寸法測定を行い、良品のみを選別して、1回以上屈曲された屈曲部を有する線状絶縁部材のスペーサ部材として用いる。ここでは、加熱延伸法による絶縁スペーサの製造方法を説明したが、ガラスモールドやケミカルエッチング等の加工方法も可能である。以上の様にガラス母材を加熱延伸して形成された線材は、複雑な断面形状をバリ、カケ、キズの極めて少ない状態で実現可能である。
(実施例3)
次に本発明の第3の実施例を図3を用いて説明する。図3(A)は、加熱延伸法によって形成された本実施例における線状のスペーサ6の断面を表す図である。スペーサ6の両側面には凸部17と凹部18が1個以上形成されている。大きなアスペクト比を有し電界と垂直方向に連続した凹凸部の沿面は、耐電圧が大きく向上することが知られている。また、切削加工法ではなく加熱延伸法によって形成されていることにより、沿面放電耐圧を低下させる要因であるバリ、キズ、カケ等が極めて少ない状態で上記連続した凹凸構造を実現できる。よって本実施例におけるスペーサ6には、上記実施例よりも更に高い沿面放電耐圧性能を付与することができる。つまり、以上の様な構成とすることにより、沿面形状を電界と垂直方向に連なった適切な凹凸断面形状とし、電極間の沿面距離を延ばして電子雪崩を抑制できるため、放電耐圧を向上させることができる。沿面の帯電の進行を抑制し安定化させることは、静電レンズを通過する荷電粒子線の軌道を所望のものに安定させることができる。
沿面放電耐圧性能について更に説明する。真空中での沿面放電の研究から、絶縁体の沿面放電は、陰極側電極との三重点(トリプルジャンクション)からの電界電子放出、電子衝突による沿面上での正帯電の進行、その結果としての電子雪崩によって説明されている。スペーサ部材において陰極との接点付近にバリ、カケ、キズなどがあると、三重点(トリプルジャンクション)の局所電界が強調され、この部分の放電耐圧を大きく低下させることが知られている。本実施例におけるスペーサ6はこうしたバルク絶縁耐圧と沿面絶縁耐圧に関する問題点を解消している。これに比較して、テフロン(登録商標)などの高絶縁性の樹脂をスペーサに用いる場合は、樹脂自体の剛性が十分ではなく、高精度の変形抑制には不向きな場合もある。また、絶縁セラミックス等を用いようとすると精密加工が容易でない場合が多く、沿面形状を複雑かつ精密に制御することは容易とは言えない。さらに、高電圧が印加される電極間を隔てる絶縁スペーサとして貫通孔の開いたガラス基板を用いられることがある。しかしながら、ガラス基板に貫通孔を形成した構造において、孔の内壁面を沿面放電耐圧が大きな滑らかな凹凸形状に加工することは容易ではなかった。また、沿面のカケ、キズ、バリ等は沿面放電のトリガーとなるので極力低減する必要があるが、機械切削加工のみにより滑らかな表面状態を実現することは容易とは言えなかった。
本実施例におけるスペーサ6の寸法例を以下に示す。
凸部17の位置における最大幅は200μm、凹部18の位置における最小幅は140μm、隣接する凸部17間の平均距離は30μm、電極面と垂直な方向の高さは600μm である。ここに示した寸法は一例であり、スペーサ6の断面の形状は母材の加工形状を制御することによって、加熱延伸法に適する形状の範囲内で自由に設計することができる。本実施例では、電極2、4、8の構成、スペーサ6の屈曲の仕様、配置位置等は実施例2と同じとした。以上の様に、線状絶縁部材のスペーサの断面形状を電界と垂直方向に連なった凹凸形状(電界と垂直方向に凹凸部を有する)とすることによって、スペーサの沿面放電耐圧を大きく高めることができる。
(実施例4)
次に本発明の第4の実施例を図4を用いて説明する。通常、静電レンズは、荷電粒子ビームが通過する貫通孔を有する3枚の電極2、4、8を、各電極の貫通孔同士をアライメントして重ねた状態で構成される。多くの場合、3枚の電極のうち中間電極には負の高電圧が印加され、上下の電極はグランド電位となっている。電圧を印加した状態において、対向する電極2と電極4、電極2と電極8の間には静電引力が働くが、電極4と電極8は同電位であるため電極4と電極8の間には静電引力は働かない。したがって、静電引力に対抗するためだけの目的ならば電極2と電極4の間に設置されるスペーサ6と電極2と電極8の間に設置されるスペーサ6は、必ずしも、電極基板のXY座標で一致した位置に配置される必要はない。実際、実施例1などでは、電極間に設置されるそれぞれのスペーサは、電極基板のXY座標で同じ位置に配置されてはいなかった。
しかしながら、静電レンズの製造過程において電極の初期反り量が大きい場合、接合時に3つの電極2、4、8とスペーサ6を積層した状態で圧縮力を印加する必要がある場合がある。この時は電極4と電極8の間にも大きな圧縮力が加わるため、スペーサ6は図4(A)の断面図に示すように同一のZ軸上にあることが好ましい。つまり、電極を3層以上重ねた構造の静電レンズにおいて、電極の層が薄い場合、光軸方向から見た各層間でのスペーサ配置位置が違っていると、電極の層の両側の同じ位置に支えが無いため撓みが生ずる可能性が出てくる。よって、図4(B)、(C)(図4(A)は、図4(B)、(C)における破線A−A’での断面図)に示すように屈曲したスペーサ6は、電極2と電極8上のXY座標で同じ位置に設置するような構成とした。この様な構成とすることにより、3層以上の電極が積層された静電レンズアレイを製造する工程において、上下から圧縮力を加えるプロセスを用いることができるようになる。また、スペーサにより、各層の電極間の間隔をより正確に規定できるようになる。なお、本実施例ではスペーサ6は実施例3と同じものとした。
(実施例5)
本発明の第5の実施例を図5(A)、(B)を用いて説明する。図5(B)は、図5(A)における破線A−A’での断面図である。ガラスの線状部材に曲げ加工を施す場合、一般に、屈曲させる方向について厚みが薄い程、加工が容易になる。特に、ガラス線材の断面形状が凹凸状に加工されている場合は、屈曲部の屈曲点における断面形状の変化をできるだけ小さくする必要があり、屈曲方向の厚みをより薄くすることが有効である。しかし、線材をスペーサとして用いる場合、厚さが薄くなると電極面との接触面積が小さくなるため、電極上のより小さな面積に応力が集中してしまうことが問題となる場合がある。また、厚さが減少した分、スペーサ自体の強度が低下してしまうことも懸念される。本実施例は、こうした懸念を解消するために、隣接する2つの貫通孔群の間に設置されるスペーサを2本以上並行して配置することにより応力を分散した構成とした。
図5(A)の平面図、図5(B)の断面図に示すように、隣接する貫通孔群3の間には、2列にスペーサ10、11が設置されている。本実施例においては、並行して配置するスペーサを2列としたが、必要に応じて3列以上配置することも可能である。本実施例により、スペーサの厚みの薄化により屈曲部の断面形状の変形を低減することができる。また薄化によって低下した強度を、スペーサを並行配置することで応力分散して補うことができる。さらに、曲げ加工しやすい薄いスペーサ部材を用いることができ、より安定した間隔規定が可能となる。
本実施例における主要構成部材の寸法の一例を示す。スペーサ10、11の厚さは100μm、スペーサ10とスペーサ11の間隔は1mmとした。電極2、4、8と貫通孔群3、5、9の配置などは上記実施例2などと同様の構成とした。
(実施例6)
次に図6(A)を用いて本発明の第6の実施例を説明する。本実施例は、電極間にあって屈曲部の屈曲点を有する複数本のスペーサにおいて、隣接するスペーサ12とスペーサ13の屈曲点同士を接触させ、接触点14を有するように配置した構成を備える。この様に、隣接するスペーサ同士を互いに屈曲点で接触させて配置することにより、スペーサを挟んで対向した電極2、4のXY方向における撓みに対する強度を高めることができる。本実施例の構成は、線材であるスペーサを屈曲させる際の曲率半径を変えるだけで実現することができ、他の構成要素は全て上記実施例のものと同一のまま実現可能である。こうしたXY方向でも強固にスペーサ同士が固定されたわみ変形に対してより強固な構造は、上記実施例3、5にも適用可能である。
(実施例7)
図6(B)を用いて本発明の第7の実施例を説明する。本実施例では、スペーサ15の屈曲の方式を、一回の屈曲(平均90°)毎に屈曲方向を反転させるのではなく、2回連続して同方向へ屈曲(平均180°)させた後に屈曲方向を反転させる方式としたものである。このような屈曲方式とすることにより、図6(B)に示すように貫通孔群3からなる静電レンズアレイに対するスペーサ15の位置関係を上記実施例と異なる状態にすることができる。また、本実施例によれば、全てのスペーサ15の電極2の外側への取り出し方向を一方向にすることが可能となる。本実施例の構成は、線材であるスペーサを屈曲させる際に屈曲の仕様を変えるだけで実現することができ、他の構成要素は全て上記実施例のものと同一のまま実現可能である。上記実施例6の構成は本実施例にも適用可能である。
(実施例8)
次に図7(A)を用いて本発明の第8の実施例を説明する。本実施例においては、各スペーサの端部が電極の外側へ配置されている。本実施例は、各スペーサ1の端部を電極の外形よりも大きな枠部材16によって一括して固定する構成としたものである。このような構成とすることにより、複数本のスペーサ1を一括して取り扱うことができ、電極上への設置などを精確かつ容易に効率良く行うことができる。また、枠部材16として平面度の高いものを用いることにより、高精度に静電レンズを作製することができる。本実施例の電極、スペーサの構成は上記実施例のどの構成に対しても適用することができる。
(実施例9)
図7(B)を用いて本発明の第9の実施例を説明する。本実施例においては、スペーサ1の屈曲部及び端部が電極の外側すなわち電極間の空間の外側に配置されている。スペーサ1の直線状に伸びた部分は、電極間の空間に配置して貫通孔群3間を通している。この様に、上記実施例1と同様に比較的単純な屈曲態様のスペーサを用いて、静電レンズアレイ内の個々の貫通孔群3の近傍周囲において複数の個所を通過させることができる。ここでは、1本のスペーサ1を配置しているが、上記実施例と同様に、複数本のスペーサを配置することもできる。
(実施例10)
図8を用いて、本発明の実施例10を説明する。本実施例は、複数の荷電粒子線を用いた荷電粒子線露光装置である。図8は、本実施例に係わるマルチ荷電粒子ビーム露光装置の構成を示す図である。本実施例は個別に投影系をもつ所謂マルチカラム式である。荷電粒子源である電子源108からアノード電極109、110によって引き出された放射電子ビームは、クロスオーバー調整光学系111によって照射光学系クロスオーバー112を形成する。ここで、電子源108としてはLaB6やBaO/W(ディスペンサーカソード)などのいわゆる熱電子型の電子源が用いられる。クロスオーバー調整光学系111は2段の静電レンズで構成されており、1段目・2段目共に静電レンズは3枚の電極からなり、中間電極に負の電圧を印加し上下電極は接地するアインツェル型の静電レンズである。
照射光学系クロスオーバー112から広域に放射された電子ビーム113、114は、コリメータレンズ115によって平行ビーム116となり、アパーチャアレイ117へと照射される。アパーチャアレイ117によって分割されたマルチ電子ビーム118は、収束レンズアレイ119によって個別に収束され、ブランカーアレイ122上に結像される。アパーチャアレイ117と収束レンズアレイ119とブランカーアレイ122を符号150で示す。ここで、収束レンズアレイ119は3枚の多孔(複数の開口を持つ)電極からなる静電レンズで、レンズ制御回路105で制御され、3枚の電極のうち中間の電極にのみ負の電圧を印加し上下電極は接地するアインツェル型の静電レンズアレイである。本発明の静電レンズで用いるスペーサは、これら3枚の電極間の間隔を規定するスペーサに対して適応した。
アパーチャアレイ117は、NA(収束半角)を規定する役割も持たせるため、収束レンズアレイ119の瞳面位置(収束レンズアレイの前側焦点面位置)に置かれている。ブランカーアレイ122は個別の偏向電極を持ったデバイスで、描画パターン発生回路102、ビットマップ変換回路103、ブランキング指令回路106によって生成されるブランキング信号に基づき、描画パターンに応じて個別にビームのon/offを行う。ビームがonの状態のときには、ブランカーアレイ122の偏向電極には電圧を印加せず、ビームがoffの状態のときには、ブランカーアレイ122の偏向電極に電圧を印加してマルチ電子ビームを偏向する。ブランカーアレイ122によって偏向されたマルチ電子ビーム125は後段(下流側)にあるストップアパーチャアレイ123によって遮断され、ビームがoffの状態となる。複数のアライナー120は、アライナー制御回路107で制御されて、電子ビームの入射角度と入射位置を調整する。また、コントローラー101は全体の回路を制御する。
本実施形態においてブランカーアレイは2段で構成されており、ブランカーアレイ122及びストップアパーチャアレイ123と同じ構造の、第二ブランカーアレイ127及び第二ストップアパーチャアレイ128が後段に配置されている。ブランカーアレイ122を通ったマルチ電子ビームは第二収束レンズアレイ126によって第二ブランカーアレイ127上に結像される。さらにマルチ電子ビームは第三、第四収束レンズ130、132によって収束されてウエハ133上に結像される。ここで、第二収束レンズアレイ126、第三収束レンズアレイ130、第四収束レンズアレイ132は収束レンズアレイ119同様に、アインツェル型の静電レンズアレイである。
特に第四収束レンズアレイ132は対物レンズとなっており、その縮小率は100倍程度に設定される。これにより、ブランカーアレイ122の中間結像面上の電子ビーム121(スポット径がFWHMで2μm)が、ウエハ133面上で100分の1に縮小され、FWHMで20nm程度のマルチ電子ビームがウエハ上に結像される。ウエハ133上のマルチ電子ビームのスキャンは偏向器131で行うことができる。偏向器131は対向電極によって形成されており、x、y方向について2段の偏向を行うために4段の対向電極で構成される(図中では簡単のため2段偏向器を1ユニットとして表記している)。偏向器131は偏向信号発生回路104の信号に従って駆動される。
パターン描画中はウエハ133はX方向にステージ134によって連続的に移動させられる。そして、レーザー測長機による実時間での測長結果を基準として、ウエハ面上の電子ビーム135が偏向器131でY方向に偏向され、かつブランカーアレイ122及び第二ブランカーアレイ127で描画パターンに応じてビームのon/offが個別になされる。ビーム124はonのビームを示し、ビーム125、129はoffのビームを示す。これにより、ウエハ133面上に所望のパターンを高速に短い描画時間で描画することができる。
以上に説明した様に、本実施例の荷電粒子線露光装置は、荷電粒子源と、荷電粒子源から放射される荷電粒子線を照射する照射荷電粒子光学系と、照射荷電粒子光学系からの荷電粒子線が照射される、1以上の開口を備えた基板を備える。そして、基板の複数の開口からの荷電粒子線を個別に偏向してブランキングを制御する1以上の偏向器と、基板の荷電粒子線の下流側の少なくとも1個所に設けられた本発明による静電レンズと、を有する。こうした構成により、静電レンズの電極間の間隔を高精度且つ安定的に保持して高精度な描画を可能としている。
1、6、7、10、11、12、13、15・・スペーサ(線状の絶縁部材)、2、4、8・・電極、3、5、9・・貫通孔群(複数の貫通孔の組)

Claims (10)

  1. 複数の電極が互いに間隔を隔てて対向して積層された構造の静電型の荷電粒子線レンズであって、
    前記各電極の間には、荷電粒子線が通過するための複数の貫通孔の組が少なくとも一組形成され、
    前記各対向電極間にはスペーサとして少なくとも1本の線状の絶縁部材が配置され、
    前記線状の絶縁部材は、前記電極の面と平行方向に1回以上屈曲する屈曲部を有することを特徴とする荷電粒子線レンズ。
  2. 前記線状の絶縁部材は、少なくとも、前記複数の貫通孔の組の近傍に配置されていることを特徴とする請求項1に記載の荷電粒子線レンズ。
  3. 前記線状の絶縁部材の屈曲部が、各対向電極間の空間内に配置されている請求項1または2に記載の荷電粒子線レンズ。
  4. 前記線状の絶縁部材の端部が、各対向電極間の空間の外側に配置されていることを特徴とする請求項1から3のいずれか1項に記載の荷電粒子線レンズ。
  5. 前記線状の絶縁部材は、各対向電極間の電界の方向と垂直な方向に凹凸部を有することを特徴とする請求項1から4のいずれか1項に記載の荷電粒子線レンズ。
  6. 各対向電極間の複数の前記線状の絶縁部材の配置位置が、当該静電レンズの光軸の方向から見て一致していることを特徴とする請求項1から5のいずれか1項に記載の荷電粒子線レンズ。
  7. 各対向電極間の前記線状の絶縁部材は、2本以上が並行して配置されていることを特徴とする請求項1から6のいずれか1項に記載の荷電粒子線レンズ。
  8. 各対向電極間に複数本の前記線状の絶縁部材が配置され、各対向電極間の空間において隣接した位置に配置された各線状の絶縁部材に設けられた屈曲部の屈曲点同士が、互いに接触していることを特徴とする請求項1から7のいずれか1項に記載の荷電粒子線レンズ。
  9. 前記線状の絶縁部材は、ガラス母材を加熱延伸して形成された線状部材であることを特徴とする請求項1から8のいずれか1項に記載の荷電粒子線レンズ。
  10. 荷電粒子源と、
    前記荷電粒子源から放射される荷電粒子線を照射する照射荷電粒子光学系と、
    前記照射荷電粒子光学系からの荷電粒子線が照射される、1以上の開口を備えた基板と、
    前記基板の複数の開口からの荷電粒子線を個別に偏向してブランキングを制御する1以上の偏向器と、
    前記基板の荷電粒子線の下流側の少なくとも1個所に設けられた請求項1から9のいずれれか1項に記載の荷電粒子線レンズと、
    を有することを特徴とする荷電粒子線露光装置。
JP2011162673A 2011-07-26 2011-07-26 荷電粒子線レンズ Withdrawn JP2013026582A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162673A JP2013026582A (ja) 2011-07-26 2011-07-26 荷電粒子線レンズ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162673A JP2013026582A (ja) 2011-07-26 2011-07-26 荷電粒子線レンズ

Publications (1)

Publication Number Publication Date
JP2013026582A true JP2013026582A (ja) 2013-02-04

Family

ID=47784540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162673A Withdrawn JP2013026582A (ja) 2011-07-26 2011-07-26 荷電粒子線レンズ

Country Status (1)

Country Link
JP (1) JP2013026582A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015511069A (ja) * 2012-03-19 2015-04-13 ケーエルエー−テンカー コーポレイション 柱で支持されたマイクロ電子レンズアレイ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015511069A (ja) * 2012-03-19 2015-04-13 ケーエルエー−テンカー コーポレイション 柱で支持されたマイクロ電子レンズアレイ

Similar Documents

Publication Publication Date Title
USRE46452E1 (en) Electrostatic lens structure
JP5415720B2 (ja) マルチビーム源
TWI691998B (zh) 靜電多極元件、靜電多極裝置及製造靜電多極元件的方法
US8704192B2 (en) Drawing apparatus and method of manufacturing article
KR101570974B1 (ko) 투사 렌즈 배열체
JP2013004216A (ja) 荷電粒子線レンズ
WO2012124324A1 (en) Charged particle beam lens and exposure apparatus using the same
WO2009106397A1 (en) Projection lens arrangement
US20120319001A1 (en) Charged particle beam lens
JP2017117859A (ja) マルチ荷電粒子ビーム装置
JP2023517626A (ja) マルチビーム発生ユニットおよびマルチビーム偏向ユニットの特定の改善
JP2013239667A (ja) 荷電粒子線静電レンズにおける電極とその製造方法、荷電粒子線静電レンズ、及び荷電粒子線露光装置
JP2007266525A (ja) 荷電粒子線レンズアレイ、該荷電粒子線レンズアレイを用いた荷電粒子線露光装置
CN115053319A (zh) 带电粒子操纵器装置
JP2013168396A (ja) 静電型の荷電粒子線レンズ及び荷電粒子線装置
JP2013008534A (ja) 荷電粒子線レンズ用電極
JP2013102060A (ja) 荷電粒子光学系、及びそれを用いた描画装置
JP2013026582A (ja) 荷電粒子線レンズ
US8686378B2 (en) Charged particle beam drawing apparatus, and method of manufacturing article
US20140349235A1 (en) Drawing apparatus, and method of manufacturing article
JP5643626B2 (ja) 荷電粒子線レンズ
JP2006049703A (ja) 荷電粒子線レンズアレイ、及び該荷電粒子線レンズアレイを用いた荷電粒子線露光装置
JP2013030567A (ja) 荷電粒子線レンズアレイ
JP2013165200A (ja) 荷電粒子線レンズ
US20140151571A1 (en) Charged particle beam lens and exposure apparatus using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007