JP2013163868A - Leaching method of copper and gold from sulfide ore - Google Patents

Leaching method of copper and gold from sulfide ore Download PDF

Info

Publication number
JP2013163868A
JP2013163868A JP2013116062A JP2013116062A JP2013163868A JP 2013163868 A JP2013163868 A JP 2013163868A JP 2013116062 A JP2013116062 A JP 2013116062A JP 2013116062 A JP2013116062 A JP 2013116062A JP 2013163868 A JP2013163868 A JP 2013163868A
Authority
JP
Japan
Prior art keywords
leaching
copper
gold
ions
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013116062A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hatano
和浩 波多野
Yoshifumi Abe
吉史 安部
Koji Katsukawa
浩至 勝川
Eiki Ono
瑛基 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013116062A priority Critical patent/JP2013163868A/en
Publication of JP2013163868A publication Critical patent/JP2013163868A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a leaching method of copper and gold from a sulfide ore, in which the separation efficiency of copper and gold can be improved.SOLUTION: A method for leaching copper and gold in a sulphide mineral includes: a process 1 for leaching a copper component in the sulphide mineral by bringing a first acid aqueous solution that contains chlorine ion, copper ion, and iron ion but not contain bromine ion into contact with the sulphide mineral with an oxidant supplied; a process 2 for separating the leaching reaction liquid obtained by the process 1 into a leaching residue and a post-leaching liquid by solid-liquid separation; and a process 3 for leaching a gold component in the residue by bringing a second acid aqueous solution that contains chlorine ion, bromine ion, copper ion, and iron ion into contact with the leaching residue obtained by the process 2 with the oxidant supplied.

Description

本発明は硫化鉱からの銅及び金の浸出方法に関する。   The present invention relates to a method for leaching copper and gold from sulfide ores.

近年、従来の乾式法に替わり、硫化鉱から湿式法によって銅を回収する技術が注目されている。そして、硫化鉱には微量ながら金などの貴金属を含有する場合も多く、銅に加えて貴金属を経済的に回収する方法が求められている。   In recent years, a technique for recovering copper from sulfide ore by a wet method instead of the conventional dry method has attracted attention. The sulfide ore often contains a precious metal such as gold in a small amount, and a method for economically recovering the precious metal in addition to copper is required.

このような問題に取り組んだ技術として、アルカリ金属又はアルカリ土類金属の塩化物及び臭化物と、銅及び鉄の塩化物又は臭化物とを使用し、銅浸出工程後の残渣に対して金浸出工程を実施する方法が知られている(特開2009−235519号公報)。この方法によれば、特別な酸化剤を使用することなく、空気を使用するだけで、硫化銅鉱中の銅及び金を高い浸出率で浸出し、回収することができるとされている。   As a technology for addressing such problems, alkali metal or alkaline earth metal chlorides and bromides and copper and iron chlorides or bromides are used, and the gold leaching process is performed on the residue after the copper leaching process. A method of carrying out is known (Japanese Patent Laid-Open No. 2009-235519). According to this method, it is said that copper and gold in copper sulfide ore can be leached and recovered at a high leaching rate only by using air without using a special oxidizing agent.

また、銅浸出工程後の残渣中の銅品位が7.9%以下になった時点で金浸出が行われることを利用し、銅浸出工程後の残渣中の銅品位を7.9%以下に低下させてから金浸出工程を実施する方法も知られている(特開2009−235525号公報)。   Also, using the fact that gold leaching is performed when the copper quality in the residue after the copper leaching process becomes 7.9% or less, the copper quality in the residue after the copper leaching process is reduced to 7.9% or less. A method of performing the gold leaching process after lowering is also known (Japanese Patent Laid-Open No. 2009-235525).

特開2009−235519号公報JP 2009-235519 A 特開2009−235525号公報JP 2009-235525 A

上記文献に記載の技術は、硫化鉱からの湿式法による銅及び金の回収方法に関して商業上実施可能な技術を提案するものであるが、銅及び金の分離効率の向上や金の回収率向上については未だ改善の余地は残されている。そこで、本発明は、銅及び金の分離効率及び金の回収率を向上させることの可能な硫化鉱物からの銅及び金の浸出方法を提供することを課題とする。   The technique described in the above document proposes a commercially feasible technique for a method for recovering copper and gold by a wet method from sulfide ore, but improves the separation efficiency of copper and gold and improves the recovery rate of gold. There is still room for improvement. Then, this invention makes it a subject to provide the leaching method of the copper and gold | metal | money from the sulfide mineral which can improve the isolation | separation efficiency of copper and gold | metal | money, and the recovery rate of gold | metal | money.

本発明者は鋭意研究の結果、従来の湿式法では、銅浸出工程において金が相当程度浸出しており、銅と金の分離効率を押し下げていることを見出した。すなわち、銅浸出工程においては目的とする銅が十分に浸出される一方で、金は浸出されないことが望ましいのであるが、銅の浸出が進行していくにつれて酸化還元電位が徐々に上昇していくと、銅が十分に浸出し終わらないうちに金の浸出が始まってしまい、銅と金が共に浸出される酸化還元電位のオーバーラップ領域が存在する。このため、銅の浸出効率を高めようとして銅浸出工程における終点の酸化還元電位を高めに設定すると金までが銅浸出工程で浸出してしまうのである。一方で、銅浸出工程において金の浸出を抑制しようとすると今度は銅浸出工程における終点の酸化還元電位を低くする必要があり、この場合は金の浸出は抑制されるものの、銅の浸出が不十分な状態で金浸出工程に移行することとなり、銅と金の分離効率は不十分となる。   As a result of diligent research, the present inventor has found that in the conventional wet method, gold is leached to a considerable extent in the copper leaching step, and the separation efficiency of copper and gold is reduced. That is, in the copper leaching process, it is desirable that the target copper is sufficiently leached while gold is not leached, but the oxidation-reduction potential gradually increases as copper leaching proceeds. Then, the leaching of gold starts before the copper is sufficiently leached, and there is an overlap region of redox potential where copper and gold are leached together. For this reason, if the oxidation-reduction potential at the end point in the copper leaching process is set high to increase the copper leaching efficiency, even gold is leached in the copper leaching process. On the other hand, when trying to suppress gold leaching in the copper leaching process, it is necessary to lower the oxidation-reduction potential at the end point in the copper leaching process. In this case, although gold leaching is suppressed, copper leaching is not required. It will transfer to a gold | metal leaching process in sufficient state, and the separation efficiency of copper and gold will become inadequate.

銅浸出工程において金が浸出した場合、浸出後液から金を回収することも考えられるが、金回収工程を別途設ける必要が出てくるためコスト高となる。そこで、銅浸出工程においては銅を十分に浸出する一方で金浸出を極力抑制する手段を検討したところ、銅浸出工程において臭素イオンを含有せず、塩素イオンを含有する特定の浸出液を使用する一方で、金浸出工程においては臭素イオン及び塩素イオンの両方を含有する特定の浸出液を使用することが有効であることを見出し、当該知見に基づいて本発明を完成させた。   When gold is leached in the copper leaching process, it may be possible to recover the gold from the solution after leaching. However, it is necessary to provide a separate gold recovery process, which increases the cost. Therefore, in the copper leaching process, a means for suppressing leaching of gold as much as possible while leaching copper sufficiently was examined. In the copper leaching process, bromine ions were not contained and a specific leachate containing chlorine ions was used. Thus, in the gold leaching process, it was found effective to use a specific leaching solution containing both bromine ions and chlorine ions, and the present invention was completed based on this finding.

本発明は一側面において、硫化鉱物中の銅及び金を浸出する方法であって、
塩素イオン、銅イオン及び鉄イオンを含有し、臭素イオンを含有しない第一の酸性水溶液を酸化剤の供給下で硫化鉱物に接触させて、硫化鉱物中の銅成分を浸出する工程1と、
工程1によって得られた浸出反応液を固液分離によって浸出残渣と浸出後液に分離する工程2と、
塩素イオン、臭素イオン、銅イオン及び鉄イオンを含有する第二の酸性水溶液を酸化剤の供給下で工程2によって得られた浸出残渣に接触させて、当該残渣中の金成分を浸出する工程3と、
を含む方法である。
In one aspect, the present invention is a method for leaching copper and gold in a sulfide mineral,
A first acidic aqueous solution containing chlorine ions, copper ions and iron ions and not containing bromine ions is contacted with a sulfide mineral under supply of an oxidizing agent to leach copper components in the sulfide mineral; and
Step 2 for separating the leaching reaction liquid obtained in Step 1 into a leaching residue and a liquid after leaching by solid-liquid separation;
Step 3 of contacting a second acidic aqueous solution containing chlorine ion, bromine ion, copper ion and iron ion with the leaching residue obtained in Step 2 under supply of an oxidizing agent to leach the gold component in the residue When,
It is a method including.

本発明に係る硫化鉱物中の銅及び金を浸出する方法は一実施態様において、工程1は、銅の浸出率が90質量%以上、且つ、金の浸出率が10質量%以下の条件を満たしたときに終了する。   In one embodiment, the method of leaching copper and gold in the sulfide mineral according to the present invention satisfies the conditions that the leaching rate of copper is 90% by mass or more and the leaching rate of gold is 10% by mass or less. It ends when

本発明に係る硫化鉱物中の銅及び金を浸出する方法は別の一実施態様において、工程1は、酸化還元電位(vs Ag/AgCl)が450〜500mVの間で終了する。   In another embodiment of the method for leaching copper and gold in sulfide minerals according to the present invention, step 1 is completed when the oxidation-reduction potential (vs Ag / AgCl) is between 450 and 500 mV.

本発明に係る硫化鉱物中の銅及び金を浸出する方法は更に別の一実施態様において、第一の酸性水溶液の工程1の開始時の酸化還元電位(vs Ag/AgCl)が500mV以上であり、第二の酸性水溶液の工程2の開始時の酸化還元電位(vs Ag/AgCl)が550mV以上である。   In yet another embodiment of the method for leaching copper and gold in the sulfide mineral according to the present invention, the oxidation-reduction potential (vs Ag / AgCl) at the start of step 1 of the first acidic aqueous solution is 500 mV or more. The redox potential (vs Ag / AgCl) at the start of step 2 of the second acidic aqueous solution is 550 mV or more.

本発明に係る硫化鉱物中の銅及び金を浸出する方法は更に別の一実施態様において、第二の酸性水溶液中の塩素イオンに対する臭素イオンの重量濃度比が1以上である。   In another embodiment of the method for leaching copper and gold in the sulfide mineral according to the present invention, the weight concentration ratio of bromine ions to chlorine ions in the second acidic aqueous solution is 1 or more.

本発明に係る硫化鉱物中の銅及び金を浸出する方法は更に別の一実施態様において、工程1及び工程2で使用する酸化剤が空気である。   In another embodiment of the method for leaching copper and gold in the sulfide mineral according to the present invention, the oxidizing agent used in Step 1 and Step 2 is air.

本発明によれば、硫化鉱物からの銅及び金の浸出方法において、銅浸出工程に臭素イオンを含有しない浸出液を使用することで経済的に銅及び金の分離効率を向上させることが可能となると共に、その後の金浸出工程において臭素イオンを含有する浸出液を使用することで高い金の回収率が得られるという格別の技術的効果が得られる。   According to the present invention, in the method of leaching copper and gold from sulfide minerals, it is possible to economically improve the separation efficiency of copper and gold by using a leaching solution containing no bromine ions in the copper leaching step. In addition, a special technical effect that a high gold recovery rate can be obtained by using a leachate containing bromine ions in the subsequent gold leaching step.

ORP(vs Ag/AgCl)と銅及び金の浸出率の関係を示す図である。It is a figure which shows the relationship between ORP (vs Ag / AgCl) and the leaching rate of copper and gold | metal | money.

<工程1:銅浸出工程>
工程1では、塩素イオン、銅イオン及び鉄イオンを含有し、臭素イオンを含有しない浸出液(第一の酸性水溶液)を酸化剤の供給下で硫化鉱物に接触させて、硫化鉱物中の銅成分を浸出する。すなわち、工程1では浸出液として塩化浴を使用することで硫化鉱中の銅を浸出することを基本としており、更に硫化鉱中に一般的に含まれる銅イオン及び鉄イオンを浸出液中に存在させておくことで、銅の浸出反応の促進を狙っている。浸出液と硫化鉱物の接触方法としては特に制限はなく、噴霧や浸漬などの方法があるが、反応効率の観点から、浸出液中に硫化鉱物を浸漬し、撹拌する方法が好ましい。硫化鉱物としては特に制限はないが、典型的には金を含有する一次硫化銅鉱や金を含むケイ酸鉱を含有する硫化銅鉱が挙げられる。
<Process 1: Copper leaching process>
In step 1, a leaching solution (first acidic aqueous solution) containing chlorine ions, copper ions and iron ions and not containing bromine ions is brought into contact with the sulfide mineral under the supply of an oxidizing agent, and the copper component in the sulfide mineral is then removed. Leaching. In other words, in Step 1, the copper in the sulfide ore is leached by using a chloride bath as the leaching solution, and copper ions and iron ions generally contained in the sulfide ore are present in the leaching solution. It aims to promote the leaching reaction of copper. The contact method between the leachate and the sulfide mineral is not particularly limited, and there are methods such as spraying and dipping. From the viewpoint of reaction efficiency, a method in which the sulfide mineral is immersed in the leachate and stirred is preferred. Although there is no restriction | limiting in particular as a sulfide mineral, Typically, the copper sulfide ore containing the silicate ore containing the primary copper sulfide ore containing gold | metal | money is mentioned.

塩素イオンの供給源としては特に制限はなく、例えば塩化水素、塩酸、塩化金属及び塩素ガス等が挙げられるが、経済性や安全性を考慮すれば塩化金属の形態で供給するのが好ましい。塩化金属としては、例えば塩化銅(塩化第一銅、塩化第二銅)、塩化鉄(塩化第一鉄、塩化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の塩化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の塩化物が挙げられ、経済性や入手容易性の観点から、塩化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、塩化銅及び塩化鉄を利用することも好ましい。   The supply source of chlorine ions is not particularly limited, and examples thereof include hydrogen chloride, hydrochloric acid, metal chloride, chlorine gas, and the like, but it is preferable to supply in the form of metal chloride in consideration of economy and safety. Examples of the metal chloride include copper chloride (cuprous chloride, cupric chloride), iron chloride (ferrous chloride, ferric chloride), and alkali metals (lithium, sodium, potassium, rubidium, cesium, francium). Chlorides and chlorides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, radium) can be mentioned, and sodium chloride is preferable from the viewpoint of economy and availability. Moreover, since it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper chloride and iron chloride.

銅イオン及び鉄イオンは、これらの塩の形態で供給するのが通常であり、例えばハロゲン化塩の形態で供給することができる。塩化物イオンの供給源としても利用できる観点から銅イオン及び鉄イオンは塩化銅及び塩化鉄として供給されるのが好ましい。塩化銅及び塩化鉄としては酸化力の観点から塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)をそれぞれ使用するのが望ましいが、塩化第一銅(CuCl)及び塩化第一鉄(FeCl2)を使用しても浸出液に酸化剤を供給することで、塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)にそれぞれ酸化されるため、大差はない。 Copper ions and iron ions are usually supplied in the form of these salts. For example, they can be supplied in the form of halide salts. From the viewpoint that it can also be used as a supply source of chloride ions, copper ions and iron ions are preferably supplied as copper chloride and iron chloride. As copper chloride and iron chloride, it is desirable to use cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ) from the viewpoint of oxidizing power, respectively, but cuprous chloride (CuCl) and ferrous chloride are preferable. Even if (FeCl 2 ) is used, supplying an oxidizing agent to the leachate will oxidize to cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ), respectively, so there is no significant difference.

工程1で使用する浸出液(第一の酸性水溶液)中の塩素イオンの濃度は、銅の溶解反応を高い効率で実現する観点から、70g/L以上であることが好ましく、140g/L以上であることがより好ましい。   The concentration of chlorine ions in the leachate (first acidic aqueous solution) used in step 1 is preferably 70 g / L or more, and 140 g / L or more from the viewpoint of realizing a copper dissolution reaction with high efficiency. It is more preferable.

硫化鉱物から銅の浸出効率を高めるために、浸出液は酸性とすべきであり、塩化物イオンの供給源としても利用できることから、塩酸酸性とするのが好ましい。浸出液のpHは浸出した銅の溶解度を確保する理由から、0〜3程度とするのが好ましく、1.0〜2.0程度とするのがより好ましい。また、工程1の開始時における浸出液の酸化還元電位(vs Ag/AgCl)は、銅浸出を促進する観点から500mV以上とするのが好ましく、550mV以上とするのがより好ましい。   In order to increase the leaching efficiency of copper from sulfide minerals, the leaching solution should be acidic, and since it can be used as a supply source of chloride ions, it is preferable to make it acidic with hydrochloric acid. The pH of the leaching solution is preferably about 0 to 3 and more preferably about 1.0 to 2.0 because the solubility of the leached copper is ensured. Further, the oxidation-reduction potential (vs Ag / AgCl) of the leaching solution at the start of Step 1 is preferably 500 mV or more, more preferably 550 mV or more, from the viewpoint of promoting copper leaching.

工程1で使用する浸出液(第一の酸性水溶液)は臭素イオンを含有しない。臭素イオンが浸出液中に含まれると、金浸出が開始する酸化還元電位が低下するため、銅の浸出が十分に進行しない間に金の浸出が開始するオーバーラップ領域が大きくなるからである。換言すれば、本発明においては工程1で使用する浸出液(第一の酸性水溶液)は臭素イオンを含有しないため、金の浸出を抑制しながら、銅浸出工程の終点における酸化還元電位を高くして、銅の浸出効率を高めることができる。   The leachate (first acidic aqueous solution) used in step 1 does not contain bromine ions. This is because if bromine ions are contained in the leaching solution, the oxidation-reduction potential at which gold leaching starts decreases, so that the overlap region where gold leaching starts while copper leaching does not proceed sufficiently increases. In other words, in the present invention, since the leaching solution (first acidic aqueous solution) used in step 1 does not contain bromine ions, the redox potential at the end point of the copper leaching step is increased while suppressing gold leaching. , Copper leaching efficiency can be increased.

従って、本発明の好適な実施形態においては、工程1における浸出液(第一の酸性水溶液)として、塩酸、塩化第二銅、塩化第二鉄及び塩化ナトリウムの混合液を使用することができる。   Therefore, in a preferred embodiment of the present invention, a mixed liquid of hydrochloric acid, cupric chloride, ferric chloride and sodium chloride can be used as the leachate (first acidic aqueous solution) in Step 1.

工程1の銅浸出工程は酸化剤を供給しながら実施することで、酸化還元電位を管理する。酸化剤を添加しなければ途中で酸化還元電位が低下してしまい、浸出反応が進行しない。酸化剤としては特に制限はないが、例えば酸素、空気、塩素及び過酸化水素などが挙げられる。ただし、酸化剤として臭素化合物を使用するのは好ましくない。極端に高い酸化還元電位をもつ酸化剤は必要なく、空気で十分である。経済性や安全性の観点からも空気が好ましい。   The copper leaching step of step 1 is performed while supplying an oxidizing agent, thereby managing the redox potential. If an oxidizing agent is not added, the redox potential is lowered in the middle, and the leaching reaction does not proceed. Although there is no restriction | limiting in particular as an oxidizing agent, For example, oxygen, air, chlorine, hydrogen peroxide, etc. are mentioned. However, it is not preferable to use a bromine compound as the oxidizing agent. An oxidant with an extremely high redox potential is not necessary and air is sufficient. Air is also preferable from the viewpoint of economy and safety.

工程1に使用する浸出液の温度は浸出効率や装置の材質の観点から、60℃以上とするのが好ましく、70〜90℃とするのがより好ましい。浸出効率を高めることを目的として工程1を加圧下で実施することも可能であるが、大気圧下で十分である。銅浸出を促進するため、処理対象となる硫化鉱物を予め粉砕・摩鉱しておくことが好ましい。   The temperature of the leachate used in step 1 is preferably 60 ° C. or higher, more preferably 70 to 90 ° C., from the viewpoint of leaching efficiency and material of the apparatus. It is possible to carry out step 1 under pressure for the purpose of increasing the leaching efficiency, but it is sufficient under atmospheric pressure. In order to promote copper leaching, it is preferable to previously grind and grind the sulfide mineral to be treated.

代表的な銅の硫化鉱であるカルコパイライトを例にすると、工程1では次のような反応式に従って銅の浸出が起きていると考えられる。
CuFeS2+3CuCl2→4CuCl+FeCl2+2S (1)
CuFeS2+3FeCl3→CuCl+4FeCl2+2S (2)
酸化剤として空気を使用した場合、式(1)又は式(2)の反応が進行することと併行して、これらの浸出反応の結果生成した塩化第一銅及び塩化第一鉄が次のような反応でそれぞれ塩化第二銅及び塩化第二鉄に酸化される。
CuCl+(1/4)O2+HCl→CuCl2+(1/2)H2O (3)
FeCl2+(1/4)O2+HCl→FeCl3+(1/2)H2O (4)
式(3)及び式(4)で生成する化学種は式(1)及び式(2)の酸化剤として浸出に再利用できる。この結果、浸出率は更に高くなる。式(3)及び式(4)式の反応は浸出液中に吹込む空気中の酸素で進行するため、浸出反応中に空気を吹込むことで、原料より溶出した塩化第一銅や塩化第一鉄を酸化して生じた塩化第二銅又は塩化第二鉄を利用して銅浸出反応を継続できる。
Taking chalcopyrite, which is a typical copper sulfide ore, as an example, it is thought that in step 1, copper leaching occurs according to the following reaction formula.
CuFeS 2 + 3CuCl 2 → 4CuCl + FeCl 2 + 2S (1)
CuFeS 2 + 3FeCl 3 → CuCl + 4FeCl 2 + 2S (2)
When air is used as the oxidant, the cuprous chloride and ferrous chloride generated as a result of these leaching reactions in parallel with the progress of the reaction of formula (1) or formula (2) are as follows: In a simple reaction, they are oxidized to cupric chloride and ferric chloride, respectively.
CuCl + (1/4) O 2 + HCl → CuCl 2 + (1/2) H 2 O (3)
FeCl 2 + (1/4) O 2 + HCl → FeCl 3 + (1/2) H 2 O (4)
The chemical species generated in formulas (3) and (4) can be reused for leaching as oxidants in formulas (1) and (2). As a result, the leaching rate is further increased. Since the reactions of the formulas (3) and (4) proceed with oxygen in the air blown into the leachate, cuprous chloride and cuprous chloride eluted from the raw material are blown in during the leach reaction. Copper leaching reaction can be continued using cupric chloride or ferric chloride generated by oxidizing iron.

工程1に使用する浸出液は当初高い酸化還元電位(vs Ag/AgCl)を有している(例:500mV以上)が、硫化鉱物と接触させて浸出反応を開始すると、酸化還元電位は急落する。その後、酸化還元電位は酸化剤の供給下で銅の浸出反応が進行するにつれて徐々に上昇していく。臭素イオンを含まない上記の浸出液の場合、酸化還元電位(vs Ag/AgCl)が450mV以上であれば銅は十分に浸出する。一方で、酸化還元電位が高くなると今度は金の浸出も始まるが、臭素イオンを含まない上記の浸出液の場合、酸化還元電位(vs Ag/AgCl)が500mV以下であれば金はほとんど浸出しない。従って、酸化還元電位(vs Ag/AgCl)が450〜500mV、好ましくは450〜475mVの範囲にあるときに工程1の銅浸出反応を終了することで、銅及び金の高い分離効率が得られるようになる。   The leachate used in Step 1 initially has a high redox potential (vs Ag / AgCl) (eg, 500 mV or more), but when it comes into contact with a sulfide mineral and starts the leaching reaction, the redox potential drops sharply. Thereafter, the oxidation-reduction potential gradually increases as the copper leaching reaction proceeds under the supply of the oxidizing agent. In the case of the above leaching solution containing no bromine ions, copper is sufficiently leached if the oxidation-reduction potential (vs Ag / AgCl) is 450 mV or higher. On the other hand, when the oxidation-reduction potential becomes high, gold leaching starts this time, but in the case of the above-described leaching solution containing no bromine ions, gold hardly leaches if the oxidation-reduction potential (vs Ag / AgCl) is 500 mV or less. Therefore, when the redox potential (vs Ag / AgCl) is in the range of 450 to 500 mV, preferably 450 to 475 mV, the copper leaching reaction in step 1 is completed, so that high separation efficiency of copper and gold can be obtained. become.

その結果、本発明の好ましい実施態様においては、工程1は、銅の浸出率が90質量%以上、且つ、金の浸出率が10質量%以下の条件を満たしたときに終了することができ、より好ましい実施態様においては、工程1は、銅の浸出率が95質量%以上、且つ、金の浸出率が10質量%以下の条件を満たしたときに終了することができる。   As a result, in a preferred embodiment of the present invention, step 1 can be completed when the leaching rate of copper is 90% by mass or more and the leaching rate of gold is 10% by mass or less, In a more preferred embodiment, Step 1 can be completed when the copper leaching rate is 95% by mass or more and the gold leaching rate is 10% by mass or less.

<工程2:固液分離工程>
工程2では、工程1によって得られた浸出反応液を固液分離によって浸出残渣と浸出後液に分離する。固液分離方法は特に制限はないが、フィルタープレスやシックナーを使用することができる。浸出残渣には金が残留しており、浸出後液には銅が溶解している。
<Step 2: Solid-liquid separation step>
In step 2, the leaching reaction liquid obtained in step 1 is separated into a leaching residue and a liquid after leaching by solid-liquid separation. The solid-liquid separation method is not particularly limited, but a filter press or thickener can be used. Gold remains in the leaching residue, and copper is dissolved in the liquid after leaching.

工程1は銅浸出工程を一段階で実施することもできるが、硫化鉱物中の銅の浸出を十分に行うために銅浸出工程を複数段で実施することも可能である。複数段を利用した銅浸出工程は、具体的には、一段目における銅浸出操作を終了後に、フィルタープレスやシックナーなどによって固液分離し、浸出残渣に対して次段の銅浸出操作を行うことにより実施することができる。典型的には、銅浸出工程は2〜4段階で構成することができる。この場合、各浸出段で実施している固液分離操作が工程2に該当する。   In step 1, the copper leaching step can be carried out in one stage, but the copper leaching step can also be carried out in a plurality of stages in order to sufficiently leach copper in the sulfide mineral. Specifically, in the copper leaching process using multiple stages, after completing the copper leaching operation in the first stage, solid-liquid separation is performed with a filter press or thickener, and the next stage copper leaching operation is performed on the leaching residue. Can be implemented. Typically, the copper leaching process can consist of 2 to 4 stages. In this case, the solid-liquid separation operation performed in each leaching stage corresponds to step 2.

<工程3:金浸出工程>
工程3では、塩素イオン、臭素イオン、銅イオン及び鉄イオンを含有する浸出液(第二の酸性水溶液)を酸化剤の供給下で工程2によって得られた(工程1を複数段で行い、工程2が複数回実施されるときは最終的に得られた)浸出残渣に接触させて、当該残渣中の金成分を浸出する。金の浸出は、溶出した金が塩素イオン又は臭素イオンと反応し、金の塩化錯体又は金の臭化錯体を生成することにより進行する。臭素イオンを併用することで、より低電位の状態で錯体を形成するため、金の浸出効率の向上を図ることができる。また、鉄イオンは酸化剤の供給下で酸化した3価の鉄イオン又は当初より3価の鉄イオンが、金を酸化する働きをする。銅イオンは直接反応に関与しないが、銅イオンが存在することで鉄イオンの酸化速度が速くなる。
<Process 3: Gold leaching process>
In step 3, a leachate (second acidic aqueous solution) containing chlorine ions, bromine ions, copper ions and iron ions was obtained in step 2 under the supply of an oxidizing agent (step 1 was performed in multiple stages, step 2 When it is carried out a plurality of times, it is brought into contact with the leaching residue (which is finally obtained) and the gold component in the residue is leached. Gold leaching proceeds by the elution of gold reacting with chlorine ions or bromine ions to form gold chloride complexes or gold bromide complexes. By using bromine ions in combination, the complex is formed at a lower potential, so that the gold leaching efficiency can be improved. Further, the iron ions function to oxidize gold by trivalent iron ions oxidized under the supply of an oxidizing agent or trivalent iron ions from the beginning. Copper ions are not directly involved in the reaction, but the presence of copper ions increases the oxidation rate of iron ions.

浸出液と残渣の接触方法としては特に制限はなく、噴霧や浸漬などの方法があるが、反応効率の観点から、浸出液中に残渣を浸漬し、撹拌する方法が好ましい。   The method for contacting the leachate and the residue is not particularly limited, and there are methods such as spraying and dipping. From the viewpoint of reaction efficiency, a method in which the residue is immersed in the leachate and stirred is preferred.

塩素イオンの供給源としては、特に制限はないが、例えば塩化水素、塩酸、塩化金属及び塩素ガス等が挙げられ、経済性や安全性を考慮すれば塩化金属の形態で供給するのが好ましい。塩化金属としては、例えば塩化銅(塩化第一銅、塩化第二銅)、塩化鉄(塩化第一鉄、塩化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の塩化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の塩化物が挙げられ、経済性や入手容易性の観点から、塩化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、塩化銅及び塩化鉄を利用することも好ましい。   The supply source of chlorine ions is not particularly limited, and examples thereof include hydrogen chloride, hydrochloric acid, metal chloride, chlorine gas, and the like. In consideration of economy and safety, supply in the form of metal chloride is preferable. Examples of the metal chloride include copper chloride (cuprous chloride, cupric chloride), iron chloride (ferrous chloride, ferric chloride), and alkali metals (lithium, sodium, potassium, rubidium, cesium, francium). Chlorides and chlorides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, radium) can be mentioned, and sodium chloride is preferable from the viewpoint of economy and availability. Moreover, since it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper chloride and iron chloride.

臭素イオンの供給源としては、特に制限はないが、例えば臭化水素、臭化水素酸、臭化金属及び臭素ガス等が挙げられ、経済性や安全性を考慮すれば臭化金属の形態で供給するのが好ましい。臭化金属としては、例えば臭化銅(臭化第一銅、臭化第二銅)、臭化鉄(臭化第一鉄、臭化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の臭化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の臭化物が挙げられ、経済性や入手容易性の観点から、臭化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、臭化銅及び臭化鉄を利用することも好ましい。   The bromine ion supply source is not particularly limited, and examples thereof include hydrogen bromide, hydrobromic acid, metal bromide, bromine gas, and the like. In consideration of economy and safety, it is in the form of metal bromide. It is preferable to supply. Examples of the metal bromide include copper bromide (cuprous bromide, cupric bromide), iron bromide (ferrous bromide, ferric bromide), alkali metals (lithium, sodium, potassium, Examples thereof include bromides of rubidium, cesium, and francium) and bromides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, and radium), and sodium bromide is preferable from the viewpoint of economy and availability. Moreover, since it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper bromide and iron bromide.

銅イオン及び鉄イオンの供給源としては、これらの塩の形態で供給するのが通常であり、例えばハロゲン化塩の形態で供給することができる。塩素イオン及び/又は臭素イオンの供給源としても利用できる観点から銅イオンは塩化銅及び/又は臭化銅、鉄イオンは塩化鉄及び/又は臭化鉄として供給されるのが好ましい。塩化銅及び塩化鉄としては酸化力の観点から塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)を使用するのがそれぞれ望ましいが、塩化第一銅(CuCl)及び塩化第二鉄(FeCl2)を使用しても浸出液に酸化剤を供給することで、塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)にそれぞれ酸化されるため、大差はない。 The supply source of copper ions and iron ions is usually supplied in the form of these salts. For example, it can be supplied in the form of a halide salt. From the viewpoint that it can also be used as a source of chlorine ions and / or bromine ions, copper ions are preferably supplied as copper chloride and / or copper bromide, and iron ions are preferably supplied as iron chloride and / or iron bromide. As copper chloride and iron chloride, it is preferable to use cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ) from the viewpoint of oxidizing power, respectively, but cuprous chloride (CuCl) and ferric chloride are preferable. Even if (FeCl 2 ) is used, supplying an oxidizing agent to the leachate will oxidize to cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ), respectively, so there is no significant difference.

工程3で使用する浸出液(第二の酸性水溶液)中の塩素イオンの濃度は、第一の酸性水溶液よりも低くても良く、30g/L〜125g/Lであることがより好ましい。工程3で使用する浸出液(第二の酸性水溶液)中の臭素イオンの濃度は、反応速度や溶解度の観点から、1g/L〜100g/Lであることが好ましく、経済性の観点から、10g/L〜40g/Lであることがより好ましい。また、金の浸出効率の観点からは、第二の酸性水溶液中の塩素イオンに対する臭素イオンの重量濃度比が1以上であることが好ましいが、金の濃度が十分に低いため、特段の配慮は必要としない。   The concentration of chlorine ions in the leachate (second acidic aqueous solution) used in step 3 may be lower than that of the first acidic aqueous solution, and more preferably 30 g / L to 125 g / L. The concentration of bromine ions in the leachate (second acidic aqueous solution) used in step 3 is preferably 1 g / L to 100 g / L from the viewpoint of reaction rate and solubility, and 10 g / L from the viewpoint of economy. It is more preferable that it is L-40g / L. Further, from the viewpoint of gold leaching efficiency, the weight concentration ratio of bromine ions to chlorine ions in the second acidic aqueous solution is preferably 1 or more, but since the gold concentration is sufficiently low, special considerations are do not need.

工程3の開始時における浸出液の酸化還元電位(vs Ag/AgCl)は、金浸出を促進する観点から550mV以上とするのが好ましく、600mV以上とするのがより好ましい。   The oxidation-reduction potential (vs Ag / AgCl) of the leaching solution at the start of step 3 is preferably 550 mV or more, more preferably 600 mV or more from the viewpoint of promoting gold leaching.

従って、本発明の好適な実施形態においては、工程3における浸出液(第二の酸性水溶液)として、塩素イオン及び臭素イオンの両方を含有するように選択することを条件に、塩酸及び臭素酸の少なくとも一方と、塩化第二銅及び臭化第二銅の少なくとも一方と、塩化第二鉄及び臭化第二鉄の少なくとも一方と、塩化ナトリウム及び臭化ナトリウムの少なくとも一方とを含む混合液を使用することができる。   Therefore, in a preferred embodiment of the present invention, at least hydrochloric acid and bromic acid are selected on the condition that the leachate (second acidic aqueous solution) in step 3 is selected to contain both chlorine ions and bromine ions. One, a mixture containing at least one of cupric chloride and cupric bromide, at least one of ferric chloride and ferric bromide, and at least one of sodium chloride and sodium bromide is used. be able to.

工程3の金浸出工程は酸化剤を供給しながら実施することで、酸化還元電位を管理する。酸化剤を添加しなければ途中で酸化還元電位が低下してしまい、浸出反応が進行しない。酸化剤としては特に制限はないが、例えば酸素、空気、塩素、臭素、及び過酸化水素などが挙げられる。極端に高い酸化還元電位をもつ酸化剤は必要なく、空気で十分である。経済性や安全性の観点からも空気が好ましい。   The gold leaching step of step 3 is performed while supplying an oxidizing agent, thereby managing the oxidation-reduction potential. If an oxidizing agent is not added, the redox potential is lowered in the middle, and the leaching reaction does not proceed. Although there is no restriction | limiting in particular as an oxidizing agent, For example, oxygen, air, chlorine, a bromine, hydrogen peroxide, etc. are mentioned. An oxidant with an extremely high redox potential is not necessary and air is sufficient. Air is also preferable from the viewpoint of economy and safety.

<その他の工程>
(銅回収)
工程1によって得られた浸出後液は銅成分を多量に含んでいるので、浸出後液から銅を回収することができる。銅の回収方法としては特に制限はないが、例えば溶媒抽出、イオン交換、卑な金属との置換析出及び電解採取などを利用することができる。浸出後液中の銅は1価及び2価の状態が混在しているが、溶媒抽出やイオン交換を円滑に行うために、全部が2価の銅イオンとなるように予め酸化しておくことが好ましい。酸化の方法は特に制限はないが空気や酸素を浸出後液中に吹き込む方法が簡便である。
<Other processes>
(Copper recovery)
Since the liquid after leaching obtained in step 1 contains a large amount of copper component, copper can be recovered from the liquid after leaching. Although there is no restriction | limiting in particular as a copper collection | recovery method, For example, solvent extraction, ion exchange, substitution precipitation with a base metal, electrowinning, etc. can be utilized. The copper in the solution after leaching contains both monovalent and divalent states, but in order to perform solvent extraction and ion exchange smoothly, all of them should be oxidized beforehand to be divalent copper ions. Is preferred. The method of oxidation is not particularly limited, but a method of leaching air or oxygen into the liquid after leaching is simple.

(金回収)
工程3によって得られた浸出反応液には金が溶解しており、当該浸出反応液から金を回収することができる。金の回収方法としては特に制限はないが、活性炭吸着、電解採取、溶媒抽出、及びイオン交換などを利用することができる。浸出反応の途中で金を回収することで浸出反応液中の金濃度を低下させ、金の浸出率を高めることもできる。
(Gold collection)
Gold is dissolved in the leaching reaction solution obtained in step 3, and gold can be recovered from the leaching reaction solution. Although there is no restriction | limiting in particular as a collection | recovery method of gold | metal | money, Activated carbon adsorption | suction, electrowinning, solvent extraction, ion exchange, etc. can be utilized. By collecting gold during the leaching reaction, the gold concentration in the leaching reaction solution can be reduced, and the gold leaching rate can be increased.

<試験1>
硫化鉱物として、Cu:16質量%、Fe:26質量%、S:28質量%を含有し、Auを63g/t含有する銅精鉱を粉砕したものを用意した。表1に示す組成を有する浸出液(第一の酸性水溶液)16Lを70〜85℃に加温後、当該銅精鉱480gを投入し、浸出液への空気吹き込み(0.2L/min)と撹拌を継続しながら浸出試験を実施した。なお、金属の分析は、ICP発光分光分析法で行った。
<Test 1>
As the sulfide mineral, a copper concentrate containing Cu: 16% by mass, Fe: 26% by mass, S: 28% by mass and containing 63 g / t of Au was prepared. After heating 16 L of a leachate (first acidic aqueous solution) having the composition shown in Table 1 to 70 to 85 ° C., 480 g of the copper concentrate is added, and air is blown into the leachate (0.2 L / min) and stirred. The leaching test was conducted while continuing. The metal analysis was performed by ICP emission spectroscopic analysis.

Figure 2013163868
*全塩化物イオン及び全臭化物イオンは、浸出液の成分が完全に電離していると仮定し、臭素イオンは臭化ナトリウムで添加し、全塩素イオン濃度が180g/Lとなるよう塩化ナトリウムで調整した。
Figure 2013163868
* Total chloride and bromide ions are assumed to be completely ionized in the leachate, bromine ions are added with sodium bromide, and adjusted with sodium chloride so that the total chloride ion concentration is 180 g / L. did.

上記試験によって得られた、浸出時の酸化還元電位ORP(vs Ag/AgCl)とCu及びAuの浸出率との関係を表2及び図1に示す。浸出率は硫化鉱物中の含有量を100%とし、浸出残渣中の含有量から逆算で算出した。表2及び図1より、Cuは浸出液A及びBの間で浸出率に変化はなく、ORPが450mVで浸出率は90質量%程度に到達し、ORPが500mVで99質量%以上の浸出率となった。一方、Auは、臭素イオンを含有しない浸出液Aを使用した場合、ORPが450mVまではほとんど浸出せず、500mVで15質量%程度浸出された。臭素イオンを含有する浸出液Bを使用した場合、ORPが450mVで20質量%程度が浸出し、500mVでは約40質量%に達した。   The relationship between the oxidation-reduction potential ORP (vs Ag / AgCl) during leaching and the leaching rate of Cu and Au obtained by the above test is shown in Table 2 and FIG. The leaching rate was calculated by calculating backward from the content in the leaching residue, with the content in the sulfide mineral being 100%. From Table 2 and FIG. 1, Cu has no change in the leaching rate between the leaching solutions A and B, the leaching rate reaches about 90% by mass with ORP of 450 mV, and the leaching rate of 99% by mass or more with ORP of 500 mV. became. On the other hand, when the leaching solution A containing no bromine ions was used, Au hardly leached until the ORP was 450 mV, and leached at about 15% by mass at 500 mV. When the leachate B containing bromine ions was used, about 20% by mass was leached when the ORP was 450 mV, and reached about 40% by mass at 500 mV.

Figure 2013163868
Figure 2013163868

Figure 2013163868
Figure 2013163868

上記試験では銅浸出工程と金浸出工程の間の固液分離を実施していないが、上記の結果から、臭化物イオンを含有しない浸出液Aを銅浸出工程に使用することで、銅浸出中における金の浸出を抑制する一方で、臭化物イオンを含有する浸出液Bを金浸出工程に使用することで金の浸出率を高めることができることが理解できる。例えば、浸出液Aを用いて銅浸出工程の終点となるORPを450〜500mVの間に設定し、固液分離後、浸出液Bに切り替えて金浸出工程を実施することで、銅及び金を高い分離効率で分離するとともに、金を高い回収率で回収できることが理解できる。また、銅浸出工程は、銅の浸出率が95質量%以上、且つ、金の浸出率が10質量%以下の条件で終了させることも可能であることが分かる。   Although the solid-liquid separation between the copper leaching process and the gold leaching process is not performed in the above test, the above results show that the leaching liquid A that does not contain bromide ions is used in the copper leaching process. It can be understood that the leaching rate of gold can be increased by using the leaching solution B containing bromide ions in the gold leaching step while suppressing the leaching of gold. For example, the ORP that is the end point of the copper leaching process is set between 450 and 500 mV using the leaching liquid A, and after the solid-liquid separation, the gold leaching process is performed by switching to the leaching liquid B, thereby separating copper and gold with high separation. It can be understood that gold can be recovered at a high recovery rate while being separated with efficiency. Further, it can be seen that the copper leaching step can be completed under the conditions that the copper leaching rate is 95% by mass or more and the gold leaching rate is 10% by mass or less.

Claims (5)

硫化鉱物中の銅及び金を浸出する方法であって、
塩素イオン、銅イオン及び鉄イオンを含有し、臭素イオンを含有しない第一の酸性水溶液を酸化剤の供給下で硫化鉱物に接触させて、硫化鉱物中の銅成分を浸出する工程1と、
工程1によって得られた浸出反応液を固液分離によって浸出残渣と浸出後液に分離する工程2と、
塩素イオン、臭素イオン、銅イオン及び鉄イオンを含有する第二の酸性水溶液を酸化剤の供給下で工程2によって得られた浸出残渣に接触させて、当該残渣中の金成分を浸出する工程3と、
を含み、
前記第二の酸性水溶液中の塩素イオンに対する臭素イオンの重量濃度比が1以上であることを特徴とする方法。
A method of leaching copper and gold in sulfide minerals,
A first acidic aqueous solution containing chlorine ions, copper ions and iron ions and not containing bromine ions is contacted with a sulfide mineral under supply of an oxidizing agent to leach copper components in the sulfide mineral; and
Step 2 for separating the leaching reaction liquid obtained in Step 1 into a leaching residue and a liquid after leaching by solid-liquid separation;
Step 3 of contacting a second acidic aqueous solution containing chlorine ion, bromine ion, copper ion and iron ion with the leaching residue obtained in Step 2 under supply of an oxidizing agent to leach the gold component in the residue When,
Including
The weight concentration ratio of bromine ions to chlorine ions in the second acidic aqueous solution is 1 or more.
工程1は、銅の浸出率が90質量%以上、且つ、金の浸出率が10質量%以下の条件を満たしたときに終了する請求項1に記載の方法。   The method according to claim 1, wherein the step 1 is completed when the copper leaching rate is 90 mass% or more and the gold leaching rate is 10 mass% or less. 工程1は、酸化還元電位(vs Ag/AgCl)が450〜500mVの間で終了する請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein step 1 is completed when the oxidation-reduction potential (vs Ag / AgCl) is between 450 and 500 mV. 第一の酸性水溶液の工程1の開始時の酸化還元電位(vs Ag/AgCl)が500mV以上であり、第二の酸性水溶液の工程3の開始時の酸化還元電位(vs Ag/AgCl)が550mV以上である請求項1〜3の何れか一項に記載の方法。   The oxidation-reduction potential (vs Ag / AgCl) at the start of step 1 of the first acidic aqueous solution is 500 mV or more, and the oxidation-reduction potential (vs Ag / AgCl) at the start of step 3 of the second acidic aqueous solution is 550 mV. It is the above, The method as described in any one of Claims 1-3. 工程1及び工程3で使用する酸化剤が空気である請求項1〜4の何れか一項に記載の方法。   The method according to any one of claims 1 to 4, wherein the oxidizing agent used in step 1 and step 3 is air.
JP2013116062A 2013-05-31 2013-05-31 Leaching method of copper and gold from sulfide ore Pending JP2013163868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013116062A JP2013163868A (en) 2013-05-31 2013-05-31 Leaching method of copper and gold from sulfide ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013116062A JP2013163868A (en) 2013-05-31 2013-05-31 Leaching method of copper and gold from sulfide ore

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011047087A Division JP5319718B2 (en) 2011-03-04 2011-03-04 Methods for leaching copper and gold from sulfide ores

Publications (1)

Publication Number Publication Date
JP2013163868A true JP2013163868A (en) 2013-08-22

Family

ID=49175395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013116062A Pending JP2013163868A (en) 2013-05-31 2013-05-31 Leaching method of copper and gold from sulfide ore

Country Status (1)

Country Link
JP (1) JP2013163868A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199098A1 (en) * 2014-06-25 2015-12-30 Jx日鉱日石金属株式会社 Method for processing copper-containing molybdenum ore
JP2016113628A (en) * 2014-12-10 2016-06-23 Jx金属株式会社 Treatment method of copper-containing molybdenum ore
WO2017199254A1 (en) * 2016-05-19 2017-11-23 Bromine Compounds Ltd. A process for recovering gold from ores
WO2023243702A1 (en) * 2022-06-16 2023-12-21 三菱マテリアル株式会社 Noble metal production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106347A (en) * 2006-09-28 2008-05-08 Nikko Kinzoku Kk Method for leaching gold
JP2009526912A (en) * 2006-02-17 2009-07-23 オウトテック オサケイティオ ユルキネン Gold collection method
JP2009235525A (en) * 2008-03-27 2009-10-15 Nippon Mining & Metals Co Ltd Method for leaching out gold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526912A (en) * 2006-02-17 2009-07-23 オウトテック オサケイティオ ユルキネン Gold collection method
JP2008106347A (en) * 2006-09-28 2008-05-08 Nikko Kinzoku Kk Method for leaching gold
JP2009235525A (en) * 2008-03-27 2009-10-15 Nippon Mining & Metals Co Ltd Method for leaching out gold

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199098A1 (en) * 2014-06-25 2015-12-30 Jx日鉱日石金属株式会社 Method for processing copper-containing molybdenum ore
JP2016113628A (en) * 2014-12-10 2016-06-23 Jx金属株式会社 Treatment method of copper-containing molybdenum ore
WO2017199254A1 (en) * 2016-05-19 2017-11-23 Bromine Compounds Ltd. A process for recovering gold from ores
RU2749792C2 (en) * 2016-05-19 2021-06-16 Броумин Компаундс Лтд. Method for extracting gold from ores
US11041227B2 (en) 2016-05-19 2021-06-22 Bromine Compounds Ltd Process for recovering gold from ores
WO2023243702A1 (en) * 2022-06-16 2023-12-21 三菱マテリアル株式会社 Noble metal production method

Similar Documents

Publication Publication Date Title
JP5319718B2 (en) Methods for leaching copper and gold from sulfide ores
JP2013147685A (en) Gold recovery method, and gold production method using the same
JP6437366B2 (en) Method for recovering molybdenum from molybdenum concentrate
JP4717908B2 (en) Method for recovering copper from a chloride bath containing copper
JP2013163868A (en) Leaching method of copper and gold from sulfide ore
JP5840642B2 (en) Method for recovering gold from sulfide minerals
JP5792043B2 (en) Method of leaching gold from sulfide ore
JP6195536B2 (en) Iron removal method, iron leaching method, and gold recovery method
JP6437367B2 (en) Recovery method of rhenium from molybdenum concentrate
JP6034433B2 (en) Method of leaching gold from sulfide ore
JP6998259B2 (en) How to treat copper ore
JP6196209B2 (en) Method for treating copper-containing molybdenum ore
JP6038192B2 (en) Method for leaching gold from gold ore containing pyrite
JP6899672B2 (en) How to recover gold from ore or refining intermediates
JP2016141877A (en) Method for treating copper-containing molybdenum ore
JP6429990B2 (en) Method for separating molybdenum and method for treating copper-containing molybdenum ore
JP6750454B2 (en) Method for removing impurities from bismuth electrolyte
WO2019064709A1 (en) Gold leaching method and gold recovery method
WO2015199098A1 (en) Method for processing copper-containing molybdenum ore
JP7153599B2 (en) Ore processing method
JP7153600B2 (en) Method for removing calcium from ore and method for recovering metal
JP6046082B2 (en) Method for treating copper-containing molybdenum ore
JP5512640B2 (en) Silver recovery method
JP2014065947A (en) Method for leaching copper sulfide ore
JP2013133537A (en) Method for recovering gold from gold-containing acidic aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150721