JP5840642B2 - Method for recovering gold from sulfide minerals - Google Patents

Method for recovering gold from sulfide minerals Download PDF

Info

Publication number
JP5840642B2
JP5840642B2 JP2013075226A JP2013075226A JP5840642B2 JP 5840642 B2 JP5840642 B2 JP 5840642B2 JP 2013075226 A JP2013075226 A JP 2013075226A JP 2013075226 A JP2013075226 A JP 2013075226A JP 5840642 B2 JP5840642 B2 JP 5840642B2
Authority
JP
Japan
Prior art keywords
leaching
gold
copper
chloride
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013075226A
Other languages
Japanese (ja)
Other versions
JP2014198887A (en
Inventor
和浩 波多野
和浩 波多野
浩至 勝川
浩至 勝川
佐野 正樹
正樹 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013075226A priority Critical patent/JP5840642B2/en
Priority to AU2014245389A priority patent/AU2014245389B2/en
Priority to PCT/JP2014/053192 priority patent/WO2014156349A1/en
Priority to PE2015002096A priority patent/PE20151715A1/en
Priority to CA2908688A priority patent/CA2908688C/en
Publication of JP2014198887A publication Critical patent/JP2014198887A/en
Priority to CL2015002889A priority patent/CL2015002889A1/en
Application granted granted Critical
Publication of JP5840642B2 publication Critical patent/JP5840642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は硫化鉱物からの金の回収方法に関する。   The present invention relates to a method for recovering gold from sulfide minerals.

近年、従来の乾式法に替わり、硫化鉱から湿式法によって銅を回収する技術が注目されている。そして、硫化鉱には微量ながら金などの貴金属を含有する場合も多く、銅に加えて金等の貴金属を経済的に回収する方法が求められている。   In recent years, a technique for recovering copper from sulfide ore by a wet method instead of the conventional dry method has attracted attention. The sulfide ore often contains a precious metal such as gold in a small amount, and a method for economically recovering the precious metal such as gold in addition to copper is required.

このような問題に取り組んだ技術として、アルカリ金属又はアルカリ土類金属の塩化物及び臭化物と、銅及び鉄の塩化物又は臭化物とを使用し、銅浸出工程後の残渣に対して金浸出工程を実施する方法が知られている(特開2009−235519号公報)。この方法によれば、特別な酸化剤を使用することなく、空気を使用するだけで、硫化銅鉱中の銅及び金を高い浸出率で浸出し、回収することができるとされている。   As a technology for addressing such problems, alkali metal or alkaline earth metal chlorides and bromides and copper and iron chlorides or bromides are used, and the gold leaching process is performed on the residue after the copper leaching process. A method of carrying out is known (Japanese Patent Laid-Open No. 2009-235519). According to this method, it is said that copper and gold in copper sulfide ore can be leached and recovered at a high leaching rate only by using air without using a special oxidizing agent.

また、銅浸出工程後の残渣中の銅品位が7.9%以下になった時点で金浸出が行われることを利用し、銅浸出工程後の残渣中の銅品位を7.9%以下に低下させてから金浸出工程を実施する方法も知られている(特開2009−235525号公報)。   Also, using the fact that gold leaching is performed when the copper quality in the residue after the copper leaching process becomes 7.9% or less, the copper quality in the residue after the copper leaching process is reduced to 7.9% or less. A method of performing the gold leaching process after lowering is also known (Japanese Patent Laid-Open No. 2009-235525).

特開2009−235519号公報JP 2009-235519 A 特開2009−235525号公報JP 2009-235525 A

上記文献に記載の技術は、硫化鉱からの湿式法による銅及び金の回収方法に関して商業上実施可能な技術を提案するものであるが、銅及び金の分離効率の向上や金の回収率向上については未だ改善の余地は残されている。   The technique described in the above document proposes a commercially feasible technique for a method for recovering copper and gold by a wet method from sulfide ore, but improves the separation efficiency of copper and gold and improves the recovery rate of gold. There is still room for improvement.

硫化鉱を湿式処理する場合、随伴物の金は、予め残渣に分離濃縮された後にハロゲン浴で浸出される、もしくは主成分鉱の浸出後期に同時にハロゲン浴に浸出されるが、この浸出後液にはハロゲン化物を配位子とした金錯体が残留している。この金錯体を活性炭に吸着して回収する場合、その吸着量が多ければ多いほど歩留まりが大きい。特に活性炭を焼却処理する場合には、単位活性炭重量あたりの吸着量が生産コストに直結して大きな影響を及ぼす。そのため、単位吸着量を増加させる方法の開発が望まれるが、特許文献1及び2のいずれも、金の活性炭吸着性向上に対する検討はなされておらず、また一般的にも活性炭の種類や浸出後液の共雑物等の問題もあり適当な方法は知られていない。   When wet processing sulfide sulfide ore, the accompanying gold is separated and concentrated in advance to a residue and then leached in a halogen bath, or leached in a halogen bath at the same time as the main component ore leaching. Remains a gold complex having a halide as a ligand. When the gold complex is adsorbed and recovered on activated carbon, the yield increases as the amount of adsorption increases. In particular, when the activated carbon is incinerated, the amount of adsorption per unit activated carbon weight directly affects the production cost and has a great effect. Therefore, development of a method for increasing the unit adsorption amount is desired. However, neither of Patent Documents 1 and 2 has studied the improvement of the activated carbon adsorption property of gold, and generally, the type of activated carbon and after leaching. There is a problem such as liquid contamination, and an appropriate method is not known.

そこで、本発明は、銅及び金の分離効率を向上させるとともに、活性炭への金の吸着量を増加させることが可能な硫化鉱物からの金の回収方法を提供することを課題とする。   Then, this invention makes it a subject to provide the collection | recovery method of the gold | metal | money from the sulfide mineral which can increase the adsorption amount of gold | metal | money to activated carbon while improving the separation efficiency of copper and gold | metal | money.

本発明者は鋭意研究の結果、金浸出工程において酸化還元電位を上げて金浸出を十分に浸出した後の金浸出後液に対して活性炭を利用して金を吸着させる際に、金浸出後液中の一価の銅イオンが活性炭への競合吸着物となることを見出した。そしてこの一価の銅イオンを、金の活性炭吸着工程前に予め低減させておくことで、活性炭への金の吸着量を有意に向上できることを見出した。   As a result of earnest research, the present inventor found that after gold leaching, when gold was adsorbed using activated carbon to the gold leaching solution after raising the redox potential in the gold leaching process and sufficiently leaching the gold leaching. It was found that monovalent copper ions in the liquid became a competitive adsorbate to activated carbon. And it discovered that the adsorption amount of gold | metal | money to activated carbon can be improved significantly by reducing this monovalent copper ion beforehand before the activated carbon adsorption | suction process of gold | metal | money.

本発明は一側面において、塩素イオン、銅イオン及び鉄イオンを含有し、臭素イオンを含有しない第一の酸性水溶液を酸化剤の供給下で硫化鉱に接触させて、硫化鉱中の銅成分を浸出する工程1と、工程1によって得られた浸出反応液を固液分離によって浸出残渣と浸出後液に分離する工程2と、塩素イオン、臭素イオン、銅イオン及び鉄イオンを含有する第二の酸性水溶液を酸化剤の供給下で工程2によって得られた浸出残渣に接触させて、当該残渣中の金成分を浸出する工程3と、工程3によって得られた金浸出後液に塩化第一銅を添加した後、酸化剤を加えて酸化還元電位(参照電極、銀/塩化銀)を520mV以上に調整して金浸出後液中の一価の銅イオンを低減させる工程4と、工程4によって得られた金浸出後液中の金を活性炭に吸着させる工程5とを含む硫化鉱物からの金の回収方法である。 In one aspect of the present invention, a first acidic aqueous solution containing chlorine ions, copper ions and iron ions and not containing bromine ions is brought into contact with sulfide ore under supply of an oxidizing agent, and the copper component in the sulfide ore is obtained. Step 2 for leaching, Step 2 for separating the leaching reaction liquid obtained in Step 1 into a leaching residue and a liquid after leaching by solid-liquid separation, and a second containing chlorine ions, bromine ions, copper ions and iron ions An acidic aqueous solution is brought into contact with the leaching residue obtained in step 2 under the supply of an oxidizing agent, and the gold component in the residue is leached, and the post-gold leaching solution obtained in step 3 is added to cuprous chloride. After adding oxidant, the redox potential (reference electrode, silver / silver chloride) is adjusted to 520 mV or more by adding an oxidizing agent to reduce monovalent copper ions in the solution after gold leaching. After the gold leaching, the gold in the liquid is activated carbon A method for recovering gold from sulphide minerals and a step 5 for adsorption.

本発明に係る硫化鉱物からの金の回収方法は一実施態様において、工程4が、酸化還元電位(参照電極、銀/塩化銀)を520mVから570mVに調整することを含む。   In one embodiment, the method for recovering gold from sulfide mineral according to the present invention includes adjusting the oxidation-reduction potential (reference electrode, silver / silver chloride) from 520 mV to 570 mV.

本発明に係る硫化鉱物からの金の回収方法は別の一実施態様において、工程4が、空気の吹き込みにより酸化還元電位(参照電極、銀/塩化銀)を調整することを含む。 In another embodiment of the method for recovering gold from sulfide mineral according to the present invention, step 4 includes adjusting the oxidation-reduction potential (reference electrode, silver / silver chloride) by blowing air.

本発明によれば、活性炭への金の吸着量を増加させることが可能な硫化鉱物からの金の回収方法が提供できる。更に、銅浸出工程に臭素イオンを含有しない浸出液を使用することで経済的に銅及び金の分離効率を向上させることが可能となると共に、その後の金浸出工程において臭素イオンを含有する浸出液を使用することで高い金の回収率が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the collection | recovery method of gold | metal | money from the sulfide mineral which can increase the adsorption amount of gold | metal | money to activated carbon can be provided. Furthermore, it is possible to economically improve the separation efficiency of copper and gold by using a leachate not containing bromine ions in the copper leaching process, and use a leachate containing bromine ions in the subsequent gold leaching process. By doing so, a high gold recovery rate can be obtained.

ORP(vs Ag/AgCl)と銅及び金の浸出率の関係を示す図である。It is a figure which shows the relationship between ORP (vs Ag / AgCl) and the leaching rate of copper and gold | metal | money. 金浸出後液の酸化還元電位と吸着後液中の金濃度との関係を表すグラフである。It is a graph showing the relationship between the oxidation-reduction potential of the solution after gold leaching and the gold concentration in the solution after adsorption. 浸出液を活性炭充填カラムに連続的に給液した場合において、CuClの添加と空気の吹き込みを行った場合の、酸化還元電位及び金濃度の変化の関係を表すグラフである。It is a graph showing the relationship between the oxidation-reduction potential and the change in gold concentration when CuCl is added and air is blown when the leachate is continuously supplied to the activated carbon packed column.

<工程1:銅浸出工程>
工程1では、塩素イオン、銅イオン及び鉄イオンを含有し、臭素イオンを含有しない浸出液(第一の酸性水溶液)を酸化剤の供給下で硫化鉱物に接触させて、硫化鉱物中の銅成分を浸出する。すなわち、工程1では浸出液として塩化浴を使用することで硫化鉱中の銅を浸出することを基本としており、更に硫化鉱中に一般的に含まれる銅イオン及び鉄イオンを浸出液中に存在させておくことで、銅の浸出反応の促進を狙っている。浸出液と硫化鉱物の接触方法としては特に制限はなく、噴霧や浸漬などの方法があるが、反応効率の観点から、浸出液中に硫化鉱物を浸漬し、撹拌する方法が好ましい。硫化鉱物としては特に制限はないが、典型的には金を含有する一次硫化銅鉱や金を含むケイ酸鉱を含有する硫化銅鉱が挙げられる。
<Process 1: Copper leaching process>
In step 1, a leaching solution (first acidic aqueous solution) containing chlorine ions, copper ions and iron ions and not containing bromine ions is brought into contact with the sulfide mineral under the supply of an oxidizing agent, and the copper component in the sulfide mineral is then removed. Leaching. In other words, in Step 1, the copper in the sulfide ore is leached by using a chloride bath as the leaching solution, and copper ions and iron ions generally contained in the sulfide ore are present in the leaching solution. It aims to promote the leaching reaction of copper. The contact method between the leachate and the sulfide mineral is not particularly limited, and there are methods such as spraying and dipping. From the viewpoint of reaction efficiency, a method in which the sulfide mineral is immersed in the leachate and stirred is preferred. Although there is no restriction | limiting in particular as a sulfide mineral, Typically, the copper sulfide ore containing the silicate ore containing the primary copper sulfide ore containing gold | metal | money is mentioned.

塩素イオンの供給源としては特に制限はなく、例えば塩化水素、塩酸、塩化金属及び塩素ガス等が挙げられるが、経済性や安全性を考慮すれば塩化金属の形態で供給するのが好ましい。塩化金属としては、例えば塩化銅(塩化第一銅、塩化第二銅)、塩化鉄(塩化第一鉄、塩化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の塩化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の塩化物が挙げられ、経済性や入手容易性の観点から、塩化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、塩化銅及び塩化鉄を利用することも好ましい。   The supply source of chlorine ions is not particularly limited, and examples thereof include hydrogen chloride, hydrochloric acid, metal chloride, chlorine gas, and the like, but it is preferable to supply in the form of metal chloride in consideration of economy and safety. Examples of the metal chloride include copper chloride (cuprous chloride, cupric chloride), iron chloride (ferrous chloride, ferric chloride), and alkali metals (lithium, sodium, potassium, rubidium, cesium, francium). Chlorides and chlorides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, radium) can be mentioned, and sodium chloride is preferable from the viewpoint of economy and availability. Moreover, since it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper chloride and iron chloride.

銅イオン及び鉄イオンは、これらの塩の形態で供給するのが通常であり、例えばハロゲン化塩の形態で供給することができる。塩化物イオンの供給源としても利用できる観点から銅イオン及び鉄イオンは塩化銅及び塩化鉄として供給されるのが好ましい。塩化銅及び塩化鉄としては酸化力の観点から塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)をそれぞれ使用するのが望ましいが、塩化第一銅(CuCl)及び塩化第一鉄(FeCl2)を使用しても浸出液に酸化剤を供給することで、塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)にそれぞれ酸化されるため、大差はない。 Copper ions and iron ions are usually supplied in the form of these salts. For example, they can be supplied in the form of halide salts. From the viewpoint that it can also be used as a supply source of chloride ions, copper ions and iron ions are preferably supplied as copper chloride and iron chloride. As copper chloride and iron chloride, it is desirable to use cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ) from the viewpoint of oxidizing power, respectively, but cuprous chloride (CuCl) and ferrous chloride are preferable. Even if (FeCl 2 ) is used, supplying an oxidizing agent to the leachate will oxidize to cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ), respectively, so there is no significant difference.

工程1で使用する浸出液(第一の酸性水溶液)中の塩素イオンの濃度は、銅の溶解反応を高い効率で実現する観点から、70g/L以上であることが好ましく、140g/L以上であることがより好ましい。   The concentration of chlorine ions in the leachate (first acidic aqueous solution) used in step 1 is preferably 70 g / L or more, and 140 g / L or more from the viewpoint of realizing a copper dissolution reaction with high efficiency. It is more preferable.

硫化鉱物から銅の浸出効率を高めるために、浸出液は酸性とすべきであり、塩化物イオンの供給源としても利用できることから、塩酸酸性とするのが好ましい。浸出液のpHは浸出した銅の溶解度を確保する理由から、0〜3程度とするのが好ましく、1.0〜2.0程度とするのがより好ましい。また、工程1の開始時における浸出液の酸化還元電位(参照電極、銀/塩化銀)は、銅浸出を促進する観点から500mV以上とするのが好ましく、550mV以上とするのがより好ましい。   In order to increase the leaching efficiency of copper from sulfide minerals, the leaching solution should be acidic, and since it can be used as a supply source of chloride ions, it is preferable to make it acidic with hydrochloric acid. The pH of the leaching solution is preferably about 0 to 3 and more preferably about 1.0 to 2.0 because the solubility of the leached copper is ensured. Further, the oxidation-reduction potential (reference electrode, silver / silver chloride) of the leaching solution at the start of Step 1 is preferably 500 mV or more, more preferably 550 mV or more from the viewpoint of promoting copper leaching.

工程1で使用する浸出液(第一の酸性水溶液)は臭素イオンを含有しない。臭素イオンが浸出液中に含まれると、金浸出が開始する酸化還元電位が低下するため、銅の浸出が十分に進行しない間に金の浸出が開始するオーバーラップ領域が大きくなるからである。換言すれば、本発明においては工程1で使用する浸出液(第一の酸性水溶液)は臭素イオンを含有しないため、金の浸出を抑制しながら、銅浸出工程の終点における酸化還元電位を高くして、銅の浸出効率を高めることができる。   The leachate (first acidic aqueous solution) used in step 1 does not contain bromine ions. This is because if bromine ions are contained in the leaching solution, the oxidation-reduction potential at which gold leaching starts decreases, so that the overlap region where gold leaching starts while copper leaching does not proceed sufficiently increases. In other words, in the present invention, since the leaching solution (first acidic aqueous solution) used in step 1 does not contain bromine ions, the redox potential at the end point of the copper leaching step is increased while suppressing gold leaching. , Copper leaching efficiency can be increased.

従って、本発明の好適な実施形態においては、工程1における浸出液(第一の酸性水溶液)として、塩酸、塩化第二銅、塩化第二鉄及び塩化ナトリウムの混合液を使用することができる。   Therefore, in a preferred embodiment of the present invention, a mixed liquid of hydrochloric acid, cupric chloride, ferric chloride and sodium chloride can be used as the leachate (first acidic aqueous solution) in Step 1.

工程1の銅浸出工程は酸化剤を供給しながら実施することで、酸化還元電位を管理する。酸化剤を添加しなければ途中で酸化還元電位が低下してしまい、浸出反応が進行しない。酸化剤としては特に制限はないが、例えば酸素、空気、塩素及び過酸化水素などが挙げられる。ただし、酸化剤として臭素化合物を使用するのは好ましくない。極端に高い酸化還元電位をもつ酸化剤は必要なく、空気で十分である。経済性や安全性の観点からも空気が好ましい。   The copper leaching step of step 1 is performed while supplying an oxidizing agent, thereby managing the redox potential. If an oxidizing agent is not added, the redox potential is lowered in the middle, and the leaching reaction does not proceed. Although there is no restriction | limiting in particular as an oxidizing agent, For example, oxygen, air, chlorine, hydrogen peroxide, etc. are mentioned. However, it is not preferable to use a bromine compound as the oxidizing agent. An oxidant with an extremely high redox potential is not necessary and air is sufficient. Air is also preferable from the viewpoint of economy and safety.

工程1に使用する浸出液の温度は浸出効率や装置の材質の観点から、60℃以上とするのが好ましく、70〜90℃とするのがより好ましい。浸出効率を高めることを目的として工程1を加圧下で実施することも可能であるが、大気圧下で十分である。銅浸出を促進するため、処理対象となる硫化鉱物を予め粉砕・摩鉱しておくことが好ましい。   The temperature of the leachate used in step 1 is preferably 60 ° C. or higher, more preferably 70 to 90 ° C., from the viewpoint of leaching efficiency and material of the apparatus. It is possible to carry out step 1 under pressure for the purpose of increasing the leaching efficiency, but it is sufficient under atmospheric pressure. In order to promote copper leaching, it is preferable to previously grind and grind the sulfide mineral to be treated.

代表的な銅の硫化鉱であるカルコパイライトを例にすると、工程1では次のような反応式に従って銅の浸出が起きていると考えられる。
CuFeS2+3CuCl2→4CuCl+FeCl2+2S (1)
CuFeS2+3FeCl3→CuCl+4FeCl2+2S (2)
酸化剤として空気を使用した場合、式(1)又は式(2)の反応が進行することと併行して、これらの浸出反応の結果生成した塩化第一銅及び塩化第一鉄が次のような反応でそれぞれ塩化第二銅及び塩化第二鉄に酸化される。
CuCl+(1/4)O2+HCl→CuCl2+(1/2)H2O (3)
FeCl2+(1/4)O2+HCl→FeCl3+(1/2)H2O (4)
式(3)及び式(4)で生成する化学種は式(1)及び式(2)の酸化剤として浸出に再利用できる。この結果、浸出率は更に高くなる。式(3)及び式(4)式の反応は浸出液中に吹込む空気中の酸素で進行するため、浸出反応中に空気を吹込むことで、原料より溶出した塩化第一銅や塩化第一鉄を酸化して生じた塩化第二銅又は塩化第二鉄を利用して銅浸出反応を継続できる。
Taking chalcopyrite, which is a typical copper sulfide ore, as an example, it is thought that in step 1, copper leaching occurs according to the following reaction formula.
CuFeS 2 + 3CuCl 2 → 4CuCl + FeCl 2 + 2S (1)
CuFeS 2 + 3FeCl 3 → CuCl + 4FeCl 2 + 2S (2)
When air is used as the oxidant, the cuprous chloride and ferrous chloride generated as a result of these leaching reactions in parallel with the progress of the reaction of formula (1) or formula (2) are as follows: In a simple reaction, they are oxidized to cupric chloride and ferric chloride, respectively.
CuCl + (1/4) O 2 + HCl → CuCl 2 + (1/2) H 2 O (3)
FeCl 2 + (1/4) O 2 + HCl → FeCl 3 + (1/2) H 2 O (4)
The chemical species generated in formulas (3) and (4) can be reused for leaching as oxidants in formulas (1) and (2). As a result, the leaching rate is further increased. Since the reactions of the formulas (3) and (4) proceed with oxygen in the air blown into the leachate, cuprous chloride and cuprous chloride eluted from the raw material are blown in during the leach reaction. Copper leaching reaction can be continued using cupric chloride or ferric chloride generated by oxidizing iron.

工程1に使用する浸出液は当初高い酸化還元電位(参照電極、銀/塩化銀)を有している(例:500mV以上)が、硫化鉱物と接触させて浸出反応を開始すると、酸化還元電位は急落する。その後、酸化還元電位は酸化剤の供給下で銅の浸出反応が進行するにつれて徐々に上昇していく。臭素イオンを含まない上記の浸出液の場合、酸化還元電位(参照電極、銀/塩化銀)が450mV以上であれば銅は十分に浸出する。一方で、酸化還元電位が高くなると今度は金の浸出も始まるが、臭素イオンを含まない上記の浸出液の場合、酸化還元電位(参照電極、銀/塩化銀)が500mV以下であれば金はほとんど浸出しない。従って、酸化還元電位(参照電極、銀/塩化銀)が450〜500mV、好ましくは450〜475mVの範囲にあるときに工程1の銅浸出反応を終了することで、銅及び金の高い分離効率が得られるようになる。   The leachate used in Step 1 initially has a high redox potential (reference electrode, silver / silver chloride) (eg, 500 mV or higher), but when it comes into contact with a sulfide mineral and starts the leaching reaction, the redox potential is Plummet. Thereafter, the oxidation-reduction potential gradually increases as the copper leaching reaction proceeds under the supply of the oxidizing agent. In the case of the above leaching solution not containing bromine ions, copper is sufficiently leached if the oxidation-reduction potential (reference electrode, silver / silver chloride) is 450 mV or higher. On the other hand, when the oxidation-reduction potential is increased, gold leaching starts, but in the case of the above-described leaching solution not containing bromine ions, most of the gold is present if the oxidation-reduction potential (reference electrode, silver / silver chloride) is 500 mV or less. Does not leach. Therefore, when the redox potential (reference electrode, silver / silver chloride) is in the range of 450 to 500 mV, preferably in the range of 450 to 475 mV, the copper leaching reaction in step 1 is completed, so that high separation efficiency of copper and gold can be obtained. It will be obtained.

その結果、本発明の好ましい実施態様においては、工程1は、銅の浸出率が90質量%以上、且つ、金の浸出率が10質量%以下の条件を満たしたときに終了することができ、より好ましい実施態様においては、工程1は、銅の浸出率が95質量%以上、且つ、金の浸出率が10質量%以下の条件を満たしたときに終了することができる。   As a result, in a preferred embodiment of the present invention, step 1 can be completed when the leaching rate of copper is 90% by mass or more and the leaching rate of gold is 10% by mass or less, In a more preferred embodiment, Step 1 can be completed when the copper leaching rate is 95% by mass or more and the gold leaching rate is 10% by mass or less.

<工程2:固液分離工程>
工程2では、工程1によって得られた浸出反応液を固液分離によって浸出残渣と浸出後液に分離する。固液分離方法は特に制限はないが、フィルタープレスやシックナーを使用することができる。浸出残渣には金が残留しており、浸出後液には銅が溶解している。
<Step 2: Solid-liquid separation step>
In step 2, the leaching reaction liquid obtained in step 1 is separated into a leaching residue and a liquid after leaching by solid-liquid separation. The solid-liquid separation method is not particularly limited, but a filter press or thickener can be used. Gold remains in the leaching residue, and copper is dissolved in the liquid after leaching.

工程1は銅浸出工程を一段階で実施することもできるが、硫化鉱物中の銅の浸出を十分に行うために銅浸出工程を複数段で実施することも可能である。複数段を利用した銅浸出工程は、具体的には、一段目における銅浸出操作を終了後に、フィルタープレスやシックナーなどによって固液分離し、浸出残渣に対して次段の銅浸出操作を行うことにより実施することができる。典型的には、銅浸出工程は2〜4段階で構成することができる。この場合、各浸出段で実施している固液分離操作が工程2に該当する。 In step 1, the copper leaching step can be carried out in one stage, but the copper leaching step can also be carried out in a plurality of stages in order to sufficiently leach copper in the sulfide mineral. Specifically, in the copper leaching process using multiple stages, after completing the copper leaching operation in the first stage, solid-liquid separation is performed with a filter press or thickener, and the next stage copper leaching operation is performed on the leaching residue. Can be implemented. Typically, the copper leaching process can consist of 2 to 4 stages. In this case, it carried out in the leaching stage in which the solid-liquid separation operation corresponds to step 2.

<工程3:金浸出工程>
工程3では、塩素イオン、臭素イオン、銅イオン及び鉄イオンを含有する浸出液(第二の酸性水溶液)を酸化剤の供給下で工程2によって得られた(工程1を複数段で行い、工程2が複数回実施されるときは最終的に得られた)浸出残渣に接触させて、当該残渣中の金成分を浸出する。金の浸出は、溶出した金が塩素イオン又は臭素イオンと反応し、金の塩化錯体又は金の臭化錯体を生成することにより進行する。臭素イオンを併用することで、より低電位の状態で錯体を形成するため、金の浸出効率の向上を図ることができる。また、鉄イオンは酸化剤の供給下で酸化した3価の鉄イオン又は当初より3価の鉄イオンが、金を酸化する働きをする。銅イオンは直接反応に関与しないが、銅イオンが存在することで鉄イオンの酸化速度が速くなる。
<Process 3: Gold leaching process>
In step 3, a leachate (second acidic aqueous solution) containing chlorine ions, bromine ions, copper ions and iron ions was obtained in step 2 under the supply of an oxidizing agent (step 1 was performed in multiple stages, step 2 When it is carried out a plurality of times, it is brought into contact with the leaching residue (which is finally obtained) and the gold component in the residue is leached. Gold leaching proceeds by the elution of gold reacting with chlorine ions or bromine ions to form gold chloride complexes or gold bromide complexes. By using bromine ions in combination, the complex is formed at a lower potential, so that the gold leaching efficiency can be improved. Further, the iron ions function to oxidize gold by trivalent iron ions oxidized under the supply of an oxidizing agent or trivalent iron ions from the beginning. Copper ions are not directly involved in the reaction, but the presence of copper ions increases the oxidation rate of iron ions.

浸出液と残渣の接触方法としては特に制限はなく、噴霧や浸漬などの方法があるが、反応効率の観点から、浸出液中に残渣を浸漬し、撹拌する方法が好ましい。   The method for contacting the leachate and the residue is not particularly limited, and there are methods such as spraying and dipping. From the viewpoint of reaction efficiency, a method in which the residue is immersed in the leachate and stirred is preferred.

塩素イオンの供給源としては、特に制限はないが、例えば塩化水素、塩酸、塩化金属及び塩素ガス等が挙げられ、経済性や安全性を考慮すれば塩化金属の形態で供給するのが好ましい。塩化金属としては、例えば塩化銅(塩化第一銅、塩化第二銅)、塩化鉄(塩化第一鉄、塩化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の塩化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の塩化物が挙げられ、経済性や入手容易性の観点から、塩化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、塩化銅及び塩化鉄を利用することも好ましい。   The supply source of chlorine ions is not particularly limited, and examples thereof include hydrogen chloride, hydrochloric acid, metal chloride, chlorine gas, and the like. In consideration of economy and safety, supply in the form of metal chloride is preferable. Examples of the metal chloride include copper chloride (cuprous chloride, cupric chloride), iron chloride (ferrous chloride, ferric chloride), and alkali metals (lithium, sodium, potassium, rubidium, cesium, francium). Chlorides and chlorides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, radium) can be mentioned, and sodium chloride is preferable from the viewpoint of economy and availability. Moreover, since it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper chloride and iron chloride.

臭素イオンの供給源としては、特に制限はないが、例えば臭化水素、臭化水素酸、臭化金属及び臭素ガス等が挙げられ、経済性や安全性を考慮すれば臭化金属の形態で供給するのが好ましい。臭化金属としては、例えば臭化銅(臭化第一銅、臭化第二銅)、臭化鉄(臭化第一鉄、臭化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の臭化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の臭化物が挙げられ、経済性や入手容易性の観点から、臭化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、臭化銅及び臭化鉄を利用することも好ましい。   The bromine ion supply source is not particularly limited, and examples thereof include hydrogen bromide, hydrobromic acid, metal bromide, bromine gas, and the like. In consideration of economy and safety, it is in the form of metal bromide. It is preferable to supply. Examples of the metal bromide include copper bromide (cuprous bromide, cupric bromide), iron bromide (ferrous bromide, ferric bromide), alkali metals (lithium, sodium, potassium, Examples thereof include bromides of rubidium, cesium, and francium) and bromides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, and radium), and sodium bromide is preferable from the viewpoint of economy and availability. Moreover, since it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper bromide and iron bromide.

銅イオン及び鉄イオンの供給源としては、これらの塩の形態で供給するのが通常であり、例えばハロゲン化塩の形態で供給することができる。塩素イオン及び/又は臭素イオンの供給源としても利用できる観点から銅イオンは塩化銅及び/又は臭化銅、鉄イオンは塩化鉄及び/又は臭化鉄として供給されるのが好ましい。塩化銅及び塩化鉄としては酸化力の観点から塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)を使用するのがそれぞれ望ましいが、塩化第一銅(CuCl)及び塩化第鉄(FeCl2)を使用しても大差はない。 The supply source of copper ions and iron ions is usually supplied in the form of these salts. For example, it can be supplied in the form of a halide salt. From the viewpoint that it can also be used as a source of chlorine ions and / or bromine ions, copper ions are preferably supplied as copper chloride and / or copper bromide, and iron ions are preferably supplied as iron chloride and / or iron bromide. Although use copper and cupric (CuCl 2) chloride in terms of oxidizing power as ferric chloride and ferric chloride (FeCl 3) is desired, respectively, cuprous chloride (CuCl) and ferrous chloride Even if (FeCl 2 ) is used, there is no great difference.

工程3で使用する浸出液(第二の酸性水溶液)中の塩素イオンの濃度は、30〜200g/Lとすることができるが、第一の酸性水溶液よりも低くても良く、30g/L〜125g/Lとしてもよい。工程3で使用する浸出液(第二の酸性水溶液)中の臭素イオンの濃度は、反応速度や溶解度の観点から、1g/L〜100g/Lであることが好ましい。また、金の浸出効率の観点からは、第二の酸性水溶液中の塩素イオンに対する臭素イオンの重量濃度比が1以上であることが好ましいが、金の濃度が十分に低いため、特段の配慮は必要としない。   The concentration of chlorine ions in the leachate (second acidic aqueous solution) used in step 3 can be 30 to 200 g / L, but may be lower than the first acidic aqueous solution, and 30 g / L to 125 g. / L may be used. The concentration of bromine ions in the leachate (second acidic aqueous solution) used in step 3 is preferably 1 g / L to 100 g / L from the viewpoint of reaction rate and solubility. Further, from the viewpoint of gold leaching efficiency, the weight concentration ratio of bromine ions to chlorine ions in the second acidic aqueous solution is preferably 1 or more, but since the gold concentration is sufficiently low, special considerations are do not need.

工程3の開始時における浸出液の酸化還元電位(参照電極、銀/塩化銀)は、金浸出を促進する観点から550mV以上とするのが好ましく、600mV以上とするのがより好ましい。   The redox potential (reference electrode, silver / silver chloride) of the leaching solution at the start of Step 3 is preferably 550 mV or more, more preferably 600 mV or more, from the viewpoint of promoting gold leaching.

従って、本発明の好適な実施形態においては、工程3における浸出液(第二の酸性水溶液)として、塩素イオン及び臭素イオンの両方を含有するように選択することを条件に、塩酸及び臭素酸の少なくとも一方と、塩化第二銅及び臭化第二銅の少なくとも一方と、塩化第二鉄及び臭化第二鉄の少なくとも一方と、塩化ナトリウム及び臭化ナトリウムの少なくとも一方とを含む混合液を使用することができる。   Therefore, in a preferred embodiment of the present invention, at least hydrochloric acid and bromic acid are selected on the condition that the leachate (second acidic aqueous solution) in step 3 is selected to contain both chlorine ions and bromine ions. One, a mixture containing at least one of cupric chloride and cupric bromide, at least one of ferric chloride and ferric bromide, and at least one of sodium chloride and sodium bromide is used. be able to.

工程3の金浸出工程は酸化剤を供給しながら実施することで、酸化還元電位を管理する。酸化剤を添加しなければ途中で酸化還元電位が低下してしまい、浸出反応が進行しない。酸化剤としては特に制限はないが、例えば酸素、空気、塩素、臭素、及び過酸化水素などが挙げられる。極端に高い酸化還元電位をもつ酸化剤は必要なく、空気で十分である。経済性や安全性の観点からも空気が好ましい。   The gold leaching step of step 3 is performed while supplying an oxidizing agent, thereby managing the oxidation-reduction potential. If an oxidizing agent is not added, the redox potential is lowered in the middle, and the leaching reaction does not proceed. Although there is no restriction | limiting in particular as an oxidizing agent, For example, oxygen, air, chlorine, a bromine, hydrogen peroxide, etc. are mentioned. An oxidant with an extremely high redox potential is not necessary and air is sufficient. Air is also preferable from the viewpoint of economy and safety.

<工程4>
金浸出を十分に行った後の金浸出後液の酸化還元電位はおおむね500〜520mV程度となる。この金浸出後液に更にCuClを加えて撹拌し、一度酸化還元電位を520mV以下に、より好ましくは500mV以下に下げた後に、酸化剤を加えて再度ORPを520mV以上に調整する。これにより、金の活性炭吸着を阻害する金浸出後液中の一価の銅イオンが二価の銅イオンに酸化されて減少し、金浸出後液中の活性炭への吸着競合物が少なくなるため、活性炭への金の吸着率がより向上する。
<Step 4>
The oxidation-reduction potential of the solution after gold leaching after sufficient gold leaching is about 500 to 520 mV. After the gold leaching, CuCl is further added and stirred, and once the oxidation-reduction potential is lowered to 520 mV or less, more preferably 500 mV or less, an oxidizing agent is added to again adjust the ORP to 520 mV or more. As a result, monovalent copper ions in the solution after gold leaching, which inhibits the adsorption of gold by activated carbon, are oxidized and reduced to divalent copper ions, and there are fewer adsorbing competitors on the activated carbon in the solution after gold leaching. Further, the adsorption rate of gold on activated carbon is further improved.

酸化剤は、特に限定されないがコストの面から空気が使用される。また液温も特に限定されないが、金浸出が加温浸出であることと、酸化効率の面を考慮すると、金浸出後液の液温は45℃以上に維持されるのが好ましく、より好ましくは50℃以上である。   The oxidizing agent is not particularly limited, but air is used from the viewpoint of cost. Also, the liquid temperature is not particularly limited, but considering the fact that gold leaching is warm leaching and the aspect of oxidation efficiency, the liquid temperature of the liquid after gold leaching is preferably maintained at 45 ° C. or more, more preferably It is 50 ° C. or higher.

ORPの上昇は、金浸出後液中の一価の銅イオンの減少を示す。一価銅は非常にソフトな元素として知られ活性炭に対する親和性が高く、金錯体の吸着と競合する。この一価銅の減少により活性炭中の吸着活性点は金に対する選択性が増すことで金の効率的な回収が達成される。   An increase in ORP indicates a decrease in monovalent copper ions in the solution after gold leaching. Monovalent copper is known as a very soft element, has a high affinity for activated carbon, and competes with the adsorption of gold complexes. By reducing the monovalent copper, the adsorption active sites in the activated carbon are increased in selectivity to gold, thereby achieving efficient recovery of gold.

ORPの調整は、520mV以上に調整することで、液中の一価銅濃度を低減させて金の活性炭への吸着率を向上させることができる。上限に特に制限はないが、調整に必要な時間及び一価銅の低減効率を考慮すると、570mV以下とするのが好ましく、より好ましくは530〜560mVに調整することが好ましい。   By adjusting the ORP to 520 mV or more, it is possible to reduce the monovalent copper concentration in the liquid and improve the adsorption rate of gold on activated carbon. Although there is no restriction | limiting in particular in an upper limit, when the time required for adjustment and the reduction efficiency of monovalent copper are considered, it is preferable to set it as 570 mV or less, More preferably, it is preferable to adjust to 530-560 mV.

<工程5:金回収>
金の浸出反応後、固液分離することによって得られた金溶解液から、活性炭吸着により金を回収する工程5を実施する。金の活性炭への接触はバッチ回分式もしくは活性炭を充填した吸着塔に酸性浸出液を連続通液することで行ってもよい。
<Step 5: Gold recovery>
After the gold leaching reaction, Step 5 of recovering gold by activated carbon adsorption is performed from a gold solution obtained by solid-liquid separation. The contact of gold with activated carbon may be carried out by batch feeding or by continuously passing an acidic leachate through an adsorption tower packed with activated carbon.

バッチ式の場合、攪拌速度は指定されない。添加の活性炭量は金重量の50倍〜10000倍となるように添加する。   In the case of a batch type, the stirring speed is not specified. The amount of activated carbon added is 50 to 10,000 times the weight of gold.

連続通液式では特に通液速度は限定されない(一般的にはSV1〜25)が活性炭の単位重量あたりの金吸着量が20000〜30000g/tとなった時点で、活性炭は要求能力を満たさなくなる。そのため活性炭からの金のストリップや再生はこの吸着量を目安に行う。活性炭の再生方法は一般的に知られる硫黄化合物や窒素化合物、もしくは酸により行われ、特に限定されない。 When the particular passed through speed in a continuous flow-through scheme is not limited (typically to SV1~25) gold adsorption amount per unit weight of the activated carbon became 20000~30000g / t, activated carbon meet the required capacity Disappear. Therefore, gold strips from activated carbon and regeneration are performed based on this amount of adsorption. The method for regenerating activated carbon is carried out with a generally known sulfur compound, nitrogen compound, or acid, and is not particularly limited.

<その他の工程>
(銅回収)
工程1によって得られた浸出後液は銅成分を多量に含んでいるので、浸出後液から銅を回収することができる。銅の回収方法としては特に制限はないが、例えば溶媒抽出、イオン交換、卑な金属との置換析出及び電解採取などを利用することができる。浸出後液中の銅は1価及び2価の状態が混在しているが、溶媒抽出やイオン交換を円滑に行うために、全部が2価の銅イオンとなるように予め酸化しておくことが好ましい。酸化の方法は特に制限はないが空気や酸素を浸出後液中に吹き込む方法が簡便である。
<Other processes>
(Copper recovery)
Since the liquid after leaching obtained in step 1 contains a large amount of copper component, copper can be recovered from the liquid after leaching. Although there is no restriction | limiting in particular as a copper collection | recovery method, For example, solvent extraction, ion exchange, substitution precipitation with a base metal, electrowinning, etc. can be utilized. The copper in the solution after leaching contains both monovalent and divalent states, but in order to perform solvent extraction and ion exchange smoothly, all of them should be oxidized beforehand to be divalent copper ions. Is preferred. The method of oxidation is not particularly limited, but a method of leaching air or oxygen into the liquid after leaching is simple.

<実施例1>
硫化鉱物として、Cu:16質量%、Fe:26質量%、S:28質量%を含有し、Auを63g/t含有する銅精鉱を粉砕したものを用意した。表1に示す組成を有する浸出液(第一の酸性水溶液)16Lを70〜85℃に加温後、当該銅精鉱480gを投入し、浸出液への空気吹き込み(0.2L/min)と撹拌を継続しながら浸出試験を実施した。なお、金属の分析は、ICP発光分光分析法で行った。
<Example 1>
As the sulfide mineral, a copper concentrate containing Cu: 16% by mass, Fe: 26% by mass, S: 28% by mass and containing 63 g / t of Au was prepared. After heating 16 L of a leachate (first acidic aqueous solution) having the composition shown in Table 1 to 70 to 85 ° C., 480 g of the copper concentrate is added, and air is blown into the leachate (0.2 L / min) and stirred. The leaching test was conducted while continuing. The metal analysis was performed by ICP emission spectroscopic analysis.

Figure 0005840642
*全塩化物イオン及び全臭化物イオンは、浸出液の成分が完全に電離していると仮定し、臭素イオンは臭化ナトリウムで添加し、全塩素イオン濃度が180g/Lとなるよう塩化ナトリウムで調整した。
Figure 0005840642
* Total chloride and bromide ions are assumed to be completely ionized in the leachate, bromine ions are added with sodium bromide, and adjusted with sodium chloride so that the total chloride ion concentration is 180 g / L. did.

上記実施例1によって得られた、浸出時の酸化還元電位ORP(vs Ag/AgCl)とCu及びAuの浸出率との関係を表2及び図1に示す。浸出率は硫化鉱物中の含有量を100%とし、浸出残渣中の含有量から逆算で算出した。表2及び図1より、Cuは浸出液A及びBの間で浸出率に変化はなく、ORPが450mVで浸出率は90質量%程度に到達し、ORPが500mVで99質量%以上の浸出率となった。一方、Auは、臭素イオンを含有しない浸出液Aを使用した場合、ORPが450mVまではほとんど浸出せず、500mVで15質量%程度浸出された。臭素イオンを含有する浸出液Bを使用した場合、ORPが450mVで20質量%程度が浸出し、500mVでは約40質量%に達した。   The relationship between the oxidation-reduction potential ORP (vs Ag / AgCl) during leaching and the leaching rate of Cu and Au obtained in Example 1 is shown in Table 2 and FIG. The leaching rate was calculated by calculating backward from the content in the leaching residue, with the content in the sulfide mineral being 100%. From Table 2 and FIG. 1, Cu has no change in the leaching rate between the leaching solutions A and B, the leaching rate reaches about 90% by mass with ORP of 450 mV, and the leaching rate of 99% by mass or more with ORP of 500 mV. became. On the other hand, when the leaching solution A containing no bromine ions was used, Au hardly leached until the ORP was 450 mV, and leached at about 15% by mass at 500 mV. When the leachate B containing bromine ions was used, about 20% by mass was leached when the ORP was 450 mV, and reached about 40% by mass at 500 mV.

Figure 0005840642
Figure 0005840642

Figure 0005840642
Figure 0005840642

上記実施例1では銅浸出工程と金浸出工程の間の固液分離を実施していないが、上記の結果から、臭化物イオンを含有しない浸出液Aを銅浸出工程に使用することで、銅浸出中における金の浸出を抑制する一方で、臭化物イオンを含有する浸出液Bを金浸出工程に使用することで金の浸出率を高めることができることが理解できる。例えば、浸出液Aを用いて銅浸出工程の終点となるORPを450〜500mVの間に設定し、固液分離後、浸出液Bに切り替えて金浸出工程を実施することで、銅及び金を高い分離効率で分離するとともに、金を高い回収率で回収できることが理解できる。また、銅浸出工程は、銅の浸出率が95質量%以上、且つ、金の浸出率が10質量%以下の条件で終了させることも可能であることが分かる。   In Example 1 above, solid-liquid separation between the copper leaching step and the gold leaching step is not carried out, but from the above results, using the leachate A containing no bromide ions in the copper leaching step, It can be understood that the leaching rate of gold can be increased by using the leaching solution B containing bromide ions in the gold leaching step while suppressing the leaching of gold. For example, the ORP that is the end point of the copper leaching process is set between 450 and 500 mV using the leaching liquid A, and after the solid-liquid separation, the gold leaching process is performed by switching to the leaching liquid B, thereby separating copper and gold at a high level. It can be understood that gold can be recovered at a high recovery rate while being separated with efficiency. Further, it can be seen that the copper leaching step can be completed under the conditions that the copper leaching rate is 95% by mass or more and the gold leaching rate is 10% by mass or less.

<実施例2>
50g/Lの塩化物イオン、80g/Lの臭化物イオン、18g/Lの銅、及び0.2g/Lの鉄を含む金浸出液を用いて、金浸出工程後に得られた金浸出後液中の金を浸出した。金浸出後液は、NaCl:84g/L、NaBr:103g/L、Cu:20g/L、Fe:2g/L、Au:8mg/L含有し、pHは1.2であった。CuClを添加してORPを510mVに調整した。浸出後液を55℃に加温し、空気を1分当たり0.4L吹き込みながら攪拌した。この金浸出後液をヤシ殻由来活性炭(太平化学産業社製ヤシコールMC)およそ14mlを充填したガラス製カラムに通し、金を活性炭に吸着させた。カラムの直径は11mm、高さ150mmとした。液の供給速度は11.9ml/分、空間速度は50(1/h)とした。排出される吸着後液中の金を塩酸で希釈しICP−AESにより定量した。ORPと吸着後液の関係を図に示す。
<Example 2>
In a gold leaching solution obtained after the gold leaching step using a gold leaching solution containing 50 g / L chloride ion, 80 g / L bromide ion, 18 g / L copper, and 0.2 g / L iron. Leached gold. The solution after gold leaching contained NaCl: 84 g / L, NaBr: 103 g / L, Cu: 20 g / L, Fe: 2 g / L, Au: 8 mg / L, and pH was 1.2. CuCl was added to adjust the ORP to 510 mV. After leaching, the liquid was heated to 55 ° C. and stirred while blowing 0.4 L of air per minute. This gold leaching solution was passed through a glass column filled with approximately 14 ml of coconut shell-derived activated carbon (Yaikol MC manufactured by Taihei Chemical Sangyo Co., Ltd.) to adsorb gold onto the activated carbon. The column diameter was 11 mm and the height was 150 mm. The liquid supply rate was 11.9 ml / min, and the space velocity was 50 (1 / h). Gold in the discharged solution after adsorption was diluted with hydrochloric acid and quantified by ICP-AES. The relationship between ORP and the adsorption solution after 2.

ORPを520mV以上に調整した液では吸着後液に含まれる金濃度が著しく低下していることがわかる。ORPの上限は定めないものの過度に電位を上げても吸着後液の金の濃度は劇的に低下することはなく、少なくとも520mVまで酸化すれば良いが過度の酸化を妨げるものではないことが分かる。   It can be seen that the gold concentration contained in the post-adsorption liquid is significantly reduced in the liquid in which the ORP is adjusted to 520 mV or more. Although the upper limit of ORP is not set, it is understood that even if the potential is raised excessively, the gold concentration in the solution after adsorption does not drop dramatically, and it is sufficient to oxidize to at least 520 mV, but it does not prevent excessive oxidation. .

<実施例3>
実施例2で使用した金浸出後と活性炭充填カラムとを用いて連続的に給液する中で、CuClの添加と空気吹込みによりORPを変化させて吸着後液の金濃度を測定した。結果を図に示す。
<Example 3>
In the continuously supply fluid by using a post-gold leaching solution and activated carbon packed column used in Example 2 was measured concentration of gold adsorption solution after varying the ORP by lump can added and the air blowing of CuCl . The results are shown in Figure 3.

からもORPと金の活性炭への吸着の関係は明らかであり、金浸出後液はORP520mV以上として活性炭と接触させると良好な金の回収が可能である。また、ORPに影響を与えているのはCu(I)であることが分かる。
Also from FIG. 3, the relationship between the adsorption of ORP and gold on activated carbon is clear, and gold can be recovered well when the liquid after gold leaching is contacted with activated carbon at ORP 520 mV or higher. It can also be seen that it is Cu (I) that affects the ORP.

Cu(I)は水溶液中では酸化を受けてCu(II)になりやすいが本系のような比較的高濃度のハロゲン化物を含む水溶液では比較的安定に存在する。そのため空気吹き込み以外にも過酸化水素や次亜塩素酸といった酸化剤でCu(I)を酸化しても同様の結果が得られると推定されるがコストや取り扱いの利便性を考慮すると空気吹込みが好ましい。   Cu (I) tends to be oxidized to Cu (II) in an aqueous solution, but exists relatively stably in an aqueous solution containing a relatively high concentration of halide as in the present system. Therefore, in addition to air blowing, it is estimated that similar results can be obtained by oxidizing Cu (I) with an oxidizing agent such as hydrogen peroxide or hypochlorous acid. Is preferred.

Claims (3)

塩素イオン、銅イオン及び鉄イオンを含有し、臭素イオンを含有しない第一の酸性水溶液を酸化剤の供給下で硫化鉱に接触させて、硫化鉱中の銅成分を浸出する工程1と、
工程1によって得られた浸出反応液を固液分離によって浸出残渣と浸出後液に分離する工程2と、
塩素イオン、臭素イオン、銅イオン及び鉄イオンを含有する第二の酸性水溶液を酸化剤の供給下で工程2によって得られた浸出残渣に接触させて、当該残渣中の金成分を浸出する工程3と、
工程3によって得られた金浸出後液に塩化第一銅を添加した後、酸化剤を加えて酸化還元電位(参照電極、銀/塩化銀)を520mV以上に調整して金浸出後液中の一価の銅イオンを低減させる工程4と、
工程4によって得られた金浸出後液中の金を活性炭に吸着させる工程5と
を含むことを特徴とする硫化鉱物からの金の回収方法。
Step 1 of leaching a copper component in sulfide ore by contacting a first acidic aqueous solution containing chlorine ion, copper ion and iron ion and not containing bromine ion with sulfide ore under supply of an oxidizing agent;
Step 2 for separating the leaching reaction liquid obtained in Step 1 into a leaching residue and a liquid after leaching by solid-liquid separation;
Step 3 of contacting a second acidic aqueous solution containing chlorine ion, bromine ion, copper ion and iron ion with the leaching residue obtained in Step 2 under supply of an oxidizing agent to leach the gold component in the residue When,
After adding cuprous chloride to the gold leaching solution obtained in step 3, an oxidizing agent is added to adjust the oxidation-reduction potential (reference electrode, silver / silver chloride) to 520 mV or more, and the gold leaching solution contains Step 4 for reducing monovalent copper ions;
And a step 5 of adsorbing gold in the solution after gold leaching obtained in step 4 to activated carbon, and a method for recovering gold from sulfide minerals.
工程4が、酸化還元電位(参照電極、銀/塩化銀)を520mVから570mVに調整することを含む請求項1に記載の硫化鉱物からの金の回収方法。   The method for recovering gold from sulfide mineral according to claim 1, wherein step 4 includes adjusting the redox potential (reference electrode, silver / silver chloride) from 520 mV to 570 mV. 工程4が、空気の吹き込みにより酸化還元電位(参照電極、銀/塩化銀)を調整することを含む請求項1又は2に記載の硫化鉱物からの金の回収方法。 The method for recovering gold from sulfide mineral according to claim 1 or 2, wherein step 4 includes adjusting an oxidation-reduction potential (reference electrode, silver / silver chloride) by blowing air.
JP2013075226A 2013-03-29 2013-03-29 Method for recovering gold from sulfide minerals Active JP5840642B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013075226A JP5840642B2 (en) 2013-03-29 2013-03-29 Method for recovering gold from sulfide minerals
AU2014245389A AU2014245389B2 (en) 2013-03-29 2014-02-12 Method for recovering gold from sulfide ore
PCT/JP2014/053192 WO2014156349A1 (en) 2013-03-29 2014-02-12 Method for recovering gold from sulfide ore
PE2015002096A PE20151715A1 (en) 2013-03-29 2014-02-12 METHOD TO RECOVER GOLD FROM SULFIDE MINERAL
CA2908688A CA2908688C (en) 2013-03-29 2014-02-12 Method of recovering gold from sulfide ore
CL2015002889A CL2015002889A1 (en) 2013-03-29 2015-09-28 Method to recover gold from sulfide ore.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075226A JP5840642B2 (en) 2013-03-29 2013-03-29 Method for recovering gold from sulfide minerals

Publications (2)

Publication Number Publication Date
JP2014198887A JP2014198887A (en) 2014-10-23
JP5840642B2 true JP5840642B2 (en) 2016-01-06

Family

ID=51623350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075226A Active JP5840642B2 (en) 2013-03-29 2013-03-29 Method for recovering gold from sulfide minerals

Country Status (5)

Country Link
JP (1) JP5840642B2 (en)
CA (1) CA2908688C (en)
CL (1) CL2015002889A1 (en)
PE (1) PE20151715A1 (en)
WO (1) WO2014156349A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6849482B2 (en) * 2016-03-31 2021-03-24 Jx金属株式会社 How to recover gold from ores containing gold or refining intermediates
JP6899672B2 (en) * 2017-03-14 2021-07-07 Jx金属株式会社 How to recover gold from ore or refining intermediates
CN107287439A (en) * 2017-06-09 2017-10-24 张韬 A kind of environment-friendly type yellow Gold leaching agent and its preparation technology
PL3822374T3 (en) * 2019-11-18 2024-01-29 Heraeus Deutschland GmbH & Co. KG Method for recovering pure metal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI118302B (en) * 2006-02-17 2007-09-28 Outotec Oyj Procedure for the extraction of gold
JP4468999B2 (en) * 2008-03-27 2010-05-26 日鉱金属株式会社 Method for recovering metals from minerals
JP4999108B2 (en) * 2008-03-27 2012-08-15 Jx日鉱日石金属株式会社 Gold leaching method
JP5319718B2 (en) * 2011-03-04 2013-10-16 Jx日鉱日石金属株式会社 Methods for leaching copper and gold from sulfide ores

Also Published As

Publication number Publication date
PE20151715A1 (en) 2015-11-19
JP2014198887A (en) 2014-10-23
WO2014156349A1 (en) 2014-10-02
CL2015002889A1 (en) 2016-03-28
CA2908688A1 (en) 2014-10-02
CA2908688C (en) 2017-09-26
AU2014245389A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP5319718B2 (en) Methods for leaching copper and gold from sulfide ores
JP5840641B2 (en) Method for recovering gold from gold ore containing pyrite
WO2013108478A1 (en) Gold recovery method, and gold production method using same
JP5840642B2 (en) Method for recovering gold from sulfide minerals
JP2014055311A (en) Recovery method of gold
JP5840643B2 (en) Method for recovering gold from sulfide minerals
JP2013163868A (en) Leaching method of copper and gold from sulfide ore
JP5792043B2 (en) Method of leaching gold from sulfide ore
JP6195536B2 (en) Iron removal method, iron leaching method, and gold recovery method
JP6034433B2 (en) Method of leaching gold from sulfide ore
JP6899672B2 (en) How to recover gold from ore or refining intermediates
JP6953258B2 (en) Gold leaching method and gold recovery method
JP6849482B2 (en) How to recover gold from ores containing gold or refining intermediates
JP6196209B2 (en) Method for treating copper-containing molybdenum ore
JP6038192B2 (en) Method for leaching gold from gold ore containing pyrite
JP7007905B2 (en) Copper recovery method and electrolytic copper manufacturing method
JP2014194049A (en) Method of leaching copper from copper sulfide ore by using niter leaching liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151111

R150 Certificate of patent or registration of utility model

Ref document number: 5840642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250