JP6038192B2 - Method for leaching gold from gold ore containing pyrite - Google Patents

Method for leaching gold from gold ore containing pyrite Download PDF

Info

Publication number
JP6038192B2
JP6038192B2 JP2014560626A JP2014560626A JP6038192B2 JP 6038192 B2 JP6038192 B2 JP 6038192B2 JP 2014560626 A JP2014560626 A JP 2014560626A JP 2014560626 A JP2014560626 A JP 2014560626A JP 6038192 B2 JP6038192 B2 JP 6038192B2
Authority
JP
Japan
Prior art keywords
gold
leaching
ore
iron
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014560626A
Other languages
Japanese (ja)
Other versions
JPWO2014122803A1 (en
Inventor
和浩 波多野
和浩 波多野
由樹 青砥
由樹 青砥
健志 中村
健志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Application granted granted Critical
Publication of JP6038192B2 publication Critical patent/JP6038192B2/en
Publication of JPWO2014122803A1 publication Critical patent/JPWO2014122803A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/04Blast roasting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は黄鉄鉱を含有する金鉱石からの金の浸出方法に関する。   The present invention relates to a method for leaching gold from gold ore containing pyrite.

金を含有する硫化鉱物から金を回収する方法として、湿式法を利用した技術が知られている。伝統的には、硫化鉱物中の金を溶液中への浸出は、シアン、チオ尿素、チオ硫酸といった薬品を使用することにより行われてきた。最近では、より毒性の低い浸出剤として、特開2009−235525号公報(特許文献1)及び特開2009−235519号公報(特許文献2)に記載されるような、塩化物イオン、鉄イオン、銅イオン、及び臭化物イオンを利用した金浸出液を使用することも提案されている。 A technique using a wet method is known as a method for recovering gold from a sulfide mineral containing gold. Traditionally, leaching of gold sulfide minerals into solution, cyan, thiourea, has been carried out by the use of chemicals say Chio硫acid. Recently, as a less toxic leachant, chloride ions, iron ions, as described in JP2009-235525A (Patent Document 1) and JP2009-235519A (Patent Document 2), It has also been proposed to use a gold leaching solution utilizing copper ions and bromide ions.

特開2009−235525号公報JP 2009-235525 A 特開2009−235519号公報JP 2009-235519 A

特開2009−235525号公報(特許文献1)及び特開2009−235519号公報(特許文献2)に記載の方法は、毒性の高いシアン、チオ尿素、チオ硫酸といった薬品を使用することなく金を容易に浸出できるので、硫化銅鉱中の金の浸出には極めて実用性が高いが、これを黄鉄鉱に適用した場合には、金浸出速度が十分ではなく、改善の余地が残されている。 The method described in JP 2009-235525 (Patent Document 1) and JP 2009-235519 (Patent Document 2) is to use highly toxic cyanide, thiourea, the chemicals say Chio硫acid It is extremely practical for leaching gold in copper sulfide ore, but when this is applied to pyrite, the gold leaching rate is not sufficient, leaving room for improvement. Yes.

本発明は上記事情に鑑みてなされたものであり、黄鉄鉱を含有する金鉱石からの金の浸出方法において、毒性の高いシアン、チオ尿素、チオ硫酸といった薬品を使用することなく、金の浸出速度を向上することを課題とする。 The present invention has been made in view of the above circumstances, the leaching method of gold from gold ore containing pyrite, highly toxic cyan, thiourea, without the use of chemicals say Chio硫acid, gold It is an object to improve the leaching rate of slag.

本発明は一側面において、
黄鉄鉱を含有する金鉱石を準備する工程1、及び、当該金鉱石を酸化焙焼する工程2を含む前処理と、
前処理後の金鉱石を、ハロゲン化物イオンを含有する金浸出液に酸化剤の供給下で接触させて、当該鉱石中の金成分を浸出し、次いで金浸出後液と鉄を含む残渣に固液分離する工程3と、
を含む金の浸出方法である。
In one aspect of the present invention,
A pretreatment including a step 1 of preparing a gold ore containing pyrite and a step 2 of oxidizing and baking the gold ore;
The gold ore after the pretreatment is brought into contact with a gold leaching solution containing halide ions under supply of an oxidant to leach the gold component in the ore, and then the liquid after the gold leaching and a residue containing iron are solid-liquid. Separating step 3;
This is a gold leaching method.

本発明に係る金の浸出方法の一実施形態においては、金浸出液が塩化物イオン及び臭化物イオンを含有する。   In one embodiment of the gold leaching method according to the present invention, the gold leaching solution contains chloride ions and bromide ions.

本発明に係る金の浸出方法の別の一実施形態においては、工程2における酸化焙焼は400℃〜650℃の条件下で行われる。   In another embodiment of the gold leaching method according to the present invention, the oxidation roasting in step 2 is performed under conditions of 400 ° C to 650 ° C.

本発明に係る金の浸出方法の更に別の一実施形態においては、金鉱石中の黄鉄鉱の含有量が5〜80質量%である。   In still another embodiment of the gold leaching method according to the present invention, the content of pyrite in the gold ore is 5 to 80% by mass.

本発明に係る金の浸出方法の更に別の一実施形態においては、金浸出液のpHを2.0以下に保持して金の浸出工程を実施する。   In still another embodiment of the gold leaching method according to the present invention, the gold leaching step is performed while maintaining the pH of the gold leaching solution at 2.0 or lower.

黄鉄鉱を含有する金鉱石に対して、本発明に係る前処理方法を施した後に、鉄浸出及び金浸出を特定の浸出液を用いて行うことにより、有害な酸化硫黄の発生を抑制しながらも飛躍的に改善された金浸出速度を得ることができる。更に、金と鉄の高い分離効率を達成できる。すなわち、本発明によれば、安全性及び環境保全性に優れた実用性の高い金の浸出方法が提供できる。   After applying the pretreatment method according to the present invention to gold ore containing pyrite, leaching while suppressing the generation of harmful sulfur oxides by performing iron leaching and gold leaching using a specific leachate Improved gold leaching rate. Furthermore, high separation efficiency between gold and iron can be achieved. That is, according to the present invention, it is possible to provide a highly practical gold leaching method excellent in safety and environmental conservation.

本発明に係る金浸出方法に従った処理フローの一例である。It is an example of the processing flow according to the gold | metal leaching method which concerns on this invention. 実施例1について、浸出時間に対する浸出液のpH及び酸化還元電位の関係を示すグラフである。It is a graph which shows the relationship of pH of a leaching solution with respect to leaching time and oxidation-reduction potential about Example 1. FIG. 実施例1について、浸出時間と浸出液中に溶解しているFeイオンの濃度の関係を示すグラフである。It is a graph which shows the relationship between the leaching time and the concentration of Fe ions dissolved in the leachate for Example 1. 実施例1と比較例1について、浸出時間と金の浸出率の関係を示すグラフである。It is a graph which shows the relationship between the leaching time and the gold leaching rate for Example 1 and Comparative Example 1.

以下、本発明を詳しく説明する。   The present invention will be described in detail below.

1. 前処理
本発明に係る金鉱石の前処理方法の一実施形態においては、黄鉄鉱を含有する金鉱石を準備する工程1、及び、当該金鉱石を酸化焙焼して当該金鉱石中の黄鉄鉱を鉄の酸化数が3以上の酸化鉄に変化させる工程2を含む。
1. Pretreatment In one embodiment of the pretreatment method for gold ore according to the present invention, step 1 for preparing gold ore containing pyrite, and oxidation and roasting of the gold ore to convert pyrite in the gold ore into iron And step 2 of changing to an iron oxide having an oxidation number of 3 or more.

(1)工程1
工程1では黄鉄鉱を含有する金鉱石を準備する。というのは、本発明では難溶性で金浸出率の低い黄鉄鉱中の金の浸出率を高めることを目的とするからである。しかしながら、それ以外の要件、例えば、鉱石中の金の濃度の大小は問わない。本発明の処理対象となる金鉱石は、浮遊選鉱や比重選別といった慣用の選鉱処理を経たものとすることもできる。粉砕摩鉱して鉱石の粒径を小さくし、金浸出液が鉱石内部の金に接触しやすいようにすることもできる。金鉱石中の金濃度は典型的には0.1〜100質量ppm程度であり、より典型的には1〜20質量ppm程度である。
(1) Step 1
In step 1, gold ore containing pyrite is prepared. This is because the purpose of the present invention is to increase the gold leaching rate in pyrite, which is hardly soluble and has a low gold leaching rate. However, other requirements such as the concentration of gold in the ore are not important. The gold ore to be treated in the present invention may be subjected to a conventional beneficiation process such as flotation or specific gravity sorting. Grinding can reduce the particle size of the ore so that the gold leachate can easily come into contact with the gold inside the ore. The gold concentration in the gold ore is typically about 0.1 to 100 ppm by mass, and more typically about 1 to 20 ppm by mass.

金鉱石は黄鉄鉱を含有する他、黄銅鉱、方鉛鉱、閃亜鉛鉱、硫砒鉄鉱、輝安鉱、磁硫鉄鉱などを含有していてもよいが、本発明の典型的な実施形態においては黄鉄鉱が3質量%以上含まれる金鉱石を使用し、本発明のより典型的な実施形態においては黄鉄鉱が30質量%以上含まれる金鉱石を使用する。このような金鉱石を使用することで、本発明による前処理の効果が顕著に発揮される。金鉱石の黄鉄鉱の含有量には特に上限はなく、100質量%でもよいが、典型的には80質量%以下である。   In addition to containing pyrite, the gold ore may contain chalcopyrite, galena, sphalerite, arsenite, kyanite, pyrrhotite, etc., but in an exemplary embodiment of the present invention pyrite Is used, and in a more typical embodiment of the present invention, a gold ore containing 30% by mass or more of pyrite is used. By using such gold ore, the effect of the pretreatment according to the present invention is remarkably exhibited. The content of pyrite in the gold ore is not particularly limited, and may be 100% by mass, but typically 80% by mass or less.

(2)工程2
工程2では当該金鉱石を酸化焙焼する。酸化焙焼を経た後の金鉱石は、金浸出液に対する溶解性が格段に向上する。酸化焙焼においては、金鉱石中の黄鉄鉱は好ましくは酸化鉄に変化する。酸化鉄とは典型的には酸化数が3のFe23(赤鉄鉱)である。このときの反応式は次式で表すことができる。
4FeS2+11O2→2Fe23+8SO2
酸化焙焼が不完全な場合、黄鉄鉱は酸化数が2の酸化鉄(FeO)や硫化鉄(II)(FeS)にも変化し得る。従来のシアン法ではFeSを溶解するのが困難なため、FeSが生成してしまうと金の浸出効率が極めて悪くなるが、後述する金浸出液を使用することにより、このような場合でも、十分な金の浸出効率が得られる。ただし、本発明においては、黄鉄鉱が赤鉄鉱に変化し、鉄が酸化数3価のまま溶解するため、浸出液のORPが低下せず、鉄溶解と同時に金を浸出することができるように十分な酸素供給下で酸化焙焼することが好ましい。これにより、鉄が酸に難溶性のオキシ水酸化鉄(ゲーサイト=FeO(OH))として沈殿除去することが容易となり、次工程における金浸出において鉄と金の分離を高効率で行うことが可能になるからである。
(2) Step 2
In step 2, the gold ore is oxidized and roasted. Gold ore after undergoing oxidative roasting has significantly improved solubility in gold leachate. In oxidative roasting, pyrite in the gold ore is preferably converted to iron oxide. The iron oxide is typically Fe 2 O 3 (haematite) having an oxidation number of 3. The reaction formula at this time can be expressed by the following formula.
4FeS 2 + 11O 2 → 2Fe 2 O 3 + 8SO 2
If oxidative roasting is incomplete, pyrite can be changed to iron oxide (FeO) or iron (II) sulfide (FeS) having an oxidation number of 2. Since it is difficult to dissolve FeS in the conventional cyan method, if the FeS is generated, the gold leaching efficiency is extremely deteriorated. However, by using the gold leaching solution described later, even in such a case, sufficient Gold leaching efficiency is obtained. However, in the present invention, pyrite is changed to hematite, and iron dissolves while its oxidation number is trivalent, so that the ORP of the leachate does not decrease, and gold can be leached simultaneously with iron dissolution. Oxidation roasting is preferably performed under supply of oxygen. This makes it easy to precipitate and remove iron as iron oxyhydroxide (goesite = FeO (OH)), which is hardly soluble in acid, and enables high efficiency separation of iron and gold in gold leaching in the next step. Because it becomes possible.

酸化焙焼は温度400℃〜650℃で行うのが好ましく、より好ましくは500〜630℃、更により好ましくは550℃〜620℃、最も好ましくは600℃の条件下で行う。また、反応雰囲気中の酸素のモル分率は1/5以上であることが好ましいが、経済性の観点から空気を用いる条件下で実施するのが実用的である。   The oxidative roasting is preferably performed at a temperature of 400 ° C. to 650 ° C., more preferably 500 to 630 ° C., still more preferably 550 ° C. to 620 ° C., and most preferably 600 ° C. The molar fraction of oxygen in the reaction atmosphere is preferably 1/5 or more, but it is practical to carry out under conditions using air from the viewpoint of economy.

酸化焙焼を実施するための加熱炉の種類には特に制限はないが、例えば管状炉、ロータリーキルンを使用することができる。   Although there is no restriction | limiting in particular in the kind of heating furnace for implementing oxidation roasting, For example, a tubular furnace and a rotary kiln can be used.

酸化焙焼によって発生する硫黄酸化物は排ガス中に含まれるため、湿式スクラバーなどで回収することが望ましい。設備の規模が大きくなるときは硫酸製造設備を設置して排出された硫黄酸化物を有効活用することが好ましい。   Since sulfur oxides generated by oxidative roasting are contained in exhaust gas, it is desirable to recover them with a wet scrubber or the like. When the scale of the facility becomes large, it is preferable to effectively utilize the sulfur oxide discharged by installing a sulfuric acid production facility.

2. 金浸出工程
本発明に係る金浸出方法の一実施形態においては、前処理後の金鉱石を、ハロゲン化物イオンを含有する金浸出液に酸化剤の供給下で接触させて、当該鉱石中の金成分を浸出し、次いで金浸出後液と残渣に固液分離する工程3を実施する。前処理によって、鉄は酸化数が3の酸化鉄に変化しているので、金浸出時にpHを1.5以上とすることで鉄を沈殿させることができるため、金浸出の前後の工程において鉄分を浸出除去する必要はない。また、特許文献2(特開2009−235519号公報段落0016に記載)に記載の金浸出方法では浸出した後の液を再利用するために鉄をオキシ水酸化鉄として沈殿させ、酸の再生と余分な鉄分を除去する。そのためにFe2+として浸出された鉄を空気酸化する必要があったが、上述した前処理を実施することで、それも不要になる。
2. Gold leaching step In one embodiment of the gold leaching method according to the present invention, the gold ore after the pretreatment is brought into contact with a gold leaching solution containing halide ions under supply of an oxidizing agent, and the gold component in the ore Next, the step 3 of solid-liquid separation into liquid and residue after gold leaching is performed. Since the iron has been changed to iron oxide having an oxidation number of 3 by pretreatment, iron can be precipitated by setting the pH to 1.5 or more at the time of gold leaching. There is no need to leach and remove. Further, in the gold leaching method described in Patent Document 2 (described in paragraph 0016 of JP2009-235519A), in order to reuse the liquid after leaching, iron is precipitated as iron oxyhydroxide to regenerate the acid. Remove excess iron. Therefore, it is necessary to air-oxidize iron leached as Fe 2+ , but it becomes unnecessary by performing the pretreatment described above.

金の浸出は、溶出した金がハロゲン化物イオン、特に塩化物イオン又は臭化物イオンと反応し、金のハロゲン化物錯体、特に金の塩化錯体又は金の臭化錯体を生成することにより進行する。金浸出液中のハロゲン化物イオンとしては塩化物イオンのみでも構わないが、塩化物イオンと臭化物イオンを併用することで、より低電位の状態で錯体を形成するため、金の浸出効率の向上を図ることができる。また、鉄イオンは酸化剤の供給下で酸化した3価の鉄イオン又は当初より3価の鉄イオンが、金を酸化する働きをする。したがって金浸出液は当初より3価の鉄イオンが存在するほうが好ましい。金浸出液は銅イオンを含有することが好ましい。銅イオンは直接反応に関与しないが、銅イオンが存在することで鉄イオンの酸化速度が速くなるからである。   Gold leaching proceeds by the elution of gold reacting with halide ions, particularly chloride ions or bromide ions, to form gold halide complexes, particularly gold chloride complexes or gold bromide complexes. Chloride ions alone may be used as halide ions in the gold leaching solution. By using chloride ions and bromide ions in combination, a complex is formed at a lower potential, thereby improving gold leaching efficiency. be able to. Further, the iron ions function to oxidize gold by trivalent iron ions oxidized under the supply of an oxidizing agent or trivalent iron ions from the beginning. Therefore, the gold leaching solution preferably contains trivalent iron ions from the beginning. The gold leachate preferably contains copper ions. This is because copper ions are not directly involved in the reaction, but the presence of copper ions increases the oxidation rate of iron ions.

金浸出液と金鉱石の接触方法としては特に制限はなく、撒布や浸漬などの方法があるが、反応効率の観点から、浸出液中に残渣を浸漬し、撹拌する方法が好ましい。   The contact method between the gold leachate and the gold ore is not particularly limited, and there are methods such as spreading and dipping. From the viewpoint of reaction efficiency, a method of dipping and stirring the residue in the leachate is preferable.

塩化物イオンの供給源としては、特に制限はないが、例えば塩化水素、塩酸、塩化金属及び塩素ガス等が挙げられ、経済性や安全性を考慮すれば塩化金属塩の形態で供給するのが好ましい。塩化金属塩としては、例えば塩化銅(塩化第一銅、塩化第二銅)、塩化鉄(塩化第一鉄、塩化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の塩化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の塩化物が挙げられ、経済性や入手容易性の観点から、塩化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、塩化銅及び塩化鉄を利用することも好ましい。   There are no particular restrictions on the source of chloride ions, but examples include hydrogen chloride, hydrochloric acid, metal chloride, and chlorine gas. In consideration of economy and safety, the supply source is chloride metal salt. preferable. Examples of metal chloride salts include copper chloride (cuprous chloride, cupric chloride), iron chloride (ferrous chloride, ferric chloride), and alkali metals (lithium, sodium, potassium, rubidium, cesium, francium). And chlorides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, radium), and sodium chloride is preferred from the viewpoint of economy and availability. Moreover, since it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper chloride and iron chloride.

臭化物イオンの供給源としては、特に制限はないが、例えば臭化水素、臭化水素酸、臭化金属及び臭素ガス等が挙げられ、経済性や安全性を考慮すれば臭化金属塩の形態で供給するのが好ましい。臭化金属塩としては、例えば臭化銅(臭化第一銅、臭化第二銅)、臭化鉄(臭化第一鉄、臭化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の臭化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の臭化物が挙げられ、経済性や入手容易性の観点から、臭化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、臭化銅及び臭化鉄を利用することも好ましい。   The source of bromide ions is not particularly limited, and examples thereof include hydrogen bromide, hydrobromic acid, metal bromide, bromine gas, and the like. In consideration of economy and safety, the form of metal bromide salt It is preferable to supply by. Examples of metal bromide salts include copper bromide (cuprous bromide, cupric bromide), iron bromide (ferrous bromide, ferric bromide), and alkali metals (lithium, sodium, potassium). , Rubidium, cesium, francium) and alkaline earth metal (beryllium, magnesium, calcium, strontium, barium, radium) bromides, and sodium bromide is preferred from the viewpoints of economy and availability. Moreover, since it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper bromide and iron bromide.

銅イオン及び鉄イオンは、これらの塩の形態で供給するのが通常であり、例えばハロゲン化塩の形態で供給することができる。塩化物イオン及び/又は臭化物イオンの供給源としても利用できる観点から銅イオンは塩化銅及び/又は臭化銅、鉄イオンは塩化鉄及び/又は臭化鉄として供給されるのが好ましい。塩化銅及び塩化鉄としては酸化力の観点から塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)を使用するのがそれぞれ望ましいが、塩化第一銅(CuCl)及び塩化第二鉄(FeCl2)を使用しても浸出液に酸化剤を供給することで、塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)にそれぞれ酸化されるため、大差はない。Copper ions and iron ions are usually supplied in the form of these salts. For example, they can be supplied in the form of halide salts. From the viewpoint that it can also be used as a source of chloride ions and / or bromide ions, copper ions are preferably supplied as copper chloride and / or copper bromide, and iron ions are preferably supplied as iron chloride and / or iron bromide. As copper chloride and iron chloride, it is preferable to use cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ) from the viewpoint of oxidizing power, respectively, but cuprous chloride (CuCl) and ferric chloride are preferable. Even if (FeCl 2 ) is used, supplying an oxidizing agent to the leachate will oxidize to cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ), respectively, so there is no significant difference.

工程3で使用する金浸出液中の塩化物イオンの濃度は、30g/L〜125g/Lであることがより好ましい。工程3で使用する金浸出液中の臭化物イオンの濃度は、反応速度や溶解度の観点から、1g/L〜100g/Lであることが好ましく、経済性の観点から、10g/L〜40g/Lであることがより好ましい。そして、金浸出液中の塩化物イオンと臭化物イオンの合計濃度は、120g/L〜200g/Lであることが好ましい。また、金の浸出効率の観点からは、金浸出液中の塩化物イオンに対する臭化物イオンの重量濃度比が1以上であることが好ましい。   The concentration of chloride ions in the gold leachate used in step 3 is more preferably 30 g / L to 125 g / L. The concentration of bromide ions in the gold leachate used in step 3 is preferably 1 g / L to 100 g / L from the viewpoint of reaction rate and solubility, and 10 g / L to 40 g / L from the viewpoint of economy. More preferably. The total concentration of chloride ions and bromide ions in the gold leaching solution is preferably 120 g / L to 200 g / L. From the viewpoint of gold leaching efficiency, the weight concentration ratio of bromide ions to chloride ions in the gold leaching solution is preferably 1 or more.

工程3の開始時における浸出液の酸化還元電位(vs Ag/AgCl)は、金浸出を促進する観点から550mV以上とするのが好ましく、600mV以上とするのがより好ましい。また、鉄をオキシ水酸化物(ゲーサイト)として沈殿させるためにpHは1.5以上が好ましいが、余りに高いpHでは浸出を促進する鉄も銅も沈殿するため、金浸出液のpHは2.5以下が好ましく、1.8〜2.0がより好ましい。金浸出液の温度は、金の浸出速度を高める観点から45℃以上とするのが好ましく、60℃以上とするのがより好ましいが、高すぎると浸出液の蒸発や加熱コストの上昇あるので、95℃以下とするのが好ましく、85℃以下とするのがより好ましい。   The oxidation-reduction potential (vs Ag / AgCl) of the leaching solution at the start of step 3 is preferably 550 mV or more, more preferably 600 mV or more from the viewpoint of promoting gold leaching. Moreover, in order to precipitate iron as oxyhydroxide (goethite), the pH is preferably 1.5 or more. However, if the pH is too high, iron and copper that promote leaching are precipitated, and thus the pH of the gold leaching solution is 2. 5 or less is preferable and 1.8 to 2.0 is more preferable. The temperature of the gold leachate is preferably 45 ° C. or higher from the viewpoint of increasing the gold leach rate, and more preferably 60 ° C. or higher. However, if it is too high, the leachate will evaporate and the heating cost will increase. It is preferable to set it as follows, and it is more preferable to set it as 85 degrees C or less.

従って、本発明の好適な実施形態においては、工程3における金浸出液として、塩化物イオン及び臭化物イオンの両方を含有するように選択することを条件に、塩酸及び臭素酸の少なくとも一方と、塩化第二銅及び臭化第二銅の少なくとも一方と、塩化第二鉄及び臭化第二鉄の少なくとも一方と、塩化ナトリウム及び臭化ナトリウムの少なくとも一方とを含む混合液を使用することができる。   Accordingly, in a preferred embodiment of the present invention, at least one of hydrochloric acid and bromic acid, and chloride chloride are selected on the condition that the gold leachate in step 3 is selected to contain both chloride ions and bromide ions. A mixed liquid containing at least one of dicopper and cupric bromide, at least one of ferric chloride and ferric bromide, and at least one of sodium chloride and sodium bromide can be used.

工程3の金浸出工程は酸化剤を供給しながら実施することで、酸化還元電位を管理する。酸化剤を添加しなければ途中で酸化還元電位が低下してしまい、浸出反応が進行しない。酸化剤としては特に制限はないが、例えば酸素、空気、塩素、臭素、及び過酸化水素などが挙げられる。極端に高い酸化還元電位をもつ酸化剤は必要なく、空気で十分である。経済性や安全性の観点からも空気が好ましい。   The gold leaching step of step 3 is performed while supplying an oxidizing agent, thereby managing the oxidation-reduction potential. If an oxidizing agent is not added, the redox potential is lowered in the middle, and the leaching reaction does not proceed. Although there is no restriction | limiting in particular as an oxidizing agent, For example, oxygen, air, chlorine, a bromine, hydrogen peroxide, etc. are mentioned. An oxidant with an extremely high redox potential is not necessary and air is sufficient. Air is also preferable from the viewpoint of economy and safety.

金の浸出反応後、固液分離することによって鉄分を含む残渣を除去可能である。固液分離の方法としては、濾過、圧搾、デカント、遠心分離などの公知の方法が挙げられ、特に制限はないが、操作が容易で低含水率の残渣にすることができるフィルタープレスが好ましい。得られた金溶解液から、金を回収することができる。金の回収方法としては特に制限はないが、活性炭吸着、電解採取、溶媒抽出、還元、セメンテーション及びイオン交換などを利用することができる。   After the gold leaching reaction, the residue containing iron can be removed by solid-liquid separation. Examples of the solid-liquid separation method include known methods such as filtration, squeezing, decanting, and centrifugation, and are not particularly limited, but a filter press that is easy to operate and can be made into a low water content residue is preferable. Gold can be recovered from the resulting gold solution. Although there is no restriction | limiting in particular as a collection | recovery method of gold | metal | money, Activated carbon adsorption | suction, electrowinning, solvent extraction, reduction | restoration, cementation, ion exchange, etc. can be utilized.

また、浸出反応の途中で金を回収することで浸出反応液中の金濃度を低下させ、金の浸出率を高めることも有効な手法である。これは例えば、浸出反応中の金浸出液に活性炭あるいは活性炭と硝酸鉛を投入することで行うことができる。   It is also an effective technique to increase the gold leaching rate by reducing the gold concentration in the leaching reaction solution by collecting gold during the leaching reaction. This can be done, for example, by introducing activated carbon or activated carbon and lead nitrate into the gold leaching solution during the leaching reaction.

以下、実施例により本発明をさらに具体的に説明する。但し、本発明はこれらに限定されるものではない。なお、実施例で用いた金属の分析方法は、ICP−AESにて行った。但し、金の分析では、灰吹法にて試料中の金を析出させた後、ICP−AESにて定量分析を行った。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these. In addition, the analysis method of the metal used in the Example was performed by ICP-AES. However, in the analysis of gold, gold in the sample was deposited by the ash blowing method, and then quantitative analysis was performed by ICP-AES.

<実施例1>
黄鉄鉱精鉱(パプアニューギニア国産)を準備した。この黄鉄鉱精鉱中の黄鉄鉱の含有量をXRDと化学分析により算定したところ、17質量%であった。黄鉄鉱精鉱(250g)を管状炉に装入し、2L/minの空気供給下で1時間かけて600℃まで昇温(昇温速度=10℃/min)した後、1時間保持した。室温まで放冷後、加熱処理前後のXRD解析により、元鉱中に含まれていたFeS2のピークが消失し、鉄酸化物(Fe23)のピークが生じたことを確認した。
<Example 1>
Pyrite concentrate (Papua New Guinea domestic) was prepared. It was 17 mass% when content of the pyrite in this pyrite concentrate was calculated by XRD and chemical analysis. Pyrite concentrate (250 g) was charged into a tubular furnace, heated to 600 ° C. over 1 hour under a 2 L / min air supply (temperature increase rate = 10 ° C./min), and held for 1 hour. After cooling to room temperature, the XRD analysis before and after the heat treatment confirmed that the FeS 2 peak contained in the original ore disappeared and the iron oxide (Fe 2 O 3 ) peak was generated.

次いで、表1に記載の組成を有する塩酸酸性の金浸出液を用いてパルプ濃度100g/Lとし、液温85℃で12時間浸出処理を行った。浸出処理中は空気の吹き込み(精鉱1Lに対して0.1L/min)及び撹拌を継続し、酸化還元電位(ORP:vs Ag/AgCl)を550mV以上に維持した。また、浸出中は、金浸出液のpHが2.0以下1.5以上を維持するように塩酸を適宜添加した。浸出時間の経過に伴う金浸出液のpH及びORPの推移を表2及び図2に示す。   Next, a leaching treatment was carried out at a liquid temperature of 85 ° C. for 12 hours using a hydrochloric acid acidic gold leachate having the composition shown in Table 1 at a pulp concentration of 100 g / L. During the leaching process, air blowing (0.1 L / min with respect to 1 L of concentrate) and stirring were continued, and the oxidation-reduction potential (ORP: vs Ag / AgCl) was maintained at 550 mV or higher. During the leaching, hydrochloric acid was appropriately added so that the pH of the gold leaching solution was maintained at 2.0 or lower and 1.5 or higher. Changes in pH and ORP of the gold leaching solution as the leaching time elapses are shown in Table 2 and FIG.

Figure 0006038192
Figure 0006038192

Figure 0006038192
Figure 0006038192

浸出試験中、定期的に浸出液のサンプルを採取し、浸出液中に溶解しているAuイオン及びFeイオンの濃度を測定した。当該試験の結果から得られた、浸出時間に対する浸出液中のFe濃度の関係を図3に示す。また、浸出時間と金浸出率との関係を図4に示す。Auの浸出率は(1−残渣Au品位×残渣率/元鉱Au品位)×100の計算式により算出した。
焙焼後の酸化鉄は即座に溶解すると同時に、pHが1.8以上まで上昇したため鉄がオキシ水酸化鉄(ゲーサイト)として沈殿した。Auは、酸化鉄の溶解に伴って鉱石内部に包含されていたAu粒子が浸出液に暴露されるため、浸出された。残渣率は残渣率(%)=浸出後精鉱重量/浸出前精鉱重量×100で定義される。
During the leaching test, samples of the leaching solution were taken periodically, and the concentrations of Au ions and Fe ions dissolved in the leaching solution were measured. FIG. 3 shows the relationship between the leaching time and the Fe concentration in the leachate obtained from the results of the test. FIG. 4 shows the relationship between the leaching time and the gold leaching rate. The leaching rate of Au was calculated by a formula of (1−residual Au grade × residue rate / original ore Au grade) × 100.
The iron oxide after roasting dissolved immediately and at the same time the pH rose to 1.8 or more, so iron precipitated as iron oxyhydroxide (goethite). Au was leached because the Au particles contained in the ore were exposed to the leachate as the iron oxide was dissolved. The residue rate is defined as residue rate (%) = weight after leaching / weight before leaching × 100.

また、浸出試験中、定期的に浸出残渣のサンプルを採取し、残渣中のAu品位を測定した。その結果、元鉱中の金品位は6.0g/tであったが、浸出時間が6時間を経過した後には1.6g/tに低下し、12時間を経過した後には1.4g/tにまで低下した。   In addition, during the leaching test, samples of leaching residue were periodically collected, and the Au quality in the residue was measured. As a result, although the gold grade in the original ore was 6.0 g / t, it decreased to 1.6 g / t after 6 hours of leaching, and 1.4 g / t after 12 hours. It dropped to t.

<比較例1>
実施例1と同じ黄鉄鉱精鉱(0.5kg)を準備した。次いで、酸化焙焼することなく、実施例1と同じ金浸出液を用いてパルプ濃度100g/Lとし、液温85℃で12時間浸出処理を行った。浸出処理中は空気の吹き込み(精鉱1Lに対して0.1L/min)及び撹拌を継続し、酸化還元電位(ORP:vs Ag/AgCl)を550mV以上に維持した。また、浸出中は、金浸出液のpHが約1.1を維持するように塩酸を適宜添加した。浸出処理中は、6時間毎に濾過を行い、残渣を新しい浸出液中で処理した。
<Comparative Example 1>
The same pyrite concentrate (0.5 kg) as in Example 1 was prepared. Next, without oxidative roasting, the same gold leachate as in Example 1 was used to obtain a pulp concentration of 100 g / L, and a leaching treatment was performed for 12 hours at a liquid temperature of 85 ° C. During the leaching process, air blowing (0.1 L / min with respect to 1 L of concentrate) and stirring were continued, and the oxidation-reduction potential (ORP: vs Ag / AgCl) was maintained at 550 mV or higher. During the leaching, hydrochloric acid was appropriately added so that the pH of the gold leaching solution was maintained at about 1.1. During the leaching process, filtration was performed every 6 hours, and the residue was treated in fresh leaching solution.

その結果、元鉱中の金品位は6.0g/tであったが、浸出時間が12時間を経過した後でも4.6g/tにまでしか低下しなかった。また、実施例1と同様に、浸出時間と金浸出率との関係を図4に示す。   As a result, although the gold quality in the original ore was 6.0 g / t, it decreased only to 4.6 g / t even after 12 hours had passed. As in Example 1, the relationship between the leaching time and the gold leaching rate is shown in FIG.

Claims (6)

黄鉄鉱を含有する金鉱石を準備する工程1、及び、当該金鉱石を温度550〜650℃の条件下で酸化焙焼する工程2を含む前処理と、
前処理後の金鉱石を、ハロゲン化物イオンを含有する金浸出液に酸化剤の供給下で接触させて、当該鉱石中の金成分を浸出し、次いで金浸出後液と鉄を含む残渣に固液分離する工程3と、
を含む金の浸出方法。
A pretreatment including a step 1 of preparing a gold ore containing pyrite and a step 2 of oxidizing and roasting the gold ore under conditions of a temperature of 550 to 650 ° C ;
Gold ore after pretreatment, by contacting a feed of an oxidizing agent to the gold leaching solution containing halide ions, leach gold component of the gold in the ore, then the solid residue containing liquid iron after the gold leaching Step 3 for liquid separation;
Including gold leaching method.
金浸出液が塩化物イオン及び臭化物イオンを含有する請求項1に記載の金の浸出方法。   The gold leaching method according to claim 1, wherein the gold leaching solution contains chloride ions and bromide ions. 工程2における酸化焙焼は金鉱石中の黄鉄鉱を酸化鉄に変化させる請求項1又は2に記載の金の浸出方法。 3. The gold leaching method according to claim 1 or 2, wherein the oxidation roasting in step 2 changes pyrite in the gold ore into iron oxide . 金鉱石中の黄鉄鉱の含有量が5〜80質量%である請求項1〜3の何れか一項に記載の金の浸出方法。   The gold leaching method according to any one of claims 1 to 3, wherein a content of pyrite in the gold ore is 5 to 80% by mass. 金浸出液のpHを2.0以下に保持して金の浸出工程を実施する請求項1〜4の何れか一項に記載の金の浸出方法。   The gold leaching method according to any one of claims 1 to 4, wherein the gold leaching step is performed while maintaining the pH of the gold leaching solution at 2.0 or less. 工程3において、前記前処理後の金鉱石を、ハロゲン化物イオンを含有し、pHが1.5〜2.5である金浸出液に酸化剤の供給下で接触させて、当該金鉱石中の酸化鉄を溶解して鉄のオキシ水酸化物として沈殿させるとともに、金成分を浸出し、次いで金浸出後液と残渣に固液分離する請求項1〜4の何れか一項に記載の金の浸出方法。In step 3, the gold ore after the pretreatment is brought into contact with a gold leaching solution containing halide ions and having a pH of 1.5 to 2.5 under supply of an oxidizing agent to oxidize the gold ore. The gold leaching according to any one of claims 1 to 4, wherein the iron is dissolved and precipitated as an iron oxyhydroxide, and the gold component is leached and then separated into a liquid and a residue after gold leaching. Method.
JP2014560626A 2013-02-07 2013-04-10 Method for leaching gold from gold ore containing pyrite Active JP6038192B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013022683 2013-02-07
JP2013022683 2013-02-07
PCT/JP2013/060795 WO2014122803A1 (en) 2013-02-07 2013-04-10 Method for leaching gold from gold ore containing pyrite

Publications (2)

Publication Number Publication Date
JP6038192B2 true JP6038192B2 (en) 2016-12-07
JPWO2014122803A1 JPWO2014122803A1 (en) 2017-01-26

Family

ID=51299414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014560626A Active JP6038192B2 (en) 2013-02-07 2013-04-10 Method for leaching gold from gold ore containing pyrite

Country Status (5)

Country Link
JP (1) JP6038192B2 (en)
AU (1) AU2013204113B2 (en)
CA (1) CA2897470C (en)
CL (1) CL2015002159A1 (en)
WO (1) WO2014122803A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107034353A (en) * 2017-04-27 2017-08-11 中南大学 A kind of method of low-temperature bake acidleach dissociation gold

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364444A (en) * 1993-07-08 1994-11-15 North American Pallidium Ltd. Metal leaching and recovery process
JPH07508073A (en) * 1992-06-26 1995-09-07 インテック プロプライエタリー リミテッド Method of manufacturing metals from minerals
JP2009526912A (en) * 2006-02-17 2009-07-23 オウトテック オサケイティオ ユルキネン Gold collection method
JP2009235525A (en) * 2008-03-27 2009-10-15 Nippon Mining & Metals Co Ltd Method for leaching out gold

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07508073A (en) * 1992-06-26 1995-09-07 インテック プロプライエタリー リミテッド Method of manufacturing metals from minerals
US5364444A (en) * 1993-07-08 1994-11-15 North American Pallidium Ltd. Metal leaching and recovery process
JP2009526912A (en) * 2006-02-17 2009-07-23 オウトテック オサケイティオ ユルキネン Gold collection method
JP2009235525A (en) * 2008-03-27 2009-10-15 Nippon Mining & Metals Co Ltd Method for leaching out gold

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013031169; ARRIAGADA, F. J. et al.: 'ROASTING OF AURIFEROUS PYRITE CONCENTRATES' Process Mineralogy 2: Applications in Metallurgy, Ceramics and Geology , 1982, p. 173-186 *

Also Published As

Publication number Publication date
WO2014122803A1 (en) 2014-08-14
AU2013204113A1 (en) 2014-08-21
JPWO2014122803A1 (en) 2017-01-26
CL2015002159A1 (en) 2015-11-27
CA2897470C (en) 2017-09-19
CA2897470A1 (en) 2014-08-14
AU2013204113B2 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP5319718B2 (en) Methods for leaching copper and gold from sulfide ores
JP4085908B2 (en) Method for concentrating noble metals contained in leaching residue of wet copper refining process
WO2013108478A1 (en) Gold recovery method, and gold production method using same
JP5955393B2 (en) Method for leaching gold from gold ore containing pyrite
JP5821775B2 (en) Processing method of copper smelting ash
JP6015824B2 (en) Processing method of copper smelting ash
JP6195536B2 (en) Iron removal method, iron leaching method, and gold recovery method
JP5832665B2 (en) Method for leaching gold from gold ore containing pyrite
JP5840642B2 (en) Method for recovering gold from sulfide minerals
JP2013163868A (en) Leaching method of copper and gold from sulfide ore
JP6953258B2 (en) Gold leaching method and gold recovery method
JP6437367B2 (en) Recovery method of rhenium from molybdenum concentrate
JP6038192B2 (en) Method for leaching gold from gold ore containing pyrite
JP6998259B2 (en) How to treat copper ore
JP2014205869A (en) Gold ore after pretreatment
JP6649155B2 (en) Pretreatment method of gold ore and method of recovering gold from gold ore
WO2021085023A1 (en) Method for treating ore or refining intermediate
JP6899672B2 (en) How to recover gold from ore or refining intermediates
JP6196209B2 (en) Method for treating copper-containing molybdenum ore
JP6849482B2 (en) How to recover gold from ores containing gold or refining intermediates
JP6329939B2 (en) Gold ore pretreatment method
JP2020164968A (en) Removal method of calcium from ore and recovery method of metal
JP2020164967A (en) Processing method of ore
JP2019116670A (en) Recover method of copper, and manufacturing method of electronic copper

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161101

R150 Certificate of patent or registration of utility model

Ref document number: 6038192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250