JP6329939B2 - Gold ore pretreatment method - Google Patents
Gold ore pretreatment method Download PDFInfo
- Publication number
- JP6329939B2 JP6329939B2 JP2015507923A JP2015507923A JP6329939B2 JP 6329939 B2 JP6329939 B2 JP 6329939B2 JP 2015507923 A JP2015507923 A JP 2015507923A JP 2015507923 A JP2015507923 A JP 2015507923A JP 6329939 B2 JP6329939 B2 JP 6329939B2
- Authority
- JP
- Japan
- Prior art keywords
- gold
- leaching
- pretreatment
- gold ore
- pyrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010931 gold Substances 0.000 title claims description 174
- 229910052737 gold Inorganic materials 0.000 title claims description 161
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title claims description 160
- 238000002203 pretreatment Methods 0.000 title claims description 21
- 238000002386 leaching Methods 0.000 claims description 87
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 72
- 229910052683 pyrite Inorganic materials 0.000 claims description 53
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 claims description 53
- 239000011028 pyrite Substances 0.000 claims description 53
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 35
- 238000010438 heat treatment Methods 0.000 claims description 19
- 230000001590 oxidative effect Effects 0.000 claims description 12
- 239000012298 atmosphere Substances 0.000 claims description 10
- 230000002378 acidificating effect Effects 0.000 claims description 4
- NFMAZVUSKIJEIH-UHFFFAOYSA-N bis(sulfanylidene)iron Chemical compound S=[Fe]=S NFMAZVUSKIJEIH-UHFFFAOYSA-N 0.000 claims description 4
- 150000002506 iron compounds Chemical class 0.000 claims description 4
- 125000000101 thioether group Chemical group 0.000 claims description 3
- 238000000034 method Methods 0.000 description 44
- 238000006243 chemical reaction Methods 0.000 description 21
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 19
- 238000011282 treatment Methods 0.000 description 19
- 229910052742 iron Inorganic materials 0.000 description 16
- 239000012141 concentrate Substances 0.000 description 15
- -1 iron ions Chemical class 0.000 description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 12
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 229910052717 sulfur Inorganic materials 0.000 description 10
- 239000011593 sulfur Substances 0.000 description 10
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 9
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical class [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 9
- 229910001431 copper ion Inorganic materials 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 7
- 239000007800 oxidant agent Substances 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000000197 pyrolysis Methods 0.000 description 7
- 229910052569 sulfide mineral Inorganic materials 0.000 description 7
- 238000005979 thermal decomposition reaction Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 6
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 5
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 5
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 5
- 229940045803 cuprous chloride Drugs 0.000 description 5
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 5
- 238000003801 milling Methods 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- QTMDXZNDVAMKGV-UHFFFAOYSA-L copper(ii) bromide Chemical compound [Cu+2].[Br-].[Br-] QTMDXZNDVAMKGV-UHFFFAOYSA-L 0.000 description 4
- 229960003280 cupric chloride Drugs 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 4
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 4
- 235000013980 iron oxide Nutrition 0.000 description 4
- GYCHYNMREWYSKH-UHFFFAOYSA-L iron(ii) bromide Chemical compound [Fe+2].[Br-].[Br-] GYCHYNMREWYSKH-UHFFFAOYSA-L 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 4
- 229910052815 sulfur oxide Inorganic materials 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 4
- 229910021607 Silver chloride Inorganic materials 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- ODWXUNBKCRECNW-UHFFFAOYSA-M bromocopper(1+) Chemical compound Br[Cu+] ODWXUNBKCRECNW-UHFFFAOYSA-M 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910001509 metal bromide Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 230000033116 oxidation-reduction process Effects 0.000 description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910021590 Copper(II) bromide Inorganic materials 0.000 description 2
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 150000003842 bromide salts Chemical class 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical group 0.000 description 2
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910001510 metal chloride Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 229910052952 pyrrhotite Inorganic materials 0.000 description 2
- 229910052705 radium Inorganic materials 0.000 description 2
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- FEONEKOZSGPOFN-UHFFFAOYSA-K tribromoiron Chemical compound Br[Fe](Br)Br FEONEKOZSGPOFN-UHFFFAOYSA-K 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910021589 Copper(I) bromide Inorganic materials 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910021575 Iron(II) bromide Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- INJRKJPEYSAMPD-UHFFFAOYSA-N aluminum;silicic acid;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O INJRKJPEYSAMPD-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- AQLMHYSWFMLWBS-UHFFFAOYSA-N arsenite(1-) Chemical compound O[As](O)[O-] AQLMHYSWFMLWBS-UHFFFAOYSA-N 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910052951 chalcopyrite Inorganic materials 0.000 description 1
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- NKNDPYCGAZPOFS-UHFFFAOYSA-M copper(i) bromide Chemical compound Br[Cu] NKNDPYCGAZPOFS-UHFFFAOYSA-M 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005363 electrowinning Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229940046149 ferrous bromide Drugs 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- KLMCZVJOEAUDNE-UHFFFAOYSA-N francium atom Chemical compound [Fr] KLMCZVJOEAUDNE-UHFFFAOYSA-N 0.000 description 1
- 229910052949 galena Inorganic materials 0.000 description 1
- OVWPJGBVJCTEBJ-UHFFFAOYSA-K gold tribromide Chemical class Br[Au](Br)Br OVWPJGBVJCTEBJ-UHFFFAOYSA-K 0.000 description 1
- RJHLTVSLYWWTEF-UHFFFAOYSA-K gold trichloride Chemical class Cl[Au](Cl)Cl RJHLTVSLYWWTEF-UHFFFAOYSA-K 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- 229910052850 kyanite Inorganic materials 0.000 description 1
- 239000010443 kyanite Substances 0.000 description 1
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 description 1
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/02—Roasting processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/04—Obtaining noble metals by wet processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は黄鉄鉱を含有する金鉱石から金を湿式処理によって回収するための金鉱石の前処理方法に関する。 The present invention relates to a gold ore pretreatment method for recovering gold from a gold ore containing pyrite by wet treatment.
金を含有する硫化鉱物から金を回収する方法として、湿式法を利用した技術が知られている。伝統的には、硫化鉱物中の金を溶液中への浸出は、シアン、チオ尿素、チオ硫酸、ハロゲンガスといった薬品を使用することにより行われてきた。最近では、より毒性の低い浸出剤として、特開2008−106347号公報(特許文献1)や特開2009−235525号公報(特許文献2)に記載されるような、塩化物イオン、鉄イオン、銅イオン、及び臭化物イオンを利用した金浸出液を使用することも提案されている。 A technique using a wet method is known as a method for recovering gold from a sulfide mineral containing gold. Traditionally, leaching of gold in sulfide minerals into solutions has been performed by using chemicals such as cyanide, thiourea, thiosulfuric acid, and halogen gas. Recently, as a less toxic leachant, chloride ions, iron ions, as described in JP-A-2008-106347 (Patent Document 1) and JP-A-2009-235525 (Patent Document 2), It has also been proposed to use a gold leaching solution utilizing copper ions and bromide ions.
また、硫化鉱物から金を浸出しやすくするための前処理として、硫化鉱物を酸化焙焼する方法が知られており、近年では酸化焙焼にその他の工程を組み合わせた前処理も提案されている。例えば、特開2010−235999号公報(特許文献3)では、硫化銅鉱物を硫黄の融点以下の温度で浸出し、得られた浸出残渣から微細な粒状となった硫黄及び浸出されずに残留した硫化物の粒子を、その他の酸化鉄や脈石成分との疎水性の違いを利用して浮上させる一方、酸化鉄や脈石成分などを沈降、もしくは沈鉱として分離させることにより、浸出残渣中に含まれる金を濃縮する。その後、濃縮された金を含む成分は、硫黄を除去してから酸化焙焼して鉄成分を酸化鉄(ヘマタイト)とし、その後硫酸を用いて溶解することによって、金が濃縮された残渣が回収される。 Further, as a pretreatment for facilitating leaching of gold from sulfide minerals, a method of oxidizing and roasting sulfide minerals is known, and in recent years, a pretreatment combining oxidation roasting with other processes has also been proposed. . For example, in Japanese Patent Application Laid-Open No. 2010-235999 (Patent Document 3), copper sulfide mineral is leached at a temperature below the melting point of sulfur, and sulfur obtained as fine particles from the obtained leaching residue and remains without leaching. Sulfide particles are levitated by utilizing the difference in hydrophobicity from other iron oxides and gangue components, while iron oxide and gangue components are settled or separated as sedimentation to separate them in the leach residue. Concentrate the gold contained in the. After that, the concentrated gold-containing component is oxidized and roasted after removing sulfur to convert the iron component to iron oxide (hematite), and then dissolved using sulfuric acid to recover the gold-enriched residue. Is done.
もしくは黄鉄鉱に限っては、非酸化性雰囲気下で550℃以上に加熱すると酸に易溶の磁硫鉄鉱と硫黄に分解することが知られており、この反応を利用して黄鉄鉱含有の硫化銅鉱浸出残渣から黄鉄鉱を除き、その中に含まれる貴金属の含有比率を上げ、濃縮する方法が特開2005−042155号公報(特許文献4)に提案されている。 Or, for pyrite only, it is known that when heated to 550 ° C or higher in a non-oxidizing atmosphere, it decomposes into acid-soluble pyrrhotite and sulfur, and this reaction is used to leach copper sulfide ore containing pyrite. JP 2005-042155 A (Patent Document 4) proposes a method of removing pyrite from the residue, increasing the content ratio of the noble metal contained therein, and concentrating it.
特開2009−235525号公報(特許文献2)に記載の方法は、毒性の高いシアン、チオ尿素、チオ硫酸、ハロゲンガスといった薬品を使用することなく金を容易に浸出できるので、硫化銅鉱中の金の浸出には極めて実用性が高いが、これを黄鉄鉱に適用した場合には、金浸出速度が不十分である。 In the method described in JP2009-235525A (Patent Document 2), gold can be easily leached without using chemicals such as highly toxic cyanide, thiourea, thiosulfuric acid, and halogen gas. Although it is very practical for gold leaching, the gold leaching rate is insufficient when it is applied to pyrite.
そのため、特開2010−235999号公報(特許文献3)に記載されるような酸素を供給して行う酸化焙焼を利用した前処理を行うことで予め硫黄を除き、鉄の浸出を容易にする方法も考えられる。 Therefore, sulfur is removed in advance by performing pretreatment using oxidation roasting performed by supplying oxygen as described in JP 2010-235999 A (Patent Document 3) to facilitate iron leaching. A method is also conceivable.
しかしながら、特許文献3に記載の方法も含めて硫化鉱物を酸化焙焼する方法を採用すると、2CuS+3O2→2CuO+2SO2や、4CuFeS2+13O2→4CuO+8SO2+2Fe2O3、及び4FeS2+11O2→2Fe2O3+8SO2のような化学反応が優先的に起こるので、環境汚染物質として知られる二酸化硫黄(SO2)が発生することになる。特に、金鉱石中の黄鉄鉱含有量が高い場合には二酸化硫黄の発生量が膨大となることから、実用性の観点では未だ問題が残されている。However, when adopting the method of oxidizing roasting sulfide minerals including the method described in Patent Document 3, 2CuS + 3O 2 → 2CuO + 2SO 2 and, 4CuFeS 2 + 13O 2 → 4CuO + 8SO 2 + 2Fe 2 O 3, and 4FeS 2 + 11O 2 → 2Fe Since a chemical reaction such as 2 O 3 + 8SO 2 occurs preferentially, sulfur dioxide (SO 2 ) known as an environmental pollutant is generated. In particular, when the pyrite content in the gold ore is high, the amount of sulfur dioxide generated is enormous, so that there is still a problem in terms of practicality.
金の浸出速度を高めるための前処理については、安全性や環境面の観点からは金浸出のための鉱物処理過程で発生する二酸化硫黄を低減し、安全性を高め、環境に与える影響を低いものとすることが望ましい。そして、今まで実用化が困難とされてきた黄鉄鉱を多量に含有する金鉱石に対しても適用可能な前処理であれば、金鉱山開発の進展に大きく寄与すると考えられる。 Pretreatment to increase the gold leaching rate is reduced from the viewpoint of safety and environment, sulfur dioxide generated in the mineral treatment process for gold leaching is reduced, safety is increased, and the impact on the environment is low. It is desirable to make it. And if it is a pretreatment applicable also to the gold ore containing a large amount of pyrite that has been considered difficult to put into practical use, it is thought that it will greatly contribute to the progress of gold mine development.
この点、特許文献4は、貴金属を湿式法で回収する方法では問題があることに鑑みて、貴金属を乾式処理により回収することを前提としたプロセスであり、貴金属を湿式で浸出処理することは想定されていない(特許文献4の段落0007〜0008、0078等参照)。また、湿式処理によってどのような効果が得られるのかも何ら示唆されていない。 In this regard, Patent Document 4 is a process based on the premise that the noble metal is recovered by a dry process in view of the problem in the method of recovering the noble metal by a wet method. It is not assumed (see paragraphs 0007 to 0008 and 0078 of Patent Document 4). In addition, there is no suggestion of what effect can be obtained by wet processing.
本発明は上記事情に鑑みてなされたものであり、黄鉄鉱を含有する金鉱石から金を湿式処理によって回収するための金鉱石の前処理方法であって、二酸化硫黄の発生を抑制し、且つ、金の回収速度も向上可能な前処理方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and is a gold ore pretreatment method for recovering gold from a gold ore containing pyrite by wet treatment, suppressing generation of sulfur dioxide, and It is an object of the present invention to provide a pretreatment method capable of improving the gold recovery rate.
本発明は一側面において、黄鉄鉱(FeS2)を含有する金鉱石中に含まれる金を湿式処理により回収するための前処理方法であって、金鉱石中の黄鉄鉱を塩酸溶解性の鉄化合物に変換する工程を含む前処理方法である。In one aspect, the present invention is a pretreatment method for recovering gold contained in a gold ore containing pyrite (FeS 2 ) by wet treatment, wherein the pyrite in the gold ore is converted into a hydrochloric acid-soluble iron compound. It is the pre-processing method including the process to convert.
本発明に係る前処理方法の一実施形態においては、前処理後の金鉱石中に含まれる全Feの含有量(Feall)に対して、前処理後の金鉱石に含まれる塩酸溶解性のFeの含有量(Fesol)が0.6以上となるように黄鉄鉱を変換する工程を含む。In one embodiment of the pretreatment method according to the present invention, the solubility of hydrochloric acid contained in the gold ore after the pretreatment with respect to the total Fe content (Fe all ) contained in the gold ore after the pretreatment. It includes a step of converting pyrite so that the Fe content (Fe sol ) is 0.6 or more.
本発明に係る前処理方法の別の一実施形態においては、前処理後の金鉱石中の塩酸溶解性の鉄化合物が硫化物である。 In another embodiment of the pretreatment method according to the present invention, the hydrochloric acid-soluble iron compound in the gold ore after the pretreatment is a sulfide.
本発明に係る前処理方法の更に別の一実施形態においては、前処理前の金鉱石中の黄鉄鉱の含有量が5〜80質量%である。 In still another embodiment of the pretreatment method according to the present invention, the pyrite content in the gold ore before the pretreatment is 5 to 80% by mass.
本発明に係る前処理方法の更に別の一実施形態においては、前処理前の金鉱石中のS(質量%)/Au(質量ppm)が1〜20である。 In still another embodiment of the pretreatment method according to the present invention, S (mass%) / Au (mass ppm) in the gold ore before the pretreatment is 1 to 20.
本発明に係る前処理方法の更に別の一実施形態においては、前処理が熱処理を伴う。 In yet another embodiment of the pretreatment method according to the present invention, the pretreatment involves heat treatment.
本発明に係る前処理方法の更に別の一実施形態においては、熱処理が非酸化性雰囲気で金鉱石を450℃以上に加熱することを含む。 In yet another embodiment of the pretreatment method according to the present invention, the heat treatment includes heating the gold ore to 450 ° C. or higher in a non-oxidizing atmosphere.
本発明に係る前処理方法の更に別の一実施形態においては、熱処理は金鉱石を600〜750℃で5〜60分保持する条件下で行われる。 In still another embodiment of the pretreatment method according to the present invention, the heat treatment is performed under a condition in which the gold ore is held at 600 to 750 ° C. for 5 to 60 minutes.
黄鉄鉱を含有する金鉱石に対して、本発明に係る前処理方法を施した後に湿式処理を行うことにより、有害な酸化硫黄の発生を抑制しながらも改善された金回収速度を得ることができる。特に、特定の金浸出液を用いた場合には改善された金浸出速度は飛躍的である。すなわち、本発明によれば、安全性及び環境保全性に優れた極めて実用性の高い金の浸出方法が提供できる。 By performing a wet treatment after applying the pretreatment method according to the present invention to gold ore containing pyrite, it is possible to obtain an improved gold recovery rate while suppressing the generation of harmful sulfur oxides. . In particular, the improved gold leaching rate is dramatic when a specific gold leaching solution is used. That is, according to the present invention, it is possible to provide an extremely practical gold leaching method that is excellent in safety and environmental conservation.
以下、本発明を詳しく説明する。 The present invention will be described in detail below.
1. 前処理
本発明に係る黄鉄鉱(FeS2)を含有する金鉱石中に含まれる金を湿式処理により回収するための前処理方法の一実施形態においては、金鉱石中の黄鉄鉱を塩酸溶解性の鉄化合物に変換する工程を含む。本発明に係る金鉱石の前処理方法の好ましい実施形態においては、前処理後の金鉱石中に含まれる全Feの含有量(Feall)に対して、前処理後の金鉱石に含まれる塩酸溶解性のFeの含有量(Fesol)が0.6以上となるように黄鉄鉱を変換する工程を含む。1. Pretreatment In one embodiment of a pretreatment method for recovering gold contained in gold ore containing pyrite (FeS 2 ) according to the present invention by wet treatment, pyrite in the gold ore is converted into hydrochloric acid-soluble iron. Converting to a compound. In a preferred embodiment of the pretreatment method for gold ore according to the present invention, hydrochloric acid contained in the gold ore after pretreatment with respect to the total Fe content (Fe all ) contained in the gold ore after pretreatment. It includes a step of converting pyrite so that the content of soluble Fe (Fe sol ) is 0.6 or more.
(1)金鉱石
本発明が対象とするのは黄鉄鉱を含有する金鉱石である。というのは、本発明では難溶性で金浸出率の低い黄鉄鉱中の金の浸出率を高めることを目的とするからである。しかしながら、それ以外の要件、例えば、鉱石中の金の濃度の大小は問わない。本発明の処理対象となる金鉱石は、浮遊選鉱や比重選別といった慣用の選鉱処理を経たものとすることもできる。粉砕摩鉱して鉱石の粒径を小さくし、金浸出液が鉱石内部の金に接触しやすいようにすることもできる。金鉱石中の金濃度は典型的には0.1〜100質量ppm程度であり、より典型的には1〜20質量ppm程度である。(1) Gold ore The present invention is intended for gold ore containing pyrite. This is because the purpose of the present invention is to increase the gold leaching rate in pyrite, which is hardly soluble and has a low gold leaching rate. However, other requirements such as the concentration of gold in the ore are not important. The gold ore to be treated in the present invention may be subjected to a conventional beneficiation process such as flotation or specific gravity sorting. Grinding can reduce the particle size of the ore so that the gold leachate can easily come into contact with the gold inside the ore. The gold concentration in the gold ore is typically about 0.1 to 100 ppm by mass, and more typically about 1 to 20 ppm by mass.
金鉱石は黄鉄鉱を含有する他、黄銅鉱、方鉛鉱、閃亜鉛鉱、硫砒鉄鉱、輝安鉱、磁硫鉄鉱などを含有していてもよいが、本発明の典型的な実施形態においては黄鉄鉱が5質量%以上含まれる金鉱石を使用し、本発明のより典型的な実施形態においては黄鉄鉱が10質量%以上、更には30質量%以上含まれる金鉱石を使用する。このような金鉱石においては鉱石中における金の含有量に対する硫黄分の濃度(S/Au)が高くなり、金を効率的に回収することは一般に困難である。そのため、このような黄鉄鉱濃度の高い金鉱石を使用することで、本発明による前処理の効果が顕著に発揮される。具体的には、S(質量%)/Au(質量ppm)は1〜20であり、好ましくは1.5〜20であり、より好ましくは1.5〜10である。金鉱石の黄鉄鉱の含有量には特に上限はなく、100質量%でもよいが、典型的には80質量%以下である。 In addition to containing pyrite, the gold ore may contain chalcopyrite, galena, sphalerite, arsenite, kyanite, pyrrhotite, etc., but in an exemplary embodiment of the present invention pyrite Is used, and in a more typical embodiment of the present invention, gold ore containing pyrite in an amount of 10% by mass or more, and further 30% by mass or more is used. In such gold ore, the concentration of sulfur content (S / Au) with respect to the gold content in the ore increases, and it is generally difficult to efficiently recover gold. Therefore, the effect of the pretreatment according to the present invention is remarkably exhibited by using such gold ore with a high pyrite concentration. Specifically, S (mass%) / Au (mass ppm) is 1 to 20, preferably 1.5 to 20, and more preferably 1.5 to 10. The content of pyrite in the gold ore is not particularly limited, and may be 100% by mass, but typically 80% by mass or less.
(2)変換工程
従来技術では酸素や空気の存在下で酸化焙焼していたため、硫化鉱物中の硫黄が酸素と結合して酸化硫黄を生じさせていた。本発明においてはそのような酸化焙焼は実質的に行わない。本発明においては、硫黄酸化物の発生抑制の観点から、前処理によって黄鉄鉱を鉄硫化物に留めつつも、塩酸溶解性の鉄硫化物に変換することが好ましい。鉱石中の鉄が塩酸溶解性の鉄硫化物であり、特定の量以上あれば、次の工程の浸出工程では、改善された金の浸出速度が顕著に得られる。(2) Conversion process In the prior art, since oxidation roasting was performed in the presence of oxygen or air, sulfur in the sulfide mineral was combined with oxygen to produce sulfur oxide. In the present invention, such oxidation roasting is not substantially performed. In the present invention, from the viewpoint of suppressing the generation of sulfur oxides, it is preferable to convert pyrite into iron sulfides that are soluble in hydrochloric acid, while preserving pyrite in iron sulfides. If the iron in the ore is an iron sulfide that is soluble in hydrochloric acid and exceeds a specific amount, an improved gold leaching rate can be obtained significantly in the leaching step of the next step.
黄鉄鉱(FeS2)は塩酸に難溶性である一方で、塩酸に可溶性な鉄硫化物であれば、湿式処理による金回収の際に回収速度の向上が期待され、特には、特定の浸出液には飛躍的な効果を示すことを見出した。なお、特定の浸出液については、「2.湿式処理工程」に後述する。Pyrite (FeS 2 ) is sparingly soluble in hydrochloric acid, while iron sulfides soluble in hydrochloric acid are expected to improve the recovery rate during gold recovery by wet processing, especially for certain leachates. It was found to show a dramatic effect. The specific leachate will be described later in “2. Wet treatment process”.
本発明者の研究によれば、「特定の量以上」とは、前処理後の金鉱石に含まれる全Feの含有量をFeall、前処理後の金鉱石に含まれる塩酸溶解性のFeの含有量をFesolとすると、Fesol/Feallが0.6以上、Fesol/Feallは好ましくは0.8以上であり、より好ましくは0.9以上である。Fesol/Feallの上限は黄鉄鉱が完全に変換した場合で1.0である。According to the inventor's research, “more than a specific amount” means that the total Fe content in the pretreated gold ore is Fe all , and the hydrochloric acid soluble Fe contained in the pretreated gold ore. When the content of Fe sol is Fe sol , Fe sol / Fe all is 0.6 or more, and Fe sol / Fe all is preferably 0.8 or more, more preferably 0.9 or more. The upper limit of Fe sol / Fe all is 1.0 when pyrite is completely converted.
本発明において、Feall量は以下の手順で算出する。前処理後の金鉱石0.2g、過酸化ナトリウム4g、炭酸ナトリウム1gをジルコニウム坩堝に入れてガスバーナーで炙り、アルカリ融解する。坩堝を水冷後、坩堝に35%塩酸30mLを入れ、溶融物を浸出する。浸出後液をICP−AES(実施例では、株式会社日立ハイテクノロジーズ(旧SII)社製 型式SPS4000を使用した。)により測定する。測定されたFe濃度に基づいて液量及び鉱石量からFeall量を算出する。具体的には、Feall量=測定Fe濃度(g/L)×液量(30mL)÷鉱石量(0.2g)で表される。In the present invention, the Fe all amount is calculated by the following procedure. 0.2 g of gold ore after pretreatment, 4 g of sodium peroxide, and 1 g of sodium carbonate are put in a zirconium crucible, and are sprinkled with a gas burner and alkali-melted. After cooling the crucible with water, 30 mL of 35% hydrochloric acid is put into the crucible and the melt is leached. The solution after leaching is measured by ICP-AES (in the examples, model SPS4000 manufactured by Hitachi High-Technologies Corporation (former SII) was used). The Fe all amount is calculated from the liquid amount and the ore amount based on the measured Fe concentration. Specifically, Fe all amount = Measured Fe concentration (g / L) × Liquid amount (30 mL) ÷ Ore amount (0.2 g).
また、本発明においてFesolは以下の手順で算出する。前処理後の金鉱石50gを1mol/LのFe3+を含有する塩酸(1.0mol/L)1Lに85℃で180分間撹拌しながら浸出後、濾別する。濾液中のFeの濃度をICP−AES(実施例では、株式会社日立ハイテクノロジーズ(旧SII)社製 型式SPS4000を使用した。)により測定する(当初から塩酸中に含まれているFeは控除する。)。測定されたFe濃度に基づいて、液量と鉱石量からFesolを算出する。具体的には、Fesol量=(測定Fe濃度−当初Fe濃度)(g/L)×液量(1L)÷鉱石量(50g)で表される。In the present invention, Fe sol is calculated by the following procedure. 50 g of the gold ore after the pretreatment is leached in 1 L of hydrochloric acid (1.0 mol / L) containing 1 mol / L of Fe 3+ while stirring at 85 ° C. for 180 minutes, and then filtered off. The concentration of Fe in the filtrate is measured by ICP-AES (in the examples, model SPS4000 manufactured by Hitachi High-Technologies Corporation (formerly SII) was used) (Fe included in hydrochloric acid from the beginning is excluded) .) Based on the measured Fe concentration, Fe sol is calculated from the liquid amount and the ore amount. Specifically, Fe sol amount = (Measured Fe concentration−Initial Fe concentration) (g / L) × Liquid amount (1 L) ÷ Ore amount (50 g).
また、黄鉄鉱を変換する工程では、前処理後の黄鉄鉱が硫化物であることが望ましい。黄鉄鉱を酸化物にまで変換する場合には、硫黄酸化物の発生が不可避であり、その量は、シャワー塔等の簡易的な除去手段では済まず、十分に除去を可能する装置が必要となる。前処理後の黄鉄鉱が硫化物に留まるような熱処理が求められる。 In the step of converting pyrite, it is desirable that the pyrite after the pretreatment is a sulfide. When converting pyrite into oxides, the generation of sulfur oxides is unavoidable, and the amount thereof is not a simple removal means such as a shower tower, and an apparatus capable of sufficiently removing is required. . Heat treatment is required so that the pyrite after pretreatment remains in the sulfide.
当該変換工程は熱処理によって実施することが可能である。硫黄酸化物の発生抑制の観点からは、変換工程は酸素の混入が抑制された条件(非酸化性雰囲気)下で実施することが好ましい。本発明において酸素の混入が抑制された条件というのは、黄鉄鉱に対する酸素供給量のモル比が酸素:黄鉄鉱=1:2以下のことを指す。また、非酸化性雰囲気というのは黄鉄鉱に対する酸素供給量のモル比が酸素:黄鉄鉱=1:5以下のことを指し、黄鉄鉱に対する酸素供給量のモル比は1:10以下であることが好ましい。 The conversion step can be performed by heat treatment. From the viewpoint of suppressing the generation of sulfur oxides, the conversion step is preferably performed under conditions (non-oxidizing atmosphere) in which mixing of oxygen is suppressed. In the present invention, the condition in which the mixing of oxygen is suppressed indicates that the molar ratio of the oxygen supply amount to pyrite is oxygen: pyrite = 1: 2 or less. The non-oxidizing atmosphere means that the molar ratio of the oxygen supply amount to pyrite is oxygen: pyrite = 1: 5 or less, and the molar ratio of the oxygen supply amount to pyrite is preferably 1:10 or less.
酸素の混入が抑制された条件下であれば、硫黄酸化物の発生量は少なく、それを処理するために別途硫酸製造設備を設置する必要はない。シャワー塔で十分除去可能である。非酸化性雰囲気であれば、更にシャワー塔の設置も不要になり得る。 Under the condition that the mixing of oxygen is suppressed, the amount of sulfur oxide generated is small, and it is not necessary to install a separate sulfuric acid production facility in order to treat it. It can be removed sufficiently with a shower tower. If it is a non-oxidizing atmosphere, installation of a shower tower may be unnecessary.
当該変換工程を経た後の金鉱石は、変換工程を経ない場合に比べて、後述する金浸出液に対する溶解性が格段に向上し、金の浸出速度が約10倍も上昇し得る。このような結果が得られたことは極めて驚くべき事であった。 Compared to the case where the gold ore after the conversion step is not subjected to the conversion step, the solubility in the gold leaching solution described later can be remarkably improved, and the gold leaching rate can be increased by about 10 times. It was very surprising that such a result was obtained.
変換工程を実施する際の非酸化性雰囲気としては、アンモニア、一酸化炭素、硫化水素などの還元性雰囲気の他、アルゴンやヘリウムのような希ガス雰囲気、窒素雰囲気や二酸化炭素雰囲気等の不活性雰囲気が挙げられるが、予想外の反応が生じるのを防止する観点では不活性雰囲気が好ましい。もしくは熱分解に使用した排ガスを循環して使用してもよい。 Non-oxidizing atmosphere for carrying out the conversion step includes inert atmospheres such as ammonia, carbon monoxide, hydrogen sulfide, rare gas atmospheres such as argon and helium, nitrogen atmospheres and carbon dioxide atmospheres. Although an atmosphere is mentioned, an inert atmosphere is preferable from the viewpoint of preventing an unexpected reaction. Or you may circulate and use the exhaust gas used for thermal decomposition.
変換工程においては、黄鉄鉱の熱分解を促進するために、金鉱石の温度を450℃以上に保持することが望まれ、550℃以上に保持するのが好ましく、650℃以上に保持するのがより好ましい。また、変換工程は保持温度を5分以上継続するのが好ましく、15分以上継続するのがより好ましい。これは熱分解反応を十分に進行させるためである。但し、金鉱石の温度を過剰に高くすると昇温に必要なエネルギーと処理時間が大きくなるおそれがあるので、保持温度は800℃以下とするのが好ましく、750℃以下とするのがより好ましい。同様に、保持温度を維持する時間も120分以下とするのが好ましく、60分以下とするのがより好ましい。 In the conversion step, in order to promote thermal decomposition of pyrite, it is desirable to maintain the temperature of the gold ore at 450 ° C. or higher, preferably 550 ° C. or higher, and more preferably 650 ° C. or higher. preferable. Moreover, it is preferable that a conversion process continues holding temperature for 5 minutes or more, and it is more preferable to continue for 15 minutes or more. This is because the thermal decomposition reaction proceeds sufficiently. However, if the temperature of the gold ore is excessively increased, the energy required for the temperature increase and the treatment time may be increased. Therefore, the holding temperature is preferably 800 ° C. or less, and more preferably 750 ° C. or less. Similarly, the time for maintaining the holding temperature is also preferably 120 minutes or less, and more preferably 60 minutes or less.
変換工程を実施するための加熱炉の種類には特に制限はないが、例えば管状炉、ロータリーキルンを使用することができる。 Although there is no restriction | limiting in particular in the kind of heating furnace for implementing a conversion process, For example, a tubular furnace and a rotary kiln can be used.
黄鉄鉱の熱分解によって発生する単体硫黄は、高温の炉内でガス化しているので、金鉱石から固気分離可能である。そして、雰囲気ガスと共に排気系へと送ることが可能である。しかしながら、単体硫黄を排気系に送った時、温度の低下と共に硫黄が析出してガス道の閉塞等の不具合を生じさせるため、湿式スクラバーなどで回収することが望ましい。別法としては、ガス化した単体硫黄を変換工程で発生するピロタイトと共に冷却して共に固体状で回収し、これらを一緒に金浸出工程に送ることも可能である。金の浸出工程で単体硫黄は金の浸出を阻害することなく浸出残渣として分離される。この場合、湿式スクラバーが不要になるため、経済的に有利になる。 Since elemental sulfur generated by pyrolysis of pyrite is gasified in a high-temperature furnace, it can be separated from gold ore by solid-gas separation. Then, it can be sent to the exhaust system together with the atmospheric gas. However, when single sulfur is sent to the exhaust system, sulfur is deposited with a decrease in temperature to cause problems such as blockage of the gas passage. Therefore, it is desirable to recover with a wet scrubber or the like. As an alternative method, it is also possible to cool the gasified elemental sulfur together with the pyrotite generated in the conversion process, collect them together in a solid state, and send them together to the gold leaching process. In the gold leaching process, elemental sulfur is separated as a leaching residue without hindering gold leaching. In this case, a wet scrubber is unnecessary, which is economically advantageous.
操業上の制約等によっては、熱分解工程を経た金鉱石と熱分解工程を経ない金鉱石を混合して鉄浸出工程及びその後の工程を実施する場合もあると思われるが、その場合であっても、少なくとも熱分解工程を経た金鉱石が含まれることから、そのような実施形態も本発明の技術的範囲に属する。 Depending on operational restrictions, it may be possible to mix the gold ore that has undergone the pyrolysis process with the gold ore that has not undergone the pyrolysis process to perform the iron leaching process and the subsequent processes. However, since gold ore that has undergone at least a pyrolysis step is included, such an embodiment also belongs to the technical scope of the present invention.
2.湿式処理工程
前処理後の金鉱石は、湿式処理にて金を回収することにより本発明の効果が発揮される。湿式処理については、オートクレーブ処理と組み合わせたシアン浴による金の浸出、あるいは酸性浴による金の浸出が挙げられるが、これに限定されるものではない。2. Wet treatment step The gold ore after the pretreatment exhibits the effect of the present invention by collecting gold by a wet treatment. Examples of the wet treatment include, but are not limited to, gold leaching with a cyan bath combined with autoclave treatment or gold leaching with an acid bath.
シアン浴による金の浸出では、一般的に黄鉄鉱を含有する金鉱石を耐圧力容器内で高温高圧(例:200℃、30atm)で水、酸素と反応させ、鉄硫化物を鉄酸化物とした後、金を浸出している。耐圧力容器にオートクレーブを用いることから、オートクレーブ処理と呼んでいる。
前処理を行わない金鉱石の場合、鉄硫化物の酸化反応は、次式で示される。
4FeS2+15O2+8H2O → 2Fe2O3+8H2SO4 ― (1)
一方、前処理を実施した金鉱石の場合、硫化物の酸化により硫酸が生成し、生成した硫酸で、酸に可溶な鉄化合物を浸出できるため、反応時間の短縮が可能となる。In gold leaching using a cyan bath, gold ore containing pyrite is generally reacted with water and oxygen at high temperature and high pressure (eg, 200 ° C, 30 atm) in a pressure-resistant vessel to convert iron sulfide into iron oxide. After leaching gold. This is called autoclave treatment because an autoclave is used for the pressure-resistant container.
In the case of gold ore without pretreatment, the oxidation reaction of iron sulfide is represented by the following formula.
4FeS 2 + 15O 2 + 8H 2 O → 2Fe 2 O 3 + 8H 2 SO 4 ― (1)
On the other hand, in the case of gold ore that has been subjected to pretreatment, sulfuric acid is generated by oxidation of sulfides, and an iron compound that is soluble in acid can be leached with the generated sulfuric acid, so that the reaction time can be reduced.
また酸性浴による金の浸出では、一般的に鉄硫化物中にロックされた金に浸出液を接触させることが重要である。本発明に係る前処理を実施した場合、金鉱石中の黄鉄鉱は酸に可溶な鉄硫化物に変換できることから、より早く鉄硫化物中の金に浸出液を接触させることができる。 In addition, in the leaching of gold in an acid bath, it is generally important to bring the leaching solution into contact with gold locked in iron sulfide. When the pretreatment according to the present invention is carried out, the pyrite in the gold ore can be converted into an iron sulfide that is soluble in acid, so that the leachate can be brought into contact with the gold in the iron sulfide earlier.
いずれの湿式処理でも、前処理以降の湿式処理の時間を短縮できるが、酸性浸出液による金の浸出の方が、マイルドな操業条件(大気圧下、100℃未満)で実施可能である事、毒性の高いシアンを使用しない事などから有利である。酸性浴による金の浸出について以下に詳細に述べる。 Both wet treatments can shorten the time of wet treatment after pretreatment, but gold leaching with acidic leachate can be performed under mild operating conditions (at atmospheric pressure, less than 100 ° C), toxicity This is advantageous because it does not use high cyan. Gold leaching in an acid bath is described in detail below.
前処理後の金鉱石に対して酸性浴により金浸出する際の酸の種類や工程は限定的ではないが、効果の大きい金浸出工程として、ハロゲン化物イオン、銅イオン及び鉄イオンを含有する金浸出液に酸化剤の供給下で接触させて、当該金鉱石中の金成分を浸出する工程を含む金浸出工程が挙げられる。 The type and process of acid when gold is leached with an acid bath to the gold ore after pretreatment is not limited, but as an effective gold leaching process, gold containing halide ions, copper ions and iron ions is used. Examples include a gold leaching step including a step of leaching a gold component in the gold ore by bringing the leaching solution into contact with the oxidant under supply.
金の浸出は、溶出した金がハロゲン化物イオン、特に塩化物イオン又は臭化物イオンと反応し、金のハロゲン化物錯体、特に金の塩化錯体又は金の臭化錯体を生成することにより進行する。金浸出液中のハロゲン化物イオンとしては塩化物イオンのみでも構わないが、塩化物イオンと臭化物イオンを併用することで、より低電位の状態で錯体を形成するため、金の浸出効率の向上を図ることができる。また、鉄イオンは酸化剤の供給下で酸化した3価の鉄イオン又は当初より3価の鉄イオンが、金を酸化する働きをする。金浸出液は銅イオンを含有することが好ましい。銅イオンは直接反応に関与しないが、銅イオンが存在することで鉄イオンの酸化速度が速くなるからである。 Gold leaching proceeds by the elution of gold reacting with halide ions, particularly chloride ions or bromide ions, to form gold halide complexes, particularly gold chloride complexes or gold bromide complexes. Chloride ions alone may be used as halide ions in the gold leaching solution. By using chloride ions and bromide ions in combination, a complex is formed at a lower potential, thereby improving gold leaching efficiency. be able to. Further, the iron ions function to oxidize gold by trivalent iron ions oxidized under the supply of an oxidizing agent or trivalent iron ions from the beginning. The gold leachate preferably contains copper ions. This is because copper ions are not directly involved in the reaction, but the presence of copper ions increases the oxidation rate of iron ions.
塩化物イオンの供給源としては、特に制限はないが、例えば塩化水素、塩酸、塩化金属及び塩素ガス等が挙げられ、経済性や安全性を考慮すれば塩化金属塩の形態で供給するのが好ましい。塩化金属塩としては、例えば塩化銅(塩化第一銅、塩化第二銅)、塩化鉄(塩化第一鉄、塩化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の塩化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の塩化物が挙げられ、経済性や入手容易性の観点から、塩化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、塩化銅及び塩化鉄を利用することも好ましい。 There are no particular restrictions on the source of chloride ions, but examples include hydrogen chloride, hydrochloric acid, metal chloride, and chlorine gas. In consideration of economy and safety, the supply source is chloride metal salt. preferable. Examples of metal chloride salts include copper chloride (cuprous chloride, cupric chloride), iron chloride (ferrous chloride, ferric chloride), and alkali metals (lithium, sodium, potassium, rubidium, cesium, francium). And chlorides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, radium), and sodium chloride is preferred from the viewpoint of economy and availability. Moreover, since it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper chloride and iron chloride.
臭化物イオンの供給源としては、特に制限はないが、例えば臭化水素、臭化水素酸、臭化金属及び臭素ガス等が挙げられ、経済性や安全性を考慮すれば臭化金属塩の形態で供給するのが好ましい。臭化金属塩としては、例えば臭化銅(臭化第一銅、臭化第二銅)、臭化鉄(臭化第一鉄、臭化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の臭化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の臭化物が挙げられ、経済性や入手容易性の観点から、臭化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、臭化銅及び臭化鉄を利用することも好ましい。 The source of bromide ions is not particularly limited, and examples thereof include hydrogen bromide, hydrobromic acid, metal bromide, bromine gas, and the like. In consideration of economy and safety, the form of metal bromide salt It is preferable to supply by. Examples of metal bromide salts include copper bromide (cuprous bromide, cupric bromide), iron bromide (ferrous bromide, ferric bromide), and alkali metals (lithium, sodium, potassium). And bromides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, radium), and sodium bromide is preferred from the viewpoint of economy and availability. Moreover, since it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper bromide and iron bromide.
銅イオン及び鉄イオンは、これらの塩の形態で供給するのが通常であり、例えばハロゲン化塩の形態で供給することができる。塩化物イオン及び/又は臭化物イオンの供給源としても利用できる観点から銅イオンは塩化銅及び/又は臭化銅、鉄イオンは塩化鉄及び/又は臭化鉄として供給されるのが好ましい。塩化銅及び塩化鉄としては酸化力の観点から塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)を使用するのがそれぞれ望ましいが、塩化第一銅(CuCl)及び塩化第二鉄(FeCl2)を使用しても浸出液に酸化剤を供給することで、塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)にそれぞれ酸化されるため、大差はない。Copper ions and iron ions are usually supplied in the form of these salts. For example, they can be supplied in the form of halide salts. From the viewpoint that it can also be used as a source of chloride ions and / or bromide ions, copper ions are preferably supplied as copper chloride and / or copper bromide, and iron ions are preferably supplied as iron chloride and / or iron bromide. As copper chloride and iron chloride, it is preferable to use cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ) from the viewpoint of oxidizing power, respectively, but cuprous chloride (CuCl) and ferric chloride are preferable. Even if (FeCl 2 ) is used, supplying an oxidizing agent to the leachate will oxidize to cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ), respectively, so there is no significant difference.
金浸出工程で使用する金浸出液中の塩化物イオンの濃度は、30g/L〜180g/Lであることがより好ましい。金浸出工程で使用する金浸出液中の臭化物イオンの濃度は、反応速度や溶解度の観点から、1g/L〜100g/Lであることが好ましく、経済性の観点から、10g/L〜40g/Lであることがより好ましい。そして、金浸出液中の塩化物イオンと臭化物イオンの合計濃度は、120g/L〜200g/Lであることが好ましい。また、金の浸出効率の観点からは、金浸出液中の塩化物イオンに対する臭化物イオンの重量濃度比が1以上であることが好ましい。 The concentration of chloride ions in the gold leaching solution used in the gold leaching step is more preferably 30 g / L to 180 g / L. The concentration of bromide ions in the gold leaching solution used in the gold leaching step is preferably 1 g / L to 100 g / L from the viewpoint of reaction rate and solubility, and 10 g / L to 40 g / L from the viewpoint of economy. It is more preferable that The total concentration of chloride ions and bromide ions in the gold leaching solution is preferably 120 g / L to 200 g / L. From the viewpoint of gold leaching efficiency, the weight concentration ratio of bromide ions to chloride ions in the gold leaching solution is preferably 1 or more.
金浸出工程の開始時(浸出液と鉱石を接触させる直前)における浸出液の酸化還元電位(vs Ag/AgCl)は、金浸出を促進する観点から550mV以上とするのが好ましく、600mV以上とするのがより好ましい。また、金の浸出中は550mV以上に維持するのが好ましく、600mV以上に維持するのがより好ましい。また、3価の鉄を浸出液中に存在させて金の浸出を促進させる観点から、金浸出液のpHは2.0以下に維持するのが好ましく、1.8以下にするのがより好ましい。金浸出液の温度は、金の浸出速度を高める観点から45℃以上とするのが好ましく、60℃以上とするのがより好ましいが、高すぎると浸出液の蒸発や加熱コストの上昇あるので、95℃以下とするのが好ましく、85℃以下とするのがより好ましい。 The oxidation-reduction potential (vs Ag / AgCl) of the leachate at the start of the gold leaching process (immediately before contacting the leachate with the ore) is preferably 550 mV or more, and preferably 600 mV or more from the viewpoint of promoting gold leaching. More preferred. Further, it is preferably maintained at 550 mV or more during gold leaching, and more preferably maintained at 600 mV or more. From the viewpoint of promoting the leaching of gold by allowing trivalent iron to be present in the leaching solution, the pH of the gold leaching solution is preferably maintained at 2.0 or less, and more preferably 1.8 or less. The temperature of the gold leaching solution is preferably 45 ° C. or higher from the viewpoint of increasing the gold leaching rate, and more preferably 60 ° C. or higher. It is preferable to set it as follows, and it is more preferable to set it as 85 degrees C or less.
従って、好適な実施形態においては、金浸出工程における金浸出液として、塩化物イオン及び臭化物イオンの両方を含有するように選択することを条件に、塩酸及び臭素酸の少なくとも一方と、塩化第二銅及び臭化第二銅の少なくとも一方と、塩化第二鉄及び臭化第二鉄の少なくとも一方と、塩化ナトリウム及び臭化ナトリウムの少なくとも一方とを含む混合液を使用することができる。 Therefore, in a preferred embodiment, at least one of hydrochloric acid and bromic acid and cupric chloride are selected on the condition that the gold leaching solution in the gold leaching step is selected to contain both chloride ions and bromide ions. And at least one of cupric bromide, at least one of ferric chloride and ferric bromide, and at least one of sodium chloride and sodium bromide can be used.
金浸出工程は酸化剤を供給しながら実施することで、酸化還元電位を管理する。酸化剤を添加しなければ途中で酸化還元電位が低下してしまい、浸出反応が進行しない。酸化剤としては特に制限はないが、例えば酸素、空気、塩素、臭素、及び過酸化水素などが挙げられる。極端に高い酸化還元電位をもつ酸化剤は必要なく、空気で十分である。経済性や安全性の観点からも空気が好ましい。 The gold leaching process is performed while supplying the oxidizing agent, thereby managing the redox potential. If an oxidizing agent is not added, the redox potential is lowered in the middle, and the leaching reaction does not proceed. Although there is no restriction | limiting in particular as an oxidizing agent, For example, oxygen, air, chlorine, a bromine, hydrogen peroxide, etc. are mentioned. An oxidant with an extremely high redox potential is not necessary and air is sufficient. Air is also preferable from the viewpoint of economy and safety.
前処理を実施した後、金浸出工程を実施する前に、金鉱石中の不純物を除去するための各種処理を行うことも可能である。例えば、単体硫黄は、前処理後の金鉱石を単体硫黄が溶融するのに十分な温度に加熱し、瀘別して金と単体硫黄を分離することが可能である。 After carrying out the pretreatment and before carrying out the gold leaching step, it is also possible to carry out various treatments for removing impurities in the gold ore. For example, elemental sulfur can separate gold and elemental sulfur by heating the gold ore after pretreatment to a temperature sufficient for elemental sulfur to melt and separating it.
金の浸出反応後、固液分離することによって得られた金溶解液から、金を回収することができる。金の回収方法としては特に制限はないが、活性炭吸着、電解採取、溶媒抽出、還元、セメンテーション及びイオン交換などを利用することができる。硫黄成分は浸出後液中で硫酸塩、硫化物及び単体イオウなどの形態で存在するが、金の浸出反応後の固液分離や、金回収操作時に分離可能である。 After the gold leaching reaction, gold can be recovered from the gold solution obtained by solid-liquid separation. Although there is no restriction | limiting in particular as a collection | recovery method of gold | metal | money, Activated carbon adsorption | suction, electrowinning, solvent extraction, reduction | restoration, cementation, ion exchange, etc. can be utilized. The sulfur component is present in the form of sulfate, sulfide, elemental sulfur, etc. in the solution after leaching, but can be separated during solid-liquid separation after gold leaching reaction or gold recovery operation.
また、浸出反応の途中で金を回収することで浸出反応液中の金濃度を低下させ、金の浸出率を高めることも有効な手法である。これは例えば、浸出反応中の金浸出液に活性炭あるいは活性炭と硝酸鉛を投入することで行うことができる。 It is also an effective technique to increase the gold leaching rate by reducing the gold concentration in the leaching reaction solution by collecting gold during the leaching reaction. This can be done, for example, by introducing activated carbon or activated carbon and lead nitrate into the gold leaching solution during the leaching reaction.
以下、実施例により本発明をさらに具体的に説明する。但し、本発明はこれらに限定されるものではない。なお、実施例で用いた金属の分析方法は、ICP−AESにて行った。但し、金の分析では、灰吹法(JIS M8111)にて試料中の金を析出させた後、ICP−AESにて定量分析を行った。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these. In addition, the analysis method of the metal used in the Example was performed by ICP-AES. However, in the gold analysis, gold in the sample was precipitated by the ash blowing method (JIS M8111), and then quantitative analysis was performed by ICP-AES.
<比較例1>
金鉱石として黄鉄鉱精鉱(パプアニューギニア国産)を準備した。この黄鉄鉱精鉱中の黄鉄鉱の含有量をXRDと化学分析により算定したところ、17質量%であった。精鉱中のS(質量%)/Au(質量ppm)は1.4であった。また、先述した方法に従ってFesol/Feallを測定したところ、0であった。<Comparative Example 1>
Pyrite concentrate (produced in Papua New Guinea) was prepared as gold ore. It was 17 mass% when content of the pyrite in this pyrite concentrate was calculated by XRD and chemical analysis. S (mass%) / Au (mass ppm) in the concentrate was 1.4. Further, when Fe sol / Fe all was measured according to the method described above, it was 0.
一方、黄鉄鉱精鉱をボールミルで粉砕摩鉱して、累積重量粒度の分布曲線において累積重量が80%となる粒径(d80)を50μmに調整した。d80は、レーザ回折式粒度分布測定装置(島津製作所社型式SALD2100)で3回測定したときの平均値とした。次いで、摩鉱後の黄鉄鉱精鉱(200g)に対して、表1に記載の組成を有する塩酸酸性の金浸出液を用いてパルプ濃度100g/Lとし、液温85℃で90時間浸出処理を行った。浸出処理中は空気の吹き込み(精鉱1Lに対して0.1L/min)及び撹拌を継続し、酸化還元電位(ORP:vs Ag/AgCl)を530mV以上に維持した。また、浸出中は、金浸出液のpHが1.0〜1.1を維持するように塩酸を適宜添加した。 On the other hand, the pyrite concentrate was pulverized and ground with a ball mill, and the particle size (d80) at which the cumulative weight was 80% in the distribution curve of the cumulative weight particle size was adjusted to 50 μm. d80 is an average value when measured three times with a laser diffraction particle size distribution measuring apparatus (model SALD2100 manufactured by Shimadzu Corporation). Next, the pyrite concentrate (200 g) after milling was subjected to a leaching treatment for 90 hours at a liquid temperature of 85 ° C. with a pulp concentration of 100 g / L using a hydrochloric acid acidic gold leachate having the composition shown in Table 1. It was. During the leaching treatment, air blowing (0.1 L / min with respect to 1 L of concentrate) and stirring were continued, and the oxidation-reduction potential (ORP: vs Ag / AgCl) was maintained at 530 mV or higher. During the leaching, hydrochloric acid was appropriately added so that the pH of the gold leaching solution was maintained at 1.0 to 1.1.
浸出試験中、定期的に浸出残渣のサンプルを採取し、残渣中のAu品位を測定した。図1に、当該試験の結果から得られた、浸出時間と残渣中のAu品位の関係を示す(図1中、「FeS2熱分解無し」のプロット参照)。この結果から、当初は約6g/tであった残渣中のAu品位が0.9g/tにまで低下するのに90時間要していることが分かる。During the leaching test, samples of the leaching residue were taken periodically, and the Au quality in the residue was measured. FIG. 1 shows the relationship between the leaching time and the Au quality in the residue obtained from the results of the test (see the plot “FeS 2 no thermal decomposition” in FIG. 1). From this result, it can be seen that it takes 90 hours for the Au quality in the residue, which was initially about 6 g / t, to be reduced to 0.9 g / t.
<実施例1>
比較例1と同じ摩鉱後の黄鉄鉱精鉱(1.5kg)を管状炉に装入し、窒素雰囲気下で1時間かけて700℃まで昇温(昇温速度=10℃/min)した後、1時間加熱した。室温まで放冷後、加熱処理前後のXRD解析により、元鉱中に含まれていたFeS2のピークが消失し、FeSのピークが生じたことを確認した。熱処理により生じた単体硫黄は固気分離によって黄鉄鉱精鉱から自然と除去された。<Example 1>
The same pyrite concentrate (1.5 kg) after milling as in Comparative Example 1 was charged into a tubular furnace and heated to 700 ° C. (temperature increase rate = 10 ° C./min) over 1 hour in a nitrogen atmosphere. Heated for 1 hour. After cooling to room temperature, the XRD analysis before and after the heat treatment confirmed that the FeS 2 peak contained in the original ore disappeared and the FeS peak was generated. Elemental sulfur produced by heat treatment was naturally removed from pyrite concentrate by solid-gas separation.
また、熱処理後の黄鉄鉱精鉱について、Fesol/Feallを先述した方法に従って測定したところ、0.98であった。Further, the pyrite concentrate after heat treatment was measured according to the method previously described the Fe sol / Fe all, was 0.98.
次いで、熱処理後の黄鉄鉱精鉱に対して、比較例1と同じ組成を有する塩酸酸性の金浸出液を用いてパルプ濃度100g/Lとし、液温85℃で18時間浸出処理を行った。浸出処理中は空気の吹き込み(精鉱1Lに対して0.1L/min)及び撹拌を継続し、酸化還元電位(ORP:vs Ag/AgCl)を400mV以上に維持した。また、浸出中は、金浸出液のpHが1.0〜1.1を維持するように塩酸を適宜添加した。 Subsequently, the pyrite concentrate after the heat treatment was subjected to a leaching treatment for 18 hours at a liquid temperature of 85 ° C. using a hydrochloric acid acidic gold leaching solution having the same composition as Comparative Example 1 to a pulp concentration of 100 g / L. During the leaching process, air blowing (0.1 L / min with respect to 1 L of concentrate) and stirring were continued, and the oxidation-reduction potential (ORP: vs Ag / AgCl) was maintained at 400 mV or higher. During the leaching, hydrochloric acid was appropriately added so that the pH of the gold leaching solution was maintained at 1.0 to 1.1.
浸出試験中、定期的に浸出残渣のサンプルを採取し、残渣中のAu品位を測定した。図1に、当該試験の結果から得られた、浸出時間と残渣中のAu品位の関係を示す(図1中、「FeS2熱分解有り」のプロット参照)。この結果から、当初は約6g/tであった残渣中のAu品位が僅か12時間で0.6g/tにまで低下したことが分かる。なお、臭化物イオンを含まない金浸出液を使用した場合、Auの浸出速度は臭化物イオンを含む場合よりは遅いものの、概ね同様の結果が得られた。During the leaching test, samples of the leaching residue were taken periodically, and the Au quality in the residue was measured. FIG. 1 shows the relationship between the leaching time and the Au quality in the residue obtained from the results of the test (see the “FeS 2 thermal decomposition” plot in FIG. 1). From this result, it can be seen that the Au quality in the residue, which was about 6 g / t at the beginning, decreased to 0.6 g / t in just 12 hours. When a gold leaching solution containing no bromide ions was used, although the leaching rate of Au was slower than that containing bromide ions, almost the same results were obtained.
<熱分解条件が与えるFesol/Feallの変化>
実施例1で使用した摩鉱後の黄鉄鉱精鉱(1.5kg)に対して、表2に記載のように保持温度及び保持時間を変化させたときのFesol/Feallの変化を調査した。Fesol/Feallの値は実施例1と同様の手順で求めた。また、先述した方法に従ってFe/Sも測定した。実験は管状炉を使用し、窒素雰囲気下で行った。熱分解により生成する単体硫黄は蒸発させて窒素気流により除いた。昇温速度はすべて10℃/minとした。冷却は室温になるまで放冷した。結果を表2に示す。<Changes in Fe sol / Fe all given by pyrolysis conditions>
For the pyrite concentrate (1.5 kg) after milling used in Example 1, the change in Fe sol / Fe all when the holding temperature and holding time were changed as shown in Table 2 was investigated. . The value of Fe sol / Fe all was determined by the same procedure as in Example 1. Further, Fe / S was also measured according to the method described above. The experiment was performed using a tubular furnace under a nitrogen atmosphere. Elemental sulfur produced by pyrolysis was evaporated and removed by a nitrogen stream. The heating rate was all 10 ° C./min. Cooling was allowed to cool to room temperature. The results are shown in Table 2.
表2の結果から、保持温度及び保持時間はそれぞれ650℃以上で60分以上の条件とするとFesol/Feallが1に近づき最も好ましいことが分かる。From the results of Table 2, it can be seen that when the holding temperature and holding time are 650 ° C. or more and 60 minutes or more, Fe sol / Fe all approaches 1 and is most preferable.
<実施例2:熱分解の生じる温度>
実施例1で使用した摩鉱後の黄鉄鉱精鉱に対し、窒素雰囲気下での熱分析(セイコー社製型式TG/DTA6300)により、各温度における重量変化と吸熱−発熱を調査した。昇温速度は毎分20℃とした。結果を図2に示す。450℃で質量の減少が始まり、同時に発熱が見られることから黄鉄鉱の分解が始まっていることが判る。窒素雰囲気下では最低でも450℃まで昇温しなければ黄鉄鉱の熱分解は生じない。ただし、上述したXRD解析の結果からみると、450℃付近では熱分解に長時間を要すると考えられ、600℃以上での加熱処理が望ましい。<Example 2: Temperature at which thermal decomposition occurs>
The pyrite concentrate after milling used in Example 1 was examined for weight change and endothermic-exothermic heat at each temperature by thermal analysis in a nitrogen atmosphere (model TG / DTA6300 manufactured by Seiko). The heating rate was 20 ° C. per minute. The results are shown in FIG. The decrease in mass begins at 450 ° C, and at the same time heat generation is seen, indicating that the decomposition of pyrite has started. In a nitrogen atmosphere, pyrolysis of pyrite will not occur unless the temperature is raised to at least 450 ° C. However, from the above-mentioned XRD analysis results, it is considered that the thermal decomposition takes a long time at around 450 ° C., and the heat treatment at 600 ° C. or higher is desirable.
Claims (5)
前処理後の金鉱石中の塩酸溶解性の鉄化合物が硫化物であり、
前記変換する工程が非酸化性雰囲気での熱処理によって実施される、前処理方法。 A pretreatment method for leaching gold contained in a gold ore containing pyrite (FeS 2 ) with an acidic bath, wherein the total Fe content (Fe all ) contained in the gold ore after the pretreatment On the other hand, including a step of converting pyrite so that the content of Fe soluble in hydrochloric acid (Fe sol ) contained in the gold ore after pretreatment is 0.6 or more,
The hydrochloric acid-soluble iron compound in the gold ore after pretreatment is sulfide,
A pretreatment method , wherein the converting step is performed by heat treatment in a non-oxidizing atmosphere.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013075183 | 2013-03-29 | ||
JP2013075183 | 2013-03-29 | ||
PCT/JP2013/060870 WO2014155753A1 (en) | 2013-03-29 | 2013-04-10 | Method for pretreatment of gold ore |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016233544A Division JP2017040005A (en) | 2013-03-29 | 2016-11-30 | Pretreatment method for gold ore |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2014155753A1 JPWO2014155753A1 (en) | 2017-02-16 |
JP6329939B2 true JP6329939B2 (en) | 2018-05-23 |
Family
ID=51622796
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015507923A Active JP6329939B2 (en) | 2013-03-29 | 2013-04-10 | Gold ore pretreatment method |
JP2016233544A Pending JP2017040005A (en) | 2013-03-29 | 2016-11-30 | Pretreatment method for gold ore |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016233544A Pending JP2017040005A (en) | 2013-03-29 | 2016-11-30 | Pretreatment method for gold ore |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP6329939B2 (en) |
AU (1) | AU2013204872B2 (en) |
CA (1) | CA2898986C (en) |
CL (1) | CL2015002859A1 (en) |
WO (1) | WO2014155753A1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0369153A (en) * | 1989-08-08 | 1991-03-25 | Nec Corp | Circuit for providing substrate potential |
AU2003287781B2 (en) * | 2002-12-31 | 2010-02-25 | Intec Ltd | Recovering metals from sulfidic materials |
JP4085908B2 (en) * | 2003-07-28 | 2008-05-14 | 住友金属鉱山株式会社 | Method for concentrating noble metals contained in leaching residue of wet copper refining process |
JP4642796B2 (en) * | 2006-09-28 | 2011-03-02 | Jx日鉱日石金属株式会社 | Gold leaching method |
JP4999108B2 (en) * | 2008-03-27 | 2012-08-15 | Jx日鉱日石金属株式会社 | Gold leaching method |
EP2536860A1 (en) * | 2010-02-18 | 2012-12-26 | Neomet Technologies Inc. | Process for the recovery of gold from an ore in chloride medium with a nitrogen species |
-
2013
- 2013-04-10 JP JP2015507923A patent/JP6329939B2/en active Active
- 2013-04-10 CA CA2898986A patent/CA2898986C/en active Active
- 2013-04-10 WO PCT/JP2013/060870 patent/WO2014155753A1/en active Application Filing
- 2013-04-10 AU AU2013204872A patent/AU2013204872B2/en active Active
-
2015
- 2015-09-25 CL CL2015002859A patent/CL2015002859A1/en unknown
-
2016
- 2016-11-30 JP JP2016233544A patent/JP2017040005A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
AU2013204872B2 (en) | 2015-08-20 |
JPWO2014155753A1 (en) | 2017-02-16 |
CL2015002859A1 (en) | 2016-03-28 |
CA2898986A1 (en) | 2014-10-02 |
AU2013204872A1 (en) | 2014-10-16 |
WO2014155753A1 (en) | 2014-10-02 |
CA2898986C (en) | 2019-01-08 |
JP2017040005A (en) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5840641B2 (en) | Method for recovering gold from gold ore containing pyrite | |
JP5955393B2 (en) | Method for leaching gold from gold ore containing pyrite | |
JP5832665B2 (en) | Method for leaching gold from gold ore containing pyrite | |
WO2014168222A1 (en) | Pretreated gold ore | |
JP6195536B2 (en) | Iron removal method, iron leaching method, and gold recovery method | |
AU2018340945B2 (en) | Gold leaching method and gold recovery method | |
AU2013100641A4 (en) | Pretreated gold ore | |
JP6329939B2 (en) | Gold ore pretreatment method | |
JP6263422B2 (en) | Gold ore pretreatment method | |
AU2013100642A4 (en) | Method of pretreating gold ore | |
WO2014155752A1 (en) | Method for pretreatment of gold ore | |
AU2013100677A4 (en) | Method of pretreating gold ore | |
JP6038192B2 (en) | Method for leaching gold from gold ore containing pyrite | |
AU2015234654A1 (en) | Method for pre-treating gold ore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180423 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6329939 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |