WO2023243702A1 - Noble metal production method - Google Patents

Noble metal production method Download PDF

Info

Publication number
WO2023243702A1
WO2023243702A1 PCT/JP2023/022369 JP2023022369W WO2023243702A1 WO 2023243702 A1 WO2023243702 A1 WO 2023243702A1 JP 2023022369 W JP2023022369 W JP 2023022369W WO 2023243702 A1 WO2023243702 A1 WO 2023243702A1
Authority
WO
WIPO (PCT)
Prior art keywords
noble metal
metal
yeast
eluate
salts
Prior art date
Application number
PCT/JP2023/022369
Other languages
French (fr)
Japanese (ja)
Inventor
遥 飯島
峻平 鈴木
晃裕 樋上
康裕 小西
範三 齋藤
Original Assignee
三菱マテリアル株式会社
公立大学法人大阪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社, 公立大学法人大阪 filed Critical 三菱マテリアル株式会社
Publication of WO2023243702A1 publication Critical patent/WO2023243702A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/80Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals

Definitions

  • the present invention relates to a method for producing a noble metal, in which the noble metal is produced by separating the base metal from a material containing the noble metal and the base metal.
  • Noble metals are recovered from waste (raw materials) containing precious metals (Au, Ag, Pt, Pd, Rh, Ir, Ru, Os) and base metals (Cu, Fe, Ni, Sn, Al, Zn, Cr, etc.) is being recycled.
  • precious metals such as gold and silver are used for wiring in the circuit boards of discarded smartphones and computers, and the content of these metals per unit weight is higher than that contained in natural ores.
  • precious metals such as gold and silver are used for wiring in the circuit boards of discarded smartphones and computers, and the content of these metals per unit weight is higher than that contained in natural ores.
  • multiple methods have been proposed for efficiently extracting precious metals from waste containing such precious metals.
  • Patent Document 1 discloses that combustible material containing valuable metals and oxygen-enriched air are pumped from a pipe opening toward a molten material stored in a furnace body for smelting nonferrous metals to the surface of the molten material. Disclosed is a method for recovering valuable metals by blowing into them. Further, for example, Patent Document 2 discloses a precious metal recovery method in which waste containing precious metals is immersed in aqua regia made of hydrochloric acid and nitric acid, and the noble metals are dissolved in the aqua regia and recovered as a noble metal solution.
  • Patent Document 2 when noble metals are dissolved in aqua regia, if the waste contains base metals such as Cu, which is often used in circuit boards, this Cu reacts with nitrosyl chloride contained in the aqua regia. As a result, harmful nitrogen oxides (NOx) are generated, which requires equipment to process nitrogen oxides, resulting in an increase in processing costs.
  • base metals such as Cu
  • NOx harmful nitrogen oxides
  • Patent Document 3 discloses that baker's yeast belonging to the genus Saccharomyces (Saccharomyces cerevisiae) is introduced into a liquid containing noble metal ions with a pH of less than 4, and noble metals are selectively recovered by adsorbing noble metal ions on the yeast cell surface. A method is disclosed.
  • Patent No. 5761258 Japanese Patent Application Publication No. 6-158190 Patent No. 6586690
  • the noble metal separation method disclosed in Patent Document 3 has a pH of about 1.4, and there is a problem in that it is difficult to efficiently adsorb noble metals in a more strongly acidic environment (for example, pH 0).
  • This invention was made in view of the above-mentioned circumstances, and is a method for producing precious metals that can be efficiently recovered from raw materials containing precious metals and base metals even in a strongly acidic environment such as pH 0.
  • the purpose is to provide a method.
  • Aspect 1 of the present invention provides a base metal eluate and solid phase residue obtained by immersing a raw material containing a noble metal and a base metal in hydrogen peroxide or hydrochloric acid containing ferric chloride to dissolve at least a portion of the base metal.
  • a base metal dissolving step for producing a noble metal-containing raw material and a step of reacting a mixed acid solution obtained by adding nitric acid to the base metal eluate with the noble metal-containing raw material, or reacting aqua regia with the noble metal-containing raw material
  • a noble metal melting step of producing a noble metal eluate in which the noble metal contained in the noble metal-containing raw material is eluted by one or both and a heating step of heating the noble metal eluate to a temperature of 30°C or higher and 100°C or lower.
  • a noble metal adsorption step in which yeast is added to the heated noble metal eluate and the yeast selectively adsorbs noble metal ions contained in the noble metal eluate; and dispersion of the yeast to which the noble metal ions have been adsorbed. It is characterized by having a noble metal separation step of adding a reducing agent to the liquid and separating nanoparticles of noble metal.
  • the noble metal eluate obtained in the noble metal dissolution step by heating the noble metal eluate obtained in the noble metal dissolution step so that the liquid temperature is in the range of 30°C or more and 100°C or less, yeast is It becomes possible to greatly increase the adsorption rate of noble metals. Thereby, in the noble metal adsorption step, it becomes possible to shorten the contact time between the yeast and the noble metal eluate, and to produce noble metals efficiently and at low cost.
  • Aspect 2 of the present invention is a method for producing a noble metal according to Aspect 1, in which, as a step after the heating step, a cooling step of cooling the noble metal eluate heated in the heating step to below 60°C is further provided. It is characterized by having.
  • Aspect 3 of the present invention is the method for producing a precious metal according to Aspect 1 or 2, in which the yeast is any one of the genus Saccharomyces, the genus Zygosaccharomyces, the genus Schizosaccharomyces, the genus Debaryomyces, the genus Candida, or It is characterized by containing two or more types.
  • Aspect 4 of the present invention is the method for producing a noble metal according to any one of Aspects 1 to 3, wherein the noble metal is any one of gold, platinum, silver, palladium, rhodium, iridium, ruthenium, and osmium. It is characterized by containing one species or two or more species.
  • Aspect 5 of the present invention is the method for producing a noble metal according to any one of Aspects 1 to 4, wherein the reducing agent is hydrazine and its salt, a borohydride salt, a sulfate, a thiosulfate, a tartrate, Phosphinic acid and its salts, formic acid and its salts, acetic acid and its salts, propionic acid and its salts, oxalic acid and its salts, ascorbic acid and its salts, phosphoric acid and its salts, hypophosphorous acid and its salts, citric acid and salts thereof, transition metal salts, glycine, dimethylamine borane, and formaldehyde.
  • the reducing agent is hydrazine and its salt, a borohydride salt, a sulfate, a thiosulfate, a tartrate, Phosphinic acid and its salts, formic acid and its salts, acetic acid and its salts,
  • Aspect 6 of the present invention is characterized in that in the method for producing a noble metal according to any one of aspects 1 to 5, the noble metal separated in the noble metal separation step is a noble metal nanoparticle.
  • Aspect 7 of the present invention is characterized in that in the method for manufacturing a noble metal according to any one of aspects 1 to 6, the raw material is a circuit board.
  • 1 is a flowchart showing step-by-step a method for manufacturing a precious metal according to an embodiment of the present invention. It is a graph showing the results of a verification example.
  • FIG. 1 is a flowchart showing step-by-step a method for manufacturing a precious metal according to an embodiment of the present invention.
  • a series of steps for producing a noble metal by separating the noble metal from, for example, a circuit board of an electronic device (a raw material containing a noble metal and a base metal) will be described.
  • the noble metals in this embodiment are eight elements: Au, Ag, Pt, Pd, Rh, Ir, Ru, and Os.
  • the base metal in this embodiment refers to Cu and a metal that has a greater ionization tendency than Cu, and representative examples thereof include Cu, Fe, Ni, Sn, Al, Zn, and Cr.
  • a circuit board of an electronic device which is an example of a raw material, contains noble metals such as Au and Ag, and base metals such as Cu in soldering parts and wiring, for example.
  • the circuit board is placed in an acid-resistant reaction container.
  • the circuit board be crushed in advance into pieces of, for example, 1 cm square or more and 5 cm square or less.
  • hydrochloric acid (HCl) is placed in the reaction vessel.
  • the hydrochloric acid used may be, for example, dilute hydrochloric acid with an HCl concentration of about 5 mol/L.
  • a hydrogen peroxide solution is added at a predetermined rate into the reaction vessel in which the circuit board is immersed in this diluted hydrochloric acid and stirred (base metal dissolving step S1).
  • the hydrogen peroxide solution may have a hydrogen peroxide (H 2 O 2 ) concentration of 30% by mass or more and 36% by mass or less, for example.
  • copper which is the main component of the base metals contained in the circuit board, is oxidized and dissolved in dilute hydrochloric acid. Note that base metals, which have a greater ionization tendency than copper and a greater ionization tendency than hydrogen, are dissolved by dilute hydrochloric acid.
  • the rate of addition of hydrogen peroxide solution to dilute hydrochloric acid is, for example, in the range of 0.17 mass %/min or more and 5.3 mass %/min or less based on the total liquid amount after addition. is preferred. If the addition rate is 0.17% by mass/min or more, the oxidizing atmosphere will be maintained for a long time, and the oxidation of the base metal will proceed sufficiently. As a result, the base metal will be sufficiently dissolved in the dilute hydrochloric acid, and any unused substances remaining on the circuit board will be removed. Dissolved base metals can be reduced. On the other hand, by setting the addition rate to 5.3% by mass/min or less, excess hydrogen peroxide that does not contribute to oxidation can be suppressed and processing costs can be reduced.
  • base metals such as copper are dissolved using dilute hydrochloric acid to which an oxidizing agent (hydrogen peroxide solution) that does not contain nitrogen (N) is added. No nitrogen oxide (NOx) gas is generated during melting.
  • an oxidizing agent hydrogen peroxide solution
  • nitrogen oxide (NOx) gas is generated during melting.
  • the noble metals contained in the circuit board remain on the circuit board without being dissolved in dilute hydrochloric acid to which hydrogen peroxide has been added, even if the coexisting base metals are dissolved.
  • the hydrogen peroxide solution may be added until the foaming caused by the dissolution of the base metal completely disappears.
  • the base metal melting step S1 70% by mass or more of the total amount of base metal, such as Cu, contained in the circuit board is dissolved, and a base metal eluate is generated.
  • the circuit board which is a solid phase residue in which at least a portion of the base metal has been dissolved
  • the base metal eluate (liquid phase) may be subjected to solid-liquid separation, for example, by filtration.
  • a circuit board (noble metal-containing raw material) containing a noble metal and an undissolved base metal and a base metal eluate are obtained.
  • the base metal eluate (liquid phase) may be used in the next step, the noble metal dissolution step S2, and, for example, base metals such as Cu may be isolated by performing reduction by adding a reducing agent. can.
  • a mixed acid solution prepared by adding nitric acid to the base metal eluate obtained in the base metal dissolution step S1 or aqua regia is used to dissolve the components contained in the circuit board (precious metal-containing raw material) obtained in the base metal dissolution step S1.
  • the noble metal is melted (noble metal melting step S2).
  • the aqua regia may be, for example, a mixture of concentrated hydrochloric acid and concentrated nitric acid in a volume ratio of 3:1. Mixing concentrated hydrochloric acid and concentrated nitric acid produces nitrosyl chloride (NOCl), which oxidizes noble metals.
  • ferric chloride FeCl 3
  • a ferric chloride aqueous solution is added at a predetermined rate into a reaction vessel in which a circuit board is immersed in dilute hydrochloric acid and stirred.
  • the ferric chloride aqueous solution may have a ferric chloride concentration of 20% by mass or more and 50% by mass or less, for example.
  • ferric ions By adding such an aqueous ferric chloride solution, ferric ions can act as an oxidizing agent and dissolve the base metal contained in the circuit board.
  • the circuit board which is a precious metal-containing raw material (solid phase residue), and the base metal eluate are separated into solid and liquid, and then the circuit board is immersed in aqua regia, or the circuit board is immersed in a mixed acid solution in which nitric acid is added to the base metal eluate.
  • the noble metal is melted by immersing the substrate.
  • at least a portion of the base metal contained in the circuit board is removed as soluble chloride in the base metal melting step.
  • the circuit board which is the dissolution residue of the base metal melting step S1
  • the circuit board which is the dissolution residue of the base metal melting step S1
  • the noble metals such as Au contained in the circuit board are dissolved, and the noble metals are dissolved.
  • An eluate is produced. If the base metal that was not melted in the base metal melting step S1 remains on the circuit board as a melting residue, it will be melted together with the noble metal in the noble metal melting step S2.
  • the temperature of the mixed acid solution or aqua regia may be maintained within a range of, for example, 60° C. or higher and 80° C. or lower. Further, the stirring time may be, for example, in a range of 1 hour or more and 3 hours or less.
  • the circuit board, which is the dissolution residue of the base metal dissolving step S1 can also be dissolved using both the mixed acid solution and aqua regia.
  • nitrogen oxides are generated, for example, when Au contained in the circuit board reacts with nitrosyl chloride to produce soluble chloroauric acid. Further, when Cu remains on the circuit board, nitrogen oxides are also generated when Cu reacts with nitrosyl chloride.
  • the amount of precious metals such as Au contained in circuit boards is generally small compared to base metals such as Cu that form circuit patterns, and nitrogen oxides are generated due to the dissolution of precious metals.
  • the quantity is small.
  • most of the base metals such as Cu, which are used in a larger amount than the precious metals are melted in the above-mentioned base metal melting step S1 without generating nitrogen oxides, and the unmelted base metals are transferred to the noble metal melting step S2. The amount has been significantly reduced.
  • the base metal melting step S1 is performed as a pretreatment, so the amount of nitrogen oxides generated in the noble metal melting step S2 is compared to the case where the base metal melting step S1 is not performed. and is significantly reduced.
  • the noble metal eluate obtained in the noble metal melting step S2 is heated so that the liquid temperature is in the range of 30° C. or higher and 100° C. or lower (heating step S3).
  • the heating temperature may be 30°C or higher, preferably 60°C or higher, more preferably 90°C or higher.
  • the upper limit of the heating temperature is set to 100° C. or less in order to prevent the noble metal eluate from boiling.
  • Such heating of the noble metal eluate may be performed using, for example, a heater.
  • the heating time is preferably in the range of 1 hour or more and 100 hours or less.
  • the noble metal eluate heated in the range of 30° C. or higher and 100° C. or lower in the heating step S3 is cooled to lower than 60° C. (cooling step S4).
  • the cooling temperature may be less than 60°C, preferably less than 40°C, more preferably less than 30°C.
  • Such cooling of the noble metal eluate may be performed, for example, by allowing it to cool.
  • cooling may be performed by blowing nitrogen gas or helium gas onto the noble metal eluate.
  • cooling may be performed by circulating cooling water around the heated container.
  • the cooling step S4 does not necessarily need to be performed, and for example, the noble metal adsorption step S5, which is a subsequent step, may be performed using a noble metal eluate whose liquid temperature is maintained at about 60°C.
  • yeast is added and stirred to the noble metal eluate heated in the heating step S3 and cooled in the cooling step S4 as needed, so that the yeast adsorbs the noble metal ions contained in the noble metal eluate (noble metal Adsorption step S5).
  • this noble metal adsorption step S5 the noble metal ions contained in the noble metal eluate come into contact with the yeast, so that the noble metal ions are adsorbed by the yeast.
  • the yeast used in the noble metal adsorption step S5 may be any yeast that can adsorb noble metal ions.
  • Yeasts applicable to this embodiment include, for example, the genus Saccharomyces, the genus Candida, the genus Torulopsis, the genus Zygosaccharomyces, the genus Schizosaccharomyces, and the genus Pichia.
  • yeast belongs to the genus Sporobolomyces, and among these, yeasts belonging to the genus Saccharomyces, Zygosaccharomyces, Schizosaccharomyces, and Debaryomyces are particularly preferred.
  • Yeasts of the genus Saccharomyces are representative of S. cerevisiae, such as S. bayanus, S. boulardii, S. bulderi, S. cariocanus, S. cariocus, and S. bulderi. cerevisiae, S. chevalieri, S. dairenensis, S. ellipsoideus, S. florentinus, S. kluyveri, S. martiniae, S. monacensis, S. norbensis It can be S. paradoxus, S. pastorianus, S. spencerorum, S. turicensis, S. unisporus, S. uvarum, and S. zonatus.
  • the genus Zygosaccharomyces is a salt-tolerant yeast that is isolated from miso, soy sauce, etc., and can be, for example, Z. rouxii.
  • Yeasts of the genus Schizosaccharomyces are fission yeasts, such as S. cryophilus, S. japonicus, S. octosporus, and S. pombe.
  • yeast of the genus Debaryomyces (Room 122, 2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan, National Institute of Technology and Evaluation, Patent Microorganism Depositary Center) has been deposited as a preferable yeast.
  • Debaryomyces hansenii is also an example.
  • the yeast may be live or killed as long as the adsorption function is exerted.
  • the liquid obtained by adding yeast to the noble metal eluate may be used as long as it is an environment in which yeast functions.
  • the pH and temperature of the liquid obtained by adding yeast to the noble metal eluate are not particularly limited.
  • the pH may be from strongly acidic to neutral, ranging from 0 to 7.
  • the temperature is 10°C or higher and 45°C or lower, preferably 20°C or higher and 35°C or lower.
  • the time required for adding yeast to the noble metal eluate and performing the reactions, treatments, and operations varies depending on the yeast cell density and the concentration of noble metal ions, but may be about 10 minutes to 48 hours, for example. By bringing the noble metal ions into contact with the yeast for such a period of time, the noble metal ions are adsorbed by the yeast.
  • the liquid obtained by adding yeast to the noble metal eluate is further stirred. Stirring can increase the rate at which noble metal ions diffuse to the yeast surface.
  • the concentration of noble metal ions contained in the liquid obtained by adding yeast to the noble metal eluate can be set as appropriate.
  • the noble metal ion concentration in the noble metal eluate varies depending on the yeast cell concentration, but is, for example, 0.01 mmol/L or more and 100 mmol/L or less, preferably 0.1 mmol/L or more and 10 mmol/L or less. Good to have.
  • Such a noble metal ion concentration can be adjusted by, for example, adding ion-exchanged water when adding yeast to the noble metal eluate.
  • the concentration of yeast contained in the liquid obtained by adding yeast to the noble metal eluate can be set as appropriate.
  • the yeast concentration in the noble metal eluate varies depending on the noble metal ion concentration, but may be, for example, in the range of 5 g/L or more and 100 g/L or less.
  • the yeast concentration in the noble metal eluate may be, for example, in a range of 1.0 ⁇ 10 14 cells/m 3 or more and 3.0 ⁇ 10 15 cells/m 3 or less.
  • yeast separation step S6 the yeast to which the noble metal ions have been adsorbed may be precipitated and separated from the liquid, for example, by centrifugation. After this, it is preferable to further wash the yeast to which the separated noble metal ions have been adsorbed with water.
  • the separated liquid may be subjected to the heating step S3 to yeast separation step S6 again. At this time, by changing the conditions in each step, the remaining noble metal ions that are not adsorbed by the yeast in the separated liquid can be adsorbed by the yeast and separated from the liquid.
  • the pH of the solution may be adjusted to 7 or higher.
  • the pH of the solution after adding the reducing agent to the yeast dispersion in which the noble metal has been adsorbed it may be 7 or more and 14 or less.
  • the temperature of this solution may be in the range of 10°C or higher and 90°C or lower.
  • the noble metal obtained in such a noble metal separation step S7 is obtained in the form of nanoparticles.
  • Reducing agents that convert noble metals into nanoparticles include, for example, hydrazine and its salts, borohydride salts, sulfates, thiosulfates, tartrates, phosphinic acid and its salts, formic acid and its salts, acetic acid and its salts, propionic acid. and its salts, oxalic acid and its salts, ascorbic acid and its salts, phosphoric acid and its salts, hypophosphorous acid and its salts, citric acid and its salts, transition metal salts, glycine, dimethylamine borane, formaldehyde, One type or a combination of two or more types can be used.
  • a reducing agent is added to the yeast on which the noble metal has been adsorbed, and noble metal nanoparticles with an average particle size of nano-sized (1 nm or more and 100 nm or less) are formed in the noble metal reduction process.
  • the pH is set to 7 or more, the ability of the reducing agent to reduce the noble metal is further exhibited, and noble metal nanoparticles can be formed more efficiently.
  • the yeast and the produced noble metal nanoparticles can be separated, for example, by irradiating them with ultrasonic waves.
  • a dispersion of noble metal nanoparticles can be obtained by crushing yeast cells by adding alkali to separate noble metal nanoparticles, and removing yeast and its fragments by filtration or the like.
  • the noble metal nanoparticles when used as a noble metal nanoparticle paste, can be used as a noble metal nanoparticle paste while being supported on the yeast without separating them from the yeast.
  • the noble metal eluate obtained in the noble metal melting step S2 is heated so that the liquid temperature is in the range of 30°C or more and 100°C or less (heating Step S3) makes it possible to significantly increase the adsorption rate of noble metals to yeast in the subsequent noble metal adsorption step S5.
  • the contact time between the yeast and the noble metal eluate can be shortened, and noble metals can be produced efficiently and at low cost. Further, even in a strongly acidic environment such as pH 0, it is possible to efficiently recover noble metals.
  • the noble metal eluate heated in the heating step S3 is cooled to below 60°C (cooling step S4), it is possible to prevent the activity of yeast from decreasing in the high temperature environment in the noble metal adsorption step S5, thereby increasing the efficiency. It is possible to make yeast adsorb noble metals.
  • a waste substrate containing Au that was crushed into a rectangular shape with sides of 1 cm or more and 5 cm or less was immersed in aqua regia with a concentration of 50% by mass to dissolve the metal components. After this, solid-liquid separation was performed to obtain a noble metal eluate.
  • Example 1 of the present invention The noble metal eluate was heated at 30° C. for 1 hour (heating step). Thereafter, the solution was allowed to cool until the temperature reached 25° C. (cooling step). Baker's yeast was added to the heat-treated noble metal eluate obtained in this manner so that the concentration was 5.0 x 10 14 cells/m 3 , and the Au ions contained in the noble metal eluate were bioadsorbed by the yeast. . Saccharomyces cerevisiae, a representative strain of yeast, was commercially available for edible use manufactured by Oriental Yeast Industry Co., Ltd. Five minutes after adding baker's yeast, the yeast was separated by centrifugation, and the metal concentration contained in the supernatant solution was measured.
  • Example 2 of the present invention The conditions were the same as in Example 1 of the present invention, except that the noble metal eluate was heated at 60° C. for 1 hour (heating step).
  • Example 3 of the present invention The conditions were the same as in Example 1 of the present invention, except that the noble metal eluate was heated at 90° C. for 1 hour (heating step).
  • Example 4 of the present invention After carrying out the same steps as in Example 1 of the present invention, the supernatant solution after separating the yeast obtained in Example 1 of the present invention was heated again at 90° C. for 1 hour. Baker's yeast was added to the heated supernatant solution under the same conditions as in Example 1, and the Au ions contained in the heated supernatant solution were bioadsorbed by the yeast. Five minutes after adding baker's yeast, the yeast was separated by centrifugation, and the metal concentration contained in the supernatant solution was measured.
  • Example 1 The conditions were the same as in Example 1 of the present invention, except that baker's yeast was directly added to the noble metal eluate without passing through the heating and cooling steps. Note that the temperature of the noble metal eluate without heating was 10° C. or lower.
  • Comparative example 2 The conditions are the same as in Comparative Example 1, except that the yeast was separated by centrifugation 60 minutes after the addition of the noble metal eluate into which baker's yeast was added without going through the heating and cooling steps.
  • Table 1 shows the Au adsorption rates of Inventive Examples 1-3 and Comparative Examples 1 and 2. Further, in Example 1, the selectivity of adsorbed metals is shown in FIG.
  • the adsorption rate of metal ions was determined by filtering the noble metal eluate before adding yeast, and then measuring the metal concentration in the solution by ICP emission spectrometry. Thereafter, the noble metal eluate after the yeast injection was collected, filtered, and the metal concentration was measured by ICP emission spectrometry. The degree of decrease in metal concentration in the liquid before and after the addition of yeast was defined as the adsorption rate.
  • the adsorption rate was calculated from the following formula.
  • Adsorption rate (%) (Metal concentration in the liquid before yeast injection - Metal concentration in the liquid after yeast injection and separation) / Metal concentration in the liquid before yeast injection x 100
  • the amount of Au adsorbed by yeast was greater than in the comparative example in which the noble metal eluate was not heated. It was confirmed that the adsorption rate was significantly increased. In particular, in Examples 3 and 4 of the present invention in which the noble metal eluate was heated to 90° C., the adsorption rate of Au adsorbed by yeast was 80% or more in both cases. Moreover, according to the results shown in FIG. 2, it was confirmed that Au was more selectively adsorbed by yeast than other base metals.

Abstract

This noble metal production method comprises: a base metal dissolution step for producing a noble-metal-containing raw material and a base metal eluate in which a base metal has been dissolved; a noble metal dissolution step for producing a noble metal eluate in which the noble metal contained in the noble-metal-containing raw material has been eluted; a heating step for heating the noble metal eluate in the range of 30-100°C; a noble metal adsorption step for adding a yeast to the noble metal eluate after heating and selectively adsorbing to the yeast noble metal ions included in the noble metal eluate; and a noble metal separation step for adding a reducer to a dispersion of the yeast to which the noble metal ions are adsorbed, and separating the noble metal which has become nanoparticles.

Description

貴金属の製造方法Precious metal manufacturing method
 この発明は、貴金属および卑金属を含む材料から卑金属を分離して貴金属を製造する貴金属の製造方法に関する。
 本願は、2022年6月16日に、日本に出願された特願2022-097612号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a noble metal, in which the noble metal is produced by separating the base metal from a material containing the noble metal and the base metal.
This application claims priority based on Japanese Patent Application No. 2022-097612 filed in Japan on June 16, 2022, the contents of which are incorporated herein.
 貴金属(Au,Ag,Pt,Pd,Rh,Ir,Ru,Os)、および卑金属(Cu,Fe,Ni,Sn,Al,Zn,Cr等)を含む廃棄物(原料)から貴金属を回収する貴金属のリサイクルが行われている。例えば、廃棄されたスマートホンやパソコンの回路基板には、配線などに金や銀などの貴金属が用いられており、これらの単位重量当たりの含有量は、天然鉱石に含まれる含有量よりも多いこともある。近年、貴金属価格の高騰により、こうした貴金属を含む廃棄物から貴金属を効率的に取り出す方法が複数提案されている。 Noble metals are recovered from waste (raw materials) containing precious metals (Au, Ag, Pt, Pd, Rh, Ir, Ru, Os) and base metals (Cu, Fe, Ni, Sn, Al, Zn, Cr, etc.) is being recycled. For example, precious metals such as gold and silver are used for wiring in the circuit boards of discarded smartphones and computers, and the content of these metals per unit weight is higher than that contained in natural ores. Sometimes. In recent years, due to the rise in the price of precious metals, multiple methods have been proposed for efficiently extracting precious metals from waste containing such precious metals.
 例えば、特許文献1には、非鉄金属を製錬する炉本体に貯留された熔体に向けて開口するパイプから、有価金属を含有する可燃物と酸素富化空気とを、熔体の湯面に吹き込むことによって、有価金属を回収する方法が開示されている。
 また、例えば、特許文献2には、貴金属を含む廃棄物を塩酸および硝酸からなる王水に浸漬して、貴金属を王水に溶解して貴金属溶液として回収する貴金属回収方法が開示されている。
For example, Patent Document 1 discloses that combustible material containing valuable metals and oxygen-enriched air are pumped from a pipe opening toward a molten material stored in a furnace body for smelting nonferrous metals to the surface of the molten material. Disclosed is a method for recovering valuable metals by blowing into them.
Further, for example, Patent Document 2 discloses a precious metal recovery method in which waste containing precious metals is immersed in aqua regia made of hydrochloric acid and nitric acid, and the noble metals are dissolved in the aqua regia and recovered as a noble metal solution.
 しかしながら、こうした特許文献1のように、製錬所で廃棄物を融解する方法では、廃棄物中に含まれる樹脂成分や重金属成分が製錬操業に悪影響を及ぼすという課題があった。また、近年では廃棄物の有価金属の割合が減少しており、処理のためのエネルギーコストが大きく、更には燃料の使用量の増加により二酸化炭素の排出量が増加するなど、環境負荷の増大も課題である。 However, the method of melting waste at a smelter, as in Patent Document 1, has a problem in that the resin components and heavy metal components contained in the waste have a negative effect on the smelting operation. In addition, the proportion of valuable metals in waste has been decreasing in recent years, which increases the energy cost for processing and increases the environmental burden, such as increased carbon dioxide emissions due to increased fuel usage. This is a challenge.
 また、特許文献2では、貴金属を王水で溶解する際に、廃棄物に卑金属、例えば回路基板に多く用いられるCuが含まれている場合、このCuと王水に含まれる塩化ニトロシルとが反応して、有害な窒素酸化物(NOx)が発生するため、窒素酸化物の処理を行う設備が必要になり、処理コストが高くなるという課題があった。 Furthermore, in Patent Document 2, when noble metals are dissolved in aqua regia, if the waste contains base metals such as Cu, which is often used in circuit boards, this Cu reacts with nitrosyl chloride contained in the aqua regia. As a result, harmful nitrogen oxides (NOx) are generated, which requires equipment to process nitrogen oxides, resulting in an increase in processing costs.
 一方、特許文献3には、貴金属イオンを含むpH4未満の液体中に、サッカロマイセス属のパン酵母(Saccharomyces cerevisiae)を投入し、酵母細胞表面に貴金属イオンを吸着することで、貴金属を選択的に回収する方法が開示されている。 On the other hand, Patent Document 3 discloses that baker's yeast belonging to the genus Saccharomyces (Saccharomyces cerevisiae) is introduced into a liquid containing noble metal ions with a pH of less than 4, and noble metals are selectively recovered by adsorbing noble metal ions on the yeast cell surface. A method is disclosed.
特許第5761258号公報Patent No. 5761258 特開平6-158190号公報Japanese Patent Application Publication No. 6-158190 特許第6586690号公報Patent No. 6586690
 しかしながら、特許文献3に開示された貴金属の分離方法は、pHが1.4程度であり、より強酸性の環境(例えばpH0)において、貴金属を効率よく吸着させることが難しいという課題があった。 However, the noble metal separation method disclosed in Patent Document 3 has a pH of about 1.4, and there is a problem in that it is difficult to efficiently adsorb noble metals in a more strongly acidic environment (for example, pH 0).
 この発明は、前述した事情に鑑みてなされたものであって、貴金属および卑金属を含む原料から、pH0といった強酸性の環境下であっても、貴金属を効率よく回収することが可能な貴金属の製造方法を提供することを目的とする。 This invention was made in view of the above-mentioned circumstances, and is a method for producing precious metals that can be efficiently recovered from raw materials containing precious metals and base metals even in a strongly acidic environment such as pH 0. The purpose is to provide a method.
 上記課題を解決するために、本発明の一実施形態の貴金属の製造方法は、以下の手段を提案している。
(1)本発明の態様1は、貴金属および卑金属を含む原料を過酸化水素または塩化第二鉄を含む塩酸に浸漬して、前記卑金属の少なくとも一部を溶解させた卑金属溶出液および固相残渣である貴金属含有原料を生成する卑金属溶解工程と、前記卑金属溶出液に硝酸を添加した混合酸液と前記貴金属含有原料とを反応させるか、王水と前記貴金属含有原料とを反応させるかの、いずれか一方または両方によって、前記貴金属含有原料に含まれる前記貴金属を溶出させた貴金属溶出液を生成する貴金属溶解工程と、前記貴金属溶出液を30℃以上、100℃以下の範囲に加熱する加熱工程と、加熱した後の前記貴金属溶出液に酵母を加えて、前記酵母に前記貴金属溶出液に含まれる貴金属イオンを選択的に吸着させる貴金属吸着工程と、前記貴金属イオンが吸着された前記酵母の分散液に還元剤を加えて、ナノ粒子化した貴金属を分離する貴金属分離工程と、を有することを特徴とする。
In order to solve the above-mentioned problem, the following means are proposed as a method for manufacturing a precious metal according to an embodiment of the present invention.
(1) Aspect 1 of the present invention provides a base metal eluate and solid phase residue obtained by immersing a raw material containing a noble metal and a base metal in hydrogen peroxide or hydrochloric acid containing ferric chloride to dissolve at least a portion of the base metal. a base metal dissolving step for producing a noble metal-containing raw material, and a step of reacting a mixed acid solution obtained by adding nitric acid to the base metal eluate with the noble metal-containing raw material, or reacting aqua regia with the noble metal-containing raw material, A noble metal melting step of producing a noble metal eluate in which the noble metal contained in the noble metal-containing raw material is eluted by one or both; and a heating step of heating the noble metal eluate to a temperature of 30°C or higher and 100°C or lower. a noble metal adsorption step in which yeast is added to the heated noble metal eluate and the yeast selectively adsorbs noble metal ions contained in the noble metal eluate; and dispersion of the yeast to which the noble metal ions have been adsorbed. It is characterized by having a noble metal separation step of adding a reducing agent to the liquid and separating nanoparticles of noble metal.
 態様1によれば、貴金属溶解工程で得られた貴金属溶出液を、液温が30℃以上、100℃以下の範囲になるように加熱することによって、後工程である貴金属吸着工程において、酵母に対する貴金属の吸着率を大きく高めることが可能になる。これにより、貴金属吸着工程において、酵母と貴金属溶出液との接触時間を短縮して、効率的で低コストに貴金属を製造することが可能になる。 According to aspect 1, by heating the noble metal eluate obtained in the noble metal dissolution step so that the liquid temperature is in the range of 30°C or more and 100°C or less, yeast is It becomes possible to greatly increase the adsorption rate of noble metals. Thereby, in the noble metal adsorption step, it becomes possible to shorten the contact time between the yeast and the noble metal eluate, and to produce noble metals efficiently and at low cost.
(2)本発明の態様2は、態様1の貴金属の製造方法において、前記加熱工程の後工程であって、前記加熱工程で加熱した前記貴金属溶出液を60℃未満まで冷却する冷却工程を更に有することを特徴とする。 (2) Aspect 2 of the present invention is a method for producing a noble metal according to Aspect 1, in which, as a step after the heating step, a cooling step of cooling the noble metal eluate heated in the heating step to below 60°C is further provided. It is characterized by having.
(3)本発明の態様3は、態様1または2の貴金属の製造方法において、前記酵母は、サッカロマイセス属、ジゴサッカロマイセス属、シゾサッカロマイセス属、デバリオマイセス属、カンジダ属のうち、いずれか1種または2種以上を含むことを特徴とする。 (3) Aspect 3 of the present invention is the method for producing a precious metal according to Aspect 1 or 2, in which the yeast is any one of the genus Saccharomyces, the genus Zygosaccharomyces, the genus Schizosaccharomyces, the genus Debaryomyces, the genus Candida, or It is characterized by containing two or more types.
(4)本発明の態様4は、態様1から3のいずれか1つの貴金属の製造方法において、前記貴金属は、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウムのうち、いずれか1種または2種以上を含むことを特徴とする。 (4) Aspect 4 of the present invention is the method for producing a noble metal according to any one of Aspects 1 to 3, wherein the noble metal is any one of gold, platinum, silver, palladium, rhodium, iridium, ruthenium, and osmium. It is characterized by containing one species or two or more species.
(5)本発明の態様5は、態様1から4のいずれか1つの貴金属の製造方法において、前記還元剤は、ヒドラジン及びその塩、水素化ホウ素塩、硫酸塩、チオ硫酸塩、酒石酸塩、ホスフィン酸及びその塩、ギ酸及びその塩、酢酸及びその塩、プロピオン酸及びその塩、シュウ酸及びその塩、アスコルビン酸及びその塩、リン酸及びその塩、次亜リン酸及びその塩、クエン酸及びその塩、遷移金属塩、グリシン、ジメチルアミンボラン、ホルムアルデヒドのうち、いずれか1種または2種以上を含むことを特徴とする。 (5) Aspect 5 of the present invention is the method for producing a noble metal according to any one of Aspects 1 to 4, wherein the reducing agent is hydrazine and its salt, a borohydride salt, a sulfate, a thiosulfate, a tartrate, Phosphinic acid and its salts, formic acid and its salts, acetic acid and its salts, propionic acid and its salts, oxalic acid and its salts, ascorbic acid and its salts, phosphoric acid and its salts, hypophosphorous acid and its salts, citric acid and salts thereof, transition metal salts, glycine, dimethylamine borane, and formaldehyde.
(6)本発明の態様6は、態様1から5のいずれか1つの貴金属の製造方法において、前記貴金属分離工程で分離される貴金属は、貴金属ナノ粒子であることを特徴とする。 (6) Aspect 6 of the present invention is characterized in that in the method for producing a noble metal according to any one of aspects 1 to 5, the noble metal separated in the noble metal separation step is a noble metal nanoparticle.
(7)本発明の態様7は、態様1から6のいずれか1つの貴金属の製造方法において、前記原料は、回路基板であることを特徴とする。 (7) Aspect 7 of the present invention is characterized in that in the method for manufacturing a noble metal according to any one of aspects 1 to 6, the raw material is a circuit board.
 本発明によれば、貴金属および卑金属を含む原料から、pH0といった強酸性の環境下であっても、貴金属を効率よく回収することが可能な貴金属の製造方法を提供することが可能となる。 According to the present invention, it is possible to provide a method for producing noble metals that can efficiently recover noble metals from raw materials containing noble metals and base metals even in a strongly acidic environment such as pH 0.
本発明の一実施形態に係る貴金属の製造方法を段階的に示したフローチャートである。1 is a flowchart showing step-by-step a method for manufacturing a precious metal according to an embodiment of the present invention. 検証例の結果を示すグラフである。It is a graph showing the results of a verification example.
 以下、本発明を適用した一実施形態である貴金属の製造方法について図面を参照して説明する。なお、以下に示す実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。 Hereinafter, a method for manufacturing a precious metal, which is an embodiment of the present invention, will be described with reference to the drawings. It should be noted that the embodiments shown below are specifically explained in order to better understand the gist of the invention, and unless otherwise specified, the embodiments are not intended to limit the invention.
 図1は、本発明の一実施形態に係る貴金属の製造方法を段階的に示したフローチャートである。
 本実施形態の貴金属の製造方法では、例えば電子機器の回路基板(貴金属および卑金属を含む原料)から貴金属を分離させて貴金属を製造する一連の手順を説明する。
 なお、本実施形態での貴金属とは、Au,Ag,Pt,Pd,Rh,Ir,Ru,Osの8元素である。また、本実施形態での卑金属とは、Cu、およびCuよりもイオン化傾向が大きい金属であり、代表例としては、Cu,Fe,Ni,Sn,Al,Zn,Cr等が挙げられる。
 また、原料の一例である電子機器の回路基板は、例えば、はんだ付け箇所や配線にAu、Agなどの貴金属、およびCuなどの卑金属が含まれている。
FIG. 1 is a flowchart showing step-by-step a method for manufacturing a precious metal according to an embodiment of the present invention.
In the method for producing a noble metal of this embodiment, a series of steps for producing a noble metal by separating the noble metal from, for example, a circuit board of an electronic device (a raw material containing a noble metal and a base metal) will be described.
Note that the noble metals in this embodiment are eight elements: Au, Ag, Pt, Pd, Rh, Ir, Ru, and Os. Furthermore, the base metal in this embodiment refers to Cu and a metal that has a greater ionization tendency than Cu, and representative examples thereof include Cu, Fe, Ni, Sn, Al, Zn, and Cr.
Further, a circuit board of an electronic device, which is an example of a raw material, contains noble metals such as Au and Ag, and base metals such as Cu in soldering parts and wiring, for example.
 本実施形態に係る貴金属の製造方法によって、回路基板(原料)から貴金属を製造する際には、まず、回路基板を耐酸性の反応容器に投入する。回路基板は、反応促進のため、例えば、1cm角以上、5cm角以下に予め破砕しておくことが好ましい。また、反応容器には、塩酸(HCl)を入れておく。用いる塩酸は、例えば、HCl濃度5mol/L程度の希塩酸であればよい。 When manufacturing a precious metal from a circuit board (raw material) according to the method for manufacturing a precious metal according to the present embodiment, first, the circuit board is placed in an acid-resistant reaction container. In order to promote the reaction, it is preferable that the circuit board be crushed in advance into pieces of, for example, 1 cm square or more and 5 cm square or less. Further, hydrochloric acid (HCl) is placed in the reaction vessel. The hydrochloric acid used may be, for example, dilute hydrochloric acid with an HCl concentration of about 5 mol/L.
 次に、この希塩酸に回路基板を浸漬させた反応容器内に、所定の速度で過酸化水素水を添加して攪拌する(卑金属溶解工程S1)。過酸化水素水は、例えば過酸化水素(H)濃度が30質量%以上、36質量%以下のものを用いればよい。 Next, a hydrogen peroxide solution is added at a predetermined rate into the reaction vessel in which the circuit board is immersed in this diluted hydrochloric acid and stirred (base metal dissolving step S1). The hydrogen peroxide solution may have a hydrogen peroxide (H 2 O 2 ) concentration of 30% by mass or more and 36% by mass or less, for example.
 こうした過酸化水素水の添加によって、回路基板に含まれる卑金属のうち、その主成分である銅は酸化されて、希塩酸に溶解される。なお、銅よりもイオン化傾向が大きく、さらに水素よりもイオン化傾向が大きい卑金属は、希塩酸によって溶解される。 By adding the hydrogen peroxide solution, copper, which is the main component of the base metals contained in the circuit board, is oxidized and dissolved in dilute hydrochloric acid. Note that base metals, which have a greater ionization tendency than copper and a greater ionization tendency than hydrogen, are dissolved by dilute hydrochloric acid.
 卑金属溶解工程S1における、希塩酸に対する過酸化水素水の添加速度は、例えば、添加後の全液量に対して0.17質量%/min以上、5.3質量%/min以下の範囲にすることが好ましい。添加速度が0.17質量%/min以上であれば、酸化雰囲気が長時間維持され、卑金属の酸化が十分に進行し、その結果、卑金属が希塩酸に十分に溶解され、回路基板に残留する未溶解の卑金属を少なくすることができる。一方、添加速度を5.3質量%/min以下にすることによって、酸化に寄与しない余剰の過酸化水素を抑制して、処理コストを低減することができる。 In the base metal dissolving step S1, the rate of addition of hydrogen peroxide solution to dilute hydrochloric acid is, for example, in the range of 0.17 mass %/min or more and 5.3 mass %/min or less based on the total liquid amount after addition. is preferred. If the addition rate is 0.17% by mass/min or more, the oxidizing atmosphere will be maintained for a long time, and the oxidation of the base metal will proceed sufficiently. As a result, the base metal will be sufficiently dissolved in the dilute hydrochloric acid, and any unused substances remaining on the circuit board will be removed. Dissolved base metals can be reduced. On the other hand, by setting the addition rate to 5.3% by mass/min or less, excess hydrogen peroxide that does not contribute to oxidation can be suppressed and processing costs can be reduced.
 卑金属溶解工程S1では、窒素(N)を含まない酸化剤(過酸化水素水)を添加した希塩酸を用いて銅などの卑金属を溶解するため、貴金属を溶解可能な硝酸を含む王水で卑金属を溶解する際に発生する窒素酸化物(NOx)ガスが発生することが無い。 In the base metal dissolving step S1, base metals such as copper are dissolved using dilute hydrochloric acid to which an oxidizing agent (hydrogen peroxide solution) that does not contain nitrogen (N) is added. No nitrogen oxide (NOx) gas is generated during melting.
 一方、回路基板に含まれる貴金属は、共存する卑金属が溶解しても、過酸化水素水を添加した希塩酸に溶解すること無く回路基板に留まる。
 こうした過酸化水素水の添加は、卑金属の溶解で生じる発泡が完全に無くなるまで行えばよい。卑金属溶解工程S1によって、回路基板に含まれる卑金属、例えばCuは、全量の70質量%以上が溶解され、卑金属溶出液が生成される。
On the other hand, the noble metals contained in the circuit board remain on the circuit board without being dissolved in dilute hydrochloric acid to which hydrogen peroxide has been added, even if the coexisting base metals are dissolved.
The hydrogen peroxide solution may be added until the foaming caused by the dissolution of the base metal completely disappears. In the base metal melting step S1, 70% by mass or more of the total amount of base metal, such as Cu, contained in the circuit board is dissolved, and a base metal eluate is generated.
 この後、卑金属の少なくとも一部を溶解した固相残渣である回路基板(貴金属含有原料)と、卑金属溶出液(液相)とを、例えば濾別によって固液分離を行ってもよい。これにより、貴金属と未溶解の卑金属とを含む回路基板(貴金属含有原料)と、卑金属溶出液とが得られる。なお、卑金属溶出液(液相)は、次工程である貴金属溶解工程S2で用いてもよく、また、例えば、還元剤の添加によって還元を行うことにより、Cuなどの卑金属を単離することもできる。 Thereafter, the circuit board (precious metal-containing raw material), which is a solid phase residue in which at least a portion of the base metal has been dissolved, and the base metal eluate (liquid phase) may be subjected to solid-liquid separation, for example, by filtration. Thereby, a circuit board (noble metal-containing raw material) containing a noble metal and an undissolved base metal and a base metal eluate are obtained. Note that the base metal eluate (liquid phase) may be used in the next step, the noble metal dissolution step S2, and, for example, base metals such as Cu may be isolated by performing reduction by adding a reducing agent. can.
 次に、卑金属溶解工程S1によって得られた卑金属溶出液に対して硝酸を添加した混合酸液、または王水を用いて、卑金属溶解工程S1で得られた回路基板(貴金属含有原料)に含まれる貴金属を溶解する(貴金属溶解工程S2)。王水としては、例えば濃塩酸と濃硝酸とを3:1の体積比で混合した混液であればよい。濃塩酸と濃硝酸とを混合することによって、貴金属を酸化させる塩化ニトロシル(NOCl)が生じる。 Next, a mixed acid solution prepared by adding nitric acid to the base metal eluate obtained in the base metal dissolution step S1 or aqua regia is used to dissolve the components contained in the circuit board (precious metal-containing raw material) obtained in the base metal dissolution step S1. The noble metal is melted (noble metal melting step S2). The aqua regia may be, for example, a mixture of concentrated hydrochloric acid and concentrated nitric acid in a volume ratio of 3:1. Mixing concentrated hydrochloric acid and concentrated nitric acid produces nitrosyl chloride (NOCl), which oxidizes noble metals.
 また、卑金属溶解工程S1において得られた卑金属溶出液を用いる場合、この卑金属溶出液に添加された塩酸のうち、未反応の塩酸が残っている場合、硝酸だけを添加しても塩化ニトロシルが生じる。これにより貴金属を溶解させることができる。 Furthermore, when using the base metal eluate obtained in the base metal dissolving step S1, if unreacted hydrochloric acid remains among the hydrochloric acid added to the base metal eluate, nitrosyl chloride will be produced even if only nitric acid is added. . This allows the noble metal to be dissolved.
 なお、卑金属溶解工程S1の別な実施形態として、貴金属溶解工程の前工程である卑金属溶解工程で用いる酸化剤として、過酸化水素に代えて、酸化剤として塩化第二鉄(FeCl)を用いることもできる。この場合、例えば、希塩酸に回路基板を浸漬させた反応容器内に、所定の速度で塩化第二鉄水溶液を添加して攪拌する。塩化第二鉄水溶液は、例えば塩化第二鉄濃度が20質量%以上、50質量%以下のものを用いればよい。 In addition, as another embodiment of the base metal melting step S1, ferric chloride (FeCl 3 ) is used as an oxidizing agent instead of hydrogen peroxide as the oxidizing agent used in the base metal melting step which is a pre-step of the noble metal melting step. You can also do that. In this case, for example, a ferric chloride aqueous solution is added at a predetermined rate into a reaction vessel in which a circuit board is immersed in dilute hydrochloric acid and stirred. The ferric chloride aqueous solution may have a ferric chloride concentration of 20% by mass or more and 50% by mass or less, for example.
 こうした塩化第二鉄水溶液の添加によって、第二鉄イオンが酸化剤として作用して、回路基板に含まれる卑金属を溶解させることができる。 By adding such an aqueous ferric chloride solution, ferric ions can act as an oxidizing agent and dissolve the base metal contained in the circuit board.
 この後、貴金属含有原料(固相残渣)である回路基板と卑金属溶出液とを固液分離してから回路基板を王水に浸漬したり、卑金属溶出液に硝酸を添加した混合酸液に回路基板を浸漬したりすることによって、貴金属が溶解される。この時、回路基板に含まれる卑金属は卑金属溶解工程において少なくともその一部が可溶性の塩化物として取り除かれる。 After this, the circuit board, which is a precious metal-containing raw material (solid phase residue), and the base metal eluate are separated into solid and liquid, and then the circuit board is immersed in aqua regia, or the circuit board is immersed in a mixed acid solution in which nitric acid is added to the base metal eluate. The noble metal is melted by immersing the substrate. At this time, at least a portion of the base metal contained in the circuit board is removed as soluble chloride in the base metal melting step.
 貴金属溶解工程S2では、卑金属溶解工程S1の溶解残渣である回路基板を、上述した混合酸液や、王水に浸漬、攪拌することにより、回路基板に含まれるAuなどの貴金属が溶解し、貴金属溶出液が生成される。なお、卑金属溶解工程S1で溶解されなかった卑金属が溶解残渣である回路基板に残留している場合、この貴金属溶解工程S2において貴金属と共に溶解される。 In the noble metal melting step S2, the circuit board, which is the dissolution residue of the base metal melting step S1, is immersed and stirred in the above-mentioned mixed acid solution or aqua regia, whereby the noble metals such as Au contained in the circuit board are dissolved, and the noble metals are dissolved. An eluate is produced. If the base metal that was not melted in the base metal melting step S1 remains on the circuit board as a melting residue, it will be melted together with the noble metal in the noble metal melting step S2.
 この貴金属溶解工程S2では、混合酸液や王水の液温を、例えば60℃以上、80℃以下の範囲に保てばよい。また、攪拌時間は、例えば1時間以上、3時間以下の範囲であればよい。
 なお、貴金属溶解工程S2では、卑金属溶解工程S1の溶解残渣である回路基板を、混合酸液および王水の両方を用いて溶解することもできる。
In this noble metal dissolving step S2, the temperature of the mixed acid solution or aqua regia may be maintained within a range of, for example, 60° C. or higher and 80° C. or lower. Further, the stirring time may be, for example, in a range of 1 hour or more and 3 hours or less.
In addition, in the noble metal dissolving step S2, the circuit board, which is the dissolution residue of the base metal dissolving step S1, can also be dissolved using both the mixed acid solution and aqua regia.
 貴金属溶解工程S2では、例えば、回路基板に含まれるAuが塩化ニトロシルと反応して可溶性の塩化金酸を生じる際に窒素酸化物が発生する。また、回路基板にCuが残留している場合、Cuが塩化ニトロシルと反応する際にも窒素酸化物が発生する。 In the noble metal melting step S2, nitrogen oxides are generated, for example, when Au contained in the circuit board reacts with nitrosyl chloride to produce soluble chloroauric acid. Further, when Cu remains on the circuit board, nitrogen oxides are also generated when Cu reacts with nitrosyl chloride.
 しかしながら、一般的に回路基板に含まれるAuなどの貴金属は、回路パターンを形成するCuなどの卑金属と比較して、その使用量(含有量)は少なく、貴金属の溶解に係る窒素酸化物の発生量は少ない。一方、貴金属よりも使用量の多いCuなどの卑金属の大部分は、上述した卑金属溶解工程S1において窒素酸化物を発生させずに溶解されており、貴金属溶解工程S2に移行する未溶解の卑金属の量は大幅に低減されている。 However, the amount of precious metals such as Au contained in circuit boards is generally small compared to base metals such as Cu that form circuit patterns, and nitrogen oxides are generated due to the dissolution of precious metals. The quantity is small. On the other hand, most of the base metals such as Cu, which are used in a larger amount than the precious metals, are melted in the above-mentioned base metal melting step S1 without generating nitrogen oxides, and the unmelted base metals are transferred to the noble metal melting step S2. The amount has been significantly reduced.
 よって、本実施形態の貴金属の製造方法では、前処理として卑金属溶解工程S1を行っているため、貴金属溶解工程S2で発生する窒素酸化物の発生量は、卑金属溶解工程S1を行なわない場合と比較して、大幅に低減される。 Therefore, in the precious metal manufacturing method of the present embodiment, the base metal melting step S1 is performed as a pretreatment, so the amount of nitrogen oxides generated in the noble metal melting step S2 is compared to the case where the base metal melting step S1 is not performed. and is significantly reduced.
 次に、貴金属溶解工程S2で得られた貴金属溶出液を、液温が30℃以上、100℃以下の範囲になるように加熱する(加熱工程S3)。加熱温度は、30℃以上であればよく、好ましくは60℃以上、より好ましくは90℃以上である。加熱温度の上限は、貴金属溶出液の沸騰を防止するために、100℃以下にする。こうした貴金属溶出液の加熱は、例えば、ヒータを用いて行えばよい。加熱時間は、1時間以上、100時間以下の範囲であることが好ましい。 Next, the noble metal eluate obtained in the noble metal melting step S2 is heated so that the liquid temperature is in the range of 30° C. or higher and 100° C. or lower (heating step S3). The heating temperature may be 30°C or higher, preferably 60°C or higher, more preferably 90°C or higher. The upper limit of the heating temperature is set to 100° C. or less in order to prevent the noble metal eluate from boiling. Such heating of the noble metal eluate may be performed using, for example, a heater. The heating time is preferably in the range of 1 hour or more and 100 hours or less.
 こうした加熱工程S3によって、貴金属溶出液を加熱することによって、後工程である貴金属吸着工程S5において、酵母に対する貴金属イオンの吸着率を大きく高めることが可能になる。 By heating the noble metal eluate through such heating step S3, it becomes possible to greatly increase the adsorption rate of noble metal ions to yeast in the subsequent noble metal adsorption step S5.
 次に、加熱工程S3によって、30℃以上、100℃以下の範囲に加熱された貴金属溶出液を、60℃未満まで冷却する(冷却工程S4)。冷却温度は、60℃未満であればよく、好ましくは40℃未満、より好ましくは30℃未満である。こうした貴金属溶出液の冷却は、例えば、放冷により行われてもよい。あるいは、窒素ガスまたはヘリウムガスを貴金属溶出液に吹き付けることによって冷却してもよい。さらには、加熱した容器の周囲で冷却水を循環させることで冷却してもよい。 Next, the noble metal eluate heated in the range of 30° C. or higher and 100° C. or lower in the heating step S3 is cooled to lower than 60° C. (cooling step S4). The cooling temperature may be less than 60°C, preferably less than 40°C, more preferably less than 30°C. Such cooling of the noble metal eluate may be performed, for example, by allowing it to cool. Alternatively, cooling may be performed by blowing nitrogen gas or helium gas onto the noble metal eluate. Furthermore, cooling may be performed by circulating cooling water around the heated container.
 こうした冷却工程S4によって、加熱工程S3で加熱された貴金属溶出液を冷却することによって、後工程である貴金属吸着工程S5において、高温環境による酵母の活性の低下を防止することができる。
 なお、こうした冷却工程S4は、必ずしも行う必要は無く、例えば、液温が60℃程度を保った貴金属溶出液を用いて、後工程である貴金属吸着工程S5を行ってもよい。
By cooling the noble metal eluate heated in the heating step S3 through the cooling step S4, it is possible to prevent the yeast activity from decreasing due to the high temperature environment in the subsequent noble metal adsorption step S5.
Note that such a cooling step S4 does not necessarily need to be performed, and for example, the noble metal adsorption step S5, which is a subsequent step, may be performed using a noble metal eluate whose liquid temperature is maintained at about 60°C.
 次に、加熱工程S3によって加熱され、必要に応じて冷却工程S4で冷却された貴金属溶出液に対して、酵母を加えて攪拌し、貴金属溶出液に含まれる貴金属イオンを酵母に吸着させる(貴金属吸着工程S5)。この貴金属吸着工程S5では、貴金属溶出液に含まれる貴金属イオンと酵母とが接触することにより、酵母に貴金属イオンが吸着される。 Next, yeast is added and stirred to the noble metal eluate heated in the heating step S3 and cooled in the cooling step S4 as needed, so that the yeast adsorbs the noble metal ions contained in the noble metal eluate (noble metal Adsorption step S5). In this noble metal adsorption step S5, the noble metal ions contained in the noble metal eluate come into contact with the yeast, so that the noble metal ions are adsorbed by the yeast.
 貴金属吸着工程S5で用いられる酵母は、貴金属イオンを吸着できる酵母であればいずれの酵母でもよい。本実施形態で適用可能な酵母は、例えば、サッカロマイセス属(Saccharomyces)やカンジダ属(Candida)、トルロプシス属(Torulopsis)、ジゴサッカロマイセス属(Zygosaccharomyces)、シゾサッカロマイセス属(Schizosaccharomyces)、ピチア属(Pichia)、ヤロウィア属(Yarrowia)、ハンセヌラ属(Hansenula)、クルイウェロマイセス属(Kluyveromyces)、デバリオマイセス属(Debaryomyces)、ゲオトリクム属(Geotrichum)、ウィッケルハミア属(Wickerhamia)、フェロマイセス属(Fellomyces)、スポロボロマイセス属(Sporobolomyces)の酵母であり、この中でも特にサッカロマイセス属、ジゴサッカロマイセス属、シゾサッカロマイセス属やデバリオマイセス属に属する酵母が好ましい。 The yeast used in the noble metal adsorption step S5 may be any yeast that can adsorb noble metal ions. Yeasts applicable to this embodiment include, for example, the genus Saccharomyces, the genus Candida, the genus Torulopsis, the genus Zygosaccharomyces, the genus Schizosaccharomyces, and the genus Pichia. , Yarrowia, Hansenula, Kluyveromyces, Debaryomyces, Geotrichum, Wickerhamia, Fellomyces, Sporobolomyces The yeast belongs to the genus Sporobolomyces, and among these, yeasts belonging to the genus Saccharomyces, Zygosaccharomyces, Schizosaccharomyces, and Debaryomyces are particularly preferred.
 サッカロマイセス属の酵母は出芽酵母の代表的な酵母であって、例えば、S. bayanusであり、S. boulardiiであり、S. bulderiであり、S. cariocanusであり、S. cariocusであり、S. cerevisiaeであり、S. chevalieriであり、S. dairenensisであり、S. ellipsoideusであり、S. florentinusであり、S. kluyveriであり、S. martiniaeであり、S. monacensisであり、S. norbensisであり、S. paradoxusであり、S. pastorianusであり、S. spencerorumであり、S. turicensisであり、S. unisporusであり、S. uvarumであり、S. zonatusであり得る。 Yeasts of the genus Saccharomyces are representative of S. cerevisiae, such as S. bayanus, S. boulardii, S. bulderi, S. cariocanus, S. cariocus, and S. bulderi. cerevisiae, S. chevalieri, S. dairenensis, S. ellipsoideus, S. florentinus, S. kluyveri, S. martiniae, S. monacensis, S. norbensis It can be S. paradoxus, S. pastorianus, S. spencerorum, S. turicensis, S. unisporus, S. uvarum, and S. zonatus.
 ジゴサッカロマイセス属は耐塩性の酵母であって、味噌や醤油などから分離される酵母であり、例えばZ. rouxiiであり得る。シゾサッカロマイセス属の酵母は分裂酵母であり、例えばS. cryophilusであり、S. japonicusであり、S. octosporusであり、S. pombeであり得る。また、好ましい酵母として受託番号NITE BP-01780(日本国千葉県木更津市かずさ鎌足2-5-8 122号室 独立行政法人製品評価技術基盤機構 特許微生物寄託センター)で寄託されたデバリオマイセス属の酵母(Debaryomyces hansenii)も例示できる。 The genus Zygosaccharomyces is a salt-tolerant yeast that is isolated from miso, soy sauce, etc., and can be, for example, Z. rouxii. Yeasts of the genus Schizosaccharomyces are fission yeasts, such as S. cryophilus, S. japonicus, S. octosporus, and S. pombe. In addition, as a preferable yeast, yeast of the genus Debaryomyces (Room 122, 2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan, National Institute of Technology and Evaluation, Patent Microorganism Depositary Center) has been deposited as a preferable yeast. Debaryomyces hansenii) is also an example.
 貴金属イオンと酵母との接触は貴金属溶出液中で行われる。酵母は生菌でもよく、また吸着機能が発揮される限り死菌であってもよい。貴金属溶出液に酵母を加えた液体は酵母の機能が発揮される環境であればよい。 Contact between noble metal ions and yeast takes place in a noble metal eluate. The yeast may be live or killed as long as the adsorption function is exerted. The liquid obtained by adding yeast to the noble metal eluate may be used as long as it is an environment in which yeast functions.
 貴金属溶出液に酵母を加えた液体のpHや温度は特に限定されるものではない。例えば、pHは0以上、7以下の強酸性~中性であればよい。また、温度は10℃以上、45℃以下、好ましくは20℃以上、35℃以下である。貴金属溶出液に酵母を加えて、反応、処理、操作を行う時間は、酵母の菌体密度や貴金属イオンの濃度によっても異なるが、例えば10分から48時間程度であればよい。このような時間、貴金属イオンと酵母とを接触させることで、貴金属イオンは酵母に吸着される。
 また、貴金属溶出液に酵母を加えた液体は、更に攪拌することも好ましい。撹拌によって、貴金属イオンが酵母表面に拡散する速度を高めることができる。
The pH and temperature of the liquid obtained by adding yeast to the noble metal eluate are not particularly limited. For example, the pH may be from strongly acidic to neutral, ranging from 0 to 7. Further, the temperature is 10°C or higher and 45°C or lower, preferably 20°C or higher and 35°C or lower. The time required for adding yeast to the noble metal eluate and performing the reactions, treatments, and operations varies depending on the yeast cell density and the concentration of noble metal ions, but may be about 10 minutes to 48 hours, for example. By bringing the noble metal ions into contact with the yeast for such a period of time, the noble metal ions are adsorbed by the yeast.
Moreover, it is also preferable that the liquid obtained by adding yeast to the noble metal eluate is further stirred. Stirring can increase the rate at which noble metal ions diffuse to the yeast surface.
 貴金属溶出液に酵母を加えた液体に含まれる貴金属イオンの濃度は、適宜設定することができる。貴金属溶出液中の貴金属イオン濃度は、酵母の菌体濃度によっても異なるが、例えば、0.01mmol/L以上、100mmol/L以下であり、好ましくは0.1mmol/L以上、10mmol/L以下であればよい。こうした貴金属イオン濃度は、貴金属溶出液に酵母を加える際に、例えばイオン交換水を加えることによって調整することができる。 The concentration of noble metal ions contained in the liquid obtained by adding yeast to the noble metal eluate can be set as appropriate. The noble metal ion concentration in the noble metal eluate varies depending on the yeast cell concentration, but is, for example, 0.01 mmol/L or more and 100 mmol/L or less, preferably 0.1 mmol/L or more and 10 mmol/L or less. Good to have. Such a noble metal ion concentration can be adjusted by, for example, adding ion-exchanged water when adding yeast to the noble metal eluate.
 また、貴金属溶出液に酵母を加えた液体に含まれる酵母の濃度は、適宜設定することができる。貴金属溶出液中の酵母濃度は、貴金属イオン濃度によっても異なるが、例えば、5g/L以上、100g/L以下の範囲であればよい。貴金属溶出液中の酵母濃度は、例えば、1.0×1014cells/m以上、3.0×1015cells/m以下の範囲であってもよい。 Further, the concentration of yeast contained in the liquid obtained by adding yeast to the noble metal eluate can be set as appropriate. The yeast concentration in the noble metal eluate varies depending on the noble metal ion concentration, but may be, for example, in the range of 5 g/L or more and 100 g/L or less. The yeast concentration in the noble metal eluate may be, for example, in a range of 1.0×10 14 cells/m 3 or more and 3.0×10 15 cells/m 3 or less.
 次に、貴金属吸着工程S5で得られた、貴金属イオンが吸着された酵母を液体から分離する(酵母分離工程S6)。この酵母分離工程S6では、例えば遠心分離によって、貴金属イオンが吸着された酵母を沈殿させて液体と分離すればよい。この後、分離した貴金属イオンが吸着された酵母を更に水洗することが好ましい。分離した液体は、再度、加熱工程S3から酵母分離工程S6を実施してもよい。この際、各工程における条件を変更することで、分離した液体中の酵母に吸着せずに残った貴金属イオンを、酵母に吸着させて液体と分離することができる。 Next, the yeast with noble metal ions adsorbed obtained in the noble metal adsorption step S5 is separated from the liquid (yeast separation step S6). In this yeast separation step S6, the yeast to which the noble metal ions have been adsorbed may be precipitated and separated from the liquid, for example, by centrifugation. After this, it is preferable to further wash the yeast to which the separated noble metal ions have been adsorbed with water. The separated liquid may be subjected to the heating step S3 to yeast separation step S6 again. At this time, by changing the conditions in each step, the remaining noble metal ions that are not adsorbed by the yeast in the separated liquid can be adsorbed by the yeast and separated from the liquid.
 次に、貴金属が吸着された酵母に水を加えて分散させて酵母の分散液を生成し、この分散液に還元剤を添加することによってナノ粒子化した貴金属を分離する(貴金属分離工程S7)。この貴金属分離工程S7では、溶液のpHが7以上になるように調整してもよい。貴金属が吸着された酵母の分散液に還元剤を添加した後の溶液のpHの一例として、7以上、14以下であってもよい。また、この溶液の液温は、10℃以上、90℃以下の範囲であればよい。こうした貴金属分離工程S7で得られる貴金属は、ナノ粒子化されたものとして得られる。 Next, water is added to the yeast on which the noble metal has been adsorbed and the yeast is dispersed to produce a yeast dispersion, and a reducing agent is added to this dispersion to separate the nanoparticles of the noble metal (noble metal separation step S7). . In this noble metal separation step S7, the pH of the solution may be adjusted to 7 or higher. As an example of the pH of the solution after adding the reducing agent to the yeast dispersion in which the noble metal has been adsorbed, it may be 7 or more and 14 or less. Further, the temperature of this solution may be in the range of 10°C or higher and 90°C or lower. The noble metal obtained in such a noble metal separation step S7 is obtained in the form of nanoparticles.
 貴金属をナノ粒子化させる還元剤は、例えば、ヒドラジン及びその塩、水素化ホウ素塩、硫酸塩、チオ硫酸塩、酒石酸塩、ホスフィン酸及びその塩、ギ酸及びその塩、酢酸及びその塩、プロピオン酸及びその塩、シュウ酸及びその塩、アスコルビン酸及びその塩、リン酸及びその塩、次亜リン酸及びその塩、クエン酸及びその塩、遷移金属塩、グリシン、ジメチルアミンボラン、ホルムアルデヒドのうち、いずれか1種または2種以上を含むものを用いることができる。 Reducing agents that convert noble metals into nanoparticles include, for example, hydrazine and its salts, borohydride salts, sulfates, thiosulfates, tartrates, phosphinic acid and its salts, formic acid and its salts, acetic acid and its salts, propionic acid. and its salts, oxalic acid and its salts, ascorbic acid and its salts, phosphoric acid and its salts, hypophosphorous acid and its salts, citric acid and its salts, transition metal salts, glycine, dimethylamine borane, formaldehyde, One type or a combination of two or more types can be used.
 貴金属分離工程S7において、貴金属が吸着された酵母に還元剤を加えて、貴金属の還元過程で平均粒子径がナノサイズ(1nm以上、100nm以下)の貴金属ナノ粒子が形成される。この時、pH7以上にすれば、還元剤による貴金属の還元能力がより一層発揮され、貴金属ナノ粒子をより効率的に形成することができる。 In the noble metal separation step S7, a reducing agent is added to the yeast on which the noble metal has been adsorbed, and noble metal nanoparticles with an average particle size of nano-sized (1 nm or more and 100 nm or less) are formed in the noble metal reduction process. At this time, if the pH is set to 7 or more, the ability of the reducing agent to reduce the noble metal is further exhibited, and noble metal nanoparticles can be formed more efficiently.
 この後、例えば、超音波を照射することによって、酵母と、生成した貴金属ナノ粒子とを分離することができる。また、アルカリ添加により酵母細胞を破砕して貴金属ナノ粒子を分離し、酵母やその断片を濾過などで取り除き、貴金属ナノ粒子の分散液とすることもできる。さらに貴金属ナノ粒子のペーストとして用いる場合は、貴金属ナノ粒子を酵母から分離することなく、酵母に担持したまま貴金属ナノ粒子ペーストとして用いることができる。 After this, the yeast and the produced noble metal nanoparticles can be separated, for example, by irradiating them with ultrasonic waves. Alternatively, a dispersion of noble metal nanoparticles can be obtained by crushing yeast cells by adding alkali to separate noble metal nanoparticles, and removing yeast and its fragments by filtration or the like. Furthermore, when used as a noble metal nanoparticle paste, the noble metal nanoparticles can be used as a noble metal nanoparticle paste while being supported on the yeast without separating them from the yeast.
 以上のように、本実施形態の貴金属の製造方法によれば、貴金属溶解工程S2で得られた貴金属溶出液を、液温が30℃以上、100℃以下の範囲になるように加熱する(加熱工程S3)ことによって、後工程である貴金属吸着工程S5において、酵母に対する貴金属の吸着率を大きく高めることが可能になる。
 これにより、貴金属吸着工程S5において、酵母と貴金属溶出液との接触時間を短縮して、効率的で低コストに貴金属を製造することが可能になる。また、pH0といった強酸性の環境下であっても、貴金属を効率よく回収することが可能である。
As described above, according to the noble metal manufacturing method of the present embodiment, the noble metal eluate obtained in the noble metal melting step S2 is heated so that the liquid temperature is in the range of 30°C or more and 100°C or less (heating Step S3) makes it possible to significantly increase the adsorption rate of noble metals to yeast in the subsequent noble metal adsorption step S5.
Thereby, in the noble metal adsorption step S5, the contact time between the yeast and the noble metal eluate can be shortened, and noble metals can be produced efficiently and at low cost. Further, even in a strongly acidic environment such as pH 0, it is possible to efficiently recover noble metals.
 また、加熱工程S3で加熱された貴金属溶出液を、60℃未満まで冷却(冷却工程S4)すれば、貴金属吸着工程S5において、高温環境で酵母の活性を低下させることを防止して、効率的に酵母に貴金属を吸着させることができる。 In addition, if the noble metal eluate heated in the heating step S3 is cooled to below 60°C (cooling step S4), it is possible to prevent the activity of yeast from decreasing in the high temperature environment in the noble metal adsorption step S5, thereby increasing the efficiency. It is possible to make yeast adsorb noble metals.
 以上、本発明の実施形態を説明したが、こうした実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although the embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. This embodiment and its modifications are included within the scope and gist of the invention as well as within the scope of the invention described in the claims and its equivalents.
 本発明の効果を検証した。
 一辺が1cm以上、5cm以下の角形となるように破砕したAuを含む廃基板を、濃度50質量%の王水に浸漬して、金属成分を溶解させた。この後、固液分離を行い、貴金属溶出液を得た。
The effects of the present invention were verified.
A waste substrate containing Au that was crushed into a rectangular shape with sides of 1 cm or more and 5 cm or less was immersed in aqua regia with a concentration of 50% by mass to dissolve the metal components. After this, solid-liquid separation was performed to obtain a noble metal eluate.
(本発明例1)
 貴金属溶出液を30℃で1時間加熱した(加熱工程)。その後、液温が25℃になるまで放冷した(冷却工程)。
 こうして得られた、加熱処理を行った貴金属溶出液に濃度が5.0×1014cells/mとなるようパン酵母を投入し、貴金属溶出液に含まれるAuイオンを酵母にバイオ吸着させた。酵母の代表菌であるSaccharomyces cerevisiaeは、オリエンタル酵母工業株式会社製の食用に市販されているものを用いた。そして、パン酵母を投入して5分後に、遠心分離によって酵母を分離した後、上澄み溶液に含まれる金属濃度を測定した。
(Example 1 of the present invention)
The noble metal eluate was heated at 30° C. for 1 hour (heating step). Thereafter, the solution was allowed to cool until the temperature reached 25° C. (cooling step).
Baker's yeast was added to the heat-treated noble metal eluate obtained in this manner so that the concentration was 5.0 x 10 14 cells/m 3 , and the Au ions contained in the noble metal eluate were bioadsorbed by the yeast. . Saccharomyces cerevisiae, a representative strain of yeast, was commercially available for edible use manufactured by Oriental Yeast Industry Co., Ltd. Five minutes after adding baker's yeast, the yeast was separated by centrifugation, and the metal concentration contained in the supernatant solution was measured.
(本発明例2)
 貴金属溶出液を60℃で1時間加熱した(加熱工程)こと以外は、本発明例1と同様の条件である。
(Example 2 of the present invention)
The conditions were the same as in Example 1 of the present invention, except that the noble metal eluate was heated at 60° C. for 1 hour (heating step).
(本発明例3)
 貴金属溶出液を90℃で1時間加熱した(加熱工程)こと以外は、本発明例1と同様の条件である。
(Example 3 of the present invention)
The conditions were the same as in Example 1 of the present invention, except that the noble metal eluate was heated at 90° C. for 1 hour (heating step).
(本発明例4)
 本発明例1と同様の工程を実施した後、本発明例1で得られた酵母を分離後の上澄み溶液を、再度90℃で1時間加熱した。加熱後の上澄み液に、本実施例1と同様の条件でパン酵母を投入し、加熱後の上澄み溶液に含まれるAuイオンを酵母にバイオ吸着させた。そして、パン酵母を投入して5分後に、遠心分離によって酵母を分離した後、上澄み溶液に含まれる金属濃度を測定した。
(Example 4 of the present invention)
After carrying out the same steps as in Example 1 of the present invention, the supernatant solution after separating the yeast obtained in Example 1 of the present invention was heated again at 90° C. for 1 hour. Baker's yeast was added to the heated supernatant solution under the same conditions as in Example 1, and the Au ions contained in the heated supernatant solution were bioadsorbed by the yeast. Five minutes after adding baker's yeast, the yeast was separated by centrifugation, and the metal concentration contained in the supernatant solution was measured.
(比較例1)
 貴金属溶出液を、加熱工程および冷却工程を経ずに、そのままパン酵母を投入したこと以外は本発明例1と同様の条件である。なお、加熱しない貴金属溶出液の液温は10℃以下であった。
(Comparative example 1)
The conditions were the same as in Example 1 of the present invention, except that baker's yeast was directly added to the noble metal eluate without passing through the heating and cooling steps. Note that the temperature of the noble metal eluate without heating was 10° C. or lower.
(比較例2)
 加熱工程および冷却工程を経ずにパン酵母を投入した貴金属溶出液を、パン酵母を投入して60分後に、遠心分離によって酵母を分離したこと以外は比較例1と同様の条件である。
(Comparative example 2)
The conditions are the same as in Comparative Example 1, except that the yeast was separated by centrifugation 60 minutes after the addition of the noble metal eluate into which baker's yeast was added without going through the heating and cooling steps.
 以上の本発明例1-3、および比較例1、2のAu吸着率を表1に示す。
 また、実施例1において、吸着された金属の選択性を図2に示す。
 なお、金属イオンの吸着率は、酵母投入前の貴金属溶出液をフィルターろ過した後、ICP発光分光分析により、液中の金属の濃度を測定した。その後、酵母投入後の貴金属溶出液を採取し、フィルターろ過した後、ICP発光分光分析により金属濃度を測定した。この酵母投入前後の液中の金属濃度の減少度合いを吸着率とした。吸着率は以下の式から求めた。
 吸着率(%)=(酵母投入前の液中の金属濃度-酵母投入・分離後の液中の金属濃度)/酵母投入前の液中の金属濃度×100
Table 1 shows the Au adsorption rates of Inventive Examples 1-3 and Comparative Examples 1 and 2.
Further, in Example 1, the selectivity of adsorbed metals is shown in FIG.
The adsorption rate of metal ions was determined by filtering the noble metal eluate before adding yeast, and then measuring the metal concentration in the solution by ICP emission spectrometry. Thereafter, the noble metal eluate after the yeast injection was collected, filtered, and the metal concentration was measured by ICP emission spectrometry. The degree of decrease in metal concentration in the liquid before and after the addition of yeast was defined as the adsorption rate. The adsorption rate was calculated from the following formula.
Adsorption rate (%) = (Metal concentration in the liquid before yeast injection - Metal concentration in the liquid after yeast injection and separation) / Metal concentration in the liquid before yeast injection x 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果によれば、本発明例のように、貴金属溶出液を予め30℃以上に加熱することによって、貴金属溶出液の加熱を行わない比較例と比べて、酵母に吸着されるAuの吸着率が、大きく高められることが確認できた。特に、貴金属溶出液を90℃まで加熱した本発明例3、4では、酵母に吸着されるAuの吸着率がいずれも80%以上となった。
 また、図2に示す結果によれば、酵母にはAuが他の卑金属等よりも選択的に吸着されることが確認できた。
According to the results shown in Table 1, by pre-heating the noble metal eluate to 30°C or higher as in the present invention, the amount of Au adsorbed by yeast was greater than in the comparative example in which the noble metal eluate was not heated. It was confirmed that the adsorption rate was significantly increased. In particular, in Examples 3 and 4 of the present invention in which the noble metal eluate was heated to 90° C., the adsorption rate of Au adsorbed by yeast was 80% or more in both cases.
Moreover, according to the results shown in FIG. 2, it was confirmed that Au was more selectively adsorbed by yeast than other base metals.
 本発明によれば、貴金属および卑金属を含む原料から、pH0といった強酸性の環境下であっても、貴金属を効率よく回収することが可能な貴金属の製造方法を提供することが可能となる。 According to the present invention, it is possible to provide a method for producing noble metals that can efficiently recover noble metals from raw materials containing noble metals and base metals even in a strongly acidic environment such as pH 0.

Claims (7)

  1.  貴金属および卑金属を含む原料を過酸化水素または塩化第二鉄を含む塩酸に浸漬して、前記卑金属の少なくとも一部を溶解させた卑金属溶出液および固相残渣である貴金属含有原料を生成する卑金属溶解工程と、
     前記卑金属溶出液に硝酸を添加した混合酸液と前記貴金属含有原料とを反応させるか、王水と前記貴金属含有原料とを反応させるかの、いずれか一方または両方によって、前記貴金属含有原料に含まれる前記貴金属を溶出させた貴金属溶出液を生成する貴金属溶解工程と、
     前記貴金属溶出液を30℃以上、100℃以下の範囲に加熱する加熱工程と、
     加熱した後の前記貴金属溶出液に酵母を加えて、前記酵母に前記貴金属溶出液に含まれる貴金属イオンを選択的に吸着させる貴金属吸着工程と、
     前記貴金属イオンが吸着された前記酵母の分散液に還元剤を加えて、ナノ粒子化した貴金属を分離する貴金属分離工程と、を有することを特徴とする貴金属の製造方法。
    Base metal dissolution in which a raw material containing a noble metal and a base metal is immersed in hydrogen peroxide or hydrochloric acid containing ferric chloride to produce a base metal eluate in which at least a portion of the base metal is dissolved and a noble metal-containing raw material as a solid phase residue. process and
    The precious metal-containing raw material may be contained in the noble metal-containing raw material by either or both of reacting a mixed acid solution obtained by adding nitric acid to the base metal eluate with the noble metal-containing raw material, or reacting aqua regia with the noble metal-containing raw material. a noble metal melting step of producing a noble metal eluate in which the noble metal is eluted;
    a heating step of heating the noble metal eluate to a temperature of 30°C or higher and 100°C or lower;
    a noble metal adsorption step of adding yeast to the heated noble metal eluate and causing the yeast to selectively adsorb noble metal ions contained in the noble metal eluate;
    A method for producing a noble metal, comprising a noble metal separation step of adding a reducing agent to the yeast dispersion in which the noble metal ions have been adsorbed to separate noble metal nanoparticles.
  2.  前記加熱工程の後工程であって、前記加熱工程で加熱した前記貴金属溶出液を60℃未満まで冷却する冷却工程を更に有することを特徴とする請求項1に記載の貴金属の製造方法。 The method for producing a noble metal according to claim 1, further comprising a cooling step, which is a step after the heating step, of cooling the noble metal eluate heated in the heating step to below 60°C.
  3.  前記酵母は、サッカロマイセス属、ジゴサッカロマイセス属、シゾサッカロマイセス属、デバリオマイセス属、カンジダ属のうち、いずれか1種または2種以上を含むことを特徴とする請求項1または2に記載の貴金属の製造方法。 The production of a precious metal according to claim 1 or 2, wherein the yeast contains one or more of the genus Saccharomyces, the genus Zygosaccharomyces, the genus Schizosaccharomyces, the genus Debaryomyces, and the genus Candida. Method.
  4.  前記貴金属は、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウムのうち、いずれか1種または2種以上を含むことを特徴とする請求項1または2に記載の貴金属の製造方法。 3. The method for producing a noble metal according to claim 1, wherein the noble metal includes one or more of gold, platinum, silver, palladium, rhodium, iridium, ruthenium, and osmium.
  5.  前記還元剤は、ヒドラジン及びその塩、水素化ホウ素塩、硫酸塩、チオ硫酸塩、酒石酸塩、ホスフィン酸及びその塩、ギ酸及びその塩、酢酸及びその塩、プロピオン酸及びその塩、シュウ酸及びその塩、アスコルビン酸及びその塩、リン酸及びその塩、次亜リン酸及びその塩、クエン酸及びその塩、遷移金属塩、グリシン、ジメチルアミンボラン、ホルムアルデヒドのうち、いずれか1種または2種以上を含むことを特徴とする請求項1または2に記載の貴金属の製造方法。 The reducing agent includes hydrazine and its salts, borohydride salts, sulfates, thiosulfates, tartrates, phosphinic acid and its salts, formic acid and its salts, acetic acid and its salts, propionic acid and its salts, oxalic acid and Any one or two of its salts, ascorbic acid and its salts, phosphoric acid and its salts, hypophosphorous acid and its salts, citric acid and its salts, transition metal salts, glycine, dimethylamine borane, and formaldehyde. The method for producing a precious metal according to claim 1 or 2, characterized in that the method includes the above steps.
  6.  前記貴金属分離工程で分離される貴金属は、貴金属ナノ粒子であることを特徴とする請求項1または2に記載の貴金属の製造方法。 The method for producing a noble metal according to claim 1 or 2, wherein the noble metal separated in the noble metal separation step is a noble metal nanoparticle.
  7.  前記原料は、回路基板であることを特徴とする請求項1または2に記載の貴金属の製造方法。 The method for producing a precious metal according to claim 1 or 2, wherein the raw material is a circuit board.
PCT/JP2023/022369 2022-06-16 2023-06-16 Noble metal production method WO2023243702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-097612 2022-06-16
JP2022097612A JP2023183841A (en) 2022-06-16 2022-06-16 Manufacturing method of noble metal

Publications (1)

Publication Number Publication Date
WO2023243702A1 true WO2023243702A1 (en) 2023-12-21

Family

ID=89191476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022369 WO2023243702A1 (en) 2022-06-16 2023-06-16 Noble metal production method

Country Status (2)

Country Link
JP (1) JP2023183841A (en)
WO (1) WO2023243702A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163868A (en) * 2013-05-31 2013-08-22 Jx Nippon Mining & Metals Corp Leaching method of copper and gold from sulfide ore
JP2013540572A (en) * 2010-08-20 2013-11-07 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Sustainable methods for recovering precious and base metal from electrical and electronic equipment waste
JP2016183371A (en) * 2015-03-25 2016-10-20 公立大学法人大阪府立大学 Method for recovering noble metal
JP2017020100A (en) * 2015-07-09 2017-01-26 公立大学法人大阪府立大学 Bag for metal recovery, package boody for metal recovery and method for recovering metal
JP2021501259A (en) * 2017-10-17 2021-01-14 ミント イノベイション リミテッド Process of recovering metal from electronic waste
JP2023004079A (en) * 2021-06-25 2023-01-17 三菱マテリアル株式会社 Method for recovering noble metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540572A (en) * 2010-08-20 2013-11-07 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Sustainable methods for recovering precious and base metal from electrical and electronic equipment waste
JP2013163868A (en) * 2013-05-31 2013-08-22 Jx Nippon Mining & Metals Corp Leaching method of copper and gold from sulfide ore
JP2016183371A (en) * 2015-03-25 2016-10-20 公立大学法人大阪府立大学 Method for recovering noble metal
JP2017020100A (en) * 2015-07-09 2017-01-26 公立大学法人大阪府立大学 Bag for metal recovery, package boody for metal recovery and method for recovering metal
JP2021501259A (en) * 2017-10-17 2021-01-14 ミント イノベイション リミテッド Process of recovering metal from electronic waste
JP2023004079A (en) * 2021-06-25 2023-01-17 三菱マテリアル株式会社 Method for recovering noble metal

Also Published As

Publication number Publication date
JP2023183841A (en) 2023-12-28

Similar Documents

Publication Publication Date Title
Kim et al. Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process
Jeon et al. Interference of coexisting copper and aluminum on the ammonium thiosulfate leaching of gold from printed circuit boards of waste mobile phones
JP5376437B2 (en) Method for recovering ruthenium from materials containing ruthenium or ruthenium oxide or ruthenium-containing noble metal concentrates
Lee et al. Metallurgical process for total recovery of all constituent metals from copper anode slimes: A review of established technologies and current progress
CN103343224A (en) Method for quickly extracting gold from gold-containing material
CN103074492A (en) Method for separating and purifying gold from noble metal solution
CN111850300B (en) Method for efficiently enriching platinum and palladium from low-concentration platinum-palladium nitric acid system solution
CN110484748A (en) A method of the selective recovery silver from discarded circuit board
CA2396665A1 (en) Selective metal leaching process
JP5840761B2 (en) Method for recovering gold adsorbed on activated carbon and method for producing gold using the same
JP4406688B2 (en) Method for purifying electrolyte in monovalent copper electrowinning process
CN116171190A (en) Method for leaching and recovering platinum group metals in organic solvents
KR20120103082A (en) Method for recovering platinum group matals from platinum group matals industrial waste
JP6940089B2 (en) Precious metal recovery method
WO2023243702A1 (en) Noble metal production method
JP5351747B2 (en) Gold reduction recovery method
EP3329023B1 (en) Process for recovery and recycling of materials constituting membranes for separation of hydrogen
JP2023004079A (en) Method for recovering noble metal
JP2023114820A (en) Method for production noble metal
Saadatjoo et al. Recovery of gold from computer circuit board scraps: the study of the effect of different reductants
JP2023183839A (en) Manufacturing method of noble metal
AU706534B2 (en) Method of purifying gold
CN107475512A (en) A kind of method of comprehensive exploitation low-grade Pt-Pd concentrate
CN111334663B (en) Method for recovering precious metal from spent automobile exhaust catalyst
TWI585238B (en) Method for recovering metal from printed circuit boards by using hydrochloride acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823992

Country of ref document: EP

Kind code of ref document: A1