WO2015199098A1 - Method for processing copper-containing molybdenum ore - Google Patents

Method for processing copper-containing molybdenum ore Download PDF

Info

Publication number
WO2015199098A1
WO2015199098A1 PCT/JP2015/068096 JP2015068096W WO2015199098A1 WO 2015199098 A1 WO2015199098 A1 WO 2015199098A1 JP 2015068096 W JP2015068096 W JP 2015068096W WO 2015199098 A1 WO2015199098 A1 WO 2015199098A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
leaching
molybdenum ore
containing molybdenum
treating
Prior art date
Application number
PCT/JP2015/068096
Other languages
French (fr)
Japanese (ja)
Inventor
佐野 正樹
由樹 青砥
和浩 波多野
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014130794A external-priority patent/JP6046082B2/en
Priority claimed from JP2014250420A external-priority patent/JP6196209B2/en
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Publication of WO2015199098A1 publication Critical patent/WO2015199098A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • Molybdenite is molybdenite (MoS 2 ) (molybdenum sulfide), molybdenum lead ore (wulfenite, PbMoO 4 ) (lead molybdate), pawerite (Ca (Mo, W) O 4 ), iron-water lead ore (Fe 2 ( It exists in ores such as MoO 4 ) 3 ⁇ nH 2 O), and among these, the use of molybdenite is advancing in the mining industry.
  • Lumarite ore is often produced together with copper sulfides, and copper and molybdenum are selected by flotation.
  • the recovered molybdenum concentrate contains several percent of copper sulfides.
  • the main use of molybdenum is as a steel additive. In this case, since copper deteriorates the properties of steel products, it is necessary to remove copper from the molybdenum concentrate in advance.
  • iron chloride method is known as a method for separating and recovering copper from molybdenum concentrate (Non-patent Document 1, Patent Documents 1 and 2).
  • a typical flow of the iron chloride method is shown in FIG.
  • copper is preferentially leached by leaching in an autoclave heated to about 110 ° C. using a leachate containing about 120 g / L of Fe 3+ ions of copper-containing molybdenum ore.
  • the copper in the solution is recovered by a cementation method in which cement copper (about 90% of Cu quality) is precipitated by reacting with iron scraps and the like.
  • the molybdenum concentrate after copper removal is subjected to a molybdenum smelting process.
  • the concentration of molybdenum contained in the liquid after leaching and removing copper is 0.26 to 5.1 g / L, and the average is 1.42 g / L, which is relatively high (Table V of Patent Document 2).
  • This test is a test using molybdenum concentrate with a low copper content of 0.2 to 1.0% by weight. For a general molybdenum concentrate with a copper content of about 5%, the copper leaching time and The amount of lost molybdenum is easily expected to increase.
  • Patent Document 3 describes a method of leaching copper from copper sulfide ore using a chloride bath, but this method is not intended to recover molybdenum, and the behavior of the method with respect to copper-containing molybdenum ore is unknown. is there.
  • This invention was created in view of the said situation, and makes it a subject to provide the improvement plan of the processing method of the copper-containing molybdenum ore useful for isolate
  • the present invention completed on the basis of the above knowledge, in one aspect, has an acidity of 50 to 100 ° C. containing 100 to 200 g / L of chloride ions, 1 to 30 g / L of copper ions, and 1 to 10 g / L of iron ions.
  • Including a step of leaching the copper component by contacting the acidic aqueous solution with copper-containing molybdenum ore while supplying an oxygen-containing gas to the aqueous solution, and then obtaining a post-leaching solution and a leaching residue by solid-liquid separation. This is a method for treating copper molybdenum ore.
  • the oxidation-reduction potential (vs. Ag / AgCl) of the acidic aqueous solution is maintained in the range of 400 to 480 mV after 2 hours from the start of leaching until the end of leaching. .
  • the total of copper ions and iron ions in the acidic aqueous solution is 25 g / L or less.
  • the molybdenum concentration in the leached solution is 0.011 g / L or less.
  • the step of leaching the copper component is performed while blowing oxygen-containing gas at a flow rate of 0.02 to 0.5 slpm per liter of acidic aqueous solution. To do.
  • the copper leaching rate in the leaching step is 70% or more.
  • the copper-containing molybdenum ore contains 0.5 to 10% by mass of copper and 20% by mass or more of molybdenum.
  • the step of recovering copper in the solution after leaching as electrolytic copper on the cathode by electrolytic extraction through solvent extraction and back extraction is also possible.
  • the concentration of chloride ions in the leachate used in step 1 is preferably 100 g / L or more, more preferably 120 g / L or more, from the viewpoint of realizing a copper dissolution reaction with high efficiency, and 140 g Even more preferably, it is at least / L.
  • the concentration of chloride ions in the leachate is generally 200 g / L or less, preferably 180 g / L or less.
  • the concentration of copper ions in the leaching solution used in step 1 is preferably 1 g / L or more, more preferably 5 g / L or more, from the viewpoint of promoting the copper leaching reaction.
  • the concentration of copper ions in the leachate is generally 30 g / L or less, preferably 20 g / L or less.
  • the total of copper ions and iron ions in the leaching solution is preferably 25 g / L or less, and more preferably 20 g / L or less.
  • concentrations of chloride ion, copper ion, and iron ion described above refer to the concentration in the leachate before the acidic aqueous solution is brought into contact with the copper-containing molybdenum ore.
  • the contact method between the leachate and the copper-containing molybdenum ore is not particularly limited, and there are methods such as spraying and dipping. From the viewpoint of reaction efficiency, a method of dipping and stirring the copper-containing molybdenum ore in the leachate is preferable.
  • the oxygen-containing gas is preferably supplied at a flow rate of 0.02 slpm or more, more preferably 0.04 slpm or more, and 0.08 slpm or more from the viewpoint of effectively exhibiting the above-described effects. It is even more preferable to supply at a flow rate of However, if it is supplied excessively, it consumes a lot of energy such as electric power to compensate for the heat of evaporation taken away by evaporation of the liquid into the bubbles, and a layer of bubbles with concentrate particles coated on the surface ( Is generated at a flow rate of 0.5 slpm or less per liter of the leachate, more preferably at a flow rate of 0.25 slpm or less per liter of the leachate, It is even more preferable to supply at a flow rate of 0.15 slpm or less per liter of leachate.
  • the copper-containing molybdenum ore there is no particular limitation on the copper-containing molybdenum ore, but for example, ore containing one or more selected from molybdenite, molybdenite, pawerite, and iron-water lead ore, especially ore containing molybdenite was floated.
  • the later molybdenum concentrate is mentioned.
  • the copper in the copper-containing molybdenum ore is present in the form of sulfide, for example, chalcopyrite and / or chalcopyrite.
  • the copper-containing molybdenum ore contains 0.5 to 10 mass% Cu in one embodiment, 1 to 10 mass% in a typical embodiment, and 2 to 5 mass Cu in a more typical embodiment. %contains.
  • the copper-containing molybdenum ore contains 20% by mass or more of Mo in one embodiment, 30 to 60% by mass of Mo in a typical embodiment, and 40 to 50 Mo in a more typical embodiment. Contains by mass%.
  • Copper ions and iron ions are usually supplied in the form of a salt, and can be supplied, for example, in the form of a halide salt. From the viewpoint that it can also be used as a supply source of chloride ions, copper ions are preferably supplied as copper chloride and iron ions are preferably supplied as iron chloride. As copper chloride and iron chloride, it is preferable to use cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ) from the viewpoint of oxidizing power, respectively, but cuprous chloride (CuCl) and ferrous chloride are preferable.
  • the leaching solution In order to increase the leaching efficiency of copper from the copper-containing molybdenum ore, the leaching solution should be acidic, and since it can be used as a supply source of chloride ions, it is preferable to make it acidic with hydrochloric acid.
  • the pH of the leaching solution is preferably about 0 to 3 and more preferably about 0.2 to 2.5 as measured by the glass electrode in order to ensure the solubility of the leached copper.
  • a mixture of hydrochloric acid, cupric chloride, ferric chloride, and sodium chloride can be used as the leachate in step 1.
  • the temperature of the leachate used in step 1 is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 70 ° C. or higher, from the viewpoint of leaching efficiency and material of the apparatus. If it is too high, the leachate will evaporate and the heating cost will increase, so it is preferably 100 ° C. or lower, more preferably 90 ° C. or lower, and even more preferably 85 ° C. or lower. It is possible to carry out step 1 under pressure for the purpose of increasing the leaching efficiency, but it is sufficient under atmospheric pressure. That is, a pressure vessel for performing a high pressure leaching step is not required, and a simpler apparatus can be used. In order to promote copper leaching, it is preferable to pulverize and grind the copper-containing molybdenum ore to be treated in advance.
  • the leaching step is preferably carried out by increasing the amount of the copper-containing molybdenum ore with respect to the leaching solution used from the viewpoint of reducing the leaching cost. Therefore, in one embodiment of the present invention, the leaching step can be performed at a pulp concentration of 50 g / L or more, and in another embodiment of the present invention, the leaching step is performed at a pulp concentration of 100 g / L or more. In another embodiment of the present invention, the leaching step can be performed at a pulp concentration of 150 g / L or more, and in yet another embodiment of the present invention, a pulp of 200 g / L or more.
  • the leaching step can be performed at a concentration, and in yet another embodiment of the present invention, the leaching step can be performed at a pulp concentration of 300 g / L or more.
  • the leaching step is performed at a pulp concentration of 800 g / L or less.
  • the leaching step can be performed at a pulp concentration of 600 g / L or less, and in yet another embodiment of the present invention, a pulp concentration of 500 g / L or less.
  • the leaching process can be performed.
  • the pulp concentration is the ratio of the copper-containing molybdenum ore (dry weight (g)) to the volume (L) of the leachate used.
  • Step 2 Solid-liquid separation step>
  • the leaching reaction liquid obtained in step 1 is separated into a post-leaching solution and a leaching residue by solid-liquid separation.
  • the solid-liquid separation method is not particularly limited, but a filter press or thickener can be used.
  • the copper leaching process of step 1 can be performed in one stage, but the copper leaching process can also be performed in a plurality of stages in order to sufficiently perform copper leaching in the copper-containing molybdenum ore.
  • the copper leaching process using multiple stages after completing the copper leaching operation in the first stage, solid-liquid separation is performed with a filter press or thickener, and the next stage copper leaching operation is performed on the leaching residue.
  • the copper leaching process can consist of 2 to 4 stages. In this case, the solid-liquid separation operation performed in each leaching stage corresponds to step 2.
  • copper can be leached at a high leaching rate while suppressing leaching of molybdenum.
  • a copper leaching rate of 80% or more while suppressing the molybdenum concentration in the liquid after leaching to 0.011 g / L or less.
  • a copper leaching rate of 70% or more while suppressing the molybdenum concentration in the liquid after leaching to 0.001 g / L or less.
  • the leaching is achieved. While suppressing the molybdenum concentration in the post-solution to 0.005 g / L or less, a copper leaching rate of 90% or more can be achieved.
  • the molybdenum in the post-leaching solution While suppressing the concentration to 0.005 g / L or less, a copper leaching rate of 95% or more can be achieved.
  • the leaching step is preferably carried out until the copper quality in the leaching residue is 0.5% by mass or less.
  • the molybdenum purity in the copper-free molybdenum ore which is the leaching residue is increased to increase the market value, and the advantage that copper can be recovered is obtained.
  • the time required for the leaching depends on the copper quality in the copper-containing molybdenum ore as the raw material, but the time required for the copper quality in the leaching residue to be 0.5% by mass or less is about 4 to 10 hours, for example. Yes, typically around 5-6 hours.
  • the leachate obtained in step 1 contains iron in which part of iron in the copper-containing molybdenum ore is dissolved, in addition to iron originally contained in the leachate. Many of these iron ions are thought to be Fe (II). This can be oxidized to Fe (III) and used again for leaching. Further, by adjusting the pH, a part of Fe (III) is precipitated, and the iron concentration in the leachate can be controlled. As oxidation conditions, aeration at 20 to 70 ° C. and pH 1.5 to 3.0 is most preferable in terms of cost and reaction rate. The higher the temperature and pH, the faster the reaction rate.
  • Copper recovery Copper can be recovered from the leached solution obtained in step 1.
  • recovery method For example, solvent extraction, ion exchange, substitution precipitation with a base metal, electrowinning, etc. can be utilized.
  • the copper in the solution after leaching contains both monovalent and divalent states, but in order to perform solvent extraction and ion exchange smoothly, all of them should be oxidized beforehand to be divalent copper ions. Is preferred.
  • the method of oxidation is not particularly limited, but a method of leaching air or oxygen into the liquid after leaching is simple.
  • the method further includes a step of recovering copper in the solution after leaching as electrolytic copper on the cathode by electrowinning through solvent extraction and back extraction.
  • the process itself is a method generally called SX-EW (Solvent® Extraction® and Electro-winning) method, and is well known to those skilled in the art.
  • a step of oxidizing copper in the liquid by blowing an oxygen-containing gas such as air into the liquid after leaching can be performed.
  • This provides the advantage that copper can be back extracted (striped) after solvent extraction and directly electrowinned.
  • monovalent copper is present in a high concentration in the strong chloride bath, so that it is deposited as dendrite copper during electrowinning.
  • Dendritic copper precipitates in the electrolytic cell as a metal powder. It is overwhelmingly more advantageous in terms of operability such as transportation when recovered as plate-like copper on the cathode.
  • solid-liquid separation can also be performed after the oxidation step. Solid-liquid separation is advantageous in increasing the copper purity in the liquid after leaching because it moves to an oxidation residue when iron is contained in the leaching liquid.
  • the leaching residue obtained in step 1 can be used as a molybdenum concentrate to produce a molybdenum intermediate product through a purification process known to those skilled in the art.
  • molybdenum trioxide products can be produced by oxidation roasting
  • molybdenum trioxide briquettes can be produced through molding and drying processes
  • low carbon ferromolybdenum can be produced through thermite reduction.
  • Step 1 Copper leaching process>
  • an acidic aqueous solution at 50 to 100 ° C. containing 100 to 200 g / L of chloride ions, 1 to 30 g / L of copper ions, and 1 to 20 g / L of iron ions (hereinafter also referred to as “leaching solution”).
  • leaching solution an acidic aqueous solution at 50 to 100 ° C. containing 100 to 200 g / L of chloride ions, 1 to 30 g / L of copper ions, and 1 to 20 g / L of iron ions.
  • the copper in the copper-containing molybdenum ore is leached by using a chloride bath as the leaching solution, and the copper leaching reaction is further promoted by allowing copper ions to be present in the leaching solution. I am aiming.
  • the concentration of chloride ions in the leachate used in step 1 is preferably 100 g / L or more, more preferably 120 g / L or more, from the viewpoint of realizing a copper dissolution reaction with high efficiency, and 140 g Even more preferably, it is at least / L.
  • the concentration of chloride ions in the leachate is generally 200 g / L or less, preferably 180 g / L or less.
  • the concentration of copper ions in the leaching solution used in step 1 is preferably 1 g / L or more, more preferably 5 g / L or more, from the viewpoint of promoting the copper leaching reaction.
  • the concentration of copper ions in the leachate is generally 30 g / L or less, preferably 20 g / L or less.
  • Iron ion is a suitable component for promoting copper leaching, and is preferably 1 g / L or more from the viewpoint of realizing a copper dissolution reaction with high efficiency, but if it exceeds 20 g / L, the leaching rate of Mo is remarkable.
  • the iron ion concentration in the leachate should be 20 g / L or less, preferably 10 g / L or less, more preferably 8 g / L or less. More preferably, it is 6 g / L or less.
  • the total of copper ions and iron ions in the leaching solution is preferably 40 g / L or less, more preferably 25 g / L or less, and 20 g / L or less. Is even more preferred.
  • concentrations of chloride ion, copper ion, and iron ion described above refer to the concentration in the leachate before the acidic aqueous solution is brought into contact with the copper-containing molybdenum ore.
  • the contact method between the leachate and the copper-containing molybdenum ore is not particularly limited, and there are methods such as spraying and dipping. From the viewpoint of reaction efficiency, a method of dipping and stirring the copper-containing molybdenum ore in the leachate is preferable.
  • the leaching step is performed such that the redox potential (vs. Ag / AgCl) of the leachate at the leaching end point is in the range of 400 to 480 mV.
  • the oxidation-reduction potential exceeds 480 mV, the elution of Mo cannot be ignored.
  • the oxidation-reduction potential is less than 400 mV, the leaching rate of copper becomes extremely slow, which is not industrial.
  • the redox potential of the leachate at the end of leaching is preferably 460 mV or less, more preferably 450 mV or less, even more preferably 440 mV or less, still more preferably 430 mV, and most preferably 420 mV or less.
  • the redox potential of the leachate at the leaching end point is preferably 410 mV or more.
  • the oxidation-reduction potential of the leachate gradually decreases with the lapse of the leaching time unless a special operation such as blowing in oxygen-containing gas is performed. In order to control within such a range, it is important to set the liquid composition and the pulp concentration so that the oxidation-reduction potential is sufficiently high at the initial stage of leaching.
  • the oxidation-reduction potential be maintained in the above range not only during the leaching end point but also during the leaching. This is to obtain a stable leaching effect. Specifically, it is preferable to maintain the redox potential in the above-mentioned range from 2 hours after the start of leaching until the end of leaching, and to maintain the redox potential in the above range from 1 hour after the start of leaching until the end of leaching. More preferably.
  • the leaching start time is the time when contact between the leachate and the copper-containing molybdenum ore starts
  • the leaching end point is the time when the leachate is solid-liquid separated from the copper-containing molybdenum ore.
  • the leaching step may be performed while blowing an oxygen-containing gas into the leaching solution.
  • Blowing oxygen-containing gas can increase the oxidation-reduction potential, thereby increasing the copper leaching rate.
  • the copper leaching rate tends to increase.
  • oxygen-containing gas For example, the mixed gas of air, oxygen, oxygen, and inert gas (nitrogen, noble gas, etc.) is mentioned. Air is preferable from the viewpoint of economy.
  • the supply amount of the oxygen-containing gas can be the same as in the first embodiment described above.
  • the oxidation-reduction potential can be increased by increasing the concentration of trivalent iron ions in the leachate. Since power for blowing in the oxygen-containing gas is unnecessary, it can be said that it is more economical to carry out the leaching step without blowing in the oxygen-containing gas.
  • the trivalent iron ion concentration in the leachate is increased, the molybdenum concentration in the liquor after leaching tends to increase, so that it should not be added excessively.
  • cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ) as copper chloride and iron chloride from the viewpoint of oxidizing power, respectively, but cuprous chloride (CuCl) and cupric chloride are preferable. Even if ferrous (FeCl 2 ) is used, supplying oxygen-containing gas to the leachate will oxidize to cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ), respectively. When blowing, there is no big difference. When oxygen-containing gas is not blown, cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ) must be used.
  • the leaching solution In order to increase the leaching efficiency of copper from the copper-containing molybdenum ore, the leaching solution should be acidic, and since it can be used as a supply source of chloride ions, it is preferable to make it acidic with hydrochloric acid.
  • the pH of the leaching solution is preferably about 0 to 3 and more preferably about 0.2 to 2.5 as measured by the glass electrode in order to ensure the solubility of the leached copper.
  • a mixture of hydrochloric acid, cupric chloride, ferric chloride, and sodium chloride can be used as the leachate in step 1.
  • the temperature of the leachate used in step 1 can be the same as in the first embodiment.
  • the pulp concentration in the leaching process can be the same as in the first embodiment.
  • Step 2 Solid-liquid separation step>
  • the leaching reaction liquid obtained in step 1 is separated into a post-leaching solution and a leaching residue by solid-liquid separation.
  • the solid-liquid separation method is not particularly limited, but a filter press or thickener can be used.
  • the copper leaching process of step 1 can be performed in one stage, but the copper leaching process can also be performed in a plurality of stages in order to sufficiently perform copper leaching in the copper-containing molybdenum ore.
  • the copper leaching process using multiple stages after completing the copper leaching operation in the first stage, solid-liquid separation is performed with a filter press or thickener, and the next stage copper leaching operation is performed on the leaching residue.
  • the copper leaching process can consist of 2 to 4 stages. In this case, the solid-liquid separation operation performed in each leaching stage corresponds to step 2.
  • copper can be leached at a high leaching rate while suppressing leaching of molybdenum.
  • a copper leaching rate of 80% or more while suppressing the molybdenum concentration in the liquid after leaching to 0.011 g / L or less.
  • a copper leaching rate of 90% or more can be achieved.
  • a copper leaching rate of 95% or more can be achieved.
  • the leaching step is preferably carried out until the copper quality in the leaching residue is 0.5% by mass or less.
  • the molybdenum purity in the copper-free molybdenum ore which is the leaching residue is increased to increase the market value, and the advantage that copper can be recovered is obtained.
  • the time required for the leaching depends on the copper quality in the copper-containing molybdenum ore as the raw material, but the time required for the copper quality in the leaching residue to be 0.5% by mass or less is about 4 to 10 hours, for example. Yes, typically around 5-6 hours.
  • Example 1 Transition of copper leaching rate and molybdenum concentration>
  • copper-containing molybdenum ore prepared was a pulverized molybdenum concentrate selected from ores containing molybdenite ore by flotation.
  • molybdenum concentrate was analyzed by ICP emission spectrometry after acid dissolution, it had a composition of Mo: 45% by mass, Cu: 3.5% by mass, Fe: 4.4% by mass, and S: 37% by mass.
  • 4L of leachate mixed with hydrochloric acid, ferric chloride, cupric chloride and sodium chloride so as to have the ionic composition shown in Table 1 was heated to 75 ° C.
  • Total residue rate (%)) (Weight after leaching before replacing liquid (g) / Weight of concentrate before leaching (g)) ⁇ (Weight after leaching (g) / Weight of remaining residue (g))
  • the Fe concentration is 2 g / L
  • the liquid amount, the concentrate amount, and the air blowing amount are doubled, but the leaching behavior is not affected.
  • Table 3 by changing the Fe concentration in the leachate in the range of 2 to 100 g / L, the influence of the Fe concentration in the leachate on the molybdenum concentration in the liquid after leaching was confirmed.
  • the leaching results are shown in Table 4 and FIG. Looking at the Mo concentration at the end of leaching, it can be seen that there is a correlation with an increase in Fe concentration at the start. When the Fe concentration was 2 g / L, the Mo concentration was less than 1 mg / L as the lower limit of detection. Further, the Mo concentration was less than 10 mg / L until the Fe concentration was 10 g / L. Thereafter, the Mo concentration continued to increase as the Fe concentration increased.
  • Example 3 Transition of copper leaching rate and molybdenum concentration depending on ORP>
  • copper-containing molybdenum ore prepared was a pulverized molybdenum concentrate selected from ores containing molybdenite ore by flotation.
  • molybdenum concentrate was analyzed by ICP emission spectrometry after acid dissolution, it had a composition of Mo: 45% by mass, Cu: 3.5% by mass, Fe: 4.4% by mass, and S: 37% by mass.
  • Total residue rate (%)) (Weight after leaching before replacing liquid (g) / Weight of concentrate before leaching (g)) ⁇ (Weight after leaching (g) / Weight of remaining residue (g))
  • ORP vs Ag / AgCl
  • the leaching results are shown in Table 9 and FIG. Looking at the Mo concentration at the end of leaching, it can be seen that there is a correlation with an increase in Fe concentration at the start.
  • the Fe concentration was 2 g / L
  • the Mo concentration was less than 1 mg / L as the lower limit of detection.
  • the Mo concentration was less than 10 mg / L until the Fe concentration was 10 g / L.
  • the Mo concentration continued to increase as the Fe concentration increased.
  • the pulp concentration was 380 g / L, which was higher than that of Test Example 3, so that the loss of molybdenum was generally small.
  • the concentrate used was concentrate after leaching for 2 hours under the same conditions as in Test Example 3, and 700 g was added to each of the two types of leaching solutions. Heated to 75 ° C. and stirred to leach copper. Sampling was performed once after 4 hours and 8 hours, and stirring was continued. After 14 hours, stirring was stopped, and the copper concentration and the molybdenum concentration in the leachate and the residue were measured by ICP-OES. Table 10 shows the leaching rate of copper, the Cu quality in the residue, and the concentration of leached molybdenum.

Abstract

 A method for processing copper-containing molybdenum ore including: a step for bringing a 50-100°C acidic aqueous solution into contact with copper-containing molybdenum ore while supplying an oxygen-containing gas to the acidic aqueous solution so that the copper components will leach out, the solution containing 100-200 g/L of chloride ions, 1-30 g/L of copper ions, and 1-10 g/L of iron ions; and a step for subsequently separating the solids and liquids to obtain a leachate and a leaching residue.

Description

含銅モリブデン鉱の処理方法Method for treating copper-containing molybdenum ore
 本発明は銅を含有するモリブデン鉱の処理方法に関する。とりわけ、本発明は銅を含有するモリブデン鉱からモリブデンと銅を分離回収する方法に関する。 The present invention relates to a method for treating molybdenum ore containing copper. In particular, the present invention relates to a method for separating and recovering molybdenum and copper from molybdenum ore containing copper.
 モリブデンは輝水鉛鉱(molybdenite,MoS2)(硫化モリブデン)、モリブデン鉛鉱(wulfenite,PbMoO4)(モリブデン酸鉛)、パウエライト(Ca(Mo,W)O4)、鉄水鉛鉱(Fe2(MoO43・nH2O)等の鉱石中に存在しており、これらの中でも輝水鉛鉱の鉱業的な利用が進んでいる。 Molybdenite is molybdenite (MoS 2 ) (molybdenum sulfide), molybdenum lead ore (wulfenite, PbMoO 4 ) (lead molybdate), pawerite (Ca (Mo, W) O 4 ), iron-water lead ore (Fe 2 ( It exists in ores such as MoO 4 ) 3 · nH 2 O), and among these, the use of molybdenite is advancing in the mining industry.
 輝水鉛鉱は銅の硫化物とともに産出されることが多く、浮遊選鉱により銅とモリブデンを選別するが、通常回収したモリブデン精鉱中には数%の銅の硫化物が混在している。モリブデンの主要用途は鉄鋼添加剤であり、この場合銅は鉄鋼製品の性状を低下させるため、予めモリブデン精鉱から銅を除く必要がある。 Lumarite ore is often produced together with copper sulfides, and copper and molybdenum are selected by flotation. Usually, the recovered molybdenum concentrate contains several percent of copper sulfides. The main use of molybdenum is as a steel additive. In this case, since copper deteriorates the properties of steel products, it is necessary to remove copper from the molybdenum concentrate in advance.
 従来、モリブデン精鉱から銅を分離回収する方法として、「塩化鉄法」が知られている(非特許文献1、特許文献1、2)。塩化鉄法の典型的なフローを図2に示す。当該方法は、含銅モリブデン鉱をFe3+イオンを120g/L程度含有する浸出液を用いて110℃程度に加熱したオートクレーブ内で浸出処理することで、銅を優先的に浸出させ、モリブデンと銅を分離する方法である。浸出後液中の銅は鉄屑などと反応させてセメント銅(Cu品位90%程度)を沈殿させるセメンテーション法によって回収される。脱銅後のモリブデン精鉱は、モリブデン製錬プロセスに供される。 Conventionally, "iron chloride method" is known as a method for separating and recovering copper from molybdenum concentrate (Non-patent Document 1, Patent Documents 1 and 2). A typical flow of the iron chloride method is shown in FIG. In this method, copper is preferentially leached by leaching in an autoclave heated to about 110 ° C. using a leachate containing about 120 g / L of Fe 3+ ions of copper-containing molybdenum ore. Is a method of separating. After leaching, the copper in the solution is recovered by a cementation method in which cement copper (about 90% of Cu quality) is precipitated by reacting with iron scraps and the like. The molybdenum concentrate after copper removal is subjected to a molybdenum smelting process.
 米国特許第4,500,496号明細書(特許文献1)では、モリブデン精鉱に高温高圧下で塩化鉄溶液及び塩素ガスを供給して、銅や鉛などの不純物を除去する方法が記載されている。 US Pat. No. 4,500,496 (Patent Document 1) describes a method of removing impurities such as copper and lead by supplying an iron chloride solution and chlorine gas to molybdenum concentrate under high temperature and high pressure. ing.
 米国特許第3,674,424号明細書(特許文献2)には、モリブデン精鉱から銅や鉛などの不純物を除去するために、アルカリ金属又はアルカリ土類金属の塩化物を含有する水溶液を浸出液として用いる方法が開示されている。 In US Pat. No. 3,674,424 (Patent Document 2), an aqueous solution containing an alkali metal or alkaline earth metal chloride is used to remove impurities such as copper and lead from molybdenum concentrate. A method for use as a leachate is disclosed.
 特開2009-256764号公報(特許文献3)には、塩化浴で特別な酸化剤や特別な装置を使用することなく空気の使用のみで、硫化銅鉱中の銅を98%以上浸出し回収する方法が提供されている。アルカリ金属もしくはアルカリ土類金属の塩化物及び臭化物と、銅と鉄の塩化物もしくは銅と鉄の臭化物を含む酸性溶液(以下「酸性溶液」という)に銅鉱物を添加し、大気圧下かつ水溶液沸点以下において酸性溶液に空気を吹込みつつ、酸性溶液中の鉄イオンもしくは銅イオンの一方あるいは両方の酸化力により原料から銅を一価銅及び二価銅として浸出し、浸出後固液分離を行い、この固液分離後の溶液に空気を吹込み、溶液中の銅を酸化し、かつ原料から酸性溶液に浸出された鉄及び不純物を共沈させ、共沈物を含む沈澱物を分離した酸化後液から銅を抽出し、抽出した銅は硫酸溶液中に硫酸銅として回収し、この硫酸銅溶液より銅を回収し、一方、銅の抽出時に生成する塩酸を銅の浸出に繰返す銅の回収方法が記載されている。 In Japanese Patent Laid-Open No. 2009-256664 (Patent Document 3), 98% or more of copper in copper sulfide ore is leached and recovered by using only air without using a special oxidizing agent or a special apparatus in a chlorination bath. A method is provided. Copper minerals are added to an acidic solution (hereinafter referred to as “acidic solution”) containing an alkali metal or alkaline earth metal chloride and bromide and copper and iron chloride or copper and iron bromide. While blowing air into the acidic solution below the boiling point, copper is leached from the raw material as monovalent copper and bivalent copper by the oxidizing power of one or both of iron ions and copper ions in the acidic solution, and solid-liquid separation is performed after leaching. Air was blown into the solution after the solid-liquid separation, copper in the solution was oxidized, and iron and impurities leached from the raw material into the acidic solution were coprecipitated, and the precipitate containing the coprecipitate was separated. Copper is extracted from the solution after oxidation, and the extracted copper is recovered as copper sulfate in a sulfuric acid solution. Copper is recovered from this copper sulfate solution. On the other hand, the hydrochloric acid produced during the copper extraction is repeated for copper leaching. The recovery method is described.
米国特許第4500496号明細書US Pat. No. 4,500,006 米国特許第3674424号明細書US Pat. No. 3,744,424 特開2009-256764号公報JP 2009-256664 A
 本発明者の検討結果によれば、非特許文献1及び特許文献1に記載されるような塩化鉄法では浸出処理時に銅と一緒に浸出されて逸損するモリブデンが無視できず、改善の余地がある。また、塩素ガスを使用したり高圧下で実施する点において、コストや安全面での課題も残る。 According to the study results of the present inventors, in the iron chloride method as described in Non-Patent Document 1 and Patent Document 1, molybdenum that is leached together with copper during leaching treatment cannot be ignored, and there is room for improvement. is there. Further, there are still problems in terms of cost and safety in terms of using chlorine gas or carrying out under high pressure.
 特許文献2では銅を浸出除去した後液に含まれるモリブデン濃度は0.26~5.1g/Lで平均は1.42g/Lと比較的多くなっている(特許文献2の表V)。
 当該試験は、銅含有量が0.2~1.0重量%と低いモリブデン精鉱を用いた試験であり、銅含有量が5%程度の一般的なモリブデン精鉱では、銅の浸出時間と逸損するモリブデン量は増加すると容易に予想される。
In Patent Document 2, the concentration of molybdenum contained in the liquid after leaching and removing copper is 0.26 to 5.1 g / L, and the average is 1.42 g / L, which is relatively high (Table V of Patent Document 2).
This test is a test using molybdenum concentrate with a low copper content of 0.2 to 1.0% by weight. For a general molybdenum concentrate with a copper content of about 5%, the copper leaching time and The amount of lost molybdenum is easily expected to increase.
 更に塩化鉄法は、実用的な浸出速度を得るために110℃程度にまで加熱する必要があるが、経済性を考えるとより低温での処理が望まれる。 Furthermore, in order to obtain a practical leaching rate, the iron chloride method needs to be heated to about 110 ° C., but considering the economy, a treatment at a lower temperature is desired.
 特許文献3には塩化浴を用いて硫化銅鉱から銅を浸出する方法が記載されているが、当該方法はモリブデンの回収を意図しておらず、当該方法の含銅モリブデン鉱に対する挙動は不明である。 Patent Document 3 describes a method of leaching copper from copper sulfide ore using a chloride bath, but this method is not intended to recover molybdenum, and the behavior of the method with respect to copper-containing molybdenum ore is unknown. is there.
 本発明は上記事情に鑑みて創作されたものであり、含銅モリブデン精鉱からモリブデンと銅を分離回収するのに有用な含銅モリブデン鉱の処理方法の改善策を提供することを課題とする。 This invention was created in view of the said situation, and makes it a subject to provide the improvement plan of the processing method of the copper-containing molybdenum ore useful for isolate | separating and collect | recovering molybdenum and copper from a copper-containing molybdenum concentrate. .
 本発明者は上記課題を解決すべく鋭意検討を重ねたところ、モリブデンの逸損を抑制しながら銅の分離効率を高める上では塩化物イオン、銅イオン及び鉄イオンを含有する酸性水溶液を浸出液として用いるが浸出液中の鉄イオン濃度を低減すること、及びエアレーション等により酸素の酸化力を利用することが必要であることを見出し、本発明に至った。 The present inventor has conducted extensive studies to solve the above problems, and in order to increase the copper separation efficiency while suppressing the loss of molybdenum, an acidic aqueous solution containing chloride ions, copper ions and iron ions is used as a leachate. Although it was used, it was found that it was necessary to reduce the iron ion concentration in the leachate and to utilize the oxidizing power of oxygen by aeration or the like, and the present invention was achieved.
 上記の知見を基礎として完成した本発明は一側面において、塩化物イオンを100~200g/L、銅イオンを1~30g/L、鉄イオンを1~10g/L含有する50~100℃の酸性水溶液に対して、酸素含有気体を供給しながら、当該酸性水溶液を含銅モリブデン鉱に接触させて銅成分を浸出する工程と、次いで固液分離により浸出後液と浸出残渣を得る工程を含む含銅モリブデン鉱の処理方法である。 The present invention completed on the basis of the above knowledge, in one aspect, has an acidity of 50 to 100 ° C. containing 100 to 200 g / L of chloride ions, 1 to 30 g / L of copper ions, and 1 to 10 g / L of iron ions. Including a step of leaching the copper component by contacting the acidic aqueous solution with copper-containing molybdenum ore while supplying an oxygen-containing gas to the aqueous solution, and then obtaining a post-leaching solution and a leaching residue by solid-liquid separation. This is a method for treating copper molybdenum ore.
 本発明は別の一側面において、塩化物イオンを100~200g/L、銅イオンを1~30g/L、鉄イオンを1~20g/L含有する50~100℃の酸性水溶液を含銅モリブデン鉱に接触させて銅成分を浸出する工程と、次いで固液分離により浸出後液と浸出残渣を得る工程を含み、浸出工程は、浸出終点における酸性水溶液の酸化還元電位(vs Ag/AgCl)を400~480mVとする含銅モリブデン鉱の処理方法である。 In another aspect of the present invention, an acidic aqueous solution containing 50 to 100 ° C. containing 100 to 200 g / L of chloride ions, 1 to 30 g / L of copper ions, and 1 to 20 g / L of iron ions is contained. A step of leaching the copper component by contact with the substrate, and then obtaining a post-leaching solution and a leaching residue by solid-liquid separation, wherein the leaching step has a redox potential (vs Ag / AgCl) of the acidic aqueous solution at the leaching end point of 400. This is a method for treating copper-containing molybdenum ore at ˜480 mV.
 本発明に係る含銅モリブデン鉱の処理方法の一実施形態においては、浸出開始から2時間経過後から浸出終点まで酸性水溶液の酸化還元電位(vs Ag/AgCl)を400~480mVの範囲に維持する。 In one embodiment of the method for treating copper-containing molybdenum ore according to the present invention, the oxidation-reduction potential (vs. Ag / AgCl) of the acidic aqueous solution is maintained in the range of 400 to 480 mV after 2 hours from the start of leaching until the end of leaching. .
 本発明に係る含銅モリブデン鉱の処理方法の別の一実施形態においては、酸性水溶液中の銅イオンと鉄イオンの合計が40g/L以下である。 In another embodiment of the method for treating copper-containing molybdenum ore according to the present invention, the total of copper ions and iron ions in the acidic aqueous solution is 40 g / L or less.
 本発明に係る含銅モリブデン鉱の処理方法の更に別の一実施形態においては、酸性水溶液中の銅イオンと鉄イオンの合計が25g/L以下である。 In yet another embodiment of the method for treating a copper-containing molybdenum ore according to the present invention, the total of copper ions and iron ions in the acidic aqueous solution is 25 g / L or less.
 本発明に係る含銅モリブデン鉱の処理方法の更に別の一実施形態においては、浸出後液中のモリブデン濃度が0.011g/L以下である。 In yet another embodiment of the method for treating a copper-containing molybdenum ore according to the present invention, the molybdenum concentration in the leached solution is 0.011 g / L or less.
 本発明に係る含銅モリブデン鉱の処理方法の更に別の一実施形態においては、浸出工程を50g/L以上のパルプ濃度で行う。 In yet another embodiment of the method for treating a copper-containing molybdenum ore according to the present invention, the leaching step is performed at a pulp concentration of 50 g / L or more.
 本発明に係る含銅モリブデン鉱の処理方法の更に別の一実施形態においては、銅成分を浸出する工程が、酸性水溶液1L当たり0.02~0.5slpmの流量で酸素含有気体を吹き込みながら実施する。 In yet another embodiment of the method for treating copper-containing molybdenum ore according to the present invention, the step of leaching the copper component is performed while blowing oxygen-containing gas at a flow rate of 0.02 to 0.5 slpm per liter of acidic aqueous solution. To do.
 本発明に係る含銅モリブデン鉱の処理方法の更に別の一実施形態においては、浸出工程による銅浸出率が70%以上である。 In yet another embodiment of the method for treating copper-containing molybdenum ore according to the present invention, the copper leaching rate in the leaching step is 70% or more.
 本発明に係る含銅モリブデン鉱の処理方法の更に別の一実施形態においては、酸性水溶液のpHは0~3である。 In yet another embodiment of the method for treating copper-containing molybdenum ore according to the present invention, the pH of the acidic aqueous solution is 0-3.
 本発明に係る含銅モリブデン鉱の処理方法の更に別の一実施形態においては、含銅モリブデン鉱が、銅を0.5~10質量%、モリブデンを20質量%以上含有する。 In yet another embodiment of the method for treating a copper-containing molybdenum ore according to the present invention, the copper-containing molybdenum ore contains 0.5 to 10% by mass of copper and 20% by mass or more of molybdenum.
 本発明に係る含銅モリブデン鉱の処理方法の更に別の一実施形態においては、浸出工程は、浸出残渣中の銅品位が0.5質量%以下となるまで実施する。 In yet another embodiment of the method for treating a copper-containing molybdenum ore according to the present invention, the leaching step is performed until the copper quality in the leaching residue is 0.5% by mass or less.
 本発明に係る含銅モリブデン鉱の処理方法の更に別の一実施形態においては、浸出後液中の銅を、溶媒抽出及び逆抽出を経て、電解採取によりカソード上に電気銅として回収する工程を更に含む。 In yet another embodiment of the method for treating copper-containing molybdenum ore according to the present invention, the step of recovering copper in the solution after leaching as electrolytic copper on the cathode by electrolytic extraction through solvent extraction and back extraction. In addition.
 本発明に係る含銅モリブデン鉱の処理方法の更に別の一実施形態においては、溶媒抽出前に、浸出後液に酸素含有気体を吹き込んで液中の銅を酸化する工程を更に含む。 In yet another embodiment of the method for treating a copper-containing molybdenum ore according to the present invention, the method further includes a step of oxidizing copper in the liquid by blowing an oxygen-containing gas into the liquid after leaching before the solvent extraction.
 本発明に係る含銅モリブデン鉱の処理方法の更に別の一実施形態においては、浸出工程は、酸素含有気体を酸性水溶液に吹き込まずに実施する。 In yet another embodiment of the method for treating a copper-containing molybdenum ore according to the present invention, the leaching step is performed without blowing the oxygen-containing gas into the acidic aqueous solution.
 本発明によれば、含銅モリブデン精鉱から効率よく経済的にモリブデンと銅を分離回収することが可能である。 According to the present invention, it is possible to efficiently and economically separate and recover molybdenum and copper from copper-containing molybdenum concentrate.
本発明に係る含銅モリブデン鉱の処理方法のフロー図の一例を示す図である。It is a figure which shows an example of the flowchart of the processing method of the copper-containing molybdenum ore which concerns on this invention. 従来の含銅モリブデン鉱の処理方法(塩化鉄法)のフロー図の一例を示す図である。It is a figure which shows an example of the flowchart of the processing method (iron chloride method) of the conventional copper containing molybdenum ore. 試験例1における浸出時間と浸出液中のモリブデン濃度の推移の関係を示すグラフである。It is a graph which shows the transition of the leaching time in Experiment 1, and the transition of the molybdenum concentration in a leaching solution. 試験例1における浸出時間と残渣中の銅品位の推移の関係を示すグラフである。It is a graph which shows the relationship between the leaching time in the test example 1, and the transition of the copper quality in the residue. 試験例2における残渣中の銅品位と浸出液中のモリブデン濃度のFe濃度に応じた変化を示すグラフである。It is a graph which shows the change according to the copper quality in the residue in the test example 2, and the Fe concentration of the molybdenum concentration in a leaching solution. 試験例3における浸出時間と浸出液の酸化還元電位の関係を示すグラフである。It is a graph which shows the relationship between the leaching time in the test example 3, and the oxidation reduction potential of a leaching solution. 試験例3(パルプ濃度:190g/L)の浸出終点における浸出液の酸化還元電位が残渣中の銅品位及び浸出液中のモリブデン濃度に与える影響を示すグラフである。It is a graph which shows the influence which the redox potential of the leaching solution in the leaching end point of Test Example 3 (pulp concentration: 190 g / L) has on the copper quality in the residue and the molybdenum concentration in the leaching solution. 試験例4(パルプ濃度:380g/L)の浸出終点における浸出液の酸化還元電位が残渣中の銅品位及び浸出液中のモリブデン濃度に与える影響を示すグラフである。It is a graph which shows the influence which the redox potential of the leaching solution in the leaching end point of Test Example 4 (pulp concentration: 380 g / L) has on the copper quality in the residue and the molybdenum concentration in the leaching solution.
 以下、本発明の第1及び第2の実施形態について詳細を説明するが、本発明は以下の実施形態に何ら限定されるものではない。 Hereinafter, the first and second embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments.
(第1の実施形態)
<工程1:銅浸出工程>
 工程1では、塩化物イオンを100~200g/L、銅イオンを1~30g/L、鉄イオンを1~10g/L含有する50~100℃の酸性水溶液(以下、「浸出液」ともいう。)を酸素含有気体の供給下で含銅モリブデン鉱に接触させて銅成分を浸出する。すなわち、工程1では浸出液として塩化浴を使用することで含銅モリブデン鉱中の銅を浸出することを基本としており、更に銅イオンを浸出液中に存在させておくことで、銅の浸出反応の促進を狙っている。
(First embodiment)
<Process 1: Copper leaching process>
In Step 1, an acidic aqueous solution at 50 to 100 ° C. containing 100 to 200 g / L of chloride ions, 1 to 30 g / L of copper ions, and 1 to 10 g / L of iron ions (hereinafter also referred to as “leaching solution”). Is brought into contact with the copper-containing molybdenum ore under the supply of an oxygen-containing gas to leach copper components. In other words, in Step 1, the copper in the copper-containing molybdenum ore is leached by using a chloride bath as the leaching solution, and the copper leaching reaction is further promoted by allowing copper ions to be present in the leaching solution. I am aiming.
 工程1で使用する浸出液中の塩化物イオンの濃度は、銅の溶解反応を高い効率で実現する観点から、100g/L以上であることが好ましく、120g/L以上であることがより好ましく、140g/L以上であることが更により好ましい。しかしながら、経済性を考慮すると、過度に高濃度にする必要はなく、浸出液中の塩化物イオンの濃度は一般には200g/L以下であり、好ましくは180g/L以下である。 The concentration of chloride ions in the leachate used in step 1 is preferably 100 g / L or more, more preferably 120 g / L or more, from the viewpoint of realizing a copper dissolution reaction with high efficiency, and 140 g Even more preferably, it is at least / L. However, in consideration of economy, it is not necessary to make the concentration too high, and the concentration of chloride ions in the leachate is generally 200 g / L or less, preferably 180 g / L or less.
 工程1で使用する浸出液中の銅イオンの濃度は、銅浸出反応の促進の観点から、1g/L以上であることが好ましく、5g/L以上であることがより好ましい。しかしながら、経済性を考慮すると、過度に高濃度にする必要はなく、浸出液中の銅イオンの濃度は一般には30g/L以下であり、好ましくは20g/L以下である。 The concentration of copper ions in the leaching solution used in step 1 is preferably 1 g / L or more, more preferably 5 g / L or more, from the viewpoint of promoting the copper leaching reaction. However, in consideration of economy, it is not necessary to make the concentration too high, and the concentration of copper ions in the leachate is generally 30 g / L or less, preferably 20 g / L or less.
 鉄イオンは銅浸出の促進に好適な成分であり、銅の溶解反応を高い効率で実現する観点から、1g/L以上であることが好ましいが、10g/Lを超えるとMoの浸出率が顕著に増加して逸損する場合があることから、浸出液中の鉄イオン濃度は10g/L以下とするべきであり、8g/L以下であることが好ましく、6g/L以下とすることがより好ましい。 Iron ion is a suitable component for promoting copper leaching, and is preferably 1 g / L or more from the viewpoint of realizing a copper dissolution reaction with high efficiency, but if it exceeds 10 g / L, the leaching rate of Mo is remarkable. Therefore, the iron ion concentration in the leachate should be 10 g / L or less, preferably 8 g / L or less, and more preferably 6 g / L or less.
 Moの浸出を防止するという観点からは、浸出液中の銅イオンと鉄イオンの合計が25g/L以下であることが好ましく、20g/L以下であることがより好ましい。 From the viewpoint of preventing Mo leaching, the total of copper ions and iron ions in the leaching solution is preferably 25 g / L or less, and more preferably 20 g / L or less.
 なお、上記の塩化物イオン、銅イオン及び鉄イオンの濃度は酸性水溶液を含銅モリブデン鉱に接触させる前の浸出液中の濃度を指す。 The concentrations of chloride ion, copper ion, and iron ion described above refer to the concentration in the leachate before the acidic aqueous solution is brought into contact with the copper-containing molybdenum ore.
 浸出液と含銅モリブデン鉱の接触方法としては特に制限はなく、噴霧や浸漬などの方法があるが、反応効率の観点から、浸出液中に含銅モリブデン鉱を浸漬し、撹拌する方法が好ましい。 The contact method between the leachate and the copper-containing molybdenum ore is not particularly limited, and there are methods such as spraying and dipping. From the viewpoint of reaction efficiency, a method of dipping and stirring the copper-containing molybdenum ore in the leachate is preferable.
 浸出工程は、酸素含有気体を浸出液に供給しながら実施することが重要である。酸素含有気体を供給することにより銅の浸出速度を高めることが可能となる。酸素含有気体の流量を増大させることで、銅の浸出速度が増大する傾向にある。これにより、モリブデンが浸出するよりも先に銅の浸出が進行するため、モリブデンの逸損を抑えることが可能となる。酸素含有気体としては、特に制限はないが、例えば空気、酸素、酸素と不活性ガス(窒素や希ガスなど)の混合ガスが挙げられる。経済性の観点からは空気が好ましい。 It is important to carry out the leaching step while supplying an oxygen-containing gas to the leaching solution. By supplying the oxygen-containing gas, the copper leaching rate can be increased. By increasing the flow rate of the oxygen-containing gas, the copper leaching rate tends to increase. Thereby, since leaching of copper proceeds before leaching of molybdenum, loss of molybdenum can be suppressed. Although there is no restriction | limiting in particular as oxygen-containing gas, For example, the mixed gas of air, oxygen, oxygen, and inert gas (nitrogen, a noble gas, etc.) is mentioned. Air is preferable from the viewpoint of economy.
 酸素含有気体は上述した効果を有効に発揮させるという観点から前記浸出液1L当たり0.02slpm以上の流量で供給することが好ましく、0.04slpm以上の流量で供給することがより好ましく、0.08slpm以上の流量で供給することが更により好ましい。ただし、過剰に供給した場合は、気泡中への液の蒸発で奪われる蒸発熱を補償するために電力などのエネルギーを多く消費し、また、精鉱粒子が表面に塗された気泡の層(フロス)が大量に発生して反応槽からあふれるため、前記浸出液1L当たり0.5slpm以下の流量で供給することが好ましく、前記浸出液1L当たり0.25slpm以下の流量で供給することがより好ましく、前記浸出液1L当たり0.15slpm以下の流量で供給することが更により好ましい。 The oxygen-containing gas is preferably supplied at a flow rate of 0.02 slpm or more, more preferably 0.04 slpm or more, and 0.08 slpm or more from the viewpoint of effectively exhibiting the above-described effects. It is even more preferable to supply at a flow rate of However, if it is supplied excessively, it consumes a lot of energy such as electric power to compensate for the heat of evaporation taken away by evaporation of the liquid into the bubbles, and a layer of bubbles with concentrate particles coated on the surface ( Is generated at a flow rate of 0.5 slpm or less per liter of the leachate, more preferably at a flow rate of 0.25 slpm or less per liter of the leachate, It is even more preferable to supply at a flow rate of 0.15 slpm or less per liter of leachate.
 含銅モリブデン鉱としては特に制限はないが、例えば輝水鉛鉱、モリブデン鉛鉱、パウエライト、及び鉄水鉛鉱から選択される一種以上を含有する鉱石、とりわけ輝水鉛鉱を含有する鉱石を浮遊選鉱した後のモリブデン精鉱が挙げられる。また、一実施形態においては含銅モリブデン鉱中の銅は硫化物の形態、例えば輝銅鉱及び/又は黄銅鉱の形態で存在する。含銅モリブデン鉱は一実施形態においてCuを0.5~10質量%含有し、典型的な一実施形態において1~10質量%含有し、より典型的な一実施形態においてCuを2~5質量%含有する。また、含銅モリブデン鉱は一実施形態においてMoを20質量%以上含有し、典型的な一実施形態においてMoを30~60質量%含有し、より典型的な一実施形態においてMoを40~50質量%含有する。 There is no particular limitation on the copper-containing molybdenum ore, but for example, ore containing one or more selected from molybdenite, molybdenite, pawerite, and iron-water lead ore, especially ore containing molybdenite was floated. The later molybdenum concentrate is mentioned. In one embodiment, the copper in the copper-containing molybdenum ore is present in the form of sulfide, for example, chalcopyrite and / or chalcopyrite. The copper-containing molybdenum ore contains 0.5 to 10 mass% Cu in one embodiment, 1 to 10 mass% in a typical embodiment, and 2 to 5 mass Cu in a more typical embodiment. %contains. Further, the copper-containing molybdenum ore contains 20% by mass or more of Mo in one embodiment, 30 to 60% by mass of Mo in a typical embodiment, and 40 to 50 Mo in a more typical embodiment. Contains by mass%.
 塩化物イオンの供給源としては特に制限はなく、例えば塩化水素、塩酸及び塩化金属等が挙げられるが、経済性や安全性を考慮すれば塩化金属の形態で供給するのが好ましい。塩化金属としては、例えば塩化銅(塩化第一銅、塩化第二銅)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の塩化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の塩化物が挙げられ、経済性や入手容易性の観点から、塩化ナトリウムが好ましい。また、銅イオンの供給源としても利用できることから、塩化銅を利用することも好ましい。 The supply source of chloride ions is not particularly limited, and examples thereof include hydrogen chloride, hydrochloric acid, and metal chloride. However, in consideration of economy and safety, supply in the form of metal chloride is preferable. Examples of the metal chloride include copper chloride (cuprous chloride, cupric chloride), alkali metal (lithium, sodium, potassium, rubidium, cesium, francium) chloride, alkaline earth metal (beryllium, magnesium, calcium, (Strontium, barium, radium) chlorides are mentioned, and sodium chloride is preferred from the viewpoint of economy and availability. Moreover, since it can utilize also as a supply source of copper ion, it is also preferable to utilize copper chloride.
 銅イオン及び鉄イオンは、塩の形態で供給するのが通常であり、例えばハロゲン化塩の形態で供給することができる。塩化物イオンの供給源としても利用できる観点から銅イオンは塩化銅、鉄イオンは塩化鉄として供給されるのが好ましい。塩化銅及び塩化鉄としては酸化力の観点から塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)を使用するのがそれぞれ望ましいが、塩化第一銅(CuCl)及び塩化第一鉄(FeCl2)を使用しても浸出液に酸素含有気体を供給することで、塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)にそれぞれ酸化されるため、大差はない。 Copper ions and iron ions are usually supplied in the form of a salt, and can be supplied, for example, in the form of a halide salt. From the viewpoint that it can also be used as a supply source of chloride ions, copper ions are preferably supplied as copper chloride and iron ions are preferably supplied as iron chloride. As copper chloride and iron chloride, it is preferable to use cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ) from the viewpoint of oxidizing power, respectively, but cuprous chloride (CuCl) and ferrous chloride are preferable. Even if (FeCl 2 ) is used, supplying an oxygen-containing gas to the leachate oxidizes to cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ), respectively, so there is no significant difference.
 含銅モリブデン鉱から銅の浸出効率を高めるために、浸出液は酸性とすべきであり、塩化物イオンの供給源としても利用できることから、塩酸酸性とするのが好ましい。浸出液のpHは浸出した銅の溶解度を確保する理由から、ガラス電極によって測定されるpHが0~3程度とするのが好ましく、0.2~2.5程度とするのがより好ましい。 In order to increase the leaching efficiency of copper from the copper-containing molybdenum ore, the leaching solution should be acidic, and since it can be used as a supply source of chloride ions, it is preferable to make it acidic with hydrochloric acid. The pH of the leaching solution is preferably about 0 to 3 and more preferably about 0.2 to 2.5 as measured by the glass electrode in order to ensure the solubility of the leached copper.
 従って、本発明の好適な実施形態においては、工程1における浸出液として、塩酸、塩化第二銅、塩化第二鉄、及び塩化ナトリウムの混合液を使用することができる。 Therefore, in a preferred embodiment of the present invention, a mixture of hydrochloric acid, cupric chloride, ferric chloride, and sodium chloride can be used as the leachate in step 1.
 工程1に使用する浸出液の温度は浸出効率や装置の材質の観点から、50℃以上とするのが好ましく、60℃以上とするのがより好ましく、70℃以上とするのが更により好ましいが、高すぎると浸出液の蒸発や加熱コストの上昇あるので、100℃以下とするのが好ましく、90℃以下とするのがより好ましく、85℃以下とするのがより好ましい。浸出効率を高めることを目的として工程1を加圧下で実施することも可能であるが、大気圧下で十分である。すなわち高圧での浸出工程を行うための耐圧容器を必要とせず、より簡易な装置を用いることができる。銅浸出を促進するため、処理対象となる含銅モリブデン鉱を予め粉砕・摩鉱しておくことが好ましい。 The temperature of the leachate used in step 1 is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 70 ° C. or higher, from the viewpoint of leaching efficiency and material of the apparatus. If it is too high, the leachate will evaporate and the heating cost will increase, so it is preferably 100 ° C. or lower, more preferably 90 ° C. or lower, and even more preferably 85 ° C. or lower. It is possible to carry out step 1 under pressure for the purpose of increasing the leaching efficiency, but it is sufficient under atmospheric pressure. That is, a pressure vessel for performing a high pressure leaching step is not required, and a simpler apparatus can be used. In order to promote copper leaching, it is preferable to pulverize and grind the copper-containing molybdenum ore to be treated in advance.
 浸出工程は、使用する浸出液に対する含銅モリブデン鉱の量を大きくして実施する方が浸出コストの低減の観点から好ましい。そのため、本発明の一実施形態においては、50g/L以上のパルプ濃度で浸出工程を行うことができ、本発明の別の一実施形態においては、100g/L以上のパルプ濃度で浸出工程を行うことができ、本発明の更に別の一実施形態においては、150g/L以上のパルプ濃度で浸出工程を行うことができ、本発明の更に別の一実施形態においては、200g/L以上のパルプ濃度で浸出工程を行うことができ、本発明の更に別の一実施形態においては、300g/L以上のパルプ濃度で浸出工程を行うことができる。一方で、浸出速度を高めるという観点からは使用する浸出液に対する含銅モリブデン鉱の量は小さい方が好ましいことから、本発明の一実施形態においては、800g/L以下のパルプ濃度で浸出工程を行うことができ、本発明の別の一実施形態においては、600g/L以下のパルプ濃度で浸出工程を行うことができ、本発明の更に別の一実施形態においては、500g/L以下のパルプ濃度で浸出工程を行うことができる。ここで、パルプ濃度とは使用する浸出液の体積(L)に対する含銅モリブデン鉱(乾燥重量(g))の比である。 The leaching step is preferably carried out by increasing the amount of the copper-containing molybdenum ore with respect to the leaching solution used from the viewpoint of reducing the leaching cost. Therefore, in one embodiment of the present invention, the leaching step can be performed at a pulp concentration of 50 g / L or more, and in another embodiment of the present invention, the leaching step is performed at a pulp concentration of 100 g / L or more. In another embodiment of the present invention, the leaching step can be performed at a pulp concentration of 150 g / L or more, and in yet another embodiment of the present invention, a pulp of 200 g / L or more. The leaching step can be performed at a concentration, and in yet another embodiment of the present invention, the leaching step can be performed at a pulp concentration of 300 g / L or more. On the other hand, from the viewpoint of increasing the leaching rate, it is preferable that the amount of the copper-containing molybdenum ore with respect to the leaching solution to be used is smaller. Therefore, in one embodiment of the present invention, the leaching step is performed at a pulp concentration of 800 g / L or less. In another embodiment of the present invention, the leaching step can be performed at a pulp concentration of 600 g / L or less, and in yet another embodiment of the present invention, a pulp concentration of 500 g / L or less. The leaching process can be performed. Here, the pulp concentration is the ratio of the copper-containing molybdenum ore (dry weight (g)) to the volume (L) of the leachate used.
<工程2:固液分離工程>
 工程2では、工程1によって得られた浸出反応液を固液分離によって浸出後液と浸出残渣に分離する。固液分離方法は特に制限はないが、フィルタープレスやシックナーを使用することができる。
<Step 2: Solid-liquid separation step>
In step 2, the leaching reaction liquid obtained in step 1 is separated into a post-leaching solution and a leaching residue by solid-liquid separation. The solid-liquid separation method is not particularly limited, but a filter press or thickener can be used.
 工程1の銅浸出工程は一段階で実施することもできるが、含銅モリブデン鉱中の銅の浸出を十分に行うために銅浸出工程を複数段で実施することも可能である。複数段を利用した銅浸出工程は、具体的には、一段目における銅浸出操作を終了後に、フィルタープレスやシックナーなどによって固液分離し、浸出残渣に対して次段の銅浸出操作を行うことにより実施することができる。典型的には、銅浸出工程は2~4段階で構成することができる。この場合、各浸出段で実施している固液分離操作が工程2に該当する。 The copper leaching process of step 1 can be performed in one stage, but the copper leaching process can also be performed in a plurality of stages in order to sufficiently perform copper leaching in the copper-containing molybdenum ore. Specifically, in the copper leaching process using multiple stages, after completing the copper leaching operation in the first stage, solid-liquid separation is performed with a filter press or thickener, and the next stage copper leaching operation is performed on the leaching residue. Can be implemented. Typically, the copper leaching process can consist of 2 to 4 stages. In this case, the solid-liquid separation operation performed in each leaching stage corresponds to step 2.
 本発明によれば、モリブデンの浸出を抑制しながらも、銅を高い浸出率で浸出することが可能である。例えば、本発明の一実施形態においては、浸出後液中のモリブデン濃度を0.011g/L以下に抑制しながら、銅の浸出率80%以上を達成することができ、本発明の別の一実施形態においては、浸出後液中のモリブデン濃度を0.001g/L以下に抑制しながら、銅の浸出率70%以上を達成することができ、本発明の別の一実施形態においては、浸出後液中のモリブデン濃度を0.005g/L以下に抑制しながら、銅の浸出率90%以上を達成することができ、本発明の更に別の一実施形態においては、浸出後液中のモリブデン濃度を0.005g/L以下に抑制しながら、銅の浸出率95%以上を達成することができる。 According to the present invention, copper can be leached at a high leaching rate while suppressing leaching of molybdenum. For example, in one embodiment of the present invention, it is possible to achieve a copper leaching rate of 80% or more while suppressing the molybdenum concentration in the liquid after leaching to 0.011 g / L or less. In the embodiment, it is possible to achieve a copper leaching rate of 70% or more while suppressing the molybdenum concentration in the liquid after leaching to 0.001 g / L or less. In another embodiment of the present invention, the leaching is achieved. While suppressing the molybdenum concentration in the post-solution to 0.005 g / L or less, a copper leaching rate of 90% or more can be achieved. In yet another embodiment of the present invention, the molybdenum in the post-leaching solution While suppressing the concentration to 0.005 g / L or less, a copper leaching rate of 95% or more can be achieved.
 また、浸出工程は、浸出残渣中の銅品位が0.5質量%以下となるまで実施することが好ましい。これにより、浸出残渣である脱銅モリブデン鉱中のモリブデン純度が上昇して市場価値が高まると共に、銅を回収できるという利点が得られる。 Further, the leaching step is preferably carried out until the copper quality in the leaching residue is 0.5% by mass or less. Thereby, the molybdenum purity in the copper-free molybdenum ore which is the leaching residue is increased to increase the market value, and the advantage that copper can be recovered is obtained.
 浸出に要する時間は、原料である含銅モリブデン鉱中の銅品位にもよるが、浸出残渣中の銅品位が0.5質量%以下となるまでに要する時間は、例えば4~10時間くらいであり、典型的には5~6時間くらいである。 The time required for the leaching depends on the copper quality in the copper-containing molybdenum ore as the raw material, but the time required for the copper quality in the leaching residue to be 0.5% by mass or less is about 4 to 10 hours, for example. Yes, typically around 5-6 hours.
<その他の工程>
(鉄酸化)
 工程1によって得られた浸出液には、浸出液に元々含まれていた鉄の他、含銅モリブデン鉱中の鉄の一部が溶解した鉄が含まれている。これらの鉄イオンの多くはFe(II)と考えられる。これを酸化することでFe(III)とし、再度浸出に使用することができる。またpHを調整することで、Fe(III)の一部を沈殿し、浸出液中の鉄濃度をコントロールすることができる。酸化の条件としては20~70℃、pH1.5~3.0でエアレーションすることがコストと反応速度の面で最も好ましい。温度とpHは高ければ高いほど、反応速度が速い。
<Other processes>
(Iron oxidation)
The leachate obtained in step 1 contains iron in which part of iron in the copper-containing molybdenum ore is dissolved, in addition to iron originally contained in the leachate. Many of these iron ions are thought to be Fe (II). This can be oxidized to Fe (III) and used again for leaching. Further, by adjusting the pH, a part of Fe (III) is precipitated, and the iron concentration in the leachate can be controlled. As oxidation conditions, aeration at 20 to 70 ° C. and pH 1.5 to 3.0 is most preferable in terms of cost and reaction rate. The higher the temperature and pH, the faster the reaction rate.
(銅回収)
 工程1によって得られた浸出後液から銅を回収することができる。銅の回収方法としては特に制限はないが、例えば溶媒抽出、イオン交換、卑な金属との置換析出及び電解採取などを利用することができる。浸出後液中の銅は1価及び2価の状態が混在しているが、溶媒抽出やイオン交換を円滑に行うために、全部が2価の銅イオンとなるように予め酸化しておくことが好ましい。酸化の方法は特に制限はないが空気や酸素を浸出後液中に吹き込む方法が簡便である。
(Copper recovery)
Copper can be recovered from the leached solution obtained in step 1. Although there is no restriction | limiting in particular as a copper collection | recovery method, For example, solvent extraction, ion exchange, substitution precipitation with a base metal, electrowinning, etc. can be utilized. The copper in the solution after leaching contains both monovalent and divalent states, but in order to perform solvent extraction and ion exchange smoothly, all of them should be oxidized beforehand to be divalent copper ions. Is preferred. The method of oxidation is not particularly limited, but a method of leaching air or oxygen into the liquid after leaching is simple.
 本発明に係る含銅モリブデン鉱の処理方法の一実施形態においては、浸出後液中の銅を、溶媒抽出及び逆抽出を経て、電解採取によりカソード上に電気銅として回収する工程を更に含む。当該工程自体は一般にSX-EW(Solvent Extraction and Electro-winning)法と呼ばれている方法であり、当業者にとって周知である。 In one embodiment of the method for treating a copper-containing molybdenum ore according to the present invention, the method further includes a step of recovering copper in the solution after leaching as electrolytic copper on the cathode by electrowinning through solvent extraction and back extraction. The process itself is a method generally called SX-EW (Solvent® Extraction® and Electro-winning) method, and is well known to those skilled in the art.
 また、溶媒抽出前に、浸出後液に空気などの酸素含有気体を吹込んで液中の銅を酸化する工程を経ることもできる。これにより、銅を溶媒抽出後に逆抽出(ストリップ)して直接電解採取することを可能にするという利点が得られる。酸化工程を経ない場合、強塩化物浴では一価の銅が高濃度で存在するため電解採取の際にデンドライト銅として析出する。デンドライト銅は金属粉末として電解槽に沈殿する。カソードに板状銅として回収する方が圧倒的に運搬等の操作性の面で長所が多い。更に、酸化工程後は固液分離することもできる。固液分離は浸出液中に鉄が含まれている場合に、酸化残渣に移行するため、浸出後液中の銅純度を高める上で有利である。 Also, before the solvent extraction, a step of oxidizing copper in the liquid by blowing an oxygen-containing gas such as air into the liquid after leaching can be performed. This provides the advantage that copper can be back extracted (striped) after solvent extraction and directly electrowinned. In the case of not passing through the oxidation step, monovalent copper is present in a high concentration in the strong chloride bath, so that it is deposited as dendrite copper during electrowinning. Dendritic copper precipitates in the electrolytic cell as a metal powder. It is overwhelmingly more advantageous in terms of operability such as transportation when recovered as plate-like copper on the cathode. Furthermore, solid-liquid separation can also be performed after the oxidation step. Solid-liquid separation is advantageous in increasing the copper purity in the liquid after leaching because it moves to an oxidation residue when iron is contained in the leaching liquid.
(モリブデン回収)
 工程1によって得られた浸出残渣をモリブデン精鉱として、当業者に公知の精製プロセスを経てモリブデン中間生産物を製造することができる。例えば、酸化焙焼して三酸化モリブデン製品を製造したり、更に成型・乾燥工程を経て三酸化モリブデンブリケットを製造したり、テルミット還元を経て低炭素フェロモリブデンを製造したりすることができる。更に、酸化焙焼・脱硫後に、アンモニア抽出及び水素還元を行って金属モリブデンを得ることも可能である。
(Molybdenum recovery)
The leaching residue obtained in step 1 can be used as a molybdenum concentrate to produce a molybdenum intermediate product through a purification process known to those skilled in the art. For example, molybdenum trioxide products can be produced by oxidation roasting, molybdenum trioxide briquettes can be produced through molding and drying processes, and low carbon ferromolybdenum can be produced through thermite reduction. Furthermore, it is possible to obtain metallic molybdenum by performing ammonia extraction and hydrogen reduction after oxidative roasting and desulfurization.
(第2の実施の形態)
<工程1:銅浸出工程>
 工程1では、塩化物イオンを100~200g/L、銅イオンを1~30g/L、鉄イオンを1~20g/L含有する50~100℃の酸性水溶液(以下、「浸出液」ともいう。)を含銅モリブデン鉱に接触させて銅成分を浸出する。すなわち、工程1では浸出液として塩化浴を使用することで含銅モリブデン鉱中の銅を浸出することを基本としており、更に銅イオンを浸出液中に存在させておくことで、銅の浸出反応の促進を狙っている。
(Second Embodiment)
<Process 1: Copper leaching process>
In Step 1, an acidic aqueous solution at 50 to 100 ° C. containing 100 to 200 g / L of chloride ions, 1 to 30 g / L of copper ions, and 1 to 20 g / L of iron ions (hereinafter also referred to as “leaching solution”). In contact with copper-containing molybdenum ore to leach copper components. In other words, in Step 1, the copper in the copper-containing molybdenum ore is leached by using a chloride bath as the leaching solution, and the copper leaching reaction is further promoted by allowing copper ions to be present in the leaching solution. I am aiming.
 工程1で使用する浸出液中の塩化物イオンの濃度は、銅の溶解反応を高い効率で実現する観点から、100g/L以上であることが好ましく、120g/L以上であることがより好ましく、140g/L以上であることが更により好ましい。しかしながら、経済性を考慮すると、過度に高濃度にする必要はなく、浸出液中の塩化物イオンの濃度は一般には200g/L以下であり、好ましくは180g/L以下である。 The concentration of chloride ions in the leachate used in step 1 is preferably 100 g / L or more, more preferably 120 g / L or more, from the viewpoint of realizing a copper dissolution reaction with high efficiency, and 140 g Even more preferably, it is at least / L. However, in consideration of economy, it is not necessary to make the concentration too high, and the concentration of chloride ions in the leachate is generally 200 g / L or less, preferably 180 g / L or less.
 工程1で使用する浸出液中の銅イオンの濃度は、銅浸出反応の促進の観点から、1g/L以上であることが好ましく、5g/L以上であることがより好ましい。しかしながら、経済性を考慮すると、過度に高濃度にする必要はなく、浸出液中の銅イオンの濃度は一般には30g/L以下であり、好ましくは20g/L以下である。 The concentration of copper ions in the leaching solution used in step 1 is preferably 1 g / L or more, more preferably 5 g / L or more, from the viewpoint of promoting the copper leaching reaction. However, in consideration of economy, it is not necessary to make the concentration too high, and the concentration of copper ions in the leachate is generally 30 g / L or less, preferably 20 g / L or less.
 鉄イオンは銅浸出の促進に好適な成分であり、銅の溶解反応を高い効率で実現する観点から、1g/L以上であることが好ましいが、20g/Lを超えるとMoの浸出率が顕著に増加して逸損する場合があることから、浸出液中の鉄イオン濃度は20g/L以下とするべきであり、10g/L以下であることが好ましく、8g/L以下であることがより好ましく、6g/L以下とすることがより好ましい。 Iron ion is a suitable component for promoting copper leaching, and is preferably 1 g / L or more from the viewpoint of realizing a copper dissolution reaction with high efficiency, but if it exceeds 20 g / L, the leaching rate of Mo is remarkable. The iron ion concentration in the leachate should be 20 g / L or less, preferably 10 g / L or less, more preferably 8 g / L or less. More preferably, it is 6 g / L or less.
 Moの浸出を防止するという観点からは、浸出液中の銅イオンと鉄イオンの合計が40g/L以下であることが好ましく、25g/L以下であることがより好ましく、20g/L以下であることが更により好ましい。 From the viewpoint of preventing Mo leaching, the total of copper ions and iron ions in the leaching solution is preferably 40 g / L or less, more preferably 25 g / L or less, and 20 g / L or less. Is even more preferred.
 なお、上記の塩化物イオン、銅イオン及び鉄イオンの濃度は酸性水溶液を含銅モリブデン鉱に接触させる前の浸出液中の濃度を指す。 The concentrations of chloride ion, copper ion, and iron ion described above refer to the concentration in the leachate before the acidic aqueous solution is brought into contact with the copper-containing molybdenum ore.
 浸出液と含銅モリブデン鉱の接触方法としては特に制限はなく、噴霧や浸漬などの方法があるが、反応効率の観点から、浸出液中に含銅モリブデン鉱を浸漬し、撹拌する方法が好ましい。 The contact method between the leachate and the copper-containing molybdenum ore is not particularly limited, and there are methods such as spraying and dipping. From the viewpoint of reaction efficiency, a method of dipping and stirring the copper-containing molybdenum ore in the leachate is preferable.
 浸出工程は、浸出終点における浸出液の酸化還元電位(vs Ag/AgCl)が400~480mVの範囲に入るようにして行うことがMoの溶出を抑えながらCuを浸出する観点で重要である。酸化還元電位が480mVを超えるとMoの溶出が無視できなくなる一方で、酸化還元電位が400mV未満だと銅の浸出速度が極端に遅くなってしまい工業的ではない。浸出終点における浸出液の酸化還元電位は好ましくは460mV以下であり、より好ましくは450mV以下であり、更により好ましくは440mV以下であり、更に好ましくは430mVであり、最も好ましくは420mV以下である。また、浸出終点における浸出液の酸化還元電位は好ましくは410mV以上である。浸出液の酸化還元電位は、酸素含有ガスを吹き込む等の特別な操作を行わない限り浸出時間の経過に伴って徐々に低下することから、特別な操作を行わない場合に浸出終点における酸化還元電位をこのような範囲に制御するためには、浸出初期段階で酸化還元電位が十分に高くなるように液組成及びパルプ濃度を設定することが重要となる。 It is important from the viewpoint of leaching Cu while suppressing elution of Mo that the leaching step is performed such that the redox potential (vs. Ag / AgCl) of the leachate at the leaching end point is in the range of 400 to 480 mV. When the oxidation-reduction potential exceeds 480 mV, the elution of Mo cannot be ignored. On the other hand, when the oxidation-reduction potential is less than 400 mV, the leaching rate of copper becomes extremely slow, which is not industrial. The redox potential of the leachate at the end of leaching is preferably 460 mV or less, more preferably 450 mV or less, even more preferably 440 mV or less, still more preferably 430 mV, and most preferably 420 mV or less. The redox potential of the leachate at the leaching end point is preferably 410 mV or more. The oxidation-reduction potential of the leachate gradually decreases with the lapse of the leaching time unless a special operation such as blowing in oxygen-containing gas is performed. In order to control within such a range, it is important to set the liquid composition and the pulp concentration so that the oxidation-reduction potential is sufficiently high at the initial stage of leaching.
 酸化還元電位は浸出終点のみならず、浸出最中においても上記の範囲に維持されることが望ましい。安定した浸出効果を得るためである。具体的には、浸出開始から2時間経過後から浸出終点まで上述した範囲の酸化還元電位に維持することが好ましく、浸出開始から1時間経過後から浸出終点まで上述した範囲の酸化還元電位に維持することがより好ましい。 It is desirable that the oxidation-reduction potential be maintained in the above range not only during the leaching end point but also during the leaching. This is to obtain a stable leaching effect. Specifically, it is preferable to maintain the redox potential in the above-mentioned range from 2 hours after the start of leaching until the end of leaching, and to maintain the redox potential in the above range from 1 hour after the start of leaching until the end of leaching. More preferably.
 浸出開始時点というのは浸出液と含銅モリブデン鉱の接触が開始された時点であり、浸出終点というのは浸出液を含銅モリブデン鉱から固液分離した時点をいう。 The leaching start time is the time when contact between the leachate and the copper-containing molybdenum ore starts, and the leaching end point is the time when the leachate is solid-liquid separated from the copper-containing molybdenum ore.
 浸出工程は、酸素含有気体を浸出液に吹き込みながら実施してもよい。酸素含有気体を吹き込むことで酸化還元電位を高めることができ、これにより銅の浸出速度を高めることが可能となる。酸素含有気体の流量を増大させることで、銅の浸出速度が増大する傾向にある。これにより、モリブデンが浸出するよりも先に銅の浸出が進行するため、モリブデンの逸損を抑えることが可能となる。酸素含有気体としては、特に制限はないが、例えば空気、酸素、酸素と不活性ガス(窒素や希ガスなど)の混合ガスが挙げられる。経済性の観点からは空気が好ましい。 The leaching step may be performed while blowing an oxygen-containing gas into the leaching solution. Blowing oxygen-containing gas can increase the oxidation-reduction potential, thereby increasing the copper leaching rate. By increasing the flow rate of the oxygen-containing gas, the copper leaching rate tends to increase. Thereby, since leaching of copper proceeds before leaching of molybdenum, loss of molybdenum can be suppressed. Although there is no restriction | limiting in particular as oxygen-containing gas, For example, the mixed gas of air, oxygen, oxygen, and inert gas (nitrogen, noble gas, etc.) is mentioned. Air is preferable from the viewpoint of economy.
 酸素含有気体の供給量は上述した第1の実施の形態と同様とすることができる。しかしながら、酸素含有気体を吹き込まずに浸出工程を実施することも可能である。例えば、浸出液中の三価の鉄イオン濃度を高めることで酸化還元電位を高めることができる。酸素含有気体を吹き込むための動力が不要であるため、酸素含有気体を吹き込まずに浸出工程を実施するほうが経済性に優れているといえる。ただし、浸出液中の三価の鉄イオン濃度を高くすると浸出後液中のモリブデン濃度が高くなりやすいので、過度に添加しないようにすることに留意する必要がある。 The supply amount of the oxygen-containing gas can be the same as in the first embodiment described above. However, it is possible to carry out the leaching step without blowing oxygen-containing gas. For example, the oxidation-reduction potential can be increased by increasing the concentration of trivalent iron ions in the leachate. Since power for blowing in the oxygen-containing gas is unnecessary, it can be said that it is more economical to carry out the leaching step without blowing in the oxygen-containing gas. However, it should be noted that when the trivalent iron ion concentration in the leachate is increased, the molybdenum concentration in the liquor after leaching tends to increase, so that it should not be added excessively.
 含銅モリブデン鉱としては特に制限はないが、例えば、第1の実施の形態において挙げた原料と同様なものが使用できる。塩化物イオンの供給源としては特に制限はなく、第1の実施の形態において挙げたものと同様なものが使用できる。銅イオン及び鉄イオンは、塩の形態で供給するのが通常であり、例えばハロゲン化塩の形態で供給することができ、供給形態についても、第1の実施の形態で説明したものと実質的に同様である。即ち、塩化銅及び塩化鉄としては酸化力の観点から塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)を使用するのがそれぞれ望ましいが、塩化第一銅(CuCl)及び塩化第一鉄(FeCl2)を使用しても浸出液に酸素含有気体を供給することで、塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)にそれぞれ酸化されるため、酸素含有気体を吹き込む場合は大差はない。酸素含有気体を吹き込まない場合は塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)を使用する必要がある。 Although there is no restriction | limiting in particular as copper-containing molybdenum ore, For example, the thing similar to the raw material quoted in 1st Embodiment can be used. There is no restriction | limiting in particular as a supply source of a chloride ion, The thing similar to what was mentioned in 1st Embodiment can be used. Copper ions and iron ions are usually supplied in the form of a salt, and can be supplied, for example, in the form of a halide salt. The supply form is substantially the same as that described in the first embodiment. The same as above. That is, it is desirable to use cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ) as copper chloride and iron chloride from the viewpoint of oxidizing power, respectively, but cuprous chloride (CuCl) and cupric chloride are preferable. Even if ferrous (FeCl 2 ) is used, supplying oxygen-containing gas to the leachate will oxidize to cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ), respectively. When blowing, there is no big difference. When oxygen-containing gas is not blown, cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ) must be used.
 含銅モリブデン鉱から銅の浸出効率を高めるために、浸出液は酸性とすべきであり、塩化物イオンの供給源としても利用できることから、塩酸酸性とするのが好ましい。浸出液のpHは浸出した銅の溶解度を確保する理由から、ガラス電極によって測定されるpHが0~3程度とするのが好ましく、0.2~2.5程度とするのがより好ましい。 In order to increase the leaching efficiency of copper from the copper-containing molybdenum ore, the leaching solution should be acidic, and since it can be used as a supply source of chloride ions, it is preferable to make it acidic with hydrochloric acid. The pH of the leaching solution is preferably about 0 to 3 and more preferably about 0.2 to 2.5 as measured by the glass electrode in order to ensure the solubility of the leached copper.
 従って、本発明の好適な実施形態においては、工程1における浸出液として、塩酸、塩化第二銅、塩化第二鉄、及び塩化ナトリウムの混合液を使用することができる。 Therefore, in a preferred embodiment of the present invention, a mixture of hydrochloric acid, cupric chloride, ferric chloride, and sodium chloride can be used as the leachate in step 1.
 工程1に使用する浸出液の温度は第1の実施の形態と同様とすることができる。浸出工程のパルプ濃度についても第1の実施の形態と同様とすることができる。 The temperature of the leachate used in step 1 can be the same as in the first embodiment. The pulp concentration in the leaching process can be the same as in the first embodiment.
<工程2:固液分離工程>
 工程2では、工程1によって得られた浸出反応液を固液分離によって浸出後液と浸出残渣に分離する。固液分離方法は特に制限はないが、フィルタープレスやシックナーを使用することができる。
<Step 2: Solid-liquid separation step>
In step 2, the leaching reaction liquid obtained in step 1 is separated into a post-leaching solution and a leaching residue by solid-liquid separation. The solid-liquid separation method is not particularly limited, but a filter press or thickener can be used.
 工程1の銅浸出工程は一段階で実施することもできるが、含銅モリブデン鉱中の銅の浸出を十分に行うために銅浸出工程を複数段で実施することも可能である。複数段を利用した銅浸出工程は、具体的には、一段目における銅浸出操作を終了後に、フィルタープレスやシックナーなどによって固液分離し、浸出残渣に対して次段の銅浸出操作を行うことにより実施することができる。典型的には、銅浸出工程は2~4段階で構成することができる。この場合、各浸出段で実施している固液分離操作が工程2に該当する。 The copper leaching process of step 1 can be performed in one stage, but the copper leaching process can also be performed in a plurality of stages in order to sufficiently perform copper leaching in the copper-containing molybdenum ore. Specifically, in the copper leaching process using multiple stages, after completing the copper leaching operation in the first stage, solid-liquid separation is performed with a filter press or thickener, and the next stage copper leaching operation is performed on the leaching residue. Can be implemented. Typically, the copper leaching process can consist of 2 to 4 stages. In this case, the solid-liquid separation operation performed in each leaching stage corresponds to step 2.
 本発明によれば、モリブデンの浸出を抑制しながらも、銅を高い浸出率で浸出することが可能である。例えば、本発明の一実施形態においては、浸出後液中のモリブデン濃度を0.011g/L以下に抑制しながら、銅の浸出率80%以上を達成することができ、本発明の別の一実施形態においては、浸出後液中のモリブデン濃度を0.001g/L以下に抑制しながら、銅の浸出率70%以上を達成することができ、本発明の更に別の一実施形態においては、浸出後液中のモリブデン濃度を0.005g/L以下に抑制しながら、銅の浸出率90%以上を達成することができ、本発明の更に別の一実施形態においては、浸出後液中のモリブデン濃度を0.005g/L以下に抑制しながら、銅の浸出率95%以上を達成することができる。 According to the present invention, copper can be leached at a high leaching rate while suppressing leaching of molybdenum. For example, in one embodiment of the present invention, it is possible to achieve a copper leaching rate of 80% or more while suppressing the molybdenum concentration in the liquid after leaching to 0.011 g / L or less. In the embodiment, it is possible to achieve a copper leaching rate of 70% or more while suppressing the molybdenum concentration in the liquid after leaching to 0.001 g / L or less. In yet another embodiment of the present invention, While suppressing the molybdenum concentration in the liquid after leaching to 0.005 g / L or less, a copper leaching rate of 90% or more can be achieved. In yet another embodiment of the present invention, While suppressing the molybdenum concentration to 0.005 g / L or less, a copper leaching rate of 95% or more can be achieved.
 また、浸出工程は、浸出残渣中の銅品位が0.5質量%以下となるまで実施することが好ましい。これにより、浸出残渣である脱銅モリブデン鉱中のモリブデン純度が上昇して市場価値が高まると共に、銅を回収できるという利点が得られる。 Further, the leaching step is preferably carried out until the copper quality in the leaching residue is 0.5% by mass or less. Thereby, the molybdenum purity in the copper-free molybdenum ore which is the leaching residue is increased to increase the market value, and the advantage that copper can be recovered is obtained.
 浸出に要する時間は、原料である含銅モリブデン鉱中の銅品位にもよるが、浸出残渣中の銅品位が0.5質量%以下となるまでに要する時間は、例えば4~10時間くらいであり、典型的には5~6時間くらいである。 The time required for the leaching depends on the copper quality in the copper-containing molybdenum ore as the raw material, but the time required for the copper quality in the leaching residue to be 0.5% by mass or less is about 4 to 10 hours, for example. Yes, typically around 5-6 hours.
<その他の工程>
 「その他の工程」については、上記第1の実施の形態で説明した工程と実質的に同様であるので、記載を省略する。
<Other processes>
Since “other steps” are substantially the same as the steps described in the first embodiment, description thereof is omitted.
 以下、本発明及びその利点をよりよく理解するための実施例を記載するが、本発明はそれに限られるものではない。 Hereinafter, examples for better understanding of the present invention and its advantages will be described, but the present invention is not limited thereto.
<試験例1:銅浸出率、モリブデン濃度の推移>
 含銅モリブデン鉱として、輝水鉛鉱を含む鉱石から浮遊選鉱により選別されたモリブデン精鉱を粉砕したものを用意した。当該モリブデン精鉱は、酸溶解後にICP発光分光分析法で分析したところ、Mo:45質量%、Cu:3.5質量%、Fe:4.4質量%、S:37質量%の組成を有していた。表1に示すイオン組成を有するように、塩酸、塩化第二鉄、塩化第二銅、塩化ナトリウムを混合した浸出液4Lをホットスターラーで75℃に加熱後、当該モリブデン精鉱1520gを投入し、浸出液への空気吹き込み(0.37slpm)と撹拌を継続しながら浸出試験を実施した。なお、浸出液及び残渣中の金属の分析は、ICP発光分光分析法(ICP-OES)で行った。
<Test Example 1: Transition of copper leaching rate and molybdenum concentration>
As copper-containing molybdenum ore, prepared was a pulverized molybdenum concentrate selected from ores containing molybdenite ore by flotation. When the molybdenum concentrate was analyzed by ICP emission spectrometry after acid dissolution, it had a composition of Mo: 45% by mass, Cu: 3.5% by mass, Fe: 4.4% by mass, and S: 37% by mass. Was. 4L of leachate mixed with hydrochloric acid, ferric chloride, cupric chloride and sodium chloride so as to have the ionic composition shown in Table 1 was heated to 75 ° C. with a hot stirrer, and then 1520 g of the molybdenum concentrate was added to the leachate. The leaching test was carried out while continuing to blow air (0.37 slpm) and stirring. The metal in the leachate and the residue was analyzed by ICP emission spectroscopy (ICP-OES).
 残渣率は精鉱および浸出後得られた残渣の乾燥重量を測定し、残渣率=残渣重量(g)/精鉱重量(g)として算出した。その後に液を入れ替えて再度浸出する場合、同様の残渣率の算出をおこない、直前の残渣率に乗算することで通算の残渣率を求めた。再度の浸出前にサンプリングした場合も同様である。
(通算の残渣率(%))=(液を入れ替える前の浸出後重量(g)/浸出前精鉱重量(g))×(再浸出後重量(g)/再残渣重量(g))
The residue rate was determined by measuring the dry weight of the concentrate and the residue obtained after leaching, and calculating the residue rate = residue weight (g) / concentrate weight (g). Thereafter, when the liquid was changed and leaching was performed again, the same residue rate was calculated, and the previous residue rate was multiplied to obtain the total residue rate. The same applies when sampling before leaching again.
(Total residue rate (%)) = (Weight after leaching before replacing liquid (g) / Weight of concentrate before leaching (g)) × (Weight after leaching (g) / Weight of remaining residue (g))
 銅及びモリブデン浸出率は以下の計算によって算出した。
(浸出率(%))=100-(浸出後品位/精鉱品位)×(残渣率(%))×100
Copper and molybdenum leaching rates were calculated by the following calculation.
(Leaching rate (%)) = 100− (Grade after leaching / Concentration grade) × (Residue rate (%)) × 100
Figure JPOXMLDOC01-appb-T000001
*イオン濃度は、浸出液の成分が完全に電離していると仮定して算出した。
Figure JPOXMLDOC01-appb-T000001
* The ion concentration was calculated on the assumption that the components of the leachate were completely ionized.
 浸出を終えた後、固液分離を吸引濾過により行い、浸出後液をサンプリングして、浸出後液中の銅及びモリブデン濃度を測定した。浸出結果を表2、図3及び図4に示す。
 浸出時間が2時間経過後、銅の浸出率は71%に対して、浸出後液中のモリブデン濃度が0.002g/Lしかないことが分かる。また、浸出を継続して銅の浸出率を95%まで高めても、浸出後液中のモリブデン濃度は0.004g/Lにしか上昇しなかったことが分かる。これにより、本発明に係る方法によれば、モリブデンの逸損を抑制しながら、高い銅浸出率を得ることができることが理解できる。
After the leaching was completed, solid-liquid separation was performed by suction filtration, the liquid after leaching was sampled, and the copper and molybdenum concentrations in the liquid after leaching were measured. The leaching results are shown in Table 2, FIG. 3 and FIG.
It can be seen that after 2 hours of leaching time, the leaching rate of copper is 71% while the molybdenum concentration in the liquid after leaching is only 0.002 g / L. Moreover, even if leaching is continued and the copper leaching rate is increased to 95%, it can be seen that the molybdenum concentration in the liquid after leaching only increased to 0.004 g / L. Thereby, according to the method concerning the present invention, it can be understood that a high copper leaching rate can be obtained while suppressing the loss of molybdenum.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<試験例2:鉄濃度の浸出速度への影響>
 試験例1と同様のモリブデン精鉱の別のサンプルを用意し、ICP発光分光分析法で分析したところ、Mo:47質量%、Cu:3.9質量%、Fe:4.6質量%、S:37質量%の組成を有していた。表3に示す組成を有するように、塩酸、塩化第二鉄、塩化第二銅、塩化ナトリウムを混合した浸出液2Lをホットスターラーで75℃に加熱後、当該モリブデン精鉱760gを投入し、浸出液への空気吹き込み(0.19slpm)と撹拌を継続しながら浸出試験を6時間実施した。なお、Fe濃度を2g/Lとした場合は、液量、精鉱量および空気吹き込み量を2倍としたが、浸出挙動には影響しない。また、表3に示すように、浸出液中のFe濃度を2~100g/Lの範囲で変化させることで、浸出液中のFe濃度が浸出後液中のモリブデン濃度に与える影響を確認した。
<Test Example 2: Effect of iron concentration on leaching rate>
When another sample of molybdenum concentrate similar to Test Example 1 was prepared and analyzed by ICP emission spectrometry, Mo: 47% by mass, Cu: 3.9% by mass, Fe: 4.6% by mass, S : It had a composition of 37 mass%. 2 L of leachate in which hydrochloric acid, ferric chloride, cupric chloride, and sodium chloride are mixed so as to have the composition shown in Table 3 is heated to 75 ° C. with a hot stirrer, and then 760 g of the molybdenum concentrate is added to the leachate. The leaching test was carried out for 6 hours while continuing air blowing (0.19 slpm) and stirring. In addition, when the Fe concentration is 2 g / L, the liquid amount, the concentrate amount, and the air blowing amount are doubled, but the leaching behavior is not affected. Further, as shown in Table 3, by changing the Fe concentration in the leachate in the range of 2 to 100 g / L, the influence of the Fe concentration in the leachate on the molybdenum concentration in the liquid after leaching was confirmed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 浸出結果を表4及び図5に示す。浸出終了時でのMo濃度を見てみると、開始時のFe濃度の増大と相関があることがわかる。Fe濃度が2g/LでのMo濃度は検出下限の1mg/L未満であった。また、Fe濃度が10g/Lになるまでは、Mo濃度が10mg/L未満となった。以降、Fe濃度増加に対してMo濃度は増加し続けた。 The leaching results are shown in Table 4 and FIG. Looking at the Mo concentration at the end of leaching, it can be seen that there is a correlation with an increase in Fe concentration at the start. When the Fe concentration was 2 g / L, the Mo concentration was less than 1 mg / L as the lower limit of detection. Further, the Mo concentration was less than 10 mg / L until the Fe concentration was 10 g / L. Thereafter, the Mo concentration continued to increase as the Fe concentration increased.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<比較例1:次亜塩素酸ナトリウムの影響>
 Fe(II):2g/L、Cu(II):18g/L、Cl:180g/Lを含む液を2L調整した。塩素ガスを水に吹き込んだ時に発生する次亜塩素酸として、次亜塩素酸ソーダ液(和光純薬工業社製特級)を添加し、ORPを浸出中に上げていった。次亜塩素酸ソーダ液は強アルカリであるため、濃塩酸でpHを1と0に調整した二種類の液を調製した。使用した精鉱は試験例1と同様の条件で2時間浸出した後の精鉱であり、これを当該二種類の浸出液にそれぞれ700g添加した。75℃に加温し、撹拌して銅分を浸出した。4時間後及び8時間後に一度サンプリングしさらに撹拌を続けた。14時間後に撹拌を停止し、浸出液及び残渣中の銅濃度とモリブデン濃度をICP-OESで測定した。銅の浸出率、残渣中のCu品位及び浸出モリブデンの濃度を表5に示す。
<Comparative Example 1: Effect of sodium hypochlorite>
2 L of a liquid containing Fe (II): 2 g / L, Cu (II): 18 g / L, and Cl: 180 g / L was prepared. As hypochlorous acid generated when chlorine gas was blown into water, sodium hypochlorite solution (special grade manufactured by Wako Pure Chemical Industries, Ltd.) was added to raise the ORP during leaching. Since sodium hypochlorite solution is a strong alkali, two types of solutions were prepared in which the pH was adjusted to 1 and 0 with concentrated hydrochloric acid. The concentrate used was concentrate after leaching for 2 hours under the same conditions as in Test Example 1, and 700 g was added to each of the two types of leaching solutions. Heated to 75 ° C. and stirred to leach copper. Sampling was performed once after 4 hours and 8 hours, and stirring was continued. After 14 hours, stirring was stopped, and the copper concentration and the molybdenum concentration in the leachate and the residue were measured by ICP-OES. Table 5 shows the leaching rate of copper, the Cu quality in the residue, and the concentration of leached molybdenum.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5から次亜塩素酸イオンの存在下で銅を十分浸出すると、モリブデンが溶解して浸出液に分配し逸損が大きくなることが分かる。塩素ガスでFe(III)を再生した浸出液では次亜塩素酸イオンが残留するため、同様の傾向が生じることは容易に推察される。 From Table 5, it can be seen that when copper is sufficiently leached in the presence of hypochlorite ions, molybdenum is dissolved and distributed to the leaching solution, resulting in increased loss. In the leachate in which Fe (III) is regenerated with chlorine gas, hypochlorite ions remain, so it is easily guessed that the same tendency occurs.
<試験例3:ORPの違いによる銅浸出率、モリブデン濃度の推移>
 含銅モリブデン鉱として、輝水鉛鉱を含む鉱石から浮遊選鉱により選別されたモリブデン精鉱を粉砕したものを用意した。当該モリブデン精鉱は、酸溶解後にICP発光分光分析法で分析したところ、Mo:45質量%、Cu:3.5質量%、Fe:4.4質量%、S:37質量%の組成を有していた。表6に示すイオン組成を有するように、塩酸、塩化第二鉄、塩化第二銅、塩化ナトリウムを混合した浸出液4Lをホットスターラーで75℃に加熱後、当該モリブデン精鉱760gを投入し、撹拌を継続しながら浸出試験を10時間実施した。浸出中のORP(vs Ag/AgCl)の変化を図6に示す。浸出液への空気吹き込み(0.37slpm)は試験番号によって行った場合と行わなかった場合に分けた。なお、浸出液及び残渣中の金属の分析は、ICP発光分光分析法(ICP-OES)で行った。
<Test Example 3: Transition of copper leaching rate and molybdenum concentration depending on ORP>
As copper-containing molybdenum ore, prepared was a pulverized molybdenum concentrate selected from ores containing molybdenite ore by flotation. When the molybdenum concentrate was analyzed by ICP emission spectrometry after acid dissolution, it had a composition of Mo: 45% by mass, Cu: 3.5% by mass, Fe: 4.4% by mass, and S: 37% by mass. Was. 4 L of leachate mixed with hydrochloric acid, ferric chloride, cupric chloride and sodium chloride so as to have the ionic composition shown in Table 6 was heated to 75 ° C. with a hot stirrer, and then 760 g of the molybdenum concentrate was added and stirred. The leaching test was carried out for 10 hours while continuing. The change in ORP (vs Ag / AgCl) during leaching is shown in FIG. Air blowing into the leachate (0.37 slpm) was divided according to the test number and not performed. The metal in the leachate and the residue was analyzed by ICP emission spectroscopy (ICP-OES).
 残渣率は精鉱及び浸出後得られた残渣の乾燥重量を測定し、残渣率=残渣重量(g)/精鉱重量(g)として算出した。その後に液を入れ替えて再度浸出する場合、同様の残渣率の算出をおこない、直前の残渣率に乗算することで通算の残渣率を求めた。再度の浸出前にサンプリングした場合も同様である。
(通算の残渣率(%))=(液を入れ替える前の浸出後重量(g)/浸出前精鉱重量(g))×(再浸出後重量(g)/再残渣重量(g))
The residue rate was determined by measuring the dry weight of the concentrate and the residue obtained after leaching, and calculating the residue rate = residue weight (g) / concentrate weight (g). Thereafter, when the liquid was changed and leaching was performed again, the same residue rate was calculated, and the previous residue rate was multiplied to obtain the total residue rate. The same applies when sampling before leaching again.
(Total residue rate (%)) = (Weight after leaching before replacing liquid (g) / Weight of concentrate before leaching (g)) × (Weight after leaching (g) / Weight of remaining residue (g))
 銅浸出率は以下の計算によって算出した。
(浸出率(%))=100-(浸出後品位/精鉱品位)×(残渣率(%))×100
The copper leaching rate was calculated by the following calculation.
(Leaching rate (%)) = 100− (Grade after leaching / Concentration grade) × (Residue rate (%)) × 100
Figure JPOXMLDOC01-appb-T000006
*イオン濃度は、浸出液の成分が完全に電離していると仮定して算出した。
Figure JPOXMLDOC01-appb-T000006
* The ion concentration was calculated on the assumption that the components of the leachate were completely ionized.
 浸出を終えた後、固液分離を吸引濾過により行い、浸出後液をサンプリングして、浸出後液中の銅及びモリブデン濃度を測定した。浸出結果を表7及び図7に示す。これにより、酸化還元電位を適切に制御することで、空気の吹き込みの有無に関わらず、モリブデンの逸損を抑制しながら、高い銅浸出率を得ることができることが理解できる。 After the leaching was completed, solid-liquid separation was performed by suction filtration, the liquid after leaching was sampled, and the copper and molybdenum concentrations in the liquid after leaching were measured. The leaching results are shown in Table 7 and FIG. Thereby, it can be understood that by appropriately controlling the oxidation-reduction potential, a high copper leaching rate can be obtained while suppressing loss of molybdenum regardless of whether air is blown or not.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<試験例4:パルプ濃度の浸出速度への影響>
 試験例3と同様のモリブデン精鉱の別のサンプルを用意し、ICP発光分光分析法で分析したところ、Mo:47質量%、Cu:3.9質量%、Fe:4.6質量%、S:37質量%の組成を有していた。表8に示す組成を有するように、塩酸、塩化第二鉄、塩化第二銅、塩化ナトリウムを混合した浸出液2Lをホットスターラーで75℃に加熱後、当該モリブデン精鉱760gを投入し、浸出液への空気吹き込み(0.19slpm)と撹拌を継続しながら浸出試験を6時間実施した。浸出終了後にろ過して浸出後液のORP(vs Ag/AgCl)を測定し、これを浸出終点におけるORPとした。なお、Fe濃度を2g/Lとした場合は、液量、精鉱量及び空気吹き込み量を2倍としたが、浸出挙動には影響しない。また、表8に示すように、浸出液中のFe濃度を2~100g/Lの範囲で変化させることで、浸出液中のFe濃度が浸出後液中のモリブデン濃度に与える影響を確認した。
<Test Example 4: Effect of pulp concentration on leaching rate>
When another sample of molybdenum concentrate similar to Test Example 3 was prepared and analyzed by ICP emission spectroscopy, Mo: 47% by mass, Cu: 3.9% by mass, Fe: 4.6% by mass, S : It had a composition of 37 mass%. 2 L of leachate mixed with hydrochloric acid, ferric chloride, cupric chloride, and sodium chloride so as to have the composition shown in Table 8 was heated to 75 ° C. with a hot stirrer, and then 760 g of the molybdenum concentrate was added to the leachate. The leaching test was carried out for 6 hours while continuing air blowing (0.19 slpm) and stirring. Filtration was performed after the leaching, and ORP (vs Ag / AgCl) of the liquid after leaching was measured, and this was defined as an ORP at the leaching end point. When the Fe concentration is 2 g / L, the liquid amount, concentrate amount, and air blowing amount are doubled, but the leaching behavior is not affected. Further, as shown in Table 8, the influence of the Fe concentration in the leachate on the molybdenum concentration in the liquid after leaching was confirmed by changing the Fe concentration in the leachate in the range of 2 to 100 g / L.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 浸出結果を表9及び図8に示す。浸出終了時でのMo濃度を見てみると、開始時のFe濃度の増大と相関があることがわかる。Fe濃度が2g/LでのMo濃度は検出下限の1mg/L未満であった。また、Fe濃度が10g/Lになるまでは、Mo濃度が10mg/L未満となった。以降、Fe濃度増加に対してMo濃度は増加し続けた。また、本試験例においてはパルプ濃度が380g/Lと試験例3よりも高かったことで、全体的にモリブデンの逸損が少なかった。 The leaching results are shown in Table 9 and FIG. Looking at the Mo concentration at the end of leaching, it can be seen that there is a correlation with an increase in Fe concentration at the start. When the Fe concentration was 2 g / L, the Mo concentration was less than 1 mg / L as the lower limit of detection. Further, the Mo concentration was less than 10 mg / L until the Fe concentration was 10 g / L. Thereafter, the Mo concentration continued to increase as the Fe concentration increased. Further, in this test example, the pulp concentration was 380 g / L, which was higher than that of Test Example 3, so that the loss of molybdenum was generally small.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<比較例2:次亜塩素酸ナトリウムの影響>
 Fe(II):2g/L、Cu(II):18g/L、Cl:180g/Lを含む液を2L調整した。塩素ガスを水に吹き込んだ時に発生する次亜塩素酸として、次亜塩素酸ソーダ液(和光純薬工業社製特級)を添加し、ORP(vs Ag/AgCl)を浸出中に上げていった。次亜塩素酸ソーダ液は強アルカリであるため、濃塩酸でpHを1と0に調整した二種類の液を調製した。使用した精鉱は試験例3と同様の条件で2時間浸出した後の精鉱であり、これを当該二種類の浸出液にそれぞれ700g添加した。75℃に加温し、撹拌して銅分を浸出した。4時間後及び8時間後に一度サンプリングしさらに撹拌を続けた。14時間後に撹拌を停止し、浸出液及び残渣中の銅濃度とモリブデン濃度をICP-OESで測定した。銅の浸出率、残渣中のCu品位及び浸出モリブデンの濃度を表10に示す。
<Comparative Example 2: Effect of sodium hypochlorite>
2 L of a liquid containing Fe (II): 2 g / L, Cu (II): 18 g / L, and Cl: 180 g / L was prepared. As hypochlorous acid generated when chlorine gas was blown into water, sodium hypochlorite solution (special grade made by Wako Pure Chemical Industries, Ltd.) was added and ORP (vs Ag / AgCl) was raised during leaching. . Since sodium hypochlorite solution is a strong alkali, two types of solutions were prepared in which the pH was adjusted to 1 and 0 with concentrated hydrochloric acid. The concentrate used was concentrate after leaching for 2 hours under the same conditions as in Test Example 3, and 700 g was added to each of the two types of leaching solutions. Heated to 75 ° C. and stirred to leach copper. Sampling was performed once after 4 hours and 8 hours, and stirring was continued. After 14 hours, stirring was stopped, and the copper concentration and the molybdenum concentration in the leachate and the residue were measured by ICP-OES. Table 10 shows the leaching rate of copper, the Cu quality in the residue, and the concentration of leached molybdenum.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10から次亜塩素酸イオンの存在下で銅を十分浸出するとORPが高くなり、モリブデンが溶解して浸出液に分配し逸損が大きくなることが分かる。塩素ガスでFe(III)を再生した浸出液では次亜塩素酸イオンが残留するため、同様の傾向が生じることは容易に推察される。 From Table 10, it can be seen that when copper is sufficiently leached in the presence of hypochlorite ions, the ORP increases, molybdenum dissolves and is distributed to the leachate, and the loss increases. In the leachate in which Fe (III) is regenerated with chlorine gas, hypochlorite ions remain, so it is easily guessed that the same tendency occurs.

Claims (15)

  1.  塩化物イオンを100~200g/L、銅イオンを1~30g/L、鉄イオンを1~10g/L含有する50~100℃の酸性水溶液に対して、酸素含有気体を供給しながら、当該酸性水溶液を含銅モリブデン鉱に接触させて銅成分を浸出する工程と、次いで固液分離により浸出後液と浸出残渣を得る工程を含む含銅モリブデン鉱の処理方法。 While supplying oxygen-containing gas to an acidic aqueous solution at 50 to 100 ° C. containing 100 to 200 g / L of chloride ions, 1 to 30 g / L of copper ions, and 1 to 10 g / L of iron ions, A method for treating copper-containing molybdenum ore comprising a step of leaching a copper component by bringing an aqueous solution into contact with copper-containing molybdenum ore and then a step of obtaining a liquid and a leaching residue after leaching by solid-liquid separation.
  2.  塩化物イオンを100~200g/L、銅イオンを1~30g/L、鉄イオンを1~20g/L含有する50~100℃の酸性水溶液を含銅モリブデン鉱に接触させて銅成分を浸出する工程と、次いで固液分離により浸出後液と浸出残渣を得る工程を含み、前記浸出工程は、浸出終点における酸性水溶液の酸化還元電位(vs Ag/AgCl)を400~480mVとする含銅モリブデン鉱の処理方法。 Copper components are leached by contacting an acidic aqueous solution at 50 to 100 ° C. containing 100 to 200 g / L of chloride ions, 1 to 30 g / L of copper ions, and 1 to 20 g / L of iron ions with copper-containing molybdenum ore. And a step of obtaining a post-leaching solution and a leaching residue by solid-liquid separation, wherein the leaching step comprises a copper-containing molybdenum ore with an oxidation-reduction potential (vs Ag / AgCl) of the acidic aqueous solution at the leaching end point of 400 to 480 mV Processing method.
  3.  浸出開始から2時間経過後から浸出終点まで酸性水溶液の酸化還元電位(vs Ag/AgCl)を400~480mVの範囲に維持する請求項2に記載の含銅モリブデン鉱の処理方法。 3. The method for treating copper-containing molybdenum ore according to claim 2, wherein the oxidation-reduction potential (vs Ag / AgCl) of the acidic aqueous solution is maintained in the range of 400 to 480 mV after 2 hours from the start of leaching until the end of leaching.
  4.  前記酸性水溶液中の銅イオンと鉄イオンの合計が40g/L以下である請求項2又は3に記載の含銅モリブデン鉱の処理方法。 The method for treating a copper-containing molybdenum ore according to claim 2 or 3, wherein a total of copper ions and iron ions in the acidic aqueous solution is 40 g / L or less.
  5.  前記酸性水溶液中の銅イオンと鉄イオンの合計が25g/L以下である請求項1に記載の含銅モリブデン鉱の処理方法。 The method for treating copper-containing molybdenum ore according to claim 1, wherein the total of copper ions and iron ions in the acidic aqueous solution is 25 g / L or less.
  6.  浸出後液中のモリブデン濃度が0.011g/L以下である請求項1~5の何れか一項に記載の含銅モリブデン鉱の処理方法。 The method for treating a copper-containing molybdenum ore according to any one of claims 1 to 5, wherein the molybdenum concentration in the solution after leaching is 0.011 g / L or less.
  7.  浸出工程を50g/L以上のパルプ濃度で行う請求項1~6の何れか一項に記載の含銅モリブデン鉱の処理方法。 The method for treating a copper-containing molybdenum ore according to any one of claims 1 to 6, wherein the leaching step is performed at a pulp concentration of 50 g / L or more.
  8.  前記銅成分を浸出する工程が、前記酸性水溶液1L当たり0.02~0.5slpmの流量で酸素含有気体を吹き込みながら実施する請求項1~7の何れか一項に記載の含銅モリブデン鉱の処理方法。 The copper-containing molybdenum ore according to any one of claims 1 to 7, wherein the step of leaching the copper component is performed while blowing an oxygen-containing gas at a flow rate of 0.02 to 0.5 slpm per liter of the acidic aqueous solution. Processing method.
  9.  浸出工程による銅浸出率が70%以上である請求項1~8の何れか一項に記載の含銅モリブデン鉱の処理方法。 The method for treating a copper-containing molybdenum ore according to any one of claims 1 to 8, wherein a copper leaching rate in the leaching step is 70% or more.
  10.  前記酸性水溶液のpHは0~3である請求項1~9の何れか一項に記載の含銅モリブデン鉱の処理方法。 The method for treating a copper-containing molybdenum ore according to any one of claims 1 to 9, wherein the acidic aqueous solution has a pH of 0 to 3.
  11.  含銅モリブデン鉱が、銅を0.5~10質量%、モリブデンを20質量%以上含有する請求項1~10の何れか一項に記載の含銅モリブデン鉱の処理方法。 The method for treating a copper-containing molybdenum ore according to any one of claims 1 to 10, wherein the copper-containing molybdenum ore contains 0.5 to 10% by mass of copper and 20% by mass or more of molybdenum.
  12.  前記浸出工程は、浸出残渣中の銅品位が0.5質量%以下となるまで実施する請求項1~11の何れか一項に記載の含銅モリブデン鉱の処理方法。 The method for treating a copper-containing molybdenum ore according to any one of claims 1 to 11, wherein the leaching step is performed until the copper grade in the leaching residue is 0.5 mass% or less.
  13.  浸出後液中の銅を、溶媒抽出及び逆抽出を経て、電解採取によりカソード上に電気銅として回収する工程を更に含む請求項1~12の何れか一項に記載の含銅モリブデン鉱の処理方法。 The treatment of copper-containing molybdenum ore according to any one of claims 1 to 12, further comprising a step of recovering copper in the solution after leaching as electrolytic copper on the cathode by electrolytic extraction through solvent extraction and back extraction. Method.
  14.  溶媒抽出前に、浸出後液に酸素含有気体を吹き込んで液中の銅を酸化する工程を更に含む請求項13に記載の含銅モリブデン鉱の処理方法。 The method for treating a copper-containing molybdenum ore according to claim 13, further comprising a step of oxidizing copper in the liquid by blowing an oxygen-containing gas into the liquid after leaching before solvent extraction.
  15.  前記浸出工程は、酸素含有気体を前記酸性水溶液に吹き込まずに実施する請求項2~7、9~14の何れか一項に記載の含銅モリブデン鉱の処理方法。 The method for treating a copper-containing molybdenum ore according to any one of claims 2 to 7 and 9 to 14, wherein the leaching step is performed without blowing an oxygen-containing gas into the acidic aqueous solution.
PCT/JP2015/068096 2014-06-25 2015-06-23 Method for processing copper-containing molybdenum ore WO2015199098A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014130794A JP6046082B2 (en) 2014-06-25 2014-06-25 Method for treating copper-containing molybdenum ore
JP2014-130794 2014-06-25
JP2014-250420 2014-12-10
JP2014250420A JP6196209B2 (en) 2014-12-10 2014-12-10 Method for treating copper-containing molybdenum ore

Publications (1)

Publication Number Publication Date
WO2015199098A1 true WO2015199098A1 (en) 2015-12-30

Family

ID=54938178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068096 WO2015199098A1 (en) 2014-06-25 2015-06-23 Method for processing copper-containing molybdenum ore

Country Status (2)

Country Link
CL (1) CL2016003307A1 (en)
WO (1) WO2015199098A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350945A (en) * 2021-12-31 2022-04-15 中核沽源铀业有限责任公司 Method for separating and recycling molybdenum back-extraction triphase materials in uranium molybdenum ore hydrometallurgy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083921A (en) * 1977-01-03 1978-04-11 Kennecott Copper Corporation Purifying molybdenum flotation concentrates
JPS58189343A (en) * 1982-04-20 1983-11-05 ブレンダ・マインズ・リミテツド Purification of molybdenum ore
JPS5992919A (en) * 1982-10-18 1984-05-29 エフ・エム・シ−・コ−ポレ−シヨン Purification of molybdenum trioxide
JP2005507457A (en) * 2001-05-09 2005-03-17 ハー ツェー シュタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Autoclave control mechanism for pressure oxidation of molybdenite
WO2006082484A2 (en) * 2005-02-02 2006-08-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Reduction of copper content in the molybdenite concentrate
JP2009235519A (en) * 2008-03-27 2009-10-15 Nippon Mining & Metals Co Ltd Method for recovering metal from ore
JP2013163868A (en) * 2013-05-31 2013-08-22 Jx Nippon Mining & Metals Corp Leaching method of copper and gold from sulfide ore

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083921A (en) * 1977-01-03 1978-04-11 Kennecott Copper Corporation Purifying molybdenum flotation concentrates
JPS58189343A (en) * 1982-04-20 1983-11-05 ブレンダ・マインズ・リミテツド Purification of molybdenum ore
JPS5992919A (en) * 1982-10-18 1984-05-29 エフ・エム・シ−・コ−ポレ−シヨン Purification of molybdenum trioxide
JP2005507457A (en) * 2001-05-09 2005-03-17 ハー ツェー シュタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Autoclave control mechanism for pressure oxidation of molybdenite
WO2006082484A2 (en) * 2005-02-02 2006-08-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Reduction of copper content in the molybdenite concentrate
JP2009235519A (en) * 2008-03-27 2009-10-15 Nippon Mining & Metals Co Ltd Method for recovering metal from ore
JP2013163868A (en) * 2013-05-31 2013-08-22 Jx Nippon Mining & Metals Corp Leaching method of copper and gold from sulfide ore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350945A (en) * 2021-12-31 2022-04-15 中核沽源铀业有限责任公司 Method for separating and recycling molybdenum back-extraction triphase materials in uranium molybdenum ore hydrometallurgy
CN114350945B (en) * 2021-12-31 2024-02-09 中核沽源铀业有限责任公司 Separation and recovery method for three-phase matters of wet smelting molybdenum back extraction of uranium molybdenum ore

Also Published As

Publication number Publication date
CL2016003307A1 (en) 2017-06-23

Similar Documents

Publication Publication Date Title
CA2636122C (en) Process of leaching gold
AU2012201281B2 (en) Method of leaching copper and gold from sulfide ores
CA2639165C (en) Method for recovering metal from ore
JP4642796B2 (en) Gold leaching method
JP6437366B2 (en) Method for recovering molybdenum from molybdenum concentrate
KR20140006875A (en) Improved method of ore processing
JP2005060813A (en) Method for refining copper raw material containing copper sulfide mineral
JP2011021219A (en) Method for recovering copper from copper/iron-containing material
JP2019173107A (en) Method of recovering tellurium
JP6437367B2 (en) Recovery method of rhenium from molybdenum concentrate
WO2014156349A1 (en) Method for recovering gold from sulfide ore
JP2013163868A (en) Leaching method of copper and gold from sulfide ore
JP6196209B2 (en) Method for treating copper-containing molybdenum ore
JP6998259B2 (en) How to treat copper ore
WO2015199098A1 (en) Method for processing copper-containing molybdenum ore
JP6195536B2 (en) Iron removal method, iron leaching method, and gold recovery method
JP2016141877A (en) Method for treating copper-containing molybdenum ore
JP6429990B2 (en) Method for separating molybdenum and method for treating copper-containing molybdenum ore
JP6046082B2 (en) Method for treating copper-containing molybdenum ore
JP2013112879A (en) Method for leaching gold out of mineral sulfide
JP6750454B2 (en) Method for removing impurities from bismuth electrolyte
JP7153599B2 (en) Ore processing method
JP7396194B2 (en) Method for purifying nickel chloride aqueous solution
US20100012502A1 (en) Process for recovery of metal-containing values from minerals and ores
JP7007905B2 (en) Copper recovery method and electrolytic copper manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811723

Country of ref document: EP

Kind code of ref document: A1