JP2014065947A - Method for leaching copper sulfide ore - Google Patents

Method for leaching copper sulfide ore Download PDF

Info

Publication number
JP2014065947A
JP2014065947A JP2012212834A JP2012212834A JP2014065947A JP 2014065947 A JP2014065947 A JP 2014065947A JP 2012212834 A JP2012212834 A JP 2012212834A JP 2012212834 A JP2012212834 A JP 2012212834A JP 2014065947 A JP2014065947 A JP 2014065947A
Authority
JP
Japan
Prior art keywords
copper
leaching
sulfide ore
ions
copper sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012212834A
Other languages
Japanese (ja)
Inventor
Atsuko Abe
温子 阿部
Akira Miura
彰 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012212834A priority Critical patent/JP2014065947A/en
Publication of JP2014065947A publication Critical patent/JP2014065947A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently leach copper from copper sulfide ore mainly containing yellow pyrite with a condition not providing iron (III) ions.SOLUTION: Copper is leached by adding a sulphuric acid solution containing iodine ions and a nitrite salt together to copper sulfide ore when leaching and collecting copper from copper sulfide ore containing yellow pyrite by using the sulphuric acid solution. During the process, pH of the solution is maintained at 3 or less. A concentration of added iodine ions is in a range of 50 to 300 mg/L. The amount of added nitrite ions is in a range of 0.2 g/g of yellow pyrite or more and 0.8 g/g of yellow pyrite or less.

Description

本発明は、鉱酸に難溶性の黄銅鉱を含む鉱種を含有する硫化銅鉱から銅を効率良く浸出させる方法に関する。   The present invention relates to a method for efficiently leaching copper from a copper sulfide ore containing a mineral species containing chalcopyrite that is sparingly soluble in mineral acids.

一般に湿式製錬による硫化銅鉱の浸出形態としては、硫酸または塩酸を用いた回分攪拌反応による浸出形態(タンクリーチング)、積層体を形成しその頂部から硫酸または塩酸を供給して重力により滴り落ちる液に銅イオンを浸出させる浸出形態(ヒープリーチング)などが知られている。また、鉄酸化細菌などのバクテリアの作用により得たFe3+を用いて銅を効率よく浸出する方法(バイオリーチング)も採用されている。 In general, the leaching form of copper sulfide ore by hydrometallurgy is a leaching form (tank leaching) by batch stirring reaction using sulfuric acid or hydrochloric acid, and a liquid that drops by gravity by supplying sulfuric acid or hydrochloric acid from the top and forming a laminate. A leaching form (heap leaching) in which copper ions are leached is known. In addition, a method (bioleaching) in which copper is efficiently leached using Fe 3+ obtained by the action of bacteria such as iron-oxidizing bacteria is also employed.

バイオリーチングでは、鉄酸化細菌によって浸出液中の鉄(II)イオンが酸化剤として機能する鉄(III)イオンに酸化され、この鉄(III)イオンによって鉱石中の銅が溶出される。また鉱石中に含まれる硫黄分は硫黄酸化細菌によって酸化され、硫酸となり、この硫酸によっても鉱石中の銅は浸出される。   In bioleaching, iron (II) ions in the leachate are oxidized to iron (III) ions that function as an oxidizing agent by iron-oxidizing bacteria, and copper in the ore is eluted by the iron (III) ions. In addition, the sulfur content in the ore is oxidized by sulfur-oxidizing bacteria to become sulfuric acid, and copper in the ore is also leached by this sulfuric acid.

硫化銅鉱の湿式製錬は、輝銅鉱,銅藍等の二次硫化銅鉱に対しては実用化されている。また、黄銅鉱は銅資源の中で最も大量に存在することから、黄銅鉱を用いて銅の浸出を行うことができれば、経済的観点および資源の有効活用の観点から有利である。しかしながら、黄銅鉱は二次硫化銅鉱に比べて銅の浸出速度が極端に遅く、黄銅鉱から経済的あるいは効率的に有利に銅を浸出することは困難である。   Wet smelting of copper sulfide ore has been put to practical use for secondary copper sulfide ores such as chalcocite and copper indigo. Moreover, since chalcopyrite is present in the largest amount among copper resources, if copper can be leached using chalcopyrite, it is advantageous from the viewpoints of economics and effective utilization of resources. However, chalcopyrite has an extremely slow copper leaching rate compared to secondary copper sulfide ore, and it is difficult to leach copper from chalcopyrite economically or efficiently.

従って、黄銅鉱から有効に銅の浸出を行う技術が数々提案されている。例えば、黄銅鉱を主体とする硫化銅鉱からの銅の浸出速度を上げるため様々な湿式製錬技術が挙げられる。例えば、75〜80℃での高温浸出(非特許文献1)や好熱性微生物を利用した浸出方法(特許文献1、特許文献2)、圧力酸化を用いた浸出(非特許文献2)などが提案されている。しかし、これらの方法は浸出速度の改善に効果があるものの、高温もしくは高圧条件とする必要があるため、コスト高となる問題がある。   Therefore, many techniques for effectively leaching copper from chalcopyrite have been proposed. For example, various hydrometallurgical techniques can be mentioned to increase the leaching rate of copper from copper sulfide ore mainly composed of chalcopyrite. For example, high temperature leaching at 75 to 80 ° C. (Non-patent Document 1), leaching method using thermophilic microorganisms (Patent Document 1, Patent Document 2), leaching using pressure oxidation (Non-patent Document 2), etc. are proposed. Has been. However, although these methods are effective in improving the leaching rate, there is a problem that the cost is high because it is necessary to use a high temperature or high pressure condition.

その中で、黄銅鉱や硫砒銅鉱を含有する硫化銅鉱から銅を採取するに際して、常温において、ヨウ化物イオンと、ヨウ化物イオンに対して過剰量の鉄(III)イオンとを含有する硫酸溶液を浸出液として用い銅の浸出速度を上げる方法が提案されている。(特許文献3)   Among them, when collecting copper from copper sulfide ores containing chalcopyrite or arsenite, a sulfuric acid solution containing iodide ions and iron (III) ions in excess of iodide ions at room temperature is used. A method for increasing the leaching rate of copper used as a leaching solution has been proposed. (Patent Document 3)

以上の例では、酸化剤としては鉄(III)イオンもしくは酸素であり、鉄(III)イオンを含む水溶液もしくは空気もしくは酸素を供給する必要がある。したがって、本酸化剤を入手できない場合には適用できない。   In the above example, the oxidizing agent is iron (III) ions or oxygen, and it is necessary to supply an aqueous solution containing iron (III) ions, air, or oxygen. Therefore, it cannot be applied when the present oxidizing agent cannot be obtained.

米国特許第6110253号明細書US Pat. No. 6,110,253 米国特許第6884280号明細書US Pat. No. 6,884,280 特許第4565025号公報Japanese Patent No. 4565025

Ann.Rev.Microbiol.2002年;第56巻:65−91Ann. Rev. Microbiol. 2002; 56: 65-91 Hydrometallurgy,2007年,第86巻,p.191−205Hydrometallurgy, 2007, Vol. 86, p. 191-205

以上の状況から、本発明の課題としては、酸化剤として鉄(III)イオンが入手できない条件でも、入手しやすい酸化剤を用いて、黄銅鉱を主体とする硫化銅鉱から効率的に銅を浸出させる方法を提供することにある。   From the above situation, as an object of the present invention, copper is efficiently leached from a copper sulfide ore mainly composed of chalcopyrite using an easily available oxidizing agent even under conditions where iron (III) ions are not available as an oxidizing agent. It is to provide a method of making it happen.

本発明者らは、本課題を解決すべく鋭意研究を重ねた結果、酸化剤として亜硝酸塩と、ヨウ化物イオンまたはヨウ素酸イオンなどのヨウ素イオンを添加することで黄銅鉱を含む硫化銅鉱から効率的に銅を浸出させることを見出し、本発明に到達した。   As a result of intensive research to solve this problem, the present inventors have obtained efficiency from copper sulfide ores including chalcopyrite by adding nitrite and iodine ions such as iodide ions or iodate ions as oxidizing agents. The present invention has been found by leaching copper.

すなわち、本発明は、次の(1)〜(4)である。
(1)黄銅鉱を含む硫化銅鉱から硫酸溶液をもちいて銅を浸出し回収する際、硫化銅鉱にヨウ素イオンおよび亜硝酸塩を含む溶液を添加して銅を浸出させることを特徴とする硫化銅鉱の浸出方法。
(2)(1)記載の方法において、溶液中のpHを3以下に維持することを特徴とする硫化銅鉱の浸出方法。
(3)(1)または(2)記載の方法において、添加するヨウ素イオン濃度が50〜300mg/Lの範囲であることを特徴とする硫化銅鉱の浸出方法。
(4)(1)〜(3)いずれかに記載の方法において、添加する亜硝酸イオン量が0.2g/黄銅鉱g以上0.8g/黄銅鉱g以下の範囲であることを特徴とする硫化銅鉱の浸出方法。
That is, this invention is following (1)-(4).
(1) When copper is leached and recovered from copper sulfide ore containing chalcopyrite using a sulfuric acid solution, copper sulfide is leached by adding a solution containing iodine ions and nitrite to copper sulfide ore. Leaching method.
(2) The method of leaching copper sulfide ore according to the method described in (1), wherein the pH in the solution is maintained at 3 or less.
(3) In the method according to (1) or (2), the iodine ion concentration to be added is in the range of 50 to 300 mg / L.
(4) In the method according to any one of (1) to (3), the amount of nitrite ion to be added is in the range of 0.2 g / g of chalcopyrite to 0.8 g / g of chalcopyrite. Leaching method of copper sulfide ore.

本発明によれば、鉄(III)イオンや酸素(空気)を供給することなく、黄銅鉱を含む硫化銅鉱から、銅を効率的に浸出し、回収することが可能となる。   According to the present invention, copper can be efficiently leached and recovered from a copper sulfide ore containing chalcopyrite without supplying iron (III) ions or oxygen (air).

実施例1および比較例1の結果を示すグラフである。6 is a graph showing the results of Example 1 and Comparative Example 1. 実施例2および比較例2の結果を示すグラフである。It is a graph which shows the result of Example 2 and Comparative Example 2.

以下に実施の態様をあげて、本発明を詳細に説明する。
本発明の方法は、黄銅鉱を含む硫化銅鉱に、ヨウ素イオンおよび亜硝酸塩を含む酸性溶液を浸出液として用い、銅を硫酸溶液中に銅イオンとして浸出させることを特徴とする。
Hereinafter, the present invention will be described in detail with reference to embodiments.
The method of the present invention is characterized in that an acidic solution containing iodine ions and nitrite is used as a leaching solution for copper sulfide ores containing chalcopyrite, and copper is leached as copper ions in a sulfuric acid solution.

本発明の方法の対象鉱である黄銅鉱を含有する硫化銅鉱は、黄銅鉱を主成分とする硫化銅鉱であっても、黄銅鉱を一部に含有する硫化銅鉱であってもいずれでもよく、その含量は特に限定はされないが、本発明の方法による銅浸出効果が十分に得られる点で、黄銅鉱を主成分とする硫化銅鉱であることが好ましい。   The copper sulfide ore containing chalcopyrite which is the target ore of the method of the present invention may be copper sulfide ore mainly containing chalcopyrite, or may be copper sulfide ore containing chalcopyrite in part, The content is not particularly limited, but copper sulfide ore mainly composed of chalcopyrite is preferable in that the copper leaching effect by the method of the present invention can be sufficiently obtained.

本発明の方法は、硫酸溶液を浸出液とする銅の湿式製錬であれば、いずれの浸出形態にも用いることができ、例えば、回分攪拌浸出のみならず、鉱石を堆積させた上から硫酸を散布して、銅を硫酸中に浸出させるヒープリーチング、ダンプリーチングのいずれであってもよい。また、浸出は常温で行い、特に加熱などは必要としないが、加熱しても構わない。また、硫化銅鉱は精鉱であっても粗鉱であっても構わない。   The method of the present invention can be used in any leaching form as long as it is a copper hydrometallurgy using a sulfuric acid solution as a leachate.For example, not only batch agitation leaching but also sulfuric acid can be added after depositing ore. Either heap leaching or dump leaching may be performed by spraying and leaching copper into sulfuric acid. Further, leaching is performed at room temperature, and heating is not particularly required, but heating may be performed. Further, the copper sulfide ore may be a concentrate or a crude ore.

本発明による硫化銅鉱からの銅の浸出は、詳細については不明であるが、以下(式1)に示す亜硝酸塩によるヨウ化物イオンの酸化によるヨウ素(I2)の生成反応と、(式2)に示すヨウ素を用いた硫化銅鉱の酸化による銅浸出反応とが関与する推定される。
2I- +2NO2 -+4H+→2NO+I2+2H2O (式1)
CuFeS2+2I2→Cu2++Fe2++2S+4I- (式2)
The leaching of copper from the copper sulfide ore according to the present invention is not known in detail, but the production reaction of iodine (I 2 ) by oxidation of iodide ion by nitrite shown in the following (formula 1) and (formula 2) It is estimated that the copper leaching reaction by oxidation of copper sulfide ore using iodine shown in FIG.
2I + 2NO 2 + 4H + → 2NO + I 2 + 2H 2 O (Formula 1)
CuFeS 2 + 2I 2 → Cu 2+ + Fe 2+ + 2S + 4I (Formula 2)

好適な実施の態様において、添加するヨウ素イオンの形態としては、ヨウ化物イオンもしくはヨウ素酸イオンが考えられ、ヨウ化物イオンを含むものとしては、ヨウ化ナトリウム、ヨウ化カリウムなどの塩、もしくはヨウ化水素酸を硫酸溶液に溶解したものが利用可能である。一方、ヨウ素酸イオンを含むものとしては、ヨウ素酸ナトリウム、ヨウ素酸カリウムなどの塩、もしくはヨウ素酸を硫酸溶液に溶解したものなどが利用可能である。また、添加するヨウ素イオン濃度は、50〜300mg/L、好ましくは50〜100mg/Lの範囲とすることが、コストと環境負荷の軽減の観点から好ましい。   In a preferred embodiment, iodide ion or iodate ion is considered as a form of iodine ion to be added, and a salt such as sodium iodide or potassium iodide, or iodide is contained as an iodide ion. A solution obtained by dissolving hydrogen acid in a sulfuric acid solution can be used. On the other hand, as the substance containing iodate ions, salts such as sodium iodate and potassium iodate, or those obtained by dissolving iodic acid in a sulfuric acid solution can be used. Further, the iodine ion concentration to be added is preferably in the range of 50 to 300 mg / L, preferably 50 to 100 mg / L, from the viewpoint of reducing cost and environmental burden.

好適な実施の態様において、添加する亜硝酸塩は、他の化合物や鉱石との混合物でもよい。具体的には薬品として化学的に製造された亜硝酸の他、鉱物としてのチリ硝石やチリ硝石から得られた硝酸ナトリウムと金属を溶融させたのち温水等で浸出させることによって得られる亜硝酸塩を含む浸出液などが利用可能である。また、添加する亜硝酸イオン量が0.2g/黄銅鉱g以上であり、上限は特に制限されることはないが、あまり多く添加しても添加量に対する効果に差が見られなくなる観点から、実用的には0.8g/黄銅鉱g以下が好ましい。より好ましくは0.25g/黄銅鉱g以上0.40g/黄銅鉱g以下の範囲である。   In a preferred embodiment, the added nitrite may be a mixture with other compounds or ores. Specifically, in addition to nitrous acid chemically produced as a chemical, leachate containing nitrite obtained by leaching with hot water etc. after melting sodium nitrate and metal obtained from chili nitrate as a mineral and chili nitrate Etc. are available. In addition, the amount of nitrite ion to be added is 0.2 g / g of chalcopyrite, and the upper limit is not particularly limited, but from the viewpoint of no difference in effect on the added amount even if added too much, Practically 0.8 g / g of chalcopyrite is preferable. More preferably, it is the range of 0.25 g / brassite g or more and 0.40 g / brassite g or less.

亜硝酸イオンとヨウ化物イオン、もしくはそれらの塩を混合して溶解すると、直ちにヨウ化物イオンはヨウ素に酸化される。ヨウ素は揮発性を有するため、事前に混合するとヨウ素のロスにつながるため、亜硝酸イオンとヨウ化物イオンを含む溶液はそれぞれ別個に作成したのち、硫化銅鉱と接触直前、もしくは硫化銅鉱に別個に添加することが望ましい。   When nitrite ions and iodide ions or their salts are mixed and dissolved, the iodide ions are immediately oxidized to iodine. Since iodine has volatility, it will lead to loss of iodine when mixed in advance, so each solution containing nitrite ions and iodide ions must be prepared separately and then added to copper sulfide ore immediately before contact with copper sulfide ore. It is desirable to do.

また、この銅の浸出処理において、浸出液として用いる硫酸溶液中のpHを3以下、好ましくはpH1.5以下に維持することが、銅浸出の更なる効率化を実現するという観点から好ましい。   In this copper leaching treatment, it is preferable to maintain the pH in the sulfuric acid solution used as the leaching solution at 3 or less, preferably at pH 1.5 or less, from the viewpoint of realizing further efficiency of copper leaching.

以下の実施例によって、本発明をさらに具体的に説明する。本発明は以下の実施例によって限定されるものではない。   The following examples further illustrate the present invention. The present invention is not limited by the following examples.

(実施例1)
500ml容坂口フラスコにチリ・カンデラリア産銅精鉱(黄銅鉱主体、銅品位30%mass)3.0g、pH1.5に調整した硫酸溶液300mL、亜硝酸ナトリウム3.6g(亜硝酸イオン(g)/黄銅鉱(g)=0.8)、ヨウ化カリウム(KI)39mgを添加し、30℃、120rpmで振とうし、図1に示した反応時間後、硫酸溶液を採取、ろ過後、溶解しているCu濃度をICP−AESにて測定した。その結果を図1に示す。
さらに、亜硝酸イオン(g)/黄銅鉱(g)が、0.4、0.35、0.2になるように、亜硝酸ナトリウムの添加量を調整して、同様の浸出処理を行って、Cu濃度を測定した。結果を図1に示す。
Example 1
In a 500 ml Sakaguchi flask, 3.0 g of copper concentrate from Chile and Candelaria (mainly chalcopyrite, copper grade 30% mass), 300 ml of sulfuric acid solution adjusted to pH 1.5, 3.6 g of sodium nitrite (nitrite ion (g ) / Brassite (g) = 0.8), 39 mg of potassium iodide (KI) was added, and the mixture was shaken at 30 ° C. and 120 rpm. After the reaction time shown in FIG. The dissolved Cu concentration was measured by ICP-AES. The result is shown in FIG.
In addition, the amount of sodium nitrite added was adjusted so that nitrite ions (g) / chalcopyrite (g) would be 0.4, 0.35, and 0.2. The Cu concentration was measured. The results are shown in FIG.

(比較例1)
亜硝酸又はヨウ化物イオンをどちらか一方のみ図1で表される条件で添加した以外は実施例1と同じ条件で処理し、Cu濃度を測定した。結果を図1に合わせて示す。
(Comparative Example 1)
The Cu concentration was measured under the same conditions as in Example 1 except that only one of nitrous acid and iodide ions was added under the conditions shown in FIG. The results are shown in FIG.

図1に示すとおり、実施例1で銅精鉱より銅の浸出が確認されたが、比較例1では銅の顕著な浸出は確認できなかった。本結果より、亜硝酸イオンおよびヨウ化物イオンの添加による硫化銅鉱からの銅浸出の顕著な効果が示されるとともに、どちらか一方のみの添加では銅浸出への効果はないことがわかった。   As shown in FIG. 1, copper leaching was confirmed from the copper concentrate in Example 1, but no significant leaching of copper was confirmed in Comparative Example 1. From these results, it was found that the addition of nitrite ions and iodide ions showed a remarkable effect of copper leaching from copper sulfide ore, and the addition of only one of them had no effect on copper leaching.

(実施例2)
500ml容坂口フラスコにチリ・カンデラリア産銅精鉱(黄銅鉱主体、銅品位30%mass)3.0g、pH1.5に調整した硫酸溶液300mL、亜硝酸ナトリウム3.6g(亜硝酸イオン(g)/黄銅鉱(g)=0.8)、ヨウ素酸カリウム(KIO3)51mgを添加し、30℃、120rpmで振とうし、図2に示した反応時間後、硫酸溶液を採取、ろ過後、溶解しているCu濃度をICP−AESにて測定した。その結果を図2に示す。
さらに、亜硝酸イオン(g)/黄銅鉱(g)が、0.4、0.35、0.2になるように、亜硝酸ナトリウムの添加量を調整して、同様の浸出処理を行って、Cu濃度を測定した。結果を図2に示す。
(Example 2)
In a 500 ml Sakaguchi flask, 3.0 g of copper concentrate from Chile and Candelaria (mainly chalcopyrite, copper grade 30% mass), 300 ml of sulfuric acid solution adjusted to pH 1.5, 3.6 g of sodium nitrite (nitrite ion (g ) / Brassite (g) = 0.8), 51 mg of potassium iodate (KIO 3 ) were added, shaken at 30 ° C. and 120 rpm, and after the reaction time shown in FIG. 2, the sulfuric acid solution was collected and filtered. The dissolved Cu concentration was measured by ICP-AES. The result is shown in FIG.
In addition, the amount of sodium nitrite added was adjusted so that nitrite ions (g) / chalcopyrite (g) would be 0.4, 0.35, and 0.2. The Cu concentration was measured. The results are shown in FIG.

(比較例2)
亜硝酸又はヨウ化物イオンをどちらか一方のみ図2で表される条件で添加した以外は実施例2と同じ条件で処理し、Cu濃度を測定した。結果を図2に合わせて示す。
(Comparative Example 2)
The Cu concentration was measured under the same conditions as in Example 2 except that only one of nitrous acid and iodide ions was added under the conditions shown in FIG. The results are shown in FIG.

図2に示すとおり、実施例2で銅精鉱より銅の浸出が確認されたが、比較例2では銅の顕著な浸出は確認できなかった。本結果より、亜硝酸イオンおよびヨウ素酸イオンの添加による硫化銅鉱からの銅浸出の顕著な効果が示されるとともに、どちらか一方のみの添加では銅浸出への効果はないことがわかった。   As shown in FIG. 2, in Example 2, copper leaching was confirmed from the copper concentrate, but in Comparative Example 2, no significant copper leaching was confirmed. From these results, it was found that the addition of nitrite ions and iodate ions showed a remarkable effect of copper leaching from copper sulfide ore, and the addition of only one of them had no effect on copper leaching.

本発明によれば、黄銅鉱を含む硫化銅鉱から、高い効率で銅を浸出させて、回収することができ、産業上有用な発明である。   According to the present invention, copper can be leached and recovered from copper sulfide ore containing chalcopyrite with high efficiency, which is an industrially useful invention.

Claims (4)

黄銅鉱を含む硫化銅鉱から硫酸溶液をもちいて銅を浸出し回収する際、硫化銅鉱にヨウ素イオンおよび亜硝酸塩を含む溶液を添加して銅を浸出させることを特徴とする硫化銅鉱の浸出方法。   A method for leaching copper sulfide ore, comprising adding a solution containing iodine ions and nitrite to copper sulfide ore when copper is leached and recovered from copper sulfide ore containing chalcopyrite using a sulfuric acid solution. 請求項1記載の方法において、溶液中のpHを3以下に維持することを特徴とする硫化銅鉱の浸出方法。   The method according to claim 1, wherein the pH in the solution is maintained at 3 or less. 請求項1または2記載の方法において、添加するヨウ素イオン濃度が50〜300mg/Lの範囲であることを特徴とする硫化銅鉱の浸出方法。   The method according to claim 1 or 2, wherein the iodine ion concentration to be added is in the range of 50 to 300 mg / L. 請求項1〜3いずれか一項に記載の方法において、添加する亜硝酸イオン量の範囲が0.2g/黄銅鉱g以上0.8g/黄銅鉱g以下であることを特徴とする硫化銅鉱の浸出方法。   In the method as described in any one of Claims 1-3, the range of the amount of nitrite ion to add is 0.2 g / brassite g or more and 0.8 g / chalcopyrite g or less of the copper sulfide ore characterized by the above-mentioned. Leaching method.
JP2012212834A 2012-09-26 2012-09-26 Method for leaching copper sulfide ore Pending JP2014065947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012212834A JP2014065947A (en) 2012-09-26 2012-09-26 Method for leaching copper sulfide ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012212834A JP2014065947A (en) 2012-09-26 2012-09-26 Method for leaching copper sulfide ore

Publications (1)

Publication Number Publication Date
JP2014065947A true JP2014065947A (en) 2014-04-17

Family

ID=50742610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012212834A Pending JP2014065947A (en) 2012-09-26 2012-09-26 Method for leaching copper sulfide ore

Country Status (1)

Country Link
JP (1) JP2014065947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041199A (en) * 2019-12-17 2020-04-21 刘少军 System and method for recovering main associated elements from sulfide ores

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041199A (en) * 2019-12-17 2020-04-21 刘少军 System and method for recovering main associated elements from sulfide ores
CN111041199B (en) * 2019-12-17 2021-07-20 刘少军 System and method for recovering main associated elements from sulfide ores

Similar Documents

Publication Publication Date Title
JP4565025B2 (en) Leaching method of copper sulfide ore using iodine
JP5319718B2 (en) Methods for leaching copper and gold from sulfide ores
CN100572570C (en) The method that dechlorinates in a kind of zinc electrolytic solution
JP5711225B2 (en) Method for treating acidic solution containing iodide ion and iron ion
JP2014504677A (en) Improved method of ore processing
CA2599174A1 (en) Method for leaching gold
JP2013147685A (en) Gold recovery method, and gold production method using the same
JP2011190520A (en) Method for leaching copper sulfide ore
JP5840642B2 (en) Method for recovering gold from sulfide minerals
JP2013163868A (en) Leaching method of copper and gold from sulfide ore
Nicol A comparative assessment of the application of ammonium chloride and glycine as lixiviants in the heap leaching of chalcopyritic ores
JP2014065947A (en) Method for leaching copper sulfide ore
JP2012017513A (en) Method of leaching copper
JP5792043B2 (en) Method of leaching gold from sulfide ore
JP2008119690A5 (en)
JP6034433B2 (en) Method of leaching gold from sulfide ore
JP2013189687A (en) Leaching method of copper ore
JP2013185236A (en) Method for leaching copper sulfide ore
JP2015078414A (en) Method of exuding copper from copper sulfide ore
EP3184657A1 (en) Copper sulphide leaching inferrous chloride medium with bacteria
JP2003147443A (en) Method of leaching copper from copper sulfide ore
WO2012001501A1 (en) A chloride method for bioleaching
US8911532B2 (en) Method for leaching copper from copper sulfide ore
US20220042139A1 (en) Solid-liquid-solid method for the solubilisation of copper minerals and concentrates, independent of the redox potential and with low consumption of water and acid
RU2412264C2 (en) Procedure for processing gold-antimonial concentrates