JP5711225B2 - Method for treating acidic solution containing iodide ion and iron ion - Google Patents

Method for treating acidic solution containing iodide ion and iron ion Download PDF

Info

Publication number
JP5711225B2
JP5711225B2 JP2012515930A JP2012515930A JP5711225B2 JP 5711225 B2 JP5711225 B2 JP 5711225B2 JP 2012515930 A JP2012515930 A JP 2012515930A JP 2012515930 A JP2012515930 A JP 2012515930A JP 5711225 B2 JP5711225 B2 JP 5711225B2
Authority
JP
Japan
Prior art keywords
iron
ions
activated carbon
iodine
leaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012515930A
Other languages
Japanese (ja)
Other versions
JPWO2011145688A1 (en
Inventor
兼一 桑野
兼一 桑野
温子 阿部
温子 阿部
学 真鍋
学 真鍋
彰 三浦
彰 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012515930A priority Critical patent/JP5711225B2/en
Publication of JPWO2011145688A1 publication Critical patent/JPWO2011145688A1/en
Application granted granted Critical
Publication of JP5711225B2 publication Critical patent/JP5711225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/13Iodine; Hydrogen iodide
    • C01B7/14Iodine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/346Iron bacteria
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Biotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明は、硫化銅鉱を浸出させる方法に関する。より具体的には、ヨウ化物イオンを用いた硫化銅鉱の浸出の際、必要な鉄(III)イオンを鉄酸化微生物を用いて効率的に再生する方法に関する。   The present invention relates to a method for leaching copper sulfide ore. More specifically, the present invention relates to a method for efficiently regenerating necessary iron (III) ions using iron-oxidizing microorganisms when leaching copper sulfide ore using iodide ions.

一般に湿式製錬による硫化銅鉱の浸出形態としては:
・硫酸または塩酸を用いた回分攪拌反応による浸出形態;
・積層体を形成しその頂部から硫酸または塩酸を供給して重力により滴り落ちる液を回収する浸出形態(ヒープリーチング法);及び・鉄酸化微生物などのバクテリアを利用して銅を効率よく浸出し、回収する方法(バイオリーチング)
などが知られている。
In general, the leaching form of copper sulfide ore by hydrometallurgy:
・ Leaching form by batch stirring reaction using sulfuric acid or hydrochloric acid;
・ Leaching form (heap leaching method) that collects the liquid dripping by gravity by supplying sulfuric acid or hydrochloric acid from the top of the laminated body; and ・ Leaching copper efficiently using bacteria such as iron-oxidizing microorganisms , Method of recovery (bioleaching)
Etc. are known.

硫化銅鉱の湿式製錬のうち、輝銅鉱、銅藍等の二次硫化銅鉱に対してはバイオリーチング法などが実用化されている。しかしながら、黄銅鉱などの一次硫化銅鉱は無機酸への溶解度が極めて低い。従って、バイオリーチング法を用いて常温で浸出を行うと浸出速度が非常に遅い。   Among the copper sulfide ore hydrometallurgy, bioleaching method has been put to practical use for secondary copper sulfide ores such as chalcocite and copper indigo. However, primary copper sulfide ores such as chalcopyrite have very low solubility in inorganic acids. Therefore, when leaching is performed at room temperature using the bioleaching method, the leaching rate is very slow.

上述の浸出速度の問題に対して、特開2011−42858号(特許文献 1)には、ヨウ化物イオンおよび酸化剤としての鉄(III)イオン共存下、常温において黄銅鉱や硫砒銅鉱を主成分とする硫化銅鉱の浸出が促進されるという例が報告されている。   In order to solve the above-mentioned problem of leaching rate, Japanese Patent Application Laid-Open No. 2011-42858 (Patent Document 1) mainly contains chalcopyrite and arsenite at room temperature in the presence of iodide ions and iron (III) ions as oxidizing agents. An example has been reported that the leaching of copper sulfide ore is promoted.

一方、特開平7−91666号(特許文献2)には、ヨウ素を酸化するための酸化剤として活性塩素、吸着剤として活性炭、陰イオン交換樹脂を用い、溶液中のヨウ素を除去する例が報告されている。アルカリ金属塩化物水溶液の精製方法において、液中のヨウ素を除去する方法の代表的なものとして、(1)ヨウ素とアルカリ金属塩化物を含有する溶液に塩素、次亜塩素酸または塩素水を添加し、(2)ヨウ化物イオンをヨウ素分子(I2)に酸化し、(3)活性炭に通液させ活性炭に吸着させる方法がある。同様に特開平4−16554号(特許文献3)には、工業的な食塩電解法において、酸化剤と活性炭を用いてヨウ素を液中から除去する方法が記載されている。
また、特公昭62―34681号(特許文献4)には、かん水からヨウ素を分離回収する方法として、イオン交換樹脂を使用する方法が報告されている。
On the other hand, Japanese Patent Application Laid-Open No. 7-91666 (Patent Document 2) reports an example of removing iodine in a solution using active chlorine as an oxidizing agent for oxidizing iodine, activated carbon as an adsorbent, and an anion exchange resin. Has been. In the purification method of alkali metal chloride aqueous solution, as a representative method of removing iodine in the liquid, (1) adding chlorine, hypochlorous acid or chlorine water to a solution containing iodine and alkali metal chloride (2) There is a method in which iodide ions are oxidized into iodine molecules (I 2 ), and (3) are passed through activated carbon and adsorbed on the activated carbon. Similarly, Japanese Patent Laid-Open No. 4-16554 (Patent Document 3) describes a method of removing iodine from a liquid using an oxidizing agent and activated carbon in an industrial salt electrolysis method.
Japanese Patent Publication No. 62-34681 (Patent Document 4) reports a method of using an ion exchange resin as a method for separating and recovering iodine from brine.

特開2011−42858号JP 2011-42858 特公平7−91666号Japanese Patent Publication No.7-91666 特公平4−16554号No. 4-16554 特公昭62―34681号Shoko 62-34681

特許文献1の場合において、浸出反応の結果得られる鉄(II)イオンから、及び/又は安価な薬品である硫酸第一鉄から、鉄酸化微生物を用いて酸化することによって、鉄(III)イオンを産生し供給できれば経済的にも望ましい。また、浸出後液についても廃棄することなく浸出液として繰り返し利用することが経済的にも環境的にも望ましい。しかしながら、ヨウ素分は強い殺菌性を持つ。従って、ヨウ素分存在下で(即ちヨウ素分を用いた浸出において)鉄酸化微生物を用いて鉄(III)イオンを再生することは困難である。
特許文献2〜4は、ヨウ素分を分離除去する方法が記載されている。しかしながら、これらヨウ素分除去例で用いられる溶液は、鉄・銅などの金属イオンを含む酸性の硫化銅鉱の浸出液とは全く異なっている。従って、これら方法をそのまま、特許文献1の方法に適用することは困難である。また、これらの方法では微生物にとっては毒性の強い塩素系酸化剤を用いている。従って、これら方法をそのまま適用し硫化銅鉱の浸出液からヨウ素分を除去することが可能であったとしても、塩素系酸化剤もしくは塩化物イオンによる微生物への影響が残存する。よって、微生物を用いて、ヨウ素分除去後の溶液中の鉄を効率的に酸化することは困難である。
従って、本発明の課題は、上記のような事情に鑑み、ヨウ化物イオンを用いた浸出において実操業レベルで汎用性ある条件で、微生物を用い効率よく鉄(III)イオンを再生しつつ硫化銅鉱から銅を浸出する方法を提供することにある。
In the case of Patent Document 1, iron (III) ions are oxidized from iron (II) ions obtained as a result of the leaching reaction and / or from ferrous sulfate, which is an inexpensive chemical, using iron oxidizing microorganisms. It is economically desirable if it can be produced and supplied. It is also economically and environmentally desirable that the leached solution is repeatedly used as the leached solution without being discarded. However, iodine content has strong bactericidal properties. Therefore, it is difficult to regenerate iron (III) ions using iron-oxidizing microorganisms in the presence of iodine (that is, in leaching using iodine).
Patent Documents 2 to 4 describe methods for separating and removing iodine. However, the solution used in these iodine content removal examples is completely different from the leached solution of acidic copper sulfide ore containing metal ions such as iron and copper. Therefore, it is difficult to apply these methods as they are to the method of Patent Document 1. In these methods, a chlorine-based oxidizing agent that is highly toxic to microorganisms is used. Therefore, even if these methods can be applied as they are and the iodine content can be removed from the leachate of copper sulfide ore, the effects on the microorganisms by the chlorine-based oxidizing agent or chloride ions remain. Therefore, it is difficult to efficiently oxidize iron in the solution after removing iodine by using microorganisms.
Therefore, in view of the circumstances as described above, the object of the present invention is copper sulfide ore while efficiently regenerating iron (III) ions using microorganisms under conditions that are versatile at the actual operation level in leaching using iodide ions. It is to provide a method of leaching copper from.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、黄銅鉱や硫砒銅鉱を主成分とする硫化銅鉱のヨウ素分を用いた浸出において、ヨウ化物イオンと鉄(II)イオンを含む酸性溶液を、活性炭と鉄酸化微生物を含むリアクター内で反応させると、同溶液中の鉄(II)イオンを鉄酸化微生物により鉄(III)イオンに酸化させながら、同時に鉄(III)イオンにより酸化されたヨウ素分を活性炭に吸着させ分離・回収することが可能になることを見出した。本発明はかかる知見により完成されたものである。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that iodide ions and iron (II) ions are leached in the leaching using the iodine content of copper sulfide ore mainly composed of chalcopyrite or arsenite. When the acidic solution containing it is reacted in a reactor containing activated carbon and iron-oxidizing microorganisms, iron (II) ions in the solution are oxidized to iron (III) ions by iron-oxidizing microorganisms, and at the same time by iron (III) ions. It was found that the oxidized iodine content can be adsorbed on activated carbon and separated and recovered. The present invention has been completed based on such findings.

すなわち、本発明は以下の発明を包含する。
(1) ヨウ化物イオンと鉄(II)イオンとを含む酸性溶液を処理するための方法であって、当該溶液中の鉄(II)イオンを鉄酸化微生物により鉄(III)イオンへ酸化させる工程を含み、当該工程を活性炭存在下で行う方法。
(2) 前記酸化によって生じた鉄(III)イオンによってヨウ化物イオンが酸化し、前記ヨウ化物イオンの酸化により生じたヨウ素分子又は/及び三ヨウ化物イオンの活性炭への吸着が並行して行われる前記(1)に記載の方法。
(3) 前記ヨウ化物イオンと鉄(II)イオンとを含む酸性溶液が、ヨウ化物イオンと鉄(III)イオンとを含有する硫酸溶液を浸出液として硫化銅鉱から銅を浸出させる工程で得られた浸出後液である前記(1)又は(2)に記載の方法。
(4) 前記(2)に記載の方法によって得られた処理済酸性溶液から活性炭を除去した後の鉄(III)イオンを含む溶液、及び/又は
前記(2)に記載の方法によって得られた処理済酸性溶液から活性炭を回収後、活性炭に吸着したヨウ素分子及び/又は三ヨウ化物イオンをヨウ化物イオンに還元して活性炭から遊離させることによって得られたヨウ化物イオンを含む溶液を、
硫化銅鉱の浸出液として利用することを含む、硫化銅鉱から銅を浸出させるための方法。
(5)前記酸化が流動床式リアクターで行われ、溶液中において活性炭濃度が、重量比でヨウ素濃度の10倍以上である、前記(1)〜(4)の何れかに記載の処理方法又は浸出方法。
(6) 前記鉄酸化微生物がAcidithiobacillus ferrooxidansであり、前記酸化が大気圧下で行われる、前記(1)〜(5)の何れかに記載の処理方法又は浸出方法。
(7) 前記活性炭に吸着したヨウ素分子及び/又は三ヨウ化物イオンを、亜硫酸イオンを含む溶液を用いて、ヨウ化物イオンに還元して活性炭から遊離させる、前記(2)又は(4)に記載の処理方法又は浸出方法。
That is, the present invention includes the following inventions.
(1) A method for treating an acidic solution containing iodide ions and iron (II) ions, wherein the iron (II) ions in the solution are oxidized to iron (III) ions by an iron-oxidizing microorganism. And performing the step in the presence of activated carbon.
(2) Iodide ions are oxidized by iron (III) ions generated by the oxidation, and iodine molecules and / or triiodide ions generated by oxidation of the iodide ions are adsorbed on activated carbon in parallel. The method according to (1) above.
(3) An acidic solution containing iodide ions and iron (II) ions was obtained in a step of leaching copper from copper sulfide ore using a sulfuric acid solution containing iodide ions and iron (III) ions as a leaching solution. The method according to (1) or (2) above, which is a liquid after leaching.
(4) A solution containing iron (III) ions after removing activated carbon from the treated acidic solution obtained by the method described in (2) above, and / or obtained by the method described in (2) above. After recovering the activated carbon from the treated acidic solution, a solution containing iodide ions obtained by reducing iodine molecules and / or triiodide ions adsorbed on the activated carbon to iodide ions and releasing them from the activated carbon,
A method for leaching copper from a copper sulfide ore comprising using the copper sulfide ore as a leachate.
(5) The treatment method according to any one of (1) to (4), wherein the oxidation is performed in a fluidized bed reactor, and the activated carbon concentration in the solution is 10 times or more the iodine concentration by weight. Leaching method.
(6) The treatment method or leaching method according to any one of (1) to (5), wherein the iron-oxidizing microorganism is Acidithiobacillus ferrooxidans, and the oxidation is performed under atmospheric pressure.
(7) The iodine molecules and / or triiodide ions adsorbed on the activated carbon are reduced to iodide ions by using a solution containing sulfite ions to be released from the activated carbon, as described in (2) or (4) above. Treatment method or leaching method.

本発明の方法によれば、
(1)鉄酸化微生物は鉄(II)イオンから鉄(III)イオンを産生する。産生した鉄(III)イオンがヨウ化物イオン(I-)を酸化して、ヨウ素分子(I2)及び/又は三ヨウ化物イオン(I3 -)を生成する。前記ヨウ素分子又は三ヨウ化物イオンは、鉄酸化微生物にとって毒性が高い。しかし、活性炭を投入することにより、ヨウ素分子(I2)及び/又は三ヨウ化物イオン(I3 -)が活性炭へ吸着する。すなわち同一系内で(i)鉄酸化微生物による鉄(II)イオンの酸化と、(ii)生成した鉄(III)イオンによるヨウ素分の酸化と、(iii)活性炭へのヨウ素分吸着が同時並行に起きる。このことにより効率的な鉄(III)イオン産生とヨウ素分の分離回収が可能となる。
(2)また、上記(1)で説明したメカニズムを通して産生した鉄(III)イオンをヨウ素分を含有する溶液と混合することによって、硫化銅鉱溶解反応の触媒となるヨウ素分子(I2)及び/又は三ヨウ化物イオン(I3 -)が再生されて常に供給される反応系を構築することができる。
本発明とは別の方法として、浸出後液を活性炭によりヨウ素分の回収を行ってから微生物により鉄酸化を行う方法も考えられる。しかし、この場合には、活性炭にヨウ素分を吸着させるために、溶液中に鉄(III)イオンなどの酸化剤を添加してヨウ素分を酸化する必要がある。しかも、微生物毒性を低減するためにヨウ素分に対して重量比で200倍以上の活性炭量が必要である。一方で、本発明においては、鉄酸化処理前に浸出後液に鉄(III)イオンを添加する必要がない。また、本発明においては、ヨウ素分に対して重量比で200倍以上といった大量の活性炭を必要としない。従って、本発明によって低コスト化・プロセス簡略化が可能となる。
(3)活性炭に吸着したヨウ素分は亜硫酸イオンにより溶出させ回収することができる。回収したヨウ素分を浸出液に再利用することで、さらに低コスト・高効率化が可能となる。
(4)黄銅鉱や硫砒銅鉱を含む硫化銅鉱からの銅浸出が常温にて効率よく低コストで実施することができる。
According to the method of the present invention,
(1) Iron-oxidizing microorganisms produce iron (III) ions from iron (II) ions. Producing iron (III) ions are iodide ions - by oxidizing iodine molecule (I 2) and / or tri-iodide ion (I) - to produce a (I 3). The iodine molecule or triiodide ion is highly toxic to iron-oxidizing microorganisms. However, when activated carbon is added, iodine molecules (I 2 ) and / or triiodide ions (I 3 ) are adsorbed onto the activated carbon. That is, (i) oxidation of iron (II) ions by iron-oxidizing microorganisms, (ii) oxidation of iodine by generated iron (III) ions, and (iii) adsorption of iodine to activated carbon in the same system simultaneously Get up to. This makes it possible to produce iron (III) ions efficiently and to separate and recover iodine.
(2) Further, by mixing iron (III) ions produced through the mechanism described in (1) above with a solution containing iodine, iodine molecules (I 2 ) and / or serving as a catalyst for copper sulfide ore dissolution reaction. Alternatively, it is possible to construct a reaction system in which triiodide ions (I 3 ) are regenerated and constantly supplied.
As another method different from the present invention, a method is also conceivable in which the solution after leaching is recovered with iodine by activated carbon and then oxidized with microorganisms. However, in this case, in order to adsorb the iodine content on the activated carbon, it is necessary to oxidize the iodine content by adding an oxidizing agent such as iron (III) ion to the solution. Moreover, in order to reduce microbial toxicity, the amount of activated carbon must be 200 times or more by weight with respect to the iodine content. On the other hand, in the present invention, it is not necessary to add iron (III) ions to the leached solution before the iron oxidation treatment. Further, in the present invention, a large amount of activated carbon having a weight ratio of 200 times or more with respect to the iodine content is not required. Therefore, the present invention enables cost reduction and process simplification.
(3) The iodine content adsorbed on the activated carbon can be recovered by eluting with sulfite ions. By reusing the recovered iodine in the leachate, it is possible to further reduce costs and increase efficiency.
(4) Copper leaching from copper sulfide ores including chalcopyrite and arsenite can be carried out efficiently at low temperatures at a normal temperature.

本発明において活性炭を流動床式リアクター内で使用した場合の処理フローを示す。The processing flow at the time of using activated carbon in a fluidized bed reactor in this invention is shown. ヨウ素濃度が8mg/Lになるように添加した時に、各濃度の活性炭を添加した場合の鉄酸化微生物に対するヨウ素毒性低減効果を示す。The effect of reducing iodine toxicity to iron-oxidizing microorganisms when activated carbon of each concentration is added when the iodine concentration is 8 mg / L. ヨウ素濃度が20mg/Lになるように添加した時に、各濃度の活性炭を添加した場合の鉄酸化微生物に対するヨウ素毒性低減効果を示す。The iodine toxicity reduction effect with respect to an iron oxidation microorganism at the time of adding activated carbon of each density | concentration when adding so that an iodine density | concentration may be 20 mg / L is shown.

本発明の方法はヨウ化物イオンと鉄(II)イオンを含有する酸性溶液の処理方法である。より具体的には、ヨウ化物イオンと鉄(II)イオンとを含有する溶液から鉄(III)イオンを生産する方法である。さらに本発明の方法は、ヨウ素分を分離回収する方法も含む。
本発明は一実施形態において、ヨウ化物イオンと鉄(II)イオンとを含有する酸性溶液中の鉄(II)イオンを鉄酸化微生物を用いて鉄(III)イオンへ酸化する際に、活性炭の存在下で行う。
また、本発明の一実施形態において、ヨウ化物イオンと鉄(II)イオンとを含有する溶液に、活性炭と(例えばAcidithiobacillus ferrooxidansなどの)鉄酸化微生物とを投入して(例えば、鉄酸化リアクターにて好気的に)反応させる。
この反応により、鉄(III)イオンを産生すると同時に、ヨウ化物イオンが鉄(III)イオンにより酸化されてヨウ素分子及び/又は三ヨウ化物イオンが生成する。そして、酸化物のヨウ素分子(I2)及び/又は三ヨウ化物イオン(I3 -)を活性炭に吸着させる。
従って、本発明の利点の一つは、ヨウ素酸化物の鉄酸化微生物に対する毒性を低減して鉄酸化を継続して行うことを可能にするとともに、有価物であるヨウ素分を分離回収することである。
The method of the present invention is a method for treating an acidic solution containing iodide ions and iron (II) ions. More specifically, it is a method for producing iron (III) ions from a solution containing iodide ions and iron (II) ions. Furthermore, the method of the present invention includes a method for separating and recovering iodine.
In one embodiment of the present invention, when oxidizing iron (II) ions in an acidic solution containing iodide ions and iron (II) ions to iron (III) ions using an iron oxidizing microorganism, In the presence.
In one embodiment of the present invention, activated carbon and an iron-oxidizing microorganism (for example, Acidithiobacillus ferrooxidans) are charged into a solution containing iodide ions and iron (II) ions (for example, an iron oxidation reactor). And aerobically).
By this reaction, iron (III) ions are produced, and at the same time, iodide ions are oxidized by iron (III) ions to generate iodine molecules and / or triiodide ions. Then, iodine molecules (I 2 ) and / or triiodide ions (I 3 ) of the oxide are adsorbed on the activated carbon.
Therefore, one of the advantages of the present invention is that the toxicity of iodine oxide to iron-oxidizing microorganisms can be reduced and iron oxidation can be continuously performed, and the valuable iodine content is separated and recovered. is there.

また、本発明の一実施形態において、ヨウ化物イオンと、(例えば、前記ヨウ化物イオンに対して過剰量の)鉄(III)イオンとを含有する硫酸溶液を浸出液として用いて、硫化銅鉱から銅を浸出させる方法に使用される(図1A、a及びe)。具体的には、前記銅浸出工程後に得られる溶液を活性炭と(例えば、Acidithiobacillus ferrooxidans などの)鉄酸化微生物を投入して(例えば、リアクターで好気的に)反応させる(図1D)。即ち、前記溶液中の鉄(II)イオン、もしくは新規に添加した鉄(II)イオン(図1b、例えば硫酸第一鉄)を酸化させながら活性炭によるヨウ素分の除去を同時に行う。その後、鉄酸化微生物を用いて産生した鉄(III)イオンを含む酸性水溶液は、硫化銅鉱の浸出液として利用することができる。或いは、活性炭に吸着後回収したヨウ素分を含む水溶液と混合し、硫化銅鉱の浸出液として利用することができる。   Further, in one embodiment of the present invention, a copper solution from copper sulfide ore is used by using a sulfuric acid solution containing iodide ions and iron (III) ions (for example, in excess of the iodide ions) as a leachate. Is used in the method of leaching (FIGS. 1A, a and e). Specifically, the solution obtained after the copper leaching step is reacted with activated carbon and an iron-oxidizing microorganism (for example, Acidithiobacillus ferrooxidans) (for example, aerobically in a reactor) (FIG. 1D). That is, while the iron (II) ion in the solution or the newly added iron (II) ion (FIG. 1b, for example, ferrous sulfate) is oxidized, the iodine content is simultaneously removed by activated carbon. Thereafter, the acidic aqueous solution containing iron (III) ions produced by using iron-oxidizing microorganisms can be used as a leachate of copper sulfide ore. Or it can mix with the aqueous solution containing the iodine content collect | recovered after adsorption | suction to activated carbon, and it can utilize as a leaching solution of a copper sulfide ore.

本発明の方法で用いる硫化銅鉱は、黄銅鉱または硫砒銅鉱を含有する。また、前記硫化銅鉱は、黄銅鉱または硫砒銅鉱を主成分とする硫化銅鉱であってもよい。あるいは、前記硫化銅鉱は、黄銅鉱または硫砒銅鉱を一部に含有する硫化銅鉱であってもよい。その含量は特に限定はされないが、本発明の方法による銅浸出効果が十分に得られる点で、本発明の方法で用いる硫化銅鉱は、黄銅鉱や硫砒銅鉱を主成分とする硫化銅鉱であることが好ましい。   The copper sulfide ore used in the method of the present invention contains chalcopyrite or arsenite. The copper sulfide ore may be a copper sulfide ore mainly composed of chalcopyrite or arsenite. Alternatively, the copper sulfide ore may be a copper sulfide ore partially containing chalcopyrite or arsenite. The content thereof is not particularly limited, but the copper sulfide ore used in the method of the present invention is a copper sulfide ore mainly composed of chalcopyrite or arsenousite in that the copper leaching effect by the method of the present invention is sufficiently obtained. Is preferred.

本発明の方法は、硫酸溶液を浸出液とする銅の湿式製錬であれば、いずれの浸出形態にも用いることができる。例えば、前記浸出形態は、回分攪拌浸出のみならず、鉱石を堆積させた上から硫酸を散布して、銅を硫酸中に浸出させる、ヒープリーチングまたはダンプリーチングのいずれであってもよい。
また、浸出の温度は特に規定しないが、特に加熱などは必要とせず、常温での浸出が可能である。
The method of the present invention can be used in any leaching form as long as it is a copper smelting process using a sulfuric acid solution as a leaching solution. For example, the leaching mode may be not only batch agitation leaching but also heap leaching or dump leaching in which copper is leached into sulfuric acid by spreading sulfuric acid after depositing ore.
Further, the temperature of leaching is not particularly specified, but heating is not particularly required, and leaching at room temperature is possible.

本発明の方法による硫化銅鉱の溶解・浸出は、下記(式1)と(式2)に示す一連のヨウ素分による触媒反応によって進行すると考えられる。   It is considered that the dissolution / leaching of copper sulfide ore by the method of the present invention proceeds by a catalytic reaction with a series of iodine contents shown in the following (formula 1) and (formula 2).

2I-+2Fe3+→I2+2Fe2+(式1)2I + 2Fe 3+ → I 2 + 2Fe 2+ (Formula 1)

CuFeS2+I2+2Fe3+→Cu2++3Fe2++2S+2I-(式2)CuFeS 2 + I 2 + 2Fe 3+ → Cu 2+ + 3Fe 2+ + 2S + 2I (Formula 2)

上記(式1)と(式2)の両辺の和をとりヨウ素成分を消去すると下記(式3)となり、従来提唱されている硫化銅鉱に対する鉄(III)イオンを酸化剤として用いた浸出反応であることがわかる。   When the sum of both sides of (Equation 1) and (Equation 2) above is taken and the iodine component is eliminated, the following (Equation 3) is obtained, which is a leaching reaction using iron (III) ions as an oxidizing agent for copper sulfide ore conventionally proposed. I know that there is.

CuFeS2+4Fe3+→Cu2++5Fe2++2S(式3)CuFeS 2 + 4Fe 3+ → Cu 2+ + 5Fe 2+ + 2S (Formula 3)

まず、式(1)の反応において、浸出液に添加したヨウ化物イオン(I-)が鉄(III) イオン(Fe3+)により酸化されてヨウ素分子(I2)が生成する。
また、式(1)の反応で生じたヨウ素分子(I2)が、残存するヨウ化物イオン(I-)と反応することによって三ヨウ化物イオン(I3 -)も浸出液内に生成する。
このとき浸出液中のヨウ素濃度は反応形態や対象となる硫化銅鉱の種類・形状・銅品位などにより適宜決めることができる(なお本明細書中の「ヨウ素濃度」は、I2のみならずI-、I3 -等のあらゆる状態を含めた、総ヨウ素濃度を意味する)。しかし、前記ヨウ素濃度は特開2010-24511号に示した100mg/Lから300mg/Lもしくは特開2011-42858号に示した8mg/Lから100mg/Lが好ましい。
First, in the reaction of the formula (1), iodide ions (I ) added to the leachate are oxidized by iron (III) ions (Fe 3+ ) to generate iodine molecules (I 2 ).
Further, the iodine molecule (I 2 ) generated by the reaction of the formula (1) reacts with the remaining iodide ion (I ), so that triiodide ion (I 3 ) is also generated in the leachate.
At this time the iodine concentration in the leaching solution can be appropriately determined by the kind, shape, copper grade of sulfide ore to be reactive form and subject (Note "iodine concentration" herein includes not only I 2 I - , I 3 -, including any condition such as, means the total iodine concentration). However, the iodine concentration is preferably 100 mg / L to 300 mg / L shown in JP2010-24511 or 8 mg / L to 100 mg / L shown in JP2011-42858.

また(式3)に示すとおり、黄銅鉱浸出には、黄銅鉱(CuFeS2)に対応する量の酸化剤としての鉄(III)イオンの供給が必要である。そして、連続的な黄銅鉱の浸出のためには、連続的な酸化剤としての鉄(III)イオンの供給が必要となる。しかし、ヨウ素分は微生物に対して強い毒性を有している。
特に鉄酸化微生物を利用する場合、微生物に強い毒性を示さないヨウ化物イオンも産生する鉄(III)イオンによって酸化され、微生物に対して毒性の強いヨウ素分子(I2)もしくは三ヨウ化物イオン(I3 -)に変換される。従って、溶液中のヨウ化物イオン濃度が1ppmしか存在しない場合でも、鉄酸化微生物を用いて酸化し鉄(III)イオンを産生させることが困難なことを見出した。
本発明の典型的な実施形態においては、活性炭と鉄酸化微生物とを同一反応系内で浸出後液に投入することを行う。当該投入により、浸出後液から鉄酸化微生物に対して強い毒性を示すヨウ素分を除去しつつ、同一系内において鉄酸化微生物による鉄(III)イオンを産生することが可能となる。
Moreover, as shown in (Formula 3), the leaching of chalcopyrite requires the supply of iron (III) ions as an oxidizing agent in an amount corresponding to chalcopyrite (CuFeS 2 ). For continuous chalcopyrite leaching, it is necessary to supply iron (III) ions as a continuous oxidizing agent. However, iodine content is highly toxic to microorganisms.
Particularly when iron-oxidizing microorganisms are used, iodine molecules (I 2 ) or triiodide ions (I 2 ) or triiodide ions (I 2 ) or triiodide ions that are oxidized by iron (III) ions that also produce iodide ions that are not highly toxic to microorganisms. I 3 ). Therefore, it has been found that even when the iodide ion concentration in the solution is only 1 ppm, it is difficult to produce iron (III) ions by oxidation using an iron-oxidizing microorganism.
In a typical embodiment of the present invention, the activated carbon and the iron-oxidizing microorganism are introduced into the solution after leaching in the same reaction system. By this input, it is possible to produce iron (III) ions by the iron-oxidizing microorganism in the same system while removing iodine that is highly toxic to the iron-oxidizing microorganism from the leached solution.

本発明では、銅浸出工程後に得られる溶液中の鉄(II)イオンの酸化とヨウ素分の活性炭への吸着は、活性炭と鉄酸化微生物を含む流動床式リアクターで並行して行われるのが好ましい(図1D)。また、活性炭濃度が、当該投入前の溶液中ヨウ素濃度に対して重量比で10倍以上であることが好ましく、13倍以上であることがさらに好ましい。また、活性炭濃度の上限については、特に限定しないが、コスト等の観点から、例えば重量比で1000倍以下、典型的には700倍以下又は150倍以下である。
また、ヨウ素分を除去するための材料は疎水性相互作用によりヨウ素分を吸着する能力を有する材料が好ましい。
従って、活性炭以外の疎水性表面を有する固体、例えばコークスや疎水性樹脂などの利用も可能である。しかし、比表面積が高く、ヨウ素分除去能も高いため、活性炭が特に優れている。
In the present invention, the oxidation of iron (II) ions in the solution obtained after the copper leaching step and the adsorption of iodine to the activated carbon are preferably performed in parallel in a fluidized bed reactor containing activated carbon and iron-oxidizing microorganisms. (FIG. 1D). In addition, the activated carbon concentration is preferably 10 times or more, more preferably 13 times or more by weight ratio with respect to the iodine concentration in the solution before charging. Moreover, although it does not specifically limit about the upper limit of activated carbon density | concentration, From viewpoints, such as cost, it is 1000 times or less by weight ratio, for example, typically 700 times or less or 150 times or less.
The material for removing iodine is preferably a material having the ability to adsorb iodine by hydrophobic interaction.
Therefore, it is also possible to use a solid having a hydrophobic surface other than activated carbon, such as coke or hydrophobic resin. However, activated carbon is particularly excellent because of its high specific surface area and high iodine content removal ability.

本発明に用いる活性炭の種類・原料等は特に規定しない。しかし、表面積が大きく、かつ液相中での利用に適し、かつ安定性に優れた活性炭が好ましい。また、活性炭の形状は粒状もしくは球状が好ましい。例えば太平化学産業製ヤシコールMc、日本エンバイロケミカルズ製白鷺 X7000H などが使用可能である。   The type and raw material of activated carbon used in the present invention are not particularly defined. However, activated carbon having a large surface area, suitable for use in a liquid phase and excellent in stability is preferred. Moreover, the shape of activated carbon is preferably granular or spherical. For example, Taihei Chemical Industry's palm coal Mc, Nihon Enviro Chemicals white birch X7000H can be used.

また本発明の対象となる溶液中の鉄(II)イオン濃度は、特に規定しない。しかし、鉄酸化微生物の生育が良好となる範囲として0.2g/Lから10g/Lの範囲が好ましい。前記鉄(II)イオンの濃度範囲は、硫化銅鉱からの浸出後液中の鉄(II)イオン濃度としても適当である。また、前記鉄(II)イオンの濃度範囲は、産生する鉄(III)イオンを含む溶液をヨウ素分含有溶液と混合して硫化銅鉱の浸出液として利用するために必要な鉄(II)イオン濃度としても適当である。
また本発明の対象となる溶液中のヨウ素濃度も特に規定しない。しかし、活性炭無添加時に鉄酸化微生物の生育阻害を示す濃度の場合にはじめて本発明の効果が発揮できる。そして、生育阻害を示す濃度はおおむね0.5mg/L以上である。
Moreover, the iron (II) ion concentration in the solution which is the subject of the present invention is not particularly specified. However, a range of 0.2 g / L to 10 g / L is preferable as a range in which the growth of the iron-oxidizing microorganism is good. The concentration range of the iron (II) ions is also suitable as the concentration of iron (II) ions in the solution after leaching from the copper sulfide ore. The concentration range of iron (II) ions is the concentration of iron (II) ions necessary for mixing a solution containing iron (III) ions to be produced with an iodine-containing solution and using it as a leachate of copper sulfide ore. Is also appropriate.
Moreover, the iodine concentration in the solution which is the subject of the present invention is not particularly specified. However, the effect of the present invention can be exerted only when the concentration shows the growth inhibition of iron-oxidizing microorganisms when no activated carbon is added. And the density | concentration which shows growth inhibition is 0.5 mg / L or more in general.

また、活性炭に吸着したヨウ素分は薬液・加熱・燃焼処理などにより回収して再利用することも可能である。特に、本発明ではヨウ素分(例えばヨウ素分子及び/又は三ヨウ化物イオン)が吸着した活性炭を、亜硫酸イオンを含む溶液で処理、溶出させることにより、活性炭に吸着したヨウ素分をヨウ化物イオン(I-)に還元して遊離させることができる(図1c)。そして、ヨウ化物イオン(I-)を含んだ溶液を、硫化銅鉱の浸出に再利用することができる。或いはヨウ化物イオン(I-)を含んだ溶液を、鉄(III)イオンを含んだ酸性溶液(図1a)と混和し再び硫化銅鉱の浸出に再利用することができる(図1e)。無論、再利用する際には新たなヨウ化物イオン含有溶液を補充してもよい(図1d)。
このとき溶出させるヨウ素分に対して、重量比で1倍から100倍の亜硫酸イオンを含む溶液を用いてヨウ素分を回収することが好ましい。そして、33倍〜100倍の亜硫酸イオンを含む溶液を用いることが更に好ましい。
Further, the iodine content adsorbed on the activated carbon can be recovered and reused by chemicals, heating, combustion treatment, and the like. In particular, in the present invention, the activated carbon adsorbed with iodine content (for example, iodine molecules and / or triiodide ions) is treated and eluted with a solution containing sulfite ions, so that the iodine content adsorbed on the activated carbon is reduced to iodide ions (I - ) Can be reduced and released (FIG. 1c). A solution containing iodide ions (I ) can be reused for leaching copper sulfide ore. Alternatively, a solution containing iodide ions (I ) can be mixed with an acidic solution containing iron (III) ions (FIG. 1a) and reused for copper sulfide ore leaching again (FIG. 1e). Of course, a new iodide ion-containing solution may be replenished when reused (FIG. 1d).
It is preferable to collect | recover iodine content using the solution containing 1 to 100 times sulfite ion by weight ratio with respect to the iodine content eluted at this time. It is more preferable to use a solution containing 33 to 100 times sulfite ions.

銅浸出工程後の溶液から銅を回収(図1B、C及びf)する際には、一般に銅を選択的に抽出する抽出剤を用いる溶媒抽出法が用いられる。まれにセメンテーション法が用いられる。
これらの方法については本発明におけるヨウ素分回収・鉄酸化工程(図1D)の前段・後段等どの段階でも実施可能である。
溶媒抽出工程も含めた本発明のプロセスフローの一例を図1に示す。図1は活性炭と鉄酸化微生物を用いた流動式リアクターの一例である。プロセスは図1に示すような直列的なフローに限る必要はなく、銅抽出工程もしくはヨウ素分回収・鉄酸化工程をバイパスさせて並列的に設置することも可能である。
実際には、抽出剤の微生物毒性などの影響を考慮し、最適なプロセスフローを適用すればよい。
When copper is recovered from the solution after the copper leaching step (FIGS. 1B, C and f), generally a solvent extraction method using an extractant that selectively extracts copper is used. In rare cases, cementation is used.
These methods can be carried out at any stage, such as before or after the iodine recovery / iron oxidation process (FIG. 1D) in the present invention.
An example of the process flow of the present invention including the solvent extraction step is shown in FIG. FIG. 1 is an example of a fluidized reactor using activated carbon and iron-oxidizing microorganisms. The process need not be limited to a serial flow as shown in FIG. 1, and can be installed in parallel by bypassing the copper extraction step or iodine content recovery / iron oxidation step.
In practice, an optimum process flow may be applied in consideration of the influence of the extractant such as microbial toxicity.

本発明において用いる鉄酸化微生物としては、鉄酸化能を有していればその種属を限定しない。具体的にはAcidithiobacillus ferrooxidans;Acidimicrobium ferrooxidans;Leptosprillum属に属する微生物;Ferroplasma属に属する微生物;もしくはAcidiplasma属に属する微生物などが利用できる。
その中でも Acidithiobacillus ferrooxidans は常温常圧での鉄酸化が可能なため本発明に好ましい。その一例として、Acidithiobacillus ferrooxidans FTH6B が利用できる。前記FTH6Bは、独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託番号NITE BP-780として寄託されている。
The iron-oxidizing microorganism used in the present invention is not limited in its species as long as it has iron-oxidizing ability. Specifically, Acidithiobacillus ferrooxidans; Acidimicrobium ferrooxidans; microorganisms belonging to the genus Leptosprillum; microorganisms belonging to the genus Ferroplasma; or microorganisms belonging to the genus Acidiplasma can be used.
Among them, Acidithiobacillus ferrooxidans is preferable for the present invention because it can oxidize iron at normal temperature and pressure. As an example, Acidithiobacillus ferrooxidans FTH6B can be used. The FTH6B has been deposited at the National Institute of Technology and Evaluation Patent Microorganisms Deposit Center under the deposit number NITE BP-780.

また鉄酸化反応時の温度・圧力についても、それぞれの微生物に適した条件を使用すればよい。
上記 Acidithiobacillus ferrooxidans を利用する場合には、大気圧下で実施することが望ましい。また、温度については、20〜40℃の範囲で実施することが望ましい。
Moreover, what is necessary is just to use the conditions suitable for each microorganism also about the temperature and pressure at the time of iron oxidation reaction.
When using the above Acidithiobacillus ferrooxidans, it is desirable to carry out under atmospheric pressure. Moreover, about temperature, it is desirable to implement in the range of 20-40 degreeC.

以下、実施例により本発明をさらに具体的に説明する。但し、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these.

(実施例1)ヨウ化物イオンおよび鉄(II)イオンを含む溶液中の活性炭共存下での鉄酸化微生物による鉄(III)イオンの産生。
(1)硫酸を用いて溶液のpHを2.0に調整した、以下の組成の溶液25mLを三角フラスコ(50mL容量)に分取した。

Fe2+ 6g/L
(NH42SO4 3g/L
2HPO4 0.1g/L
MgSO4 0.4g/L
Ca(NO32 0.01g/L


(2)ヨウ化カリウム(KI)および活性炭(太平化学産業製ヤシコールMc)を下記表1の条件になるように添加した。
(3)軽く攪拌した後、鉄酸化微生物FTH6Bを菌濃度2.5×106cells/mLになるよう添加した。
(4)これらを温度 30℃、大気圧下で緩やかに振とうし、鉄酸化微生物による鉄酸化を促した。
(Example 1) Production of iron (III) ions by iron-oxidizing microorganisms in the presence of activated carbon in a solution containing iodide ions and iron (II) ions.
(1) 25 mL of a solution having the following composition, adjusted to pH 2.0 with sulfuric acid, was dispensed into an Erlenmeyer flask (50 mL capacity).

Fe 2+ 6g / L
(NH 4 ) 2 SO 4 3 g / L
K 2 HPO 4 0.1 g / L
MgSO 4 0.4 g / L
Ca (NO 3 ) 2 0.01 g / L


(2) Potassium iodide (KI) and activated carbon (Yaikol Mc, manufactured by Taihei Chemical Industrial Co., Ltd.) were added so as to satisfy the conditions shown in Table 1 below.
(3) After lightly stirring, the iron-oxidizing microorganism FTH6B was added to a bacterial concentration of 2.5 × 10 6 cells / mL.
(4) These were gently shaken at a temperature of 30 ° C. and atmospheric pressure to promote iron oxidation by iron-oxidizing microorganisms.

各条件での微生物処理後液中の鉄(II)イオン濃度を二クロム酸カリウムによる酸化還元滴定法で測定した。鉄(II)イオン及び鉄(III)イオンを含む全鉄イオン濃度をICP発光分光分析装置(ICP−AES)で測定した。全鉄イオン濃度と鉄(II)イオン濃度の差を鉄(III)イオン濃度として算出した。
鉄(III)イオン濃度の経時変化を図2、3に示す。
図2のグラフにおいて、処理条件Aは、ヨウ素分を含まない溶液中の鉄酸化細菌による鉄酸化を示す。一方、処理条件Bは、ヨウ素濃度8mg/Lの溶液中の鉄酸化細菌による鉄酸化を示す。処理条件A及びBを比べると、ヨウ素分の存在により、鉄酸化細菌による鉄酸化が著しく抑制されることが示された。
また、処理条件C〜Gは、処理条件Bの溶液にさらに活性炭を0.01g/L〜5g/Lの範囲で添加したときの鉄酸化細菌による鉄酸化を示す。処理条件A〜Bと処理条件C〜Gとを比べると、活性炭の添加により鉄酸化が回復することが示された。特にヨウ素濃度に対する活性炭量濃度が重量比で13倍以上の場合(処理条件D〜G)、鉄酸化が著しく回復することが示された。
図3のグラフにおいて、処理条件Hは、ヨウ素濃度20mg/Lの溶液中の鉄酸化細菌による鉄酸化を示す。また、処理条件I〜Mは、処理条件Hの溶液にさらに活性炭を0.01g/L〜5g/Lの範囲で添加したときの鉄酸化細菌による鉄酸化を示す。処理条件Hと処理条件I〜Mを比べると、活性炭の添加により鉄酸化が回復することが示された。特にヨウ素濃度に対する活性炭量濃度が重量比で25倍以上の場合(処理条件K〜M)、鉄酸化が著しく回復することが示された。
また、微生物処理後の溶液中のヨウ素濃度をICP質量分析装置(ICP-MS)を用いて測定した結果、表 1 の通りとなっており、活性炭を添加した条件では、ヨウ素分はほとんど液中には存在せず、活性炭に吸着されていた。
The iron (II) ion concentration in the solution after microbial treatment under each condition was measured by a redox titration method using potassium dichromate. The total iron ion concentration including iron (II) ions and iron (III) ions was measured with an ICP emission spectroscopic analyzer (ICP-AES). The difference between the total iron ion concentration and the iron (II) ion concentration was calculated as the iron (III) ion concentration.
The change with time of the iron (III) ion concentration is shown in FIGS.
In the graph of FIG. 2, treatment condition A indicates iron oxidation by iron-oxidizing bacteria in a solution that does not contain iodine. On the other hand, treatment condition B shows iron oxidation by iron-oxidizing bacteria in a solution with an iodine concentration of 8 mg / L. Comparing treatment conditions A and B, it was shown that iron oxidation by iron-oxidizing bacteria was remarkably suppressed by the presence of iodine content.
Treatment conditions C to G show iron oxidation by iron-oxidizing bacteria when activated carbon is further added to the solution of treatment condition B in the range of 0.01 g / L to 5 g / L. Comparing treatment conditions AB with treatment conditions C-G, it was shown that iron oxidation was restored by the addition of activated carbon. In particular, when the amount of activated carbon with respect to the iodine concentration was 13 times or more by weight (treatment conditions D to G), it was shown that iron oxidation was significantly recovered.
In the graph of FIG. 3, treatment condition H indicates iron oxidation by iron-oxidizing bacteria in a solution having an iodine concentration of 20 mg / L. Treatment conditions I to M represent iron oxidation by iron-oxidizing bacteria when activated carbon is further added to the solution of treatment condition H in the range of 0.01 g / L to 5 g / L. Comparison of treatment conditions H and treatment conditions I to M showed that iron oxidation was recovered by addition of activated carbon. In particular, when the amount of activated carbon relative to the iodine concentration was 25 times or more by weight (treatment conditions K to M), it was shown that iron oxidation was significantly recovered.
In addition, the iodine concentration in the solution after microbial treatment was measured using an ICP mass spectrometer (ICP-MS). As a result, it was as shown in Table 1. Under the condition where activated carbon was added, the iodine content was almost in the liquid. Was not adsorbed by the activated carbon.

Figure 0005711225
Figure 0005711225

図2及び図3の結果から、ヨウ化物イオンと、鉄(II)イオンとを含有する酸性溶液を、活性炭および鉄酸化微生物を含むリアクター内で反応させることにより、同溶液中の鉄(II)イオンを鉄酸化微生物により鉄(III)イオンに酸化させることが可能となることが示された。さらに、表1の結果から鉄(III)イオンにより酸化されたヨウ素分を活性炭に吸着させて分離・回収することが可能となることが示された。   From the results of FIG. 2 and FIG. 3, by reacting an acidic solution containing iodide ions and iron (II) ions in a reactor containing activated carbon and iron-oxidizing microorganisms, iron (II) in the same solution is obtained. It has been shown that ions can be oxidized to iron (III) ions by iron-oxidizing microorganisms. Furthermore, the results shown in Table 1 indicate that iodine oxidized by iron (III) ions can be adsorbed on activated carbon and separated and recovered.

(実施例2)ヨウ化物イオンおよび鉄(II)イオンを含む溶液中の活性炭共存下での活性炭に吸着したヨウ素分の回収
(1) 鉄(II)イオン6g/Lを含む実施例1(1)と同じ組成の溶液300mLを容量500mLの坂口フラスコに添加した。
(2)ヨウ化カリウムを25mg/L、活性炭を1g/Lとなるよう添加した。
(3)軽く攪拌した後、鉄酸化微生物FTH6Bを菌濃度2×107cells/mLになるよう添加した。
(Example 2) Recovery of iodine content adsorbed on activated carbon in the presence of activated carbon in a solution containing iodide ion and iron (II) ion (1) Example 1 (1) containing 6 g / L of iron (II) ion ) Was added to a 500 mL Sakaguchi flask.
(2) Potassium iodide was added at 25 mg / L and activated carbon at 1 g / L.
(3) After lightly stirring, the iron-oxidizing microorganism FTH6B was added to a bacterial concentration of 2 × 10 7 cells / mL.

(4) これら温度30℃、大気圧下で緩やかに振とうし、鉄酸化微生物による鉄酸化を促した。
(5)微生物処理後液をろ過し、活性炭を含む沈殿を回収した。
(6)回収した沈殿に、24mM亜硫酸水100mL(2g/L、ヨウ素分に対して重量で33倍)を加えた。
(7)1時間常温で撹拌したのち、溶出したヨウ素分をヨウ素電極を用いて特願2009−245771に示した方法に従い定量した。具体的には亜鉛粉末を適量添加することによって、ヨウ素分子及び三ヨウ化物イオンとして存在するヨウ素分を全てヨウ化物イオンに還元した後、ヨウ素電極を用いて測定した。
その結果、ヨウ素濃度は32mg/Lであり、ヨウ素分が溶出していることを確認した。この実施例によりヨウ化物イオンと、鉄(II)イオンとを含有する酸性溶液を、活性炭および鉄酸化微生物を含むリアクター内で反応させることにより、活性炭にヨウ素分を吸着させ、活性炭を回収後、亜硫酸で活性炭を処理することにより活性炭に吸着したヨウ素分を溶液中に回収できることが示された。
(4) The mixture was gently shaken at 30 ° C. and atmospheric pressure to promote iron oxidation by the iron-oxidizing microorganism.
(5) The solution after microbial treatment was filtered to recover a precipitate containing activated carbon.
(6) To the recovered precipitate, 100 mL of 24 mM sulfite water (2 g / L, 33 times by weight with respect to iodine content) was added.
(7) After stirring at room temperature for 1 hour, the eluted iodine content was quantified using an iodine electrode in accordance with the method described in Japanese Patent Application No. 2009-245771. Specifically, by adding an appropriate amount of zinc powder, iodine content existing as iodine molecules and triiodide ions were all reduced to iodide ions, and then measured using an iodine electrode.
As a result, the iodine concentration was 32 mg / L, and it was confirmed that the iodine content was eluted. By reacting an acidic solution containing iodide ions and iron (II) ions in a reactor containing activated carbon and iron-oxidizing microorganisms according to this example, the activated carbon is adsorbed with iodine, and the activated carbon is recovered. It was shown that the iodine content adsorbed on the activated carbon can be recovered in the solution by treating the activated carbon with sulfurous acid.

また実施例1、2の結果から、鉄(II)イオンとヨウ化物イオンを含む溶液から、鉄(III)イオンを含む水溶液、ヨウ化物イオンを含む水溶液をそれぞれ調製することが可能であることが示された。さらに、それらを適当な濃度に調製して混合した溶液を硫化銅鉱の浸出に用いれば、硫化銅鉱からの銅の浸出を促進させることが可能となることも示された。   From the results of Examples 1 and 2, it is possible to prepare an aqueous solution containing iron (III) ions and an aqueous solution containing iodide ions from a solution containing iron (II) ions and iodide ions, respectively. Indicated. Furthermore, it has been shown that if a solution prepared by mixing them in an appropriate concentration and mixed is used for leaching of copper sulfide ore, leaching of copper from the copper sulfide ore can be promoted.

Claims (7)

ヨウ化物イオンと鉄(II)イオンとを含む酸性溶液を処理するための方法であって、当該溶液中の鉄(II)イオンを鉄酸化微生物により鉄(III)イオンへ酸化させる工程を含み、当該工程を活性炭存在下で行う方法。   A method for treating an acidic solution containing iodide ions and iron (II) ions, comprising oxidizing iron (II) ions in the solution to iron (III) ions by an iron-oxidizing microorganism. A method of performing the step in the presence of activated carbon. 前記酸化によって生じた鉄(III)イオンによってヨウ化物イオンが酸化し、前記ヨウ化物イオンの酸化により生じたヨウ素分子又は/及び三ヨウ化物イオンの活性炭への吸着が並行して行われる請求項1に記載の方法。   2. Iodide ions are oxidized by iron (III) ions generated by the oxidation, and iodine molecules and / or triiodide ions generated by oxidation of the iodide ions are adsorbed on activated carbon in parallel. The method described in 1. 前記ヨウ化物イオンと鉄(II)イオンとを含む酸性溶液が、ヨウ化物イオンと鉄(III)イオンとを含有する硫酸溶液を浸出液として硫化銅鉱から銅を浸出させる工程で得られた浸出後液である請求項1又は2に記載の方法。   The post-leaching solution obtained in the step of leaching copper from the copper sulfide ore, wherein the acidic solution containing iodide ions and iron (II) ions is a sulfuric acid solution containing iodide ions and iron (III) ions. The method according to claim 1 or 2. 請求項2に記載の方法によって得られた処理済酸性溶液から活性炭を除去した後の鉄(III)イオンを含む溶液、及び/又は
請求項2に記載の方法によって得られた処理済酸性溶液から活性炭を回収後、活性炭に吸着したヨウ素分子及び/又は三ヨウ化物イオンをヨウ化物イオンに還元して活性炭から遊離させることによって得られたヨウ化物イオンを含む溶液を、
硫化銅鉱の浸出液として利用することを含む、硫化銅鉱から銅を浸出させるための方法。
A solution containing iron (III) ions after removing activated carbon from the treated acidic solution obtained by the method according to claim 2, and / or a treated acidic solution obtained by the method according to claim 2. After recovering the activated carbon, a solution containing iodide ions obtained by reducing iodine molecules adsorbed on the activated carbon and / or triiodide ions to iodide ions and releasing them from the activated carbon,
A method for leaching copper from a copper sulfide ore comprising using the copper sulfide ore as a leachate.
前記酸化が流動床式リアクターで行われ、溶液中において活性炭濃度が、重量比でヨウ素濃度の10倍以上である、請求項1〜4の何れかに記載の処理方法又は浸出方法。   The treatment method or leaching method according to any one of claims 1 to 4, wherein the oxidation is performed in a fluidized bed reactor, and the activated carbon concentration in the solution is 10 times or more the iodine concentration by weight. 前記鉄酸化微生物がAcidithiobacillus ferrooxidansであり、前記酸化が大気圧下で行われる、請求項1〜5の何れかに記載の処理方法又は浸出方法。   The treatment method or leaching method according to any one of claims 1 to 5, wherein the iron-oxidizing microorganism is Acidibiobacillus ferrooxidans, and the oxidation is performed under atmospheric pressure. 前記活性炭に吸着したヨウ素分子及び/又は三ヨウ化物イオンを、亜硫酸イオンを含む溶液を用いて、ヨウ化物イオンに還元して活性炭から遊離させる、請求項2又は4に記載の処理方法又は浸出方法。   The treatment method or leaching method according to claim 2 or 4, wherein iodine molecules and / or triiodide ions adsorbed on the activated carbon are reduced to iodide ions by using a solution containing sulfite ions to be released from the activated carbon. .
JP2012515930A 2010-05-19 2011-05-19 Method for treating acidic solution containing iodide ion and iron ion Active JP5711225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012515930A JP5711225B2 (en) 2010-05-19 2011-05-19 Method for treating acidic solution containing iodide ion and iron ion

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010128300 2010-05-19
JP2010128300 2010-05-19
PCT/JP2011/061547 WO2011145688A1 (en) 2010-05-19 2011-05-19 Method for processing acidic solution that contains iodide ions and iron ions
JP2012515930A JP5711225B2 (en) 2010-05-19 2011-05-19 Method for treating acidic solution containing iodide ion and iron ion

Publications (2)

Publication Number Publication Date
JPWO2011145688A1 JPWO2011145688A1 (en) 2013-07-22
JP5711225B2 true JP5711225B2 (en) 2015-04-30

Family

ID=44991779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012515930A Active JP5711225B2 (en) 2010-05-19 2011-05-19 Method for treating acidic solution containing iodide ion and iron ion

Country Status (5)

Country Link
US (1) US8865119B2 (en)
JP (1) JP5711225B2 (en)
AU (1) AU2011255908B2 (en)
CL (1) CL2012003214A1 (en)
WO (1) WO2011145688A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11946116B2 (en) 2017-12-27 2024-04-02 Jx Metals Corporation Method for recovering Cu and method of preparing electrolytic copper

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5296126B2 (en) 2011-03-14 2013-09-25 Jx日鉱日石金属株式会社 Method for oxidizing acidic solution containing iodide ion and iron (II) ion
JP2012251912A (en) * 2011-06-03 2012-12-20 Kaneka Corp Method for removing and adsorbing iodide ion
CN104109765B (en) * 2013-04-17 2015-11-18 中国科学院过程工程研究所 A kind of secondary copper sulfide mineral two sections of heap bioleaching process
CN103626255B (en) * 2013-12-12 2015-02-18 北京师范大学 Adsorption-regeneration fluidized bed for deeply treating wastewater of coal chemical industry
CN104017997B (en) * 2014-06-09 2016-05-04 江西理工大学 Copper founding scum silica frost biological dump leaching reclaims process for copper
JP6437352B2 (en) * 2015-03-13 2018-12-12 Jx金属株式会社 Methods for leaching copper from copper sulfide ores and for evaluating iodine loss in column leaching tests for copper sulfide ores
JP6431213B2 (en) 2015-04-17 2018-11-28 ザ ユニバーシティ オブ ブリティッシュ コロンビアThe University Of British Columbia Leaching of metal sulfides with reagents having thiocarbonyl functionality
CA3052572C (en) 2016-10-19 2020-08-04 The University Of British Columbia Process for leaching metal sulfides with reagents having thiocarbonyl functional groups
FR3062124B1 (en) 2017-01-25 2021-01-22 Institut National De Recherche En Sciences Et Tech Pour Lenvironnement Et Lagriculture Irstea PROCESS FOR RECOVERING IRON FROM SLUDGE FROM A WASTEWATER TREATMENT STATION AND ITS USE FOR RECYCLING IN PARTICULAR FERRIC CHLORIDE
CN110776077B (en) * 2019-10-18 2020-08-14 华中科技大学 Pollutant treatment method based on glucose-derived carbon material activated sulfite
CN117402624A (en) * 2023-10-18 2024-01-16 中国农业科学院农业环境与可持续发展研究所 Iron-based biochar microorganism modification method for soil water retention

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253523A (en) * 1996-03-21 1997-09-30 Central Res Inst Of Electric Power Ind Selecting method by adsorption of microorganism to mineral
JPH10265864A (en) * 1997-03-27 1998-10-06 Nikko Kinzoku Kk Method for leaching copper from copper sulfide ore by using bacteria
JPH10273742A (en) * 1997-03-31 1998-10-13 Sumitomo Metal Mining Co Ltd Method for leaching out nickel from sulfide ore
JP2003073752A (en) * 2001-08-27 2003-03-12 Mitsui Mining & Smelting Co Ltd Method for leaching pyrite containing chalcopyrite
JP2009228094A (en) * 2008-03-25 2009-10-08 Nippon Mining & Metals Co Ltd Method for leaching copper-sulfide ore using mixed bacteria
JP2009228109A (en) * 2008-03-25 2009-10-08 Nippon Mining & Metals Co Ltd Method for leaching copper-sulfide ore containing chalcopyrite
JP2010024511A (en) * 2008-07-23 2010-02-04 Nippon Mining & Metals Co Ltd Method for leaching copper sulfide ore using iodine
JP2011190520A (en) * 2010-03-17 2011-09-29 Jx Nippon Mining & Metals Corp Method for leaching copper sulfide ore

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553870A (en) 1978-06-27 1980-01-11 Nippon Tennen Gas Kogyo Kk Sulfurous acid method for eluting iodine
JPS59162285A (en) 1983-03-04 1984-09-13 Asahi Chem Ind Co Ltd Method for electrolyzing salt by ion exchange membrane method
FR2692879B1 (en) 1992-06-26 1994-12-02 Atochem Elf Sa Process for the purification of an aqueous solution of alkali metal chloride to remove iodine.
US5914441A (en) * 1996-06-12 1999-06-22 Yellowstone Environmental Science, Inc. Biocatalyzed anaerobic oxidation of metal sulfides for recovery of metal values
JP4950257B2 (en) 2009-08-24 2012-06-13 Jx日鉱日石金属株式会社 Method for leaching copper laminates from copper sulfide ores

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253523A (en) * 1996-03-21 1997-09-30 Central Res Inst Of Electric Power Ind Selecting method by adsorption of microorganism to mineral
JPH10265864A (en) * 1997-03-27 1998-10-06 Nikko Kinzoku Kk Method for leaching copper from copper sulfide ore by using bacteria
JPH10273742A (en) * 1997-03-31 1998-10-13 Sumitomo Metal Mining Co Ltd Method for leaching out nickel from sulfide ore
JP2003073752A (en) * 2001-08-27 2003-03-12 Mitsui Mining & Smelting Co Ltd Method for leaching pyrite containing chalcopyrite
JP2009228094A (en) * 2008-03-25 2009-10-08 Nippon Mining & Metals Co Ltd Method for leaching copper-sulfide ore using mixed bacteria
JP2009228109A (en) * 2008-03-25 2009-10-08 Nippon Mining & Metals Co Ltd Method for leaching copper-sulfide ore containing chalcopyrite
JP2010024511A (en) * 2008-07-23 2010-02-04 Nippon Mining & Metals Co Ltd Method for leaching copper sulfide ore using iodine
JP2011190520A (en) * 2010-03-17 2011-09-29 Jx Nippon Mining & Metals Corp Method for leaching copper sulfide ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11946116B2 (en) 2017-12-27 2024-04-02 Jx Metals Corporation Method for recovering Cu and method of preparing electrolytic copper

Also Published As

Publication number Publication date
JPWO2011145688A1 (en) 2013-07-22
WO2011145688A1 (en) 2011-11-24
CL2012003214A1 (en) 2013-01-25
US8865119B2 (en) 2014-10-21
AU2011255908B2 (en) 2014-06-12
US20130058846A1 (en) 2013-03-07
AU2011255908A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5711225B2 (en) Method for treating acidic solution containing iodide ion and iron ion
JP5571416B2 (en) Copper sulfide ore leaching method
Karim et al. Recycling pathways for platinum group metals from spent automotive catalyst: A review on conventional approaches and bio-processes
Ashiq et al. Hydrometallurgical recovery of metals from e-waste
Dai et al. A review of copper cyanide recovery technologies for the cyanidation of copper containing gold ores
Pathak et al. Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: A critical review
JP4565025B2 (en) Leaching method of copper sulfide ore using iodine
Agrawal et al. Iron and copper recovery/removal from industrial wastes: A review
CN110352256B (en) Process for leaching metal sulphides with an agent having a thiocarbonyl function
MXPA05010715A (en) Precious metal recovery using thiocyanate lixiviant.
Aylmore Thiosulfate as an alternative lixiviant to cyanide for gold ores
AU2013227632B2 (en) Method for separating rhenium and arsenic, and method for purification of rhenium
Işıldar et al. Biorecovery of metals from electronic waste
JP6433395B2 (en) Copper sulfide ore leaching method
WO2013129017A1 (en) Method for recovering gold adsorbed on activated carbon and gold manufacturing process using same
Tian et al. Comprehensive treatment of acid effluent containing antimony and arsenic by selective reduction and evaporative crystallization
JP5296126B2 (en) Method for oxidizing acidic solution containing iodide ion and iron (II) ion
WO2014156349A1 (en) Method for recovering gold from sulfide ore
ZA200402230B (en) Metal ion recovery.
JP2012017513A (en) Method of leaching copper
AU2020373621B2 (en) Method for treating ore or refining intermediate
EP3882365A1 (en) Solid-liquid-solid method for the solubilisation of copper minerals and concentrates, independent of the redox potential and with low consumption of water and acid
JP7007905B2 (en) Copper recovery method and electrolytic copper manufacturing method
JP6790561B2 (en) Heavy metal recovery method
JP2013185236A (en) Method for leaching copper sulfide ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150305

R150 Certificate of patent or registration of utility model

Ref document number: 5711225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250