JP2009228094A - Method for leaching copper-sulfide ore using mixed bacteria - Google Patents

Method for leaching copper-sulfide ore using mixed bacteria Download PDF

Info

Publication number
JP2009228094A
JP2009228094A JP2008077796A JP2008077796A JP2009228094A JP 2009228094 A JP2009228094 A JP 2009228094A JP 2008077796 A JP2008077796 A JP 2008077796A JP 2008077796 A JP2008077796 A JP 2008077796A JP 2009228094 A JP2009228094 A JP 2009228094A
Authority
JP
Japan
Prior art keywords
copper
leaching
oxidizing bacteria
iron
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008077796A
Other languages
Japanese (ja)
Inventor
Rijin Settsu
理仁 攝津
Harue Imagawa
晴絵 今川
Noritaka Taniguchi
能敬 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2008077796A priority Critical patent/JP2009228094A/en
Publication of JP2009228094A publication Critical patent/JP2009228094A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently and economically extracting a copper from a primary copper-sulfide ore mainly containing copper-pyrite under condition having the general-purposing in the actual operating level. <P>SOLUTION: The method for leaching out the copper from the copper-sulfide ore is performed, that when the copper is leached out from the copper-sulfide ore containing the copper-pyrite, the leaching solution adjusted into 1.6-<2.5 pH is used and after inoculating sulfur-oxidizing bacteria, propagated in this leaching solution to 1.0×10<SP>8</SP>pieces/mL, at the time of starting the leaching iron oxidizing bacteria is inoculated into this leaching solution to perform the leaching-out of the copper. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、硫黄酸化細菌と鉄酸化細菌とを用いて、硫化銅鉱、特に黄銅鉱などの一次硫化銅鉱から銅を効率良く採取する方法に関する。   The present invention relates to a method for efficiently collecting copper from primary copper sulfide ores such as copper sulfide ores, particularly chalcopyrite using sulfur oxidizing bacteria and iron oxidizing bacteria.

銅鉱石から銅を回収する方法の一つとして知られるSX−EW法(SX−EW:溶媒抽出・電解採取)は、銅鉱石から銅を硫酸などで浸出し、その溶液から銅を有機溶媒で濃縮した後、電解採取により電気銅を得る湿式製錬法である。銅鉱石の湿式製錬に使用される溶媒は硫酸が主流であるため、湿式製錬の対象鉱は硫酸などで容易に溶解する酸化銅鉱に限られていた。しかしながら、酸化銅鉱は硫化銅鉱に比べて一般に鉱量が少ないため、鉱量の多い硫化銅鉱を湿式製錬の対象鉱として用いることが検討されている。   The SX-EW method (SX-EW: solvent extraction / electrowinning), which is known as one of the methods for recovering copper from copper ore, leaches copper from copper ore with sulfuric acid, etc., and uses copper as an organic solvent from the solution. This is a hydrometallurgical method for obtaining electrolytic copper by electrowinning after concentration. Since the solvent used for the hydrometallurgy of copper ore is mainly sulfuric acid, the target ore for hydrometallurgy has been limited to copper oxide ore that dissolves easily with sulfuric acid. However, since copper oxide ore is generally smaller in amount than copper sulfide ore, the use of copper sulfide ore having a large amount of mineral as a target ore for hydrometallurgy has been studied.

湿式製錬による硫化銅鉱の浸出形態としては、硫酸または塩酸を用いた回分攪拌反応による浸出形態、積層体を形成しその頂部から硫酸または塩酸を供給して重力により滴り落ちる液を回収する浸出形態(ヒープリーチング法)などが知られている。しかし、ヒープリーチング法では、浸出に数年を要し、しかも浸出率は非常に低く効率が悪い。また、鉄酸化細菌などの微生物の力を借りて銅を効率よく浸出し、回収する方法(バクテリアリーチング法)も採用されている。バクテリアリーチング法では、鉄酸化細菌によって浸出液中の鉄(II)イオンが強力な酸化剤である鉄(III)イオンに酸化され、この鉄(III)イオンによって鉱石中に含まれる硫黄が酸化されて硫酸が生成し、生成した硫酸によって鉱石中の銅が硫酸銅として溶出される。   As the leaching form of copper sulfide ore by hydrometallurgy, the leaching form by batch stirring reaction using sulfuric acid or hydrochloric acid, and the leaching form in which a laminated body is formed and sulfuric acid or hydrochloric acid is supplied from the top to recover the liquid dripping by gravity (Heap leaching method) is known. However, heap leaching requires several years for leaching, and the leaching rate is very low and the efficiency is poor. In addition, a method (bacteria leaching method) in which copper is efficiently leached and recovered with the help of microorganisms such as iron-oxidizing bacteria is also employed. In the bacterial leaching method, iron (II) ions in the leachate are oxidized by iron-oxidizing bacteria into iron (III) ions, which are strong oxidants, and sulfur contained in the ore is oxidized by these iron (III) ions. Sulfuric acid is generated, and copper in the ore is eluted as copper sulfate by the generated sulfuric acid.

バクテリアリーチング法は、既に斑岩銅鉱床の二次富化帯に存在する輝銅鉱(CuS),銅藍(CuS)等の二次硫化銅鉱に対しては実用化されているが、現在、技術開発の主体は銅資源の中で最も大量に存在する黄銅鉱(CuFeS)を含有する一次硫化銅鉱である。 The bacterial leaching method has already been put into practical use for secondary copper sulfide ores such as chalcocite (Cu 2 S) and copper indigo (CuS), which are already present in the secondary enrichment zone of porphyry copper deposits. The main body of technological development is primary copper sulfide ore containing chalcopyrite (CuFeS 2 ) that exists in the largest amount among copper resources.

しかしながら、黄銅鉱は硫酸にはほとんど溶けず、銅の浸出速度が極端に遅いため、浸出速度を上げるため様々な技術が提案されている。例えば、高温加圧処理(特許文献1〜3)、鉄量や3価鉄と2価鉄の比率の調整による一定の酸化還元電位の維持(特許文献4)、浸出液に活性炭と鉄を添加することによる一定の酸化還元電位の維持(特許文献5)、塩化ナトリウムと高塩化物濃度耐性硫黄細菌の添加(特許文献6)などが報告されている。しかしながら、上記の方法はいずれも浸出速度の改善に効果はあるもの、エネルギーや試薬の点でコスト高になるという問題がある。従って、黄銅鉱を含有する一次硫化銅鉱に対する湿式製錬は実用化に至る技術がないのが現状である。   However, chalcopyrite hardly dissolves in sulfuric acid and the leaching rate of copper is extremely slow, so various techniques have been proposed to increase the leaching rate. For example, high-temperature pressure treatment (Patent Documents 1 to 3), maintenance of a constant oxidation-reduction potential by adjusting the amount of iron and the ratio of trivalent iron and divalent iron (Patent Document 4), adding activated carbon and iron to the leachate It has been reported that a constant oxidation-reduction potential is maintained (Patent Document 5), sodium chloride and a high chloride concentration-resistant sulfur bacterium are added (Patent Document 6), and the like. However, all of the above methods are effective in improving the leaching rate, but there is a problem that the cost is high in terms of energy and reagent. Therefore, the present condition is that the hydrometallurgy with respect to the primary copper sulfide ore containing a chalcopyrite does not have a technique which will be practically used.

特許第3046986号Japanese Patent No. 3046986 特開2001‐515145号JP 2001-515145 A 特開2003‐328050号JP 2003-328050 A 特開平10‐265864号JP-A-10-265864 特開2005‐15864号JP-A-2005-15864 特開2008‐31504号JP 2008-31504 A

本発明の課題は、上記のような事情に鑑み、実操業レベルで汎用性のある条件で黄銅鉱を主体とする一次硫化銅鉱から銅を効率良くかつ経済的に採取する方法を提供することにある。   In view of the circumstances as described above, an object of the present invention is to provide a method for efficiently and economically collecting copper from primary copper sulfide ore mainly composed of chalcopyrite under conditions that are versatile at the actual operation level. is there.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、黄銅鉱を含有する一次硫化銅鉱から湿式製錬により銅を採取するに際して、開始時に硫黄酸化細菌のみを浸出液に接種し、接種した硫黄酸化細菌が増殖した後に鉄酸化細菌を接種することによって、銅の浸出率が向上することを見出し、本発明を完成させるに至った。   As a result of repeated earnest studies to solve the above problems, the present inventors inoculated the leachate with only sulfur-oxidizing bacteria at the start when collecting copper by hydrometallurgy from primary copper sulfide ore containing chalcopyrite, By inoculating iron-oxidizing bacteria after the inoculated sulfur-oxidizing bacteria grew, it was found that the copper leaching rate was improved, and the present invention was completed.

すなわち、本発明は、黄銅鉱を含有する硫化銅鉱から銅を浸出するに際し、pHを1.6以上2.5未満に調整した浸出液を用い、該浸出液に浸出開始時に接種した硫黄酸化細菌が1.0×10個/mLまで増殖した後、鉄酸化細菌を該浸出液に接種して銅の浸出を行うことを特徴とする、硫化銅鉱からの銅の浸出方法の発明に関する。 That is, the present invention uses a leachate whose pH is adjusted to 1.6 or more and less than 2.5 when copper is leached from copper sulfide ore containing chalcopyrite. The present invention relates to an invention of a method for leaching copper from copper sulfide ore, wherein the leaching solution is inoculated with iron-oxidizing bacteria after growing to 0.0 × 10 8 cells / mL.

本発明によれば、黄銅鉱を含有する硫化銅鉱から銅を常温にて効率よく浸出することが出来る。本発明の方法は、硫黄酸化細菌と鉄酸化細菌の接種量と接種時期を調整することで銅の浸出を高めることが出来るため、簡便かつ経済性に優れ、かつ浸出液から溶媒を用いて銅を採取する際に阻害となる試薬などの添加剤を除去する必要がない。   According to the present invention, copper can be efficiently leached at normal temperature from copper sulfide ore containing chalcopyrite. Since the method of the present invention can enhance copper leaching by adjusting the inoculation amount and inoculation time of sulfur-oxidizing bacteria and iron-oxidizing bacteria, it is simple and excellent in economic efficiency, and copper is removed from the leaching solution using a solvent. It is not necessary to remove an additive such as a reagent that becomes an obstacle when collecting.

また、硫黄酸化細菌は硫黄を硫酸に酸化することができるため、初期から接種することで、硫化銅鉱の浸出反応において副生する硫黄が鉱物表面をコーティングし、鉱石と浸出液の接触を妨げる現象を防ぐことを出来る。さらに、硫黄を硫酸に酸化することで浸出液のpHを維持することができるため、pHの上昇による鉄酸化細菌の増殖の阻害を防ぐと共に、pHの上昇に伴い発生する鉄明礬石を代表とする鉄の沈澱を防ぐことがことができる。   In addition, since sulfur-oxidizing bacteria can oxidize sulfur to sulfuric acid, by inoculating it from the beginning, sulfur produced as a by-product in the leaching reaction of copper sulfide ore coats the surface of the mineral and prevents contact between the ore and the leachate. I can prevent it. In addition, since the pH of the leachate can be maintained by oxidizing sulfur to sulfuric acid, the inhibition of the growth of iron-oxidizing bacteria due to an increase in pH is prevented, and iron agate stone that occurs with an increase in pH is representative. Iron precipitation can be prevented.

本発明の硫化銅鉱からの銅を浸出方法は、黄銅鉱を含有する硫化銅鉱から銅を浸出するに際し、pHを1.6以上2.5未満に調整した浸出液を用い、該浸出液に浸出開始時に接種した硫黄酸化細菌が1.0×10個/mLまで増殖した後、鉄酸化細菌を該浸出液に接種して銅の浸出を行うことを特徴とする。 The method of leaching copper from the copper sulfide ore according to the present invention uses a leachate whose pH is adjusted to 1.6 or more and less than 2.5 when leaching copper from a copper sulfide ore containing chalcopyrite, and when leaching is started in the leachate. After the inoculated sulfur-oxidizing bacteria have grown to 1.0 × 10 8 cells / mL, iron-oxidizing bacteria are inoculated into the leaching solution, and copper is leached.

本発明の方法の対象鉱である黄銅鉱を含有する硫化銅鉱は、黄銅鉱を主体とする硫化銅鉱であっても、黄銅鉱を一部に含有する硫化銅鉱であってもいずれでもよく、その含量は特に限定はされない。   The copper sulfide ore containing chalcopyrite which is the target ore of the method of the present invention may be copper sulfide ore mainly composed of chalcopyrite or copper sulfide ore partially containing chalcopyrite, The content is not particularly limited.

本発明の方法は、硫酸溶液を浸出液とする銅の湿式製錬であれば、いずれの浸出形態にも用いることができ、例えば、回分攪拌浸出のみならず、鉱石を堆積させた上から硫酸を散布して、銅を硫酸中に浸出させるヒープリーチング、ダンプリーチングのいずれであってもよい。また、浸出は常温で行い、特に加熱などは必要としないが、加熱によって浸出速度を促進させることも可能である。   The method of the present invention can be used in any leaching form as long as it is a copper hydrometallurgy using a sulfuric acid solution as a leachate.For example, not only batch agitation leaching but also sulfuric acid can be added after depositing ore. Either heap leaching or dump leaching may be performed by spraying and leaching copper into sulfuric acid. In addition, leaching is performed at room temperature, and heating or the like is not particularly required, but it is possible to accelerate the leaching rate by heating.

ここで用いられる硫黄酸化細菌は、水系(地下水、排水、海水、河川水、湖沼水等)や土壌において硫黄を酸化して硫酸を産生させる能力を有し、かつ鉄を酸化する能力を持たない菌であれば特に限定されないが、例えば、アシディチオバチルス・チオオキシダンス(Acidithiobacillus thiooxidans)、アシディチオバチルス・カルダス(Acidithiobacillus caldus)が挙げられ、好適には、アシディチオバチルス・スピーシーズ(Acidithiobacillus sp.)TTH-19A株(NITE BP-164)を用いることができる。   The sulfur-oxidizing bacteria used here have the ability to oxidize sulfur to produce sulfuric acid in water systems (groundwater, drainage, seawater, river water, lake water, etc.) and soil, and do not have the ability to oxidize iron Although it will not specifically limit if it is a microbe, For example, Acidithiobacillus thiooxidans (Acidithiobacillus thiooxidans) and Acidithiobacillus caldas (Acidithiobacillus caldus) are mentioned, Preferably, Acidithiobacillus spp. sp.) TTH-19A strain (NITE BP-164) can be used.

硫黄酸化菌は硫酸を生成することにより浸出液のpHを維持することができるため、pHの上昇による鉄酸化細菌の増殖の阻害を防ぐと共に、pHの上昇に伴い発生する鉄明礬石を代表とする鉄の沈澱を防ぐことがことができる。   Sulfur-oxidizing bacteria can maintain the pH of the leachate by producing sulfuric acid, thus preventing the inhibition of the growth of iron-oxidizing bacteria due to the increase in pH and representative of iron alumite that occurs with an increase in pH. Iron precipitation can be prevented.

上記硫黄酸化細菌の浸出液への添加量は、特に限定されないが、一般的には、菌濃度が1×10〜1×10cells/mLになるように添加する。次いで、該浸出液に浸出開始時に接種した硫黄酸化細菌が1.0×10個/mLまで増殖した後、鉄酸化細菌を該浸出液に接種してさらに浸出を行う。 Although the addition amount to the leachate of the said sulfur oxidation bacteria is not specifically limited, Generally, it adds so that a microbe density | concentration may be 1 * 10 < 6 > -1 * 10 < 7 > cells / mL. Next, after sulfur-oxidizing bacteria inoculated into the leachate at the start of leaching grow to 1.0 × 10 8 cells / mL, iron-oxidized bacteria are inoculated into the leachate and further leaching is performed.

ここで用いられる鉄酸化細菌は、水系(地下水、排水、海水、河川水、湖沼水等)や土壌において鉄(II)イオンを酸化し、鉄(III)イオンを産生させる能力を有する菌であれば特に限定されないが、例えばアシディチオバチルス・フェロオキシダンス(Acidithiobacillus ferrooxidans)、レプトスピリラム・フェロオキシダンス(Leptospirillum ferrooxidans)、スルフォバシラス・アシドフィラス(Sulfobacillus acidophilus)などが挙げられ、好適には、アシディチオバチルス・フェロオキシダンス(Acidithiobacillus ferrooxidans) DSM14882株を用いることができる。また、鉄酸化細菌の浸出液への添加量は、特に限定されないが、一般的には菌濃度が1×10〜1×10cells/mLになるように添加する。 The iron-oxidizing bacteria used here may be bacteria that have the ability to oxidize iron (II) ions and produce iron (III) ions in water systems (groundwater, drainage, seawater, river water, lake water, etc.) and soil. Although not particularly limited, for example, Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, Sulfobacillus acidophilus, etc., preferably, Acidithiobacillus ferrooxidans DSM14882 strain can be used. Moreover, although the addition amount to the leaching solution of iron-oxidizing bacteria is not particularly limited, it is generally added so that the bacterial concentration is 1 × 10 6 to 1 × 10 7 cells / mL.

本発明の方法ではまた、上記の硫黄酸化細菌と鉄酸化細菌の接種量と接種時期の調整に加え、浸出液のpHを1.6以上2.5未満に調整する。pH1.6より低い場合は、硫黄酸化細菌の硫黄酸化能力が阻害され、また、pH2.5より高い場合は、鉄明礬石(jarosite)の生成などによる浸出反応の阻害が起こるので好ましくない。   In the method of the present invention, the pH of the leachate is adjusted to 1.6 or more and less than 2.5 in addition to the adjustment of the inoculation amount and the inoculation time of the above sulfur oxidation bacteria and iron oxidation bacteria. When the pH is lower than 1.6, the sulfur oxidizing ability of the sulfur-oxidizing bacteria is inhibited, and when the pH is higher than 2.5, the leaching reaction is inhibited due to the formation of jarosite or the like, which is not preferable.

以下、実施例及び比較例により本発明をさらに具体的に説明する。但し、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to these.

(実施例1)
対象鉱として、黄銅鉱を主成分とするカンデラリア産の銅精鉱を用いた。この品位はCu:28mass%、Fe:28mass%、S:32mass%であった。
Example 1
As the target ore, a copper concentrate from Candelaria, which mainly contains chalcopyrite, was used. The quality was Cu: 28 mass%, Fe: 28 mass%, and S: 32 mass%.

上記の銅精鉱3gを硫酸にてpH1.8に調整した浸出液(硫酸アンモニウム3g/L、リン酸水素カリウム0.5g/L、硫酸マグネシウム七水和物0.5g/L、塩化カリウム0.1g/Lを含む)を300mLに混合し、500mL容量の坂口フラスコに注いだ。上記フラスコ内の浸出液に、硫黄酸化細菌(アシディチオバチルス スピーシーズTTH19A(NITE BP-164))をその菌濃度が1.0×10個/mLとなるように接種した。接種後12日目に、銅鉱石より単離した鉄酸化細菌(アシディチオバチルス フェロオキシダンス)DSM14882株をその菌濃度が1.0×10個/mLとなるように接種し、30℃にて振盪浸出した。浸出液の上澄みの銅濃度、pH、菌濃度を測定し、経時変化を調べた。 A leachate prepared by adjusting 3 g of the above copper concentrate to pH 1.8 with sulfuric acid (ammonium sulfate 3 g / L, potassium hydrogen phosphate 0.5 g / L, magnesium sulfate heptahydrate 0.5 g / L, potassium chloride 0.1 g / L) was mixed to 300 mL and poured into a 500 mL Sakaguchi flask. The exudate in the flask was inoculated with sulfur-oxidizing bacteria (Acidithiobacillus species TTH19A (NITE BP-164)) so that the bacterial concentration was 1.0 × 10 7 cells / mL. On the 12th day after inoculation, an iron-oxidizing bacterium (Acidithiobacillus ferrooxidans) DSM14882 strain isolated from copper ore was inoculated so that its concentration was 1.0 × 10 7 cells / mL, and 30 ° C. Leached with shaking. The copper concentration, pH, and fungus concentration in the supernatant of the leachate were measured, and the change with time was examined.

(比較例1〜4)
実施例1に記載の浸出液に、菌を接種しない以外は実施例1と同様にして振盪浸出した(比較例1)。また浸出開始時に鉄酸化細菌のみをその菌濃度が1.0×10個/mLとなるように接種(比較例2)、浸出開始時に硫黄酸化細菌のみをその菌濃度が1.0×10個/mLとなるように接種(比較例3)、浸出開始時に硫黄酸化細菌と鉄酸化細菌をそれぞれの菌濃度が1.0×10個/mLとなるように接種(比較例4)する以外は実施例1と同様にして振盪浸出した。
(Comparative Examples 1-4)
The leaching solution described in Example 1 was shaken and leached in the same manner as in Example 1 except that no bacteria were inoculated (Comparative Example 1). Further, at the start of leaching, only iron-oxidizing bacteria are inoculated so that the bacterial concentration becomes 1.0 × 10 7 cells / mL (Comparative Example 2), and at the start of leaching, only sulfur-oxidizing bacteria have a bacterial concentration of 1.0 × 10 6. Inoculate to 7 cells / mL (Comparative Example 3), and inoculate sulfur-oxidizing bacteria and iron-oxidizing bacteria at the start of leaching so that the concentration of each is 1.0 × 10 7 cells / mL (Comparative Example 4) Except that, shaking leaching was conducted in the same manner as in Example 1.

実施例1、及び比較例1〜4の試験結果のうち、銅濃度の推移を図1に、pHの推移を図2に、菌濃度の推移を図3に示す。   Of the test results of Example 1 and Comparative Examples 1 to 4, the transition of the copper concentration is shown in FIG. 1, the transition of the pH is shown in FIG. 2, and the transition of the bacteria concentration is shown in FIG.

図1に示されるように、実施例1の銅濃度(47日後:1.50g/L)は比較例1(50日後:0.88g/L)に比べると高く、銅の浸出速度が速いことが確認できた。また、比較例2では浸出初期の銅濃度(6日目:0.58g/L)は実施例1(6日目:0.24g/L)に比べると高いが、最終的な銅濃度は50日目で1.0g/Lにとどまっており、鉄酸化細菌のみの接種の効果は小さい。また、実施例1の銅濃度(47日後:1.50g/L)は、比較例3(50日後:0.89g/L)に比べても高く、硫黄酸化細菌のみの接種の効果は小さい。硫黄酸化細菌と鉄酸化細菌を浸出開始時に接種した比較例4は、初期の銅濃度(7日目:0.60g/L)が実施例1(6日目:0.24g/L)に比べると高いが、最終的な銅濃度は39日目で1.17g/Lにとどまり、硫黄酸化細菌と鉄酸化細菌を浸出開始時に同時に接種する効果は小さい。   As shown in FIG. 1, the copper concentration of Example 1 (after 47 days: 1.50 g / L) is higher than that of Comparative Example 1 (after 50 days: 0.88 g / L), and the copper leaching rate is high. Was confirmed. In Comparative Example 2, the copper concentration at the beginning of leaching (Day 6: 0.58 g / L) is higher than Example 1 (Day 6: 0.24 g / L), but the final copper concentration is 50 It is only 1.0 g / L on the day, and the effect of inoculation with only iron-oxidizing bacteria is small. Moreover, the copper concentration of Example 1 (after 47 days: 1.50 g / L) is higher than that of Comparative Example 3 (after 50 days: 0.89 g / L), and the effect of inoculation with only sulfur-oxidizing bacteria is small. In Comparative Example 4 inoculated with sulfur-oxidizing bacteria and iron-oxidizing bacteria at the start of leaching, the initial copper concentration (7th day: 0.60 g / L) is compared with Example 1 (6th day: 0.24 g / L). Although the final copper concentration is only 1.17 g / L on the 39th day, the effect of simultaneously inoculating sulfur-oxidizing bacteria and iron-oxidizing bacteria at the start of leaching is small.

図2に示されるように、菌を接種していない比較例1の場合は、硫黄の酸化による硫酸の生成が起こらないため、pHが上昇し、試験開始43日目に2.5を超えた。   As shown in FIG. 2, in the case of Comparative Example 1 in which the bacteria were not inoculated, sulfuric acid was not generated due to oxidation of sulfur, so the pH rose and exceeded 2.5 on the 43rd day from the start of the test. .

図3に示されるように、鉄酸化細菌を接種した12日目の硫黄酸化細菌の菌濃度は1.0×10個/mLであった。 As shown in FIG. 3, the concentration of sulfur-oxidizing bacteria on day 12 inoculated with iron-oxidizing bacteria was 1.0 × 10 8 cells / mL.

以上の結果から、pH1.8において、試験開始時に浸出液へ接種された硫黄酸化細菌が1.0×10個/mL以上に増殖した後に鉄酸化細菌を接種することで、効率よい銅の浸出ができることがわかった。 From the above results, at pH 1.8, efficient leaching of copper by inoculating iron-oxidizing bacteria after the sulfur-oxidizing bacteria inoculated into the leachate at the start of the test grew to 1.0 × 10 8 cells / mL or more. I found out that

図1は、実施例1及び比較例1〜4の浸出液(pH1.8)における、浸出液中の銅濃度の経時変化を示す。FIG. 1 shows the change over time of the copper concentration in the leachate in the leachate (pH 1.8) of Example 1 and Comparative Examples 1-4. 図2は、実施例1及び比較例1の浸出液(pH1.8)における、浸出液中のpHの経時変化を示す。FIG. 2 shows the change over time in the pH of the leachate in the leachate (pH 1.8) of Example 1 and Comparative Example 1. 図3は、実施例1の浸出液(pH1.8)における、浸出液中の菌濃度の経時変化を示す。FIG. 3 shows the change over time in the concentration of bacteria in the leachate in the leachate (pH 1.8) of Example 1.

Claims (1)

黄銅鉱を含有する硫化銅鉱から銅を浸出するに際し、pHを1.6以上2.5未満に調整した浸出液を用い、該浸出液に浸出開始時に接種した硫黄酸化細菌が1.0×10個/mLまで増殖した後、鉄酸化細菌を該浸出液に接種して銅の浸出を行うことを特徴とする、硫化銅鉱からの銅の浸出方法。 When copper is leached from copper sulfide ore containing chalcopyrite, a leachate whose pH is adjusted to 1.6 or more and less than 2.5 is used, and 1.0 × 10 8 sulfur-oxidizing bacteria inoculated into the leachate at the start of leaching. A method of leaching copper from copper sulfide ore, characterized by inoculating iron-oxidizing bacteria into the leaching solution and then leaching copper after growing to / mL.
JP2008077796A 2008-03-25 2008-03-25 Method for leaching copper-sulfide ore using mixed bacteria Withdrawn JP2009228094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008077796A JP2009228094A (en) 2008-03-25 2008-03-25 Method for leaching copper-sulfide ore using mixed bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008077796A JP2009228094A (en) 2008-03-25 2008-03-25 Method for leaching copper-sulfide ore using mixed bacteria

Publications (1)

Publication Number Publication Date
JP2009228094A true JP2009228094A (en) 2009-10-08

Family

ID=41243820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008077796A Withdrawn JP2009228094A (en) 2008-03-25 2008-03-25 Method for leaching copper-sulfide ore using mixed bacteria

Country Status (1)

Country Link
JP (1) JP2009228094A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101956071A (en) * 2010-10-31 2011-01-26 中南大学 Biological metallurgy mineral leaching microorganism combined bacterium fluid for copper ore and method for recycling metallic copper
JP2011190520A (en) * 2010-03-17 2011-09-29 Jx Nippon Mining & Metals Corp Method for leaching copper sulfide ore
WO2011145688A1 (en) * 2010-05-19 2011-11-24 Jx日鉱日石金属株式会社 Method for processing acidic solution that contains iodide ions and iron ions
CN103898550A (en) * 2014-04-14 2014-07-02 常州纺织服装职业技术学院 Recovery method of cupper in circuit board
WO2017032164A1 (en) * 2015-08-27 2017-03-02 中国科学院过程工程研究所 Method for starting water spraying in copper sulphide ore heap bioleaching

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190520A (en) * 2010-03-17 2011-09-29 Jx Nippon Mining & Metals Corp Method for leaching copper sulfide ore
WO2011145688A1 (en) * 2010-05-19 2011-11-24 Jx日鉱日石金属株式会社 Method for processing acidic solution that contains iodide ions and iron ions
US8865119B2 (en) 2010-05-19 2014-10-21 Jx Nippon Mining & Metals Corporation Method for processing acidic solution that contains iodide ions and iron ions
JP5711225B2 (en) * 2010-05-19 2015-04-30 Jx日鉱日石金属株式会社 Method for treating acidic solution containing iodide ion and iron ion
CN101956071A (en) * 2010-10-31 2011-01-26 中南大学 Biological metallurgy mineral leaching microorganism combined bacterium fluid for copper ore and method for recycling metallic copper
CN103898550A (en) * 2014-04-14 2014-07-02 常州纺织服装职业技术学院 Recovery method of cupper in circuit board
WO2017032164A1 (en) * 2015-08-27 2017-03-02 中国科学院过程工程研究所 Method for starting water spraying in copper sulphide ore heap bioleaching

Similar Documents

Publication Publication Date Title
JP4440903B2 (en) Sulfur-oxidizing bacteria and their use in copper sulfide ore bioleaching processes
Rawlings Microbially-assisted dissolution of minerals and its use in the mining industry
ES2522969T3 (en) A method of treating a sulfide mineral
JP2006136321A (en) Wenelen dsm 16786 strain as bacterium, use of the bacterium for leaching ore comprising metal sulfide mineral or mineral concentrate and leaching process using the bacterium or bacteria containing the bacterium
Ehrlich Beginnings of rational bioleaching and highlights in the development of biohydrometallurgy: A brief history.
JP2009228094A (en) Method for leaching copper-sulfide ore using mixed bacteria
JP2011047030A (en) Method of leaching copper sulfide ore
JP5052834B2 (en) Leaching method of copper sulfide ores containing chalcopyrite
XU et al. Bioleaching of chalcopyrite by UV-induced mutagenized Acidiphilium cryptum and Acidithiobacillus ferrooxidans
JP4417366B2 (en) Sulfur-oxidizing bacteria resistant to chloride ions
JP2012017513A (en) Method of leaching copper
US20070264703A1 (en) Microorganism and Method for Leaching Mineral Sulphides
JP2012188697A (en) Method for leaching copper
CA2958695A1 (en) Copper sulphide leaching in ferrous chloride medium with bacteria
Rawlings et al. ECOLOGY AND BIODIVERSITY OF EXTREMELY ACIDOPHILIC MICROOORGANISMS
Sohi et al. Molecular identification of thermoacidophilic bacteria and its performance in bio-extraction of copper from mineral tailings
JP2008063620A (en) Method for collecting copper from copper sulfide ore by using sulfur oxidation bacteria
Konishi et al. Bioleaching of marine manganese nodules by acidophilic sulfur-oxidizing bacteria
AU2004217870B2 (en) Microorganism and method for leaching mineral sulphides
Jena et al. K. Melal and Mineral Recov-ery Through Bioleaching
BRPI0801652A2 (en) Biotechnological process for the production of ferric sulfate from magnetite rich minerals and iron concentrates
ur Rahman et al. Biorecovery of Copper from Chalcopyrite Ore using Thiobacillus ferrooxidan
CIŞMAŞIU THE BIOSOLUBILIZATION METALS OF THE PYRITE CONCENTRATES WITH CULTURES OF THIOBACILLUS FERROOXIDANS RESISTENT TO HIGH CONCENTRATIONS OF METALLIC IONS
AU2008201513A1 (en) A biotechnological process for processing minerals, concentrates, sterils, washings and compounds containing iron

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100901

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100910

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607