JP2013160074A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2013160074A
JP2013160074A JP2012020520A JP2012020520A JP2013160074A JP 2013160074 A JP2013160074 A JP 2013160074A JP 2012020520 A JP2012020520 A JP 2012020520A JP 2012020520 A JP2012020520 A JP 2012020520A JP 2013160074 A JP2013160074 A JP 2013160074A
Authority
JP
Japan
Prior art keywords
air amount
intake air
intake
throttle valve
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012020520A
Other languages
English (en)
Other versions
JP5844170B2 (ja
Inventor
Masaaki Nagashima
正明 長島
Akifumi Hiraboshi
聡文 平星
Shuichi Hironobu
秀一 廣信
Hiroshi Nakaune
寛 中畝
Michiaki Karube
道昭 軽部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012020520A priority Critical patent/JP5844170B2/ja
Publication of JP2013160074A publication Critical patent/JP2013160074A/ja
Application granted granted Critical
Publication of JP5844170B2 publication Critical patent/JP5844170B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】吸入空気量の算出精度を向上させることができ、それにより、制御精度を向上させることができる内燃機関の制御装置を提供する。
【解決手段】内燃機関3の制御装置1はECU2を備える。ECU2は、THアクチュエータ14bを介して、スロットル弁開度THを制御し(ステップ1,3)、所定のむだ時間Tlagに応じて、吸気弁4の閉弁タイミングにおける推定開度THhatを算出し(ステップ18〜20)、気筒3aに吸入可能な空気量の最大値と推定される最大吸入空気量GAIRmaxを算出し(ステップ55)、推定開度THhatに応じて、最大吸入空気量GAIRmaxを上限値とするリミット処理を施しながら、吸入空気量GAIRCYLを算出し(ステップ50〜54,56〜58)、吸入空気量GAIRCYLに応じて、内燃機関3の運転状態を制御する(ステップ41〜44)。
【選択図】図8

Description

本発明は、吸入空気量が吸気絞り弁によって変更される内燃機関の制御装置に関する。
従来、内燃機関の制御装置として、例えば特許文献1に記載されたものが知られている。この制御装置は、内燃機関の燃料噴射を制御するものであり、吸気圧センサ、アクセル踏込量センサおよびクランク角センサなどを備えているとともに、これらのセンサの検出信号に基づいて、吸気圧、アクセル踏込量およびエンジン回転数をそれぞれ算出する。
この制御装置では、同文献の図5(a)に示す制御処理において、ステップ503で、アクセル踏込量から、スロットル弁開度の目標値を算出し、ステップ505で、吸気圧、アクセル踏込量およびエンジン回転数から、燃料噴射量を算出すべき気筒の吸気弁の閉弁時刻Tが算出される。さらに、ステップ506で、スロットル弁開度の目標値および吸気弁の閉弁時刻Tから、吸気弁の閉弁時におけるスロットル弁開度の推定値(以下「閉弁時推定開度」という)を算出し、ステップ507で、この閉弁時推定開度から、吸入空気量を算出し、目標空燃比になるように、吸入空気量から燃料噴射量が算出される。そして、図5(b)に示す制御処理において、この燃料噴射量に基づいて、燃料噴射が実行される。すなわち、燃料噴射制御が実行される。
また、従来の吸入空気量の算出手法として、特許文献2に記載されたものを本出願人は既に提案している。この算出手法では、スロットル弁をノズルおよびオリフィスと見なすモデリング手法によって、第1吸入空気量GAIR_Oおよび第2吸入空気量GAIR_Nをそれぞれ算出し、圧力比R_Pg(吸気圧と大気圧との比)に応じて重み付け係数Kgを算出するとともに、この重み付け係数Kgを用い、2つの吸入空気量GAIR_O,GAIR_Nの加重平均演算[式(22)]を実行することにより、吸入空気量GAIRが算出される。この場合、内燃機関が過渡運転状態などにあって、R_Pg≦R_Pg1が成立する領域では、重み付け係数Kg=1となることで、吸入空気量GAIR=GAIR_Oとなる。
特許第2991127号公報 特開2011−140895号公報
一般に、内燃機関の吸入空気量は、スロットル弁開度に依存する度合が最も大きいものの、スロットル弁開度以外の吸気圧などの運転状態パラメータが変化したときには、その影響を受けやすいという特性を有している。これに対して、上記特許文献1の内燃機関の制御装置によれば、吸入空気量を閉弁時推定開度のみから算出している関係上、それ以外の運転状態パラメータが変化したときに、その影響によって吸入空気量の算出精度が低下し、それにより、燃料噴射制御の制御精度が低下してしまうという問題がある。特に、内燃機関の過渡運転状態のときには、スロットル弁開度だけでなく、それ以外の運転状態パラメータも急変しやすいことで、以上のような問題がより顕著になりやすい。
このような特許文献1の内燃機関の制御装置において、吸入空気量の算出手法として特許文献2における第1吸入空気量GAIR_Oの算出手法を用いた場合、特許文献1の算出手法と比べて、内燃機関が過渡運転状態にあるときでも、吸入空気量の算出精度を向上させることができ、制御精度を向上させることができる。しかしながら、そのようにした場合、吸入空気量が吸気行程の開始タイミングで算出される関係上、その算出タイミングでの圧力比R_Pgの値しか用いることができないことに起因して、吸入空気量の算出結果が実際の吸入空気量から離間し、算出精度が低下する可能性がある。
例えば、内燃機関の低回転運転中、アクセルペダルが急激に踏み込まれることで、スロットル弁開度が吸気行程中に急増した場合、それに伴って、吸気圧は実際には急減することになる。それにもかかわらず、圧力比R_Pgの算出では、吸入空気量の算出タイミングでの吸気圧しか用いることができないことで、吸入空気量の算出結果が実際値から大幅に離間し、オーバーシュートする可能性がある。その場合には、燃料噴射量が必要以上の値になってしまい、燃料噴射制御の制御精度が低下してしまう。
本発明は、上記課題を解決するためになされたもので、吸入空気量の算出精度を向上させることができ、それにより、制御精度を向上させることができる内燃機関の制御装置を提供することを目的とする。
上記目的を達成するために、請求項1に係る発明は、吸気弁4が開弁状態にあるときに気筒3a内に吸入される空気量である吸入空気量を変更する吸気絞り弁(スロットル弁14a)と、吸気絞り弁(スロットル弁14a)を駆動する吸気絞り弁駆動機構(THアクチュエータ14b)とを有する内燃機関3の制御装置1であって、吸気絞り弁駆動機構(THアクチュエータ14b)を介して、吸気絞り弁(スロットル弁14a)の開度である吸気絞り弁開度(スロットル弁開度TH)を制御する吸気絞り弁開度制御手段(ECU2、ステップ1,3)と、吸気絞り弁駆動機構の応答特性(所定のむだ時間Tlag)に応じて、吸気弁4の閉弁タイミングにおける吸気絞り弁開度の推定値として、推定開度THhatを算出する推定開度算出手段(ECU2、ステップ18〜20)と、気筒3aに吸入可能な空気量の最大値と推定される最大吸入空気量GAIRmaxを算出する最大吸入空気量算出手段(ECU2、ステップ55、式(8))と、算出された最大吸入空気量GAIRmaxを上限値とするリミット処理を施しながら、算出された推定開度THhatに応じて、吸入空気量GAIRCYLを算出する吸入空気量算出手段(ECU2、ステップ50〜54,56〜58)と、算出された吸入空気量GAIRCYLに応じて、内燃機関3の運転状態を制御する機関制御手段(ECU2、ステップ41〜44)と、を備えることを特徴とする。
この内燃機関の制御装置によれば、吸気絞り弁駆動機構を介して、吸気絞り弁の開度である吸気絞り弁開度が制御され、吸気絞り弁駆動機構の応答特性に応じて、吸気弁の閉弁タイミングにおける吸気絞り弁開度の推定値として、推定開度が算出されるとともに、気筒に吸入可能な空気量の最大値と推定される最大吸入空気量が算出される。さらに、算出された推定開度に応じて、算出された最大吸入空気量を上限値とするリミット処理を施しながら、吸入空気量が算出され、算出された吸入空気量に応じて、内燃機関の運転状態が制御される。この場合、前述したように、内燃機関の低回転運転中にアクセルペダルが急激に踏み込まれたときのような、吸気絞り弁開度以外の運転状態パラメータが変化しやすい条件下では、推定開度に応じて算出した吸入空気量は、実際の値から大幅に離間する可能性がある。これに対して、この内燃機関の制御装置によれば、算出された最大吸入空気量を上限値とするリミット処理を施しながら、吸入空気量が算出されるので、吸入空気量が実際値を大幅に上回ってしまうのを回避でき、オーバーシュートの発生を抑制できる。それにより、吸入空気量の算出精度を向上させることができ、制御精度を向上させることができる。
請求項2に係る発明は、請求項1に記載の内燃機関3の制御装置1において、大気圧PAを検出する大気圧検出手段(大気圧センサ24)をさらに備え、最大吸入空気量算出手段は、検出された大気圧PAおよび気筒3aの筒内容積Vcylに応じて、最大吸入空気量GAIRmaxを算出する(ステップ55、式(8))ことを特徴とする。
一般に、気筒内に吸入される空気量は、大気圧および気筒の筒内容積を主要な要素として決まるという特性を有している。これに対して、この内燃機関の制御装置によれば、検出された大気圧および気筒の筒内容積に応じて、最大吸入空気量が算出されるので、この最大吸入空気量を精度よく算出することができる。それにより、吸入空気量の算出精度をさらに向上させることができ、制御精度をさらに向上させることができる。
請求項3に係る発明は、請求項2に記載の内燃機関3の制御装置1において、内燃機関3の温度として機関温度(エンジン水温TW)を検出する機関温度検出手段(水温センサ26)をさらに備え、最大吸入空気量算出手段は、検出された機関温度(エンジン水温TW)にさらに応じて、最大吸入空気量GAIRmaxを算出する(ステップ54,55)ことを特徴とする。
一般に、気筒内に吸入される空気量は、機関温度の影響を受けやすく、機関温度が変化すると、それに伴って変化するという特性を有している。これに対して、この内燃機関の制御装置によれば、検出された機関温度にさらに応じて、最大吸入空気量が算出されるので、機関温度を反映させながら、最大吸入空気量を算出することができ、それにより、最大吸入空気量の算出精度をより一層、向上させることができる。
請求項4に係る発明は、請求項2または3に記載の内燃機関3の制御装置1において、内燃機関3は、吸気弁4のバルブタイミングを変更するバルブタイミング変更機構(可変カム位相機構12)を有しており、最大吸入空気量算出手段は、吸気弁4のバルブタイミング(カム位相CAIN)にさらに応じて、最大吸入空気量GAIRmaxを算出する(ステップ54,55)ことを特徴とする。
一般に、内燃機関が吸気弁のバルブタイミングを変更するバルブタイミング変更機構を有している場合、気筒内に吸入される空気量は、吸気弁のバルブタイミングが変更されると、それに伴って変化するという特性を有している。これに対して、この内燃機関の制御装置によれば、吸気弁のバルブタイミングにさらに応じて、最大吸入空気量が算出されるので、吸気弁のバルブタイミングを反映させながら、最大吸入空気量を算出することができ、それにより、最大吸入空気量の算出精度をさらに向上させることができる。
請求項5に係る発明は、請求項2に記載の内燃機関3の制御装置1において、内燃機関3の充填効率(充填効率のマップ値ηv_map)を算出する充填効率算出手段(ECU2、ステップ54)をさらに備え、最大吸入空気量算出手段は、算出された充填効率(充填効率のマップ値ηv_map)にさらに応じて、最大吸入空気量GAIRmaxを算出する(ステップ55、式(8))ことを特徴とする。
一般に、気筒内に吸入される空気量は、充填効率が変化すると、それに伴って変化するという特性を有している。これに対して、この内燃機関の制御装置によれば、充填効率にさらに応じて、最大吸入空気量が算出されるので、充填効率を反映させながら、最大吸入空気量を算出することができ、それにより、最大吸入空気量の算出精度をさらに向上させることができる。
本発明の一実施形態に係る制御装置およびこれを適用した内燃機関の構成を模式的に示す図である。 可変カム位相機構の動作を説明するための、吸気弁のバルブリフト曲線を表す図である。 吸気制御処理を示すフローチャートである。 通過流量算出処理を示すフローチャートである。 通過流量QMthの算出処理を示すフローチャートである。 開度関数KTHの算出に用いるマップの一例を示す図である。 燃料噴射制御処理を示すフローチャートである。 吸入空気量GAIRCYLの算出処理を示すフローチャートである。 充填効率のマップ値ηv_mapの算出に用いるマップの一例を示す図である。 目標スロットル弁開度THcmdが変化したときの吸入空気量GAIRCYLの算出結果の一例を示すタイミングチャートである。
以下、図面を参照しながら、本発明の一実施形態に係る内燃機関の制御装置について説明する。図1に示すように、本実施形態の制御装置1は、ECU2を備えており、このECU2によって、後述するように、燃料噴射制御処理などの各種の制御処理が実行される。
エンジン3は、4組の気筒3aおよびピストン3b(1組のみ図示)を有する直列4気筒ガソリンエンジンであり、図示しない車両に搭載されている。また、エンジン3は、気筒3aごとに設けられた吸気弁4と、気筒3aごとに設けられた排気弁5と、吸気弁4を開閉駆動する吸気動弁機構10などを備えている。
この吸気動弁機構10は、吸気弁4を駆動する吸気カムシャフト11と、可変カム位相機構12などで構成されている。この可変カム位相機構12(バルブタイミング変更機構)は、吸気カムシャフト11のクランクシャフト3cに対する相対的な位相(以下「カム位相」という)CAINを無段階に(すなわち連続的に)進角側または遅角側に変更するものであり、吸気カムシャフト11の吸気スプロケット(図示せず)側の端部に設けられている。
この可変カム位相機構12は、具体的には、本出願人が特開2007−100522号公報などで提案済みのものと同様に構成されているので、その詳細な説明は省略するが、カム位相制御弁12aなどを備えている。この可変カム位相機構12の場合、ECU2からの駆動信号によってカム位相制御弁12aが制御されることにより、カム位相CAINを、所定の最遅角値CAINrtと所定の最進角値CAINadとの間で連続的に変化させ、それにより、吸気弁4のバルブタイミングが、図2に実線で示す最遅角タイミングと、図2に2点鎖線で示す最進角タイミングとの間で無段階に変更される。
また、エンジン3には、点火プラグ6、燃料噴射弁7およびクランク角センサ20が設けられており、これらの点火プラグ6および燃料噴射弁7はいずれも、気筒3aごとに設けられている(いずれも1つのみ図示)。燃料噴射弁7は、各気筒3aの吸気ポート内に燃料を噴射するようにインテークマニホールドに取り付けられている。点火プラグ6および燃料噴射弁7はいずれも、ECU2に電気的に接続されており、ECU2によって、燃料噴射弁7による燃料の噴射量および噴射時期と、点火プラグ6による混合気の点火時期とが制御される。すなわち、燃料噴射制御と点火時期制御が実行される。
さらに、クランク角センサ20は、マグネットロータおよびMREピックアップで構成されており、クランクシャフト3cの回転に伴い、いずれもパルス信号であるCRK信号およびTDC信号をECU2に出力する。このCRK信号は、クランク角30゜ごとに1パルスが出力され、ECU2は、このCRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。また、TDC信号は、各気筒3aのピストン3bが吸気行程のTDC位置よりも若干、手前の所定のクランク角位置にあることを表す信号であり、本実施形態の4気筒エンジンの場合、クランク角180゜ごとに1パルスが出力される。さらに、このクランク角センサ20では、TDC信号が出力されるタイミングで、これに同期してCRK信号が出力される。
一方、エンジン3の吸気通路13には、上流側から順に、エアフローセンサ21、スロットル弁機構14および吸気圧センサ22などが設けられている。このエアフローセンサ21は、熱線式エアフローメータで構成されており、吸気通路13内を流れる新気の流量(以下「新気流量」という)を検出して、それを表す検出信号をECU2に出力する。ECU2は、このエアフローセンサ21の検出信号に基づき、新気流量Qafmを算出する。この新気流量Qafmは、質量流量として算出される。
スロットル弁機構14は、スロットル弁14aおよびこれを開閉駆動するTHアクチュエータ14bなどを備えている。スロットル弁14a(吸気絞り弁)は、吸気通路13の途中に回動自在に設けられており、当該回動に伴う開度の変化により、スロットル弁14aを通過する空気の流量を変化させる。THアクチュエータ14b(吸気絞り弁駆動機構)は、ECU2に接続された電気モータにギヤ機構(いずれも図示せず)を組み合わせたものであり、ECU2からの駆動信号によって制御されることにより、スロットル弁14aの開度(以下「スロットル弁開度」という)THを変化させる。
この場合、THアクチュエータ14bのようなアクチュエータは応答特性としてむだ時間を有するものが一般的であり、本実施形態のTHアクチュエータ14bの場合、後述する目標スロットル弁開度THcmdに対応する駆動信号がECU2から入力されたときに、その入力タイミングから所定のむだ時間Tlagが経過したタイミングで、スロットル弁開度THが目標スロットル弁開度THcmdに到達するという応答特性を有している(後述する図10参照)。
また、スロットル弁14aの近傍には、スロットル弁開度センサ23が設けられている。このスロットル弁開度センサ23は、例えばポテンショメータなどで構成され、スロットル弁14aの開度THを検出して、それを表す検出信号をECU2に出力する。
さらに、吸気圧センサ22は、例えば半導体圧力センサなどで構成され、吸気通路13の吸気チャンバ13aの部分に設けられているとともに、吸気通路13内の圧力(以下「吸気圧」という)PBを検出して、それを表す検出信号をECU2に出力する。この吸気圧PBは、絶対圧として検出される。
一方、ECU2には、大気圧センサ24、吸気温センサ25、水温センサ26、アクセル開度センサ27およびカム角センサ28が電気的に接続されている。この大気圧センサ24(大気圧検出手段)は、半導体圧力センサで構成されており、大気圧PAを検出して、それを表す検出信号をECU2に出力する。この大気圧PAは、絶対圧として検出される。また、吸気温センサ25は、吸気通路13内の空気の温度(以下「吸気温」という)TAを検出して、それを表す検出信号をECU2に出力する。
さらに、水温センサ26(機関温度検出手段)は、サーミスタで構成され、エンジン3のシリンダブロック内を循環する冷却水の温度であるエンジン水温TW(機関温度)を検出して、それを表す検出信号をECU2に出力する。また、アクセル開度センサ27は、車両の図示しないアクセルペダルの踏み込み量(以下「アクセル開度」という)APを検出して、それを表す検出信号をECU2に出力する。
また、カム角センサ28は、吸気カムシャフト11の可変カム位相機構12と反対側の端部に設けられている。このカム角センサ28は、例えばマグネットロータおよびMREピックアップで構成されており、吸気カムシャフト11の回転に伴い、パルス信号であるCAM信号を所定のカム角(例えば1゜)ごとにECU2に出力する。ECU2は、このCAM信号および前述したCRK信号に基づき、カム位相CAINを算出する。
一方、ECU2は、CPU、RAM、ROMおよびI/Oインターフェース(いずれも図示せず)などからなるマイクロコンピュータで構成されており、以上の各種のセンサ20〜28の検出信号などに基づいて、以下に述べるように、燃料噴射制御処理などの各種の制御処理を実行する。なお、本実施形態では、ECU2が、吸気絞り弁開度制御手段、推定開度算出手段、最大吸入空気量算出手段、吸入空気量算出手段、機関制御手段、および充填効率算出手段に相当する。
次に、図3を参照しながら、吸気制御処理について説明する。この制御処理は、スロットル弁機構14および可変カム位相機構12を介して、スロットル弁開度THおよびカム位相CAINをそれぞれ制御するものであり、ECU2により所定の制御周期(例えば2msec)で実行される。なお、以下の説明において算出される各種の値は、ECU2のRAM内に記憶されるものとする。
同図に示すように、まず、ステップ1(図では「S1」と略す。以下同じ)で、目標スロットル弁開度THcmdを算出する。この目標スロットル弁開度THcmdは、スロットル弁開度THの目標となる値であり、具体的には、要求トルクTRQおよびエンジン回転数NEに応じて、図示しないマップを検索することにより算出される。なお、この要求トルクTRQは、図示しない算出処理において、アクセル開度APおよびエンジン回転数NEに応じて、図示しないマップを検索することにより算出される。
次に、ステップ2に進み、目標カム位相CAINcmdを算出する。この目標カム位相CAINcmdは、カム位相CAINの目標となる値であり、具体的には、前述した要求トルクおよびエンジン回転数NEに応じて、図示しないマップを検索することにより算出される。
ステップ2に続くステップ3で、目標スロットル弁開度THcmdに対応する駆動信号をTHアクチュエータ14bに供給することにより、THアクチュエータ14bを駆動する。それにより、スロットル弁開度THが目標スロットル弁開度THcmdになるように制御される。その際、THアクチュエータ14bの前述した応答特性により、駆動信号がTHアクチュエータ14bに入力されたタイミングから所定のむだ時間Tlagが経過したタイミングで、スロットル弁開度THが目標スロットル弁開度THcmdに到達する。
次いで、ステップ4に進み、目標カム位相CAINcmdに対応する駆動信号をカム位相制御弁12aに供給することにより、カム位相制御弁12aを駆動する。それにより、カム位相CAINが目標カム位相CAINcmdになるように制御される。以上のように、ステップ4を実行した後、本処理を終了する。
次に、図4を参照しながら、通過流量算出処理について説明する。この算出処理は、スロットル弁14aを通過する空気の質量流量の移動平均値として、通過流量QMthを算出するものであり、ECU2によりCRK信号の発生タイミングに同期して実行される。
同図に示すように、まず、ステップ10で、今回の制御タイミングが通過流量QMthの算出開始タイミングであるか否かを判別する。具体的には、今回の制御タイミングにおいて、CRK信号とTDC信号が同時に発生したときには、算出開始タイミングであると判別し、それ以外のときには、算出開始タイミングでないと判別する。
ステップ10の判別結果がYESのときには、ステップ11に進み、通過流量QMthを算出済みではないことを表すために、算出済みフラグF_DONEを「0」に設定する。
次いで、ステップ12に進み、エンジン回転数NEおよびカム位相CAINに基づき、図示しないマップを検索することにより、推定吸気閉弁時間Tivc_hatを算出する。この推定吸気閉弁時間Tivc_hatは、通過流量QMthの算出開始タイミングから吸気弁4が閉弁する閉弁タイミングまでの時間の推定値に相当する。
ステップ12に続くステップ13で、閉弁余裕時間Tivcを推定吸気閉弁時間Tivc_hatに設定する。この閉弁余裕時間Tivcは、現時点での吸気弁4の閉弁タイミングまでの残り時間に相当する。
一方、ステップ10の判別結果がNOのときには、ステップ14に進み、算出済みフラグF_DONEが「1」であるか否かを判別する。この判別結果がYESのときには、通過流量QMthを算出済みであると判定して、そのまま本処理を終了する。
一方、ステップ14の判別結果がNOのときには、通過流量QMthを算出すべきであると判定して、ステップ15に進み、閉弁余裕時間の前回値Tivczを、RAM内に記憶されている閉弁余裕時間Tivcに設定する。
次いで、ステップ16に進み、エンジン回転数NEに基づき、経過時間DTを算出する。この経過時間DTは、前回の制御タイミングから今回の制御タイミングまでの間の経過時間に相当する。次に、ステップ17で、閉弁余裕時間Tivcを、閉弁余裕時間の前回値Tivczから経過時間DTを減算した値Ticvz−DTに設定する。
以上のステップ13または17に続くステップ18で、閉弁余裕時間Tivcが前述したむだ時間Tlagよりも大きいか否かを判別する。この判別結果がYESのときには、閉弁余裕時間Tivcがむだ時間Tlagよりも大きいことで、吸気弁4の閉弁タイミングでは、スロットル弁開度THが目標スロットル弁開度THcmdに達していると推定して、ステップ19に進み、推定開度THhatを目標スロットル弁開度THcmdに設定する。
一方、ステップ18の判別結果がNOで、Tivc≦Tlagのときには、ステップ20に進み、下式(1)により、推定開度THhatを算出する。
Figure 2013160074
この式(1)を参照すると明らかなように、Tivc≦Tlagのときには、推定開度THhatは、目標スロットル弁開度THcmdとスロットル弁開度THの補間演算によって算出される。
以上のステップ19または20に続くステップ21で、通過流量QMthを算出する。この算出処理は、具体的には図5に示すように実行される。すなわち、まず、ステップ30で、開度関数KTHを算出する。具体的には、スロットル弁開度THに応じて、図6に示すマップを検索することにより、開度関数KTHを算出する。
次いで、ステップ31に進み、前述した新気流量Qafmの移動平均値に応じて、図示しないマップを検索することにより、圧損補正項Pcorを算出する。この圧損補正項Pcorは、図示しないエアクリーナからスロットル弁14aまでの吸気通路13における圧力損失を補正するためのものである。また、新気流量Qafmの移動平均値は、図示しない算出処理において算出される。
ステップ31に続くステップ32で、上流側圧P1を、大気圧PAから圧損補正項Pcorを減算した値PA−Pcorに設定する。この上流側圧P1は、スロットル弁14aの近傍かつ上流側における吸気通路13内の圧力推定値に相当する。
次いで、ステップ33に進み、下式(2),(3)により、流量関数Ψを算出する。なお、下式(2),(3)のκは、比熱比である。
Figure 2013160074
Figure 2013160074
次に、ステップ34で、下式(4)により、通過流量の算出値QMth_calを算出する。なお、下式(4)は、本出願人が特開2011−140895号公報で提案済みの手法によって導出される。
Figure 2013160074
ステップ34に続くステップ35で、通過流量QMthを算出する。この場合、通過流量QMthは、F_DONE=0の期間中における、通過流量の算出値QMth_calの移動平均値として算出される。以上のように、ステップ35で通過流量QMthを算出した後、本処理を終了する。
図4に戻り、ステップ21で、通過流量QMthを以上のように算出した後、ステップ22に進み、閉弁余裕時間Tivcが値0以下であるか否かを判別する。この判別結果がNOで、Tivc>0のときには、そのまま本処理を終了する。
一方、ステップ22の判別結果がYESのときには、通過流量QMthの算出期間が終了したと判定して、ステップ23に進み、通過流量QMthを算出済みであることを表すために、算出済みフラグF_DONEを「1」に設定した後、本処理を終了する。
次に、図7を参照しながら、燃料噴射制御処理について説明する。この制御処理は、燃料噴射量TOUTおよび燃料噴射時期INJを気筒3aごとに算出するものであり、ECU2によりTDC信号の発生タイミングに同期して実行される。
同図に示すように、まず、ステップ40で、吸入空気量GAIRCYLの算出処理を実行する。この処理は、具体的には図8に示すように実行される。まず、ステップ50で、吸入空気量の前回値GAIRCYLzを、RAM内に記憶されている吸入空気量GAIRCYLの値に設定する。
次いで、ステップ51に進み、下式(5)により、充填効率ηvを算出する。
Figure 2013160074
この式(5)において、Rは空気の気体定数であり、Vcylは気筒3aの筒内容積である。また、PBaveは、前回の制御タイミングと今回の制御タイミングの間(すなわち2つのTDC信号の発生タイミングの間)における吸気圧PBの移動平均値であり、図示しない算出処理において算出される。なお、上式(5)は、気体の状態方程式に基づいて導出される。
次に、ステップ52で、下式(6)により、通過空気量GAIRthを算出する。
Figure 2013160074
この式(6)において、ΔTは本処理の制御周期(すなわちTDC信号の発生間隔)を表している。
ステップ52に続くステップ53で、下式(7)により、吸入空気量GAIRCYLの暫定的な算出値として、暫定吸入空気量GAIRtempを算出する。
Figure 2013160074
上式(7)のVinは、吸気通路13の吸気マニホールドの部分の容積を表している。同式(7)に示すように、暫定吸入空気量GAIRtempは、値(ηv・Vcyl/Vin)を重み係数とする、通過空気量GAIRthと吸入空気量の前回値GAIRCYLzの加重平均演算によって算出される。
次いで、ステップ54に進み、エンジン回転数NE、カム位相CAINおよびエンジン水温TWに応じて、充填効率マップを検索することにより、充填効率のマップ値ηv_mapを算出する。この場合、ECU2のROM内には、図9に示すような充填効率マップがエンジン水温TWの領域に応じて多数記憶されており、ステップ54の処理では、エンジン回転数NE、カム位相CAINおよびエンジン水温TWに応じて、複数のマップから複数の値を選択するとともに、当該複数の選択値の補間演算により、充填効率のマップ値ηv_mapが算出される。
ステップ54に続くステップ55で、下式(8)により、最大吸入空気量GAIRmaxを算出する。なお、下式(8)は、前述した式(5)と同様に、気体の状態方程式に基づいて導出される。
Figure 2013160074
次いで、ステップ56に進み、暫定吸入空気量GAIRtempが最大吸入空気量GAIRmax未満であるか否かを判別する。この判別結果がYESのときには、ステップ57に進み、吸入空気量GAIRCYLを暫定吸入空気量GAIRtempに設定した後、本処理を終了する。
一方、ステップ56の判別結果がNOで、GAIRtemp≧GAIRmaxが成立しているときには、ステップ58に進み、吸入空気量GAIRCYLを最大吸入空気量GAIRmaxに設定した後、本処理を終了する。以上のステップ56〜58に示すように、吸入空気量GAIRCYLは、最大吸入空気量GAIRmaxを上限値とするリミット処理を暫定吸入空気量GAIRtempに施すことによって算出される。
図7に戻り、ステップ40で、吸入空気量GAIRCYLを以上のように算出した後、ステップ41に進み、吸入空気量GAIRCYLに応じて、図示しないマップを検索することにより、基本噴射量TI_BASEを算出する。
次に、ステップ42で、フィードバック補正係数KAFを算出する。具体的には、エンジン3の運転状態に応じて、目標空燃比KCMDを算出し、図示しない空燃比センサの検出信号に基づいて算出された実際の空燃比が、この目標空燃比KCMDに収束するように、所定のフィードバック制御アルゴリズムによって、フィードバック補正係数KAFが算出される。
ステップ42に続くステップ43で、燃料噴射量TOUTを算出する。具体的には、エンジン水温TW、大気圧PAおよび吸気温TAなどの各種の運転状態パラメータに応じて、各種の補正値を算出し、これらの補正値とフィードバック補正係数KAFで、基本噴射量TI_BASEを補正することにより、燃料噴射量TOUTが算出される。
次に、ステップ44に進み、エンジン回転数NEおよび燃料噴射量TOUTに応じて、図示しないマップを検索することにより、燃料噴射時期INJを算出する。その後、本処理を終了する。以上のように、燃料噴射制御処理において、燃料噴射量TOUTおよび燃料噴射時期INJが算出されると、これらの値に基づいて、燃料噴射弁7の開弁タイミングおよび閉弁タイミングが制御される。
次に、本実施形態の制御装置1による吸入空気量GAIRCYLの算出結果の一例について説明する。図10は、エンジン3の運転状態の変化に伴い、目標スロットル弁開度THcmdが値THcmd1から値THcmd2まで変化した場合における算出結果の推移の一例を表している。同図に示すように、時刻t1で、目標スロットル弁開度THcmdが値THcmd1から増大し始めると、それに伴って、吸入空気量GAIRCYLの算出値(すなわち暫定吸入空気量GAIRtemp)も増大し始める。
その際、スロットル弁機構14が前述した応答特性を有していることにより、目標スロットル弁開度THcmdの増大開始したタイミング(時刻t1)では、実際のスロットル弁開度THは変化することがないとともに、目標スロットル弁開度THcmdの変化開始タイミングから所定のむだ時間Tlagが経過したタイミング(時刻t2)で、スロットル弁開度THが増大側に変化し始め、それに伴って、同図に2点鎖線で示すように実際の吸入空気量も増大し始める。
さらに、時間の経過に伴い、スロットル弁開度THの変化タイミングよりも遅いタイミング(時刻t3)で、吸気圧PBが上昇し始める。さらに、吸気圧PBの変化開始タイミングよりも後のタイミングで、同図に2点鎖線で示すように実際の流量関数が低下し始めるものの、流量関数Ψの算出値はさらに遅れて低下し始める。以上のような吸気圧PBおよび流量関数Ψの変化に起因して、暫定吸入空気量GAIRtempは、GAIRtemp≧GAIRmaxが成立したタイミング(時刻t4)以降も、同図に破線で示すように増大し続け、値THcmd2に対応する実際の吸入空気量(すなわち最大吸入空気量GAIRmax)をオーバーシュートしてしまう。
これに対して、吸入空気量GAIRCYLは、GAIRtemp≧GAIRmaxが成立したタイミング(時刻t4)以降、前述したリミット処理により、最大吸入空気量GAIRmaxに保持されており、値THcmd2に対応する実際の吸入空気量を大幅に上回るのを回避でき、オーバーシュートの発生を抑制できることが判る。
以上のように、本実施形態の制御装置1によれば、吸気制御処理において、スロットル弁開度THが目標スロットル弁開度THcmdになるように制御され、THアクチュエータ14bの応答特性すなわち所定のむだ時間Tlagと、スロットル弁開度THと、目標スロットル弁開度THcmdとを用いて、吸気弁4の閉弁タイミングにおけるスロットル弁開度THとして、推定開度THhatが算出される。さらに、この推定開度THhatに応じて、暫定吸入空気量GAIRtempが算出され、気筒3aに吸入可能な空気量の最大値と推定される最大吸入空気量GAIRmaxが算出されるとともに、この最大吸入空気量GAIRmaxを上限値とするリミット処理を暫定吸入空気量GAIRtempに施すことにより、吸入空気量GAIRCYLが算出される。それにより、エンジン3の低回転運転中にアクセルペダルが急激に踏み込まれたときのような、スロットル弁開度TH以外の運転状態パラメータ(例えば吸気圧PB)が変化しやすい条件下でも、吸入空気量GAIRCYLが実際値を大幅に上回ってしまうのを回避でき、オーバーシュートの発生を抑制することができる。その結果、吸入空気量GAIRCYLの算出精度を向上させることができ、燃料噴射制御の制御精度を向上させることができる。
また、一般に、内燃機関の気筒内に吸入される空気量は、大気圧PAおよび気筒3aの筒内容積Vcylを主要な要素として決まるとともに、充填効率が変化すると、その影響を受けやすいという特性を有している。これに対して、本実施形態では、最大吸入空気量GAIRmaxが、前述した式(8)に示すように、充填効率のマップ値ηv_map、大気圧PAおよび気筒3aの筒内容積Vcylを用いて算出されるので、最大吸入空気量GAIRmaxを精度よく算出することができる。
さらに、一般に、内燃機関の充填効率は、内燃機関の温度、内燃機関の回転数および吸気弁のバルブタイミングを主要な要素として決まる。これに対して、本実施形態では、充填効率のマップ値ηv_mapが、エンジン水温TW、エンジン回転数NEおよびカム位相CAINに応じてマップ検索により算出されるので、充填効率のマップ値ηv_mapを精度よく算出することができ、それにより、最大吸入空気量GAIRmaxの算出精度を向上させることができる。
なお、実施形態は、吸気絞り弁として、スロットル弁14aを用いた例であるが、本発明の吸気絞り弁はこれに限らず、気筒内に吸入される空気量を変更可能な弁であればよい。
また、実施形態は、吸気絞り弁駆動機構として、THアクチュエータ14bを用いた例であるが、本発明の吸気絞り弁駆動機構はこれに限らず、吸気絞り弁を駆動できるものであればよい。例えば、吸気絞り弁駆動機構として、油圧作動タイプのアクチュエータや、空気圧作動タイプのアクチュエータなどを用いてもよい。
さらに、実施形態は、機関温度として、エンジン水温TWを用いた例であるが、本発明の機関温度はこれに限らず、内燃機関の温度であればよい。例えば、機関温度として、内燃機関の潤滑油の温度を用いてもよい。
一方、実施形態は、バルブタイミング変更機構として、可変カム位相機構12を用いた例であるが、本発明のバルブタイミング変更機構はこれに限らず、吸気弁のバルブタイミングを変更するものであればよい。例えば、バルブタイミング変更機構として、吸気弁のリフトを変更することにより、吸気弁のバルブタイミングを変更する可変リフト機構を用いてもよく、さらに、これと可変カム位相機構を組み合わせて用いてもよい。
また、実施形態は、本発明の制御装置を車両用の内燃機関に適用した例であるが、本発明の制御装置は、これに限らず、船舶用の内燃機関や、他の産業機器用の内燃機関にも適用可能であることは言うまでもない。
さらに、実施形態は、吸入空気量GAIRCYLを用いて、内燃機関の燃料噴射制御処理を実行した例であるが、吸入空気量GAIRCYLを用いて、燃料噴射制御処理以外の制御処理を実行してもよい。例えば、吸入空気量GAIRCYLを用いて、点火時期制御処理を実行してもよい。
1 制御装置
2 ECU(吸気絞り弁開度制御手段、推定開度算出手段、最大吸入空気量算出手段 、吸入空気量算出手段、機関制御手段、充填効率算出手段)
3 内燃機関
3a 気筒
12 可変カム位相機構(バルブタイミング変更機構)
14a スロットル弁(吸気絞り弁)
14b THアクチュエータ(吸気絞り弁駆動機構)
24 大気圧センサ(大気圧検出手段)
26 水温センサ(機関温度検出手段)
TH スロットル弁開度(吸気絞り弁開度)
Tlag 所定のむだ時間(吸気絞り弁駆動機構の応答特性)
THhat 推定開度
GAIRCYL 吸入空気量
GAIRmax 最大吸入空気量
TA 大気圧
Vcyl 気筒の筒内容積
TW エンジン水温(機関温度)
CAIN カム位相(吸気弁のバルブタイミングを表す値)
ηv_map 充填効率のマップ値(充填効率)

Claims (5)

  1. 吸気弁が開弁状態にあるときに気筒内に吸入される空気量である吸入空気量を変更する吸気絞り弁と、当該吸気絞り弁を駆動する吸気絞り弁駆動機構とを有する内燃機関の制御装置であって、
    前記吸気絞り弁駆動機構を介して、前記吸気絞り弁の開度である吸気絞り弁開度を制御する吸気絞り弁開度制御手段と、
    前記吸気絞り弁駆動機構の応答特性に応じて、前記吸気弁の閉弁タイミングにおける前記吸気絞り弁開度の推定値として、推定開度を算出する推定開度算出手段と、
    前記気筒に吸入可能な空気量の最大値と推定される最大吸入空気量を算出する最大吸入空気量算出手段と、
    前記算出された最大吸入空気量を上限値とするリミット処理を施しながら、前記算出された推定開度に応じて、前記吸入空気量を算出する吸入空気量算出手段と、
    当該算出された吸入空気量に応じて、前記内燃機関の運転状態を制御する機関制御手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. 大気圧を検出する大気圧検出手段をさらに備え、
    前記最大吸入空気量算出手段は、前記検出された大気圧および前記気筒の筒内容積に応じて、前記最大吸入空気量を算出することを特徴とする請求項1に記載の内燃機関の制御装置。
  3. 前記内燃機関の温度として機関温度を検出する機関温度検出手段をさらに備え、
    前記最大吸入空気量算出手段は、前記検出された機関温度にさらに応じて、前記最大吸入空気量を算出することを特徴とする請求項2に記載の内燃機関の制御装置。
  4. 前記内燃機関は、前記吸気弁のバルブタイミングを変更するバルブタイミング変更機構を有しており、
    前記最大吸入空気量算出手段は、前記吸気弁の前記バルブタイミングにさらに応じて、前記最大吸入空気量を算出することを特徴とする請求項2または3に記載の内燃機関の制御装置。
  5. 前記内燃機関の充填効率を算出する充填効率算出手段をさらに備え、
    前記最大吸入空気量算出手段は、前記算出された充填効率にさらに応じて、前記最大吸入空気量を算出することを特徴とする請求項2に記載の内燃機関の制御装置。
JP2012020520A 2012-02-02 2012-02-02 内燃機関の制御装置 Expired - Fee Related JP5844170B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012020520A JP5844170B2 (ja) 2012-02-02 2012-02-02 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012020520A JP5844170B2 (ja) 2012-02-02 2012-02-02 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2013160074A true JP2013160074A (ja) 2013-08-19
JP5844170B2 JP5844170B2 (ja) 2016-01-13

Family

ID=49172560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012020520A Expired - Fee Related JP5844170B2 (ja) 2012-02-02 2012-02-02 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP5844170B2 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100335A (ja) * 1987-10-14 1989-04-18 Mazda Motor Corp 内燃機関の燃料噴射装置
JPH01294943A (ja) * 1988-05-19 1989-11-28 Nissan Motor Co Ltd 内燃機関の空気量検出装置
JPH04259641A (ja) * 1991-02-15 1992-09-16 Mazda Motor Corp エンジンの燃料制御装置
JPH05248908A (ja) * 1992-03-09 1993-09-28 Toyota Motor Corp 熱式吸入空気量検出装置
JPH09242578A (ja) * 1996-03-01 1997-09-16 Fuji Heavy Ind Ltd エンジンの制御装置
JPH10103127A (ja) * 1996-09-26 1998-04-21 Fuji Heavy Ind Ltd エンジンの制御装置
JP2991127B2 (ja) * 1996-09-19 1999-12-20 トヨタ自動車株式会社 内燃機関の制御装置
JP2003301740A (ja) * 2002-04-11 2003-10-24 Denso Corp 車両用制御装置及び制御パラメータの算出方法
JP2010031699A (ja) * 2008-07-25 2010-02-12 Hitachi Ltd 内燃機関の制御装置
JP2011099355A (ja) * 2009-11-04 2011-05-19 Denso Corp 内燃機関の吸入空気量制御装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100335A (ja) * 1987-10-14 1989-04-18 Mazda Motor Corp 内燃機関の燃料噴射装置
JPH01294943A (ja) * 1988-05-19 1989-11-28 Nissan Motor Co Ltd 内燃機関の空気量検出装置
JPH04259641A (ja) * 1991-02-15 1992-09-16 Mazda Motor Corp エンジンの燃料制御装置
JPH05248908A (ja) * 1992-03-09 1993-09-28 Toyota Motor Corp 熱式吸入空気量検出装置
JPH09242578A (ja) * 1996-03-01 1997-09-16 Fuji Heavy Ind Ltd エンジンの制御装置
JP2991127B2 (ja) * 1996-09-19 1999-12-20 トヨタ自動車株式会社 内燃機関の制御装置
JPH10103127A (ja) * 1996-09-26 1998-04-21 Fuji Heavy Ind Ltd エンジンの制御装置
JP2003301740A (ja) * 2002-04-11 2003-10-24 Denso Corp 車両用制御装置及び制御パラメータの算出方法
JP2010031699A (ja) * 2008-07-25 2010-02-12 Hitachi Ltd 内燃機関の制御装置
JP2011099355A (ja) * 2009-11-04 2011-05-19 Denso Corp 内燃機関の吸入空気量制御装置

Also Published As

Publication number Publication date
JP5844170B2 (ja) 2016-01-13

Similar Documents

Publication Publication Date Title
JP6174264B2 (ja) 内燃機関の制御装置及び制御方法
JP5043165B2 (ja) 内燃機関の制御装置
JP2004044454A (ja) 内燃機関の燃料噴射量制御装置
EP2256323B1 (en) Engine control device
JP5944249B2 (ja) 内燃機関の内部egr量算出装置
US20110172898A1 (en) Internal combustion engine system control device
JP2018193859A (ja) 内燃機関の制御装置
JP5844225B2 (ja) 内燃機関の内部egr量算出装置
JP4534914B2 (ja) 内燃機関の燃料噴射制御装置
JP5514601B2 (ja) 内燃機関の制御装置
JP4761072B2 (ja) 内燃機関の点火時期制御装置
JP5644733B2 (ja) エンジンの制御装置
JP2008240569A (ja) 内燃機関の点火時期制御装置
JP5844170B2 (ja) 内燃機関の制御装置
JP2014005819A (ja) 内燃機関の内部egr量算出装置
JP5476359B2 (ja) 内燃機関の圧力推定装置
JP5303349B2 (ja) 内燃機関のegr制御装置
JP2012219741A (ja) 内燃機関の制御装置
JP4892460B2 (ja) 内燃機関の空気量推定装置
JP2005090325A (ja) 燃料噴射量制御装置
JP6060812B2 (ja) エンジン制御装置
JP4241560B2 (ja) 内燃機関の吸入空気量推定装置
JP4000972B2 (ja) 内燃機関の筒内ガス状態取得装置
JP2006063802A (ja) 内燃機関の空気量推定装置
JP5076983B2 (ja) エンジンの燃料噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151118

R150 Certificate of patent or registration of utility model

Ref document number: 5844170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees