JP2013159742A - Rubber composition for tire - Google Patents

Rubber composition for tire Download PDF

Info

Publication number
JP2013159742A
JP2013159742A JP2012024349A JP2012024349A JP2013159742A JP 2013159742 A JP2013159742 A JP 2013159742A JP 2012024349 A JP2012024349 A JP 2012024349A JP 2012024349 A JP2012024349 A JP 2012024349A JP 2013159742 A JP2013159742 A JP 2013159742A
Authority
JP
Japan
Prior art keywords
group
branched
unbranched
mass
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012024349A
Other languages
Japanese (ja)
Other versions
JP5829541B2 (en
Inventor
Takahiro Mabuchi
貴裕 馬渕
Toshiaki Matsuo
俊朗 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2012024349A priority Critical patent/JP5829541B2/en
Publication of JP2013159742A publication Critical patent/JP2013159742A/en
Application granted granted Critical
Publication of JP5829541B2 publication Critical patent/JP5829541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Abstract

PROBLEM TO BE SOLVED: To provide a pneumatic tire making rolling resistance compatible with wet grip in a combined rubber composition compound of a natural rubber and polybutadiene rubber.SOLUTION: A rubber composition for a tire contains: 100 pts.mass of a rubber component containing 10 to 65 mass% of polybutadiene in which a rate of a vinyl structure of a microstructure is ≥10%, and a ratio of cis-structure: trans-structure is 85:15 to 100:0 and 35 to 90 mass% of polyisoprene-based rubber; and 5 to 150 pts.mass of silica whose nitrogen adsorption specific surface area is 40 to 400 m/g.

Description

本発明は、タイヤ用ゴム組成物に関する。 The present invention relates to a rubber composition for tires.

スタッドレスタイヤ用、トラックバス用やライトトラック用のトレッドゴムは、ガラス転移温度(Tg)が低く、柔軟で強度が高いという理由で、天然ゴムやハイシスポリブタジエンゴムを主成分として作られていることが多い。 Tread rubber for studless tires, truck buses and light trucks is made of natural rubber or high-cis polybutadiene rubber as the main component because of its low glass transition temperature (Tg), flexibility and high strength. There are many.

スタッドレスタイヤ用タイヤに用いるゴム組成物について、氷上や雪上でのグリップ性能を向上させるために、ゴムの硬度を低くして、低温における弾性率(モジュラス)を低下させ粘着摩擦を向上させる方法がある。特に、氷上での制動力は、ゴムの氷との有効接触面積による影響が大きいため、それを大きくするために、柔軟なゴムにすることがよく検討される。 For rubber compositions used in tires for studless tires, in order to improve grip performance on ice and snow, there is a method of reducing the hardness of rubber and reducing the modulus of elasticity (modulus) at low temperature and improving adhesive friction. . In particular, since the braking force on ice is greatly affected by the effective contact area of rubber with ice, it is often considered to use a flexible rubber in order to increase the braking force.

他方、オイル量を増やす等の方法により、単にゴムの硬度だけを下げる方法も考えられるが、氷上や雪上でのしっかり感がなくなり、操縦安定性が悪くなるという問題がある。さらに、近年の道路整備の向上から氷上、雪上だけでなく湿潤路面・乾燥路面でのグリップ(ウェットグリップ)および低燃費性をも強く要求されるようになってきた。 On the other hand, a method of simply reducing the hardness of the rubber by a method such as increasing the amount of oil is also conceivable, but there is a problem that a feeling of stability on ice or snow is lost and steering stability is deteriorated. Furthermore, with recent improvements in road maintenance, not only on ice and snow, but also on wet and dry road surfaces (wet grips) and low fuel consumption have been strongly demanded.

一方、トラックバス用タイヤに用いるゴム組成物についても、低燃費化の要求が強くなっている。トラックバス用タイヤに用いるゴム組成物には、耐久性を確保するためにカーボンブラックが用いられることが一般的であるが、近年の低燃費化が進むにつれてシリカの使用も求められている(特許文献1)。 On the other hand, there is an increasing demand for low fuel consumption for rubber compositions used for truck and bus tires. In general, carbon black is used for rubber compositions used for truck and bus tires in order to ensure durability, but the use of silica is also demanded as fuel efficiency is reduced in recent years (patented) Reference 1).

しかしながら、スタッドレスタイヤ用、トラックバス用やライトトラック用で用いられる天然ゴムのハイシスポリブタジエンゴムは、シランカップリング剤との反応性が乏しく、転がり抵抗とウェットグリップが両立できないという課題があった。 However, the high-cis polybutadiene rubber, which is a natural rubber used for studless tires, truck buses, and light trucks, has a problem that it has poor reactivity with a silane coupling agent, and rolling resistance and wet grip cannot be achieved at the same time.

特開2009−001720号公報JP 2009-001720 A

本発明は、前記課題を解決し、天然ゴムとポリブタジエンゴムを組み合わせたゴム配合において、転がり抵抗とウェットグリップを両立する空気入りタイヤを提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a pneumatic tire that achieves both rolling resistance and wet grip in a rubber compounded combination of natural rubber and polybutadiene rubber.

本発明は、ミクロ構造のビニル構造の割合が10%以上、かつシス構造:トランス構造比が85:15〜100:0であるポリブタジエンを10〜65質量%、かつポリイソプレン系ゴムを35〜90質量%含むゴム成分100質量部に対し、窒素吸着比表面積が40〜400m/gのシリカを5〜150質量部含むタイヤ用ゴム組成物に関する。 In the present invention, the proportion of the microstructured vinyl structure is 10% or more, the polybutadiene having a cis structure: trans structure ratio of 85:15 to 100: 0, 10 to 65% by mass, and the polyisoprene rubber is 35 to 90%. The present invention relates to a tire rubber composition containing 5 to 150 parts by mass of silica having a nitrogen adsorption specific surface area of 40 to 400 m 2 / g with respect to 100 parts by mass of a rubber component containing 5% by mass.

さらに、メルカプト基を有するカップリング剤を、シリカ100質量部に対して0.5〜20質量部含むことが好ましい。 Furthermore, it is preferable that 0.5-20 mass parts of coupling agents which have a mercapto group are included with respect to 100 mass parts of silica.

メルカプト基を含有するカップリング剤が、下記式(1)で表される化合物、及び/又は下記式(2)で示される結合単位Aと下記式(3)で示される結合単位Bとを含む化合物カップリング剤であることが好ましい。

Figure 2013159742
(式(1)中、R101〜R103は、分岐若しくは非分岐の炭素数1〜12のアルキル基、分岐若しくは非分岐の炭素数1〜12のアルコキシ基、又は−O−(R111−O)−R112(z個のR111は、分岐若しくは非分岐の炭素数1〜30の2価の炭化水素基を表す。z個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1〜30のアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニル基、炭素数6〜30のアリール基、又は炭素数7〜30のアラルキル基を表す。zは1〜30の整数を表す。)で表される基を表す。R101〜R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1〜6のアルキレン基を表す。)
Figure 2013159742
Figure 2013159742
(式(2)及び(3)中、R201は水素、ハロゲン、分岐若しくは非分岐の炭素数1〜30のアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニル基、分岐若しくは非分岐の炭素数2〜30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを表す。R202は分岐若しくは非分岐の炭素数1〜30のアルキレン基、分岐若しくは非分岐の炭素数2〜30のアルケニレン基、又は分岐若しくは非分岐の炭素数2〜30のアルキニレン基を表す。R201とR202とで環構造を形成してもよい。) The coupling agent containing a mercapto group includes a compound represented by the following formula (1) and / or a binding unit A represented by the following formula (2) and a binding unit B represented by the following formula (3). A compound coupling agent is preferred.
Figure 2013159742
(In the formula (1), R 101 to R 103 are each a branched or unbranched C 1-12 alkyl group, a branched or unbranched C 1-12 alkoxy group, or —O— (R 111 — O) z- R 112 (z R 111 represents a branched or unbranched divalent hydrocarbon group having 1 to 30 carbon atoms. The z R 111 s may be the same as or different from each other. 112 represents a branched or unbranched alkyl group having 1 to 30 carbon atoms, a branched or unbranched alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms. Z represents an integer of 1 to 30.) R 101 to R 103 may be the same as or different from each other, and R 104 has 1 to 6 carbon atoms which are branched or unbranched. Represents an alkylene group of
Figure 2013159742
Figure 2013159742
(In the formulas (2) and (3), R 201 is hydrogen, halogen, branched or unbranched alkyl group having 1 to 30 carbon atoms, branched or unbranched alkenyl group having 2 to 30 carbon atoms, branched or unbranched. Or an alkyl group substituted with a hydroxyl group or a carboxyl group, and R 202 represents a branched or unbranched C 1-30 alkylene group, branched or It represents an unbranched C2-C30 alkenylene group or a branched or unbranched C2-C30 alkynylene group, and R 201 and R 202 may form a ring structure.)

本発明によれば、含有されるポリブタジエンのビニル構造の割合が10%以上あることにより、シランカップリング剤との反応性が向上し、シリカの分散性とシリカ−ポリブタジエン間の結合力が向上する。それによって、転がり抵抗の低減とウェットグリップの両立が可能となる。また、メルカプト基を含有するカップリング剤を含有することにより、転がり抵抗の低減とウェットグリップの両立度合いが向上する。 According to the present invention, when the proportion of the vinyl structure of the polybutadiene contained is 10% or more, the reactivity with the silane coupling agent is improved, and the dispersibility of silica and the bonding force between silica and polybutadiene are improved. . Thereby, it is possible to achieve both reduction of rolling resistance and wet grip. Moreover, the coexistence degree of reduction of rolling resistance and wet grip improves by containing the coupling agent containing a mercapto group.

本発明のタイヤ用ゴム組成物は、ミクロ構造のビニル構造の割合が10%以上、かつシス構造:トランス構造比が85:15〜100:0であるポリブタジエンを10〜65質量%、かつポリイソプレン系ゴムを35〜90質量%含むゴム成分100質量部に対し、窒素吸着比表面積が40〜400m/gのシリカを5〜150質量部含む。 The rubber composition for tires of the present invention comprises 10 to 65% by mass of polybutadiene having a ratio of microstructure vinyl structure of 10% or more and a cis structure: trans structure ratio of 85:15 to 100: 0, and polyisoprene. 5 to 150 parts by mass of silica having a nitrogen adsorption specific surface area of 40 to 400 m 2 / g is included with respect to 100 parts by mass of the rubber component containing 35 to 90% by mass of the rubber based.

ポリイソプレン系ゴムの含有量は、35質量%以上、好ましくは40質量%以上、より好ましくは45質量%以上である。ポリイソプレン系ゴムが35質量%未満である場合、ゴム破壊強度が低くなる、また混練り時のゴムの纏まりが悪くなり生産性を悪化させる傾向がある。ポリイソプレン系ゴムの含有量は、90質量%以下、好ましくは85質量%以下である。ポリイソプレン系ゴムの含有量が90質量%を越える場合、十分な柔軟性と耐摩耗性が得られない傾向にある。 The content of the polyisoprene rubber is 35% by mass or more, preferably 40% by mass or more, and more preferably 45% by mass or more. When the polyisoprene-based rubber is less than 35% by mass, the rubber breaking strength tends to be low, and the rubber grouping at the time of kneading tends to deteriorate and the productivity tends to deteriorate. The content of the polyisoprene rubber is 90% by mass or less, preferably 85% by mass or less. When the content of the polyisoprene rubber exceeds 90% by mass, sufficient flexibility and wear resistance tend not to be obtained.

ポリイソプレン系ゴムとしては、天然ゴム(NR)やポリイソプレンゴム(IR)などがある。NRとしては特に限定されず、例えば、SIR20、RSS#3、TSR20、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(HPNR)、エポキシ化天然ゴム(ENR)等、タイヤ工業において一般的なものを使用できる。同様に、IRについても、タイヤ工業において一般的なものを使用できる。 Examples of the polyisoprene rubber include natural rubber (NR) and polyisoprene rubber (IR). NR is not particularly limited. For example, SIR20, RSS # 3, TSR20, deproteinized natural rubber (DPNR), high purity natural rubber (HPNR), epoxidized natural rubber (ENR), etc., which are common in the tire industry Can be used. Similarly, IR that is common in the tire industry can be used.

ポリブタジエンの含有量は10〜65質量%であるが、下限は好ましくは15質量%以上、より好ましくは20質量%以上である。10質量%未満であると、低温時の柔軟性が確保出来ず、スタッドレスタイヤでは氷上・雪上性能が低下し、さらに耐摩耗性が低下(トラック・バス用タイヤ含む)する傾向がある。一方、上限は、好ましくは60質量%以下である。65質量%を超えると、ウェットグリップ性能が低下する傾向がある。 The content of polybutadiene is 10 to 65% by mass, but the lower limit is preferably 15% by mass or more, and more preferably 20% by mass or more. If it is less than 10% by mass, flexibility at low temperatures cannot be ensured, and on a studless tire, the performance on ice and snow is lowered, and the wear resistance tends to be lowered (including tires for trucks and buses). On the other hand, the upper limit is preferably 60% by mass or less. If it exceeds 65% by mass, the wet grip performance tends to decrease.

ポリブタジエンとしては、ミクロ構造のビニル構造の割合が10%以上、かつシス構造:トランス構造比が85:15〜100:0であるポリブタジエンを使用する。ビニル構造の割合は、11%以上が好ましい。10%未満であると、カップリング剤との反応性が乏しく、低燃費性や強度が低下する傾向がある。シス構造:トランス構造比は、90:10〜100:0がより好ましく、93:7〜100:0がより好ましい。シス構造が85未満となると、耐摩耗性が低下する傾向がある。 As the polybutadiene, a polybutadiene having a microstructure vinyl structure ratio of 10% or more and a cis structure: trans structure ratio of 85:15 to 100: 0 is used. The proportion of the vinyl structure is preferably 11% or more. If it is less than 10%, the reactivity with the coupling agent is poor, and the fuel economy and strength tend to decrease. The cis structure: trans structure ratio is more preferably 90:10 to 100: 0, and more preferably 93: 7 to 100: 0. When the cis structure is less than 85, the wear resistance tends to decrease.

本発明のタイヤ用ゴム組成物は、他のゴム成分を含んでいても良い。他のゴム成分としては、スチレン−ブタジエン共重合体ゴム(SBR)、前記以外のポリブタジエンゴム(BR)、ブタジエン−イソプレン共重合体ゴム、ブチルゴム、エチレン−プロピレン共重合体、エチレン−オクテン共重合体などが挙げられる。これらのゴム成分は、2種以上組み合わせて用いてもよい。中でも、低燃費性、ウェットグリップ性能、耐摩耗性及び加工性をバランス良く改善できるという点から、共役ジエン化合物由来の構造単位を50質量%以上含むものを好適に使用することができ、具体的には、BR、SBRが好ましい。 The rubber composition for tires of the present invention may contain other rubber components. Other rubber components include styrene-butadiene copolymer rubber (SBR), other polybutadiene rubbers (BR), butadiene-isoprene copolymer rubber, butyl rubber, ethylene-propylene copolymer, ethylene-octene copolymer. Etc. Two or more of these rubber components may be used in combination. Among them, those containing 50% by mass or more of a structural unit derived from a conjugated diene compound can be suitably used from the viewpoint that fuel economy, wet grip performance, wear resistance and workability can be improved in a balanced manner. For these, BR and SBR are preferable.

前記以外のポリブタジエンとしては特に限定されず、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150B等の高シス含有量のブタジエンゴムなどが挙げられる。 The polybutadiene other than the above is not particularly limited, and examples thereof include butadiene rubber having a high cis content such as BR1220 manufactured by Nippon Zeon Co., Ltd., BR130B manufactured by Ube Industries, Ltd., and BR150B.

本発明のゴム組成物はシリカを含有する。シリカとしては特に限定されず、例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などが挙げられる。シラノール基が多いという理由から、湿式法シリカが好ましい。シリカは単独で用いてもよく、2種以上組み合わせて用いてもよい。 The rubber composition of the present invention contains silica. The silica is not particularly limited, and examples thereof include dry method silica (anhydrous silica) and wet method silica (hydrous silica). Wet silica is preferred because it has many silanol groups. Silica may be used alone or in combination of two or more.

シリカの含有量は、ゴム成分100質量部に対して、5質量部以上であるが、好ましくは10質量部以上、より好ましくは30質量部以上、さらに好ましくは45質量部以上である。5質量部未満であると、シリカを配合した効果が充分に得られず、耐摩耗性が低下する傾向がある。また、シリカの含有量は、150質量部以下、好ましくは100質量部以下である。150質量部を超えると、加工性が悪化する傾向がある。 The content of silica is 5 parts by mass or more with respect to 100 parts by mass of the rubber component, preferably 10 parts by mass or more, more preferably 30 parts by mass or more, and further preferably 45 parts by mass or more. When the amount is less than 5 parts by mass, the effect of blending silica cannot be sufficiently obtained, and the wear resistance tends to decrease. The content of silica is 150 parts by mass or less, preferably 100 parts by mass or less. If it exceeds 150 parts by mass, the workability tends to deteriorate.

シリカの窒素吸着比表面積(NSA)は、好ましくは40m/g以上、より好ましくは50m/g以上、更に好ましくは60m/g以上である。40m/g未満では、補強効果が小さく、耐摩耗性や破壊強度が低下する傾向がある。シリカの窒素吸着比表面積(NSA)は、好ましくは400m/g以下、より好ましくは360m/g以下、更に好ましくは300m/g以下である。400m/gを超えると、シリカが分散しにくくなり、低燃費性や加工性が悪化する傾向がある。なお、シリカの窒素吸着比表面積は、ASTM D3037−81に準じてBET法で測定される値である。 The nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 40 m 2 / g or more, more preferably 50 m 2 / g or more, and still more preferably 60 m 2 / g or more. If it is less than 40 m < 2 > / g, a reinforcement effect is small and there exists a tendency for abrasion resistance and fracture strength to fall. The nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 400 m 2 / g or less, more preferably 360 m 2 / g or less, and still more preferably 300 m 2 / g or less. When it exceeds 400 m < 2 > / g, it will become difficult to disperse | distribute a silica and there exists a tendency for low-fuel-consumption property and workability to deteriorate. The nitrogen adsorption specific surface area of silica is a value measured by the BET method according to ASTM D3037-81.

メルカプト基を有するカップリング剤の含有量は、シリカ100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上、さらに好ましくは2質量部以上である。0.5質量部未満では、未加硫ゴム組成物の粘度が高く、加工性が悪化する傾向がある。また、シランカップリング剤の含有量は、好ましくは20質量部以下、より好ましくは15質量部以下である。20質量部を超えると、コストの増加に見合った効果が得られない傾向がある。 The content of the coupling agent having a mercapto group is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and further preferably 2 parts by mass or more with respect to 100 parts by mass of silica. If it is less than 0.5 part by mass, the viscosity of the unvulcanized rubber composition tends to be high, and the processability tends to deteriorate. Further, the content of the silane coupling agent is preferably 20 parts by mass or less, more preferably 15 parts by mass or less. When it exceeds 20 parts by mass, there is a tendency that an effect commensurate with the increase in cost cannot be obtained.

メルカプト基を有するカップリング剤は、メルカプト基を有していれば特に限定されないが、下記式(1)で表される化合物、及び/又は下記式(2)で示される結合単位Aと下記式(3)で示される結合単位Bとを含む化合物を好適に使用できる。

Figure 2013159742
(式(1)中、R101〜R103は、分岐若しくは非分岐の炭素数1〜12のアルキル基、分岐若しくは非分岐の炭素数1〜12のアルコキシ基、又は−O−(R111−O)−R112(z個のR111は、分岐若しくは非分岐の炭素数1〜30の2価の炭化水素基を表す。z個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1〜30のアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニル基、炭素数6〜30のアリール基、又は炭素数7〜30のアラルキル基を表す。zは1〜30の整数を表す。)で表される基を表す。R101〜R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1〜6のアルキレン基を表す。)
Figure 2013159742
Figure 2013159742
(式(2)及び(3)中、R201は水素、ハロゲン、分岐若しくは非分岐の炭素数1〜30のアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニル基、分岐若しくは非分岐の炭素数2〜30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを表す。R202は分岐若しくは非分岐の炭素数1〜30のアルキレン基、分岐若しくは非分岐の炭素数2〜30のアルケニレン基、又は分岐若しくは非分岐の炭素数2〜30のアルキニレン基を表す。R201とR202とで環構造を形成してもよい。) The coupling agent having a mercapto group is not particularly limited as long as it has a mercapto group, but the compound represented by the following formula (1) and / or the binding unit A represented by the following formula (2) and the following formula A compound containing the binding unit B represented by (3) can be suitably used.
Figure 2013159742
(In the formula (1), R 101 to R 103 are each a branched or unbranched C 1-12 alkyl group, a branched or unbranched C 1-12 alkoxy group, or —O— (R 111 — O) z- R 112 (z R 111 represents a branched or unbranched divalent hydrocarbon group having 1 to 30 carbon atoms. The z R 111 s may be the same as or different from each other. 112 represents a branched or unbranched alkyl group having 1 to 30 carbon atoms, a branched or unbranched alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms. Z represents an integer of 1 to 30.) R 101 to R 103 may be the same as or different from each other, and R 104 has 1 to 6 carbon atoms which are branched or unbranched. Represents an alkylene group of
Figure 2013159742
Figure 2013159742
(In the formulas (2) and (3), R 201 is hydrogen, halogen, branched or unbranched alkyl group having 1 to 30 carbon atoms, branched or unbranched alkenyl group having 2 to 30 carbon atoms, branched or unbranched. Or an alkyl group substituted with a hydroxyl group or a carboxyl group, and R 202 represents a branched or unbranched C 1-30 alkylene group, branched or It represents an unbranched C2-C30 alkenylene group or a branched or unbranched C2-C30 alkynylene group, and R 201 and R 202 may form a ring structure.)

以下、式(1)で表される化合物について説明する。 Hereinafter, the compound represented by Formula (1) is demonstrated.

式(1)で表される化合物を使用することで、シリカが良好に分散し、本発明の効果が良好に得られる。特に、ウェットグリップ性能及び低燃費性をより大きく改善することができる。 By using the compound represented by Formula (1), silica is dispersed well, and the effects of the present invention are obtained well. In particular, wet grip performance and fuel efficiency can be greatly improved.

101〜R103は、分岐若しくは非分岐の炭素数1〜12のアルキル基、分岐若しくは非分岐の炭素数1〜12のアルコキシ基、又は−O−(R111−O)−R112で表される基を表す。本発明の効果が良好に得られるという点から、R101〜R103は、少なくとも1つが−O−(R111−O)−R112で表される基であることが好ましく、2つが−O−(R111−O)−R112で表される基であり、かつ、1つが分岐若しくは非分岐の炭素数1〜12のアルコキシ基であることがより好ましい。 R 101 to R 103 are each a branched or unbranched alkyl group having 1 to 12 carbon atoms, a branched or unbranched alkoxy group having 1 to 12 carbon atoms, or —O— (R 111 —O) z —R 112 . Represents the group represented. From the viewpoint that the effect of the present invention can be obtained satisfactorily, at least one of R 101 to R 103 is preferably a group represented by —O— (R 111 —O) z —R 112 , and two of them are — More preferably, it is a group represented by O— (R 111 —O) z —R 112 , and one is a branched or unbranched C 1-12 alkoxy group.

101〜R103の分岐若しくは非分岐の炭素数1〜12(好ましくは炭素数1〜5)のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、へキシル基、へプチル基、2−エチルヘキシル基、オクチル基、ノニル基などがあげられる。 Examples of the branched or unbranched alkyl group having 1 to 12 carbon atoms (preferably 1 to 5 carbon atoms) represented by R 101 to R 103 include, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl. Group, iso-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, 2-ethylhexyl group, octyl group, nonyl group and the like.

101〜R103の分岐若しくは非分岐の炭素数1〜12(好ましくは炭素数1〜5)のアルコキシ基としては、例えば、メトキシ基、エトシキ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、iso−ブトキシ基、sec−ブトシキ基、tert−ブトシキ基、ペンチルオキシ基、へキシルオキシ基、へプチルオキシ基、2−エチルヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基などがあげられる。 Examples of the branched or unbranched alkoxy group having 1 to 12 carbon atoms (preferably 1 to 5 carbon atoms) of R 101 to R 103 include, for example, a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, n- Examples include butoxy, iso-butoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, heptyloxy, 2-ethylhexyloxy, octyloxy, nonyloxy and the like.

101〜R103の−O−(R111−O)−R112において、R111は、分岐若しくは非分岐の炭素数1〜30(好ましくは炭素数1〜15、より好ましくは炭素数1〜3)の2価の炭化水素基を表す。
該炭化水素基としては、例えば、分岐若しくは非分岐の炭素数1〜30のアルキレン基、分岐若しくは非分岐の炭素数2〜30のアルケニレン基、分岐若しくは非分岐の炭素数2〜30のアルキニレン基、炭素数6〜30のアリーレン基などがあげられる。中でも、分岐若しくは非分岐の炭素数1〜30のアルキレン基が好ましい。
In —O— (R 111 —O) z —R 112 of R 101 to R 103 , R 111 represents a branched or unbranched carbon number of 1 to 30 (preferably having 1 to 15 carbon atoms, more preferably 1 carbon number). To 3) a divalent hydrocarbon group.
Examples of the hydrocarbon group include a branched or unbranched alkylene group having 1 to 30 carbon atoms, a branched or unbranched alkenylene group having 2 to 30 carbon atoms, and a branched or unbranched alkynylene group having 2 to 30 carbon atoms. And an arylene group having 6 to 30 carbon atoms. Of these, a branched or unbranched alkylene group having 1 to 30 carbon atoms is preferable.

111の分岐若しくは非分岐の炭素数1〜30(好ましくは炭素数1〜15、より好ましくは炭素数1〜3)のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基などがあげられる。 Examples of the branched or unbranched alkylene group having 1 to 30 carbon atoms (preferably 1 to 15 carbon atoms, more preferably 1 to 3 carbon atoms) of R 111 include, for example, a methylene group, an ethylene group, a propylene group, and a butylene group. Pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, undecylene group, dodecylene group, tridecylene group, tetradecylene group, pentadecylene group, hexadecylene group, heptadecylene group, octadecylene group and the like.

111の分岐若しくは非分岐の炭素数2〜30(好ましくは炭素数2〜15、より好ましくは炭素数2〜3)のアルケニレン基としては、例えば、ビニレン基、1−プロペニレン基、2−プロペニレン基、1−ブテニレン基、2−ブテニレン基、1−ペンテニレン基、2−ペンテニレン基、1−ヘキセニレン基、2−ヘキセニレン基、1−オクテニレン基などがあげられる。 Examples of the branched or unbranched carbon atoms 2-30 alkenylene group (preferably 2 to 15 carbon atoms, more preferably 2 to 3 carbon atoms) of R 111, for example, vinylene group, propenylene group, 2-propenylene Group, 1-butenylene group, 2-butenylene group, 1-pentenylene group, 2-pentenylene group, 1-hexenylene group, 2-hexenylene group, 1-octenylene group and the like.

111の分岐若しくは非分岐の炭素数2〜30(好ましくは炭素数2〜15、より好ましくは炭素数2〜3)のアルキニレン基としては、例えば、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、ヘキシニレン基、へプチニレン基、オクチニレン基、ノニニレン基、デシニレン基、ウンデシニレン基、ドデシニレン基などがあげられる。 Examples of the branched or unbranched carbon atoms 2-30 alkynylene group (preferably 2 to 15 carbon atoms, more preferably 2 to 3 carbon atoms) of R 111, for example, ethynylene group, propynylene group, butynylene group, pentynylene group Hexynylene group, heptynylene group, octynylene group, noninylene group, decynylene group, undecynylene group, dodecynylene group and the like.

111の炭素数6〜30(好ましくは炭素数6〜15)のアリーレン基としては、例えば、フェニレン基、トリレン基、キシリレン基、ナフチレン基などがあげられる。 Examples of the arylene group having 6 to 30 carbon atoms (preferably 6 to 15 carbon atoms) of R 111 include a phenylene group, a tolylene group, a xylylene group, and a naphthylene group.

zは1〜30(好ましくは2〜20、より好ましくは3〜7、さらに好ましくは5〜6)の整数を表す。 z represents an integer of 1 to 30 (preferably 2 to 20, more preferably 3 to 7, further preferably 5 to 6).

112は、分岐若しくは非分岐の炭素数1〜30のアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニル基、炭素数6〜30のアリール基又は炭素数7〜30のアラルキル基を表す。中でも、分岐若しくは非分岐の炭素数1〜30のアルキル基が好ましい。 R 112 represents a branched or unbranched alkyl group having 1 to 30 carbon atoms, a branched or unbranched alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms. Represent. Of these, a branched or unbranched alkyl group having 1 to 30 carbon atoms is preferable.

112の分岐若しくは非分岐の炭素数1〜30(好ましくは炭素数3〜25、より好ましくは炭素数10〜15)のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、へキシル基、へプチル基、2−エチルヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基などがあげられる。 Examples of the branched or unbranched alkyl group having 1 to 30 carbon atoms (preferably 3 to 25 carbon atoms, more preferably 10 to 15 carbon atoms) of R 112 include, for example, a methyl group, an ethyl group, an n-propyl group, Isopropyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, 2-ethylhexyl, octyl, nonyl, decyl, undecyl , Dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, octadecyl group and the like.

112の分岐若しくは非分岐の炭素数2〜30(好ましくは炭素数3〜25、より好ましくは炭素数10〜15)のアルケニル基としては、例えば、ビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、2−ブテニル基、1−ペンテニル基、2−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、1−オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、オクタデセニル基などがあげられる。 Examples of the branched or unbranched alkenyl group having 2 to 30 carbon atoms (preferably 3 to 25 carbon atoms, more preferably 10 to 15 carbon atoms) for R 112 include, for example, a vinyl group, a 1-propenyl group, and 2-propenyl. Group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-octenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group Group, pentadecenyl group, octadecenyl group and the like.

112の炭素数6〜30(好ましくは炭素数10〜20)のアリール基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基などがあげられる。 Examples of the aryl group having 6 to 30 carbon atoms (preferably 10 to 20 carbon atoms) of R 112 include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and a biphenyl group.

112の炭素数7〜30(好ましくは炭素数10〜20)のアラルキル基としては、ベンジル基、フェネチル基などがあげられる。 Examples of the aralkyl group having 7 to 30 carbon atoms (preferably 10 to 20 carbon atoms) of R 112 include a benzyl group and a phenethyl group.

−O−(R111−O)−R112で表される基の具体例としては、例えば、−O−(C−O)−C1123、−O−(C−O)−C1225、−O−(C−O)−C1327、−O−(C−O)−C1429、−O−(C−O)−C1531、−O−(C−O)−C1327、−O−(C−O)−C1327、−O−(C−O)−C1327、−O−(C−O)−C1327などがあげられる。中でも、−O−(C−O)−C1123、−O−(C−O)−C1327、−O−(C−O)−C1531、−O−(C−O)−C1327が好ましい。 Specific examples of the group represented by —O— (R 111 —O) z —R 112 include, for example, —O— (C 2 H 4 —O) 5 —C 11 H 23 , —O— (C 2 H 4 -O) 5 -C 12 H 25, -O- (C 2 H 4 -O) 5 -C 13 H 27, -O- (C 2 H 4 -O) 5 -C 14 H 29, -O - (C 2 H 4 -O) 5 -C 15 H 31, -O- (C 2 H 4 -O) 3 -C 13 H 27, -O- (C 2 H 4 -O) 4 -C 13 H 27, -O- (C 2 H 4 -O) 6 -C 13 H 27, such as -O- (C 2 H 4 -O) 7 -C 13 H 27 and the like. Among these, -O- (C 2 H 4 -O ) 5 -C 11 H 23, -O- (C 2 H 4 -O) 5 -C 13 H 27, -O- (C 2 H 4 -O) 5 -C 15 H 31, -O- (C 2 H 4 -O) 6 -C 13 H 27 are preferable.

104の分岐若しくは非分岐の炭素数1〜6(好ましくは炭素数1〜5)のアルキレン基としては、例えば、R111の分岐若しくは非分岐の炭素数1〜30のアルキレン基と同様の基をあげることができる。 Examples of the branched or unbranched alkylene group having 1 to 6 carbon atoms (preferably 1 to 5 carbon atoms) of R 104 include the same groups as the branched or unbranched alkylene group having 1 to 30 carbon atoms of R 111. Can give.

上記式(1)で表される化合物としては、例えば、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシランや、下記式で表される化合物(EVONIK−DEGUSSA社製のSi363)などがあげられ、下記式で表される化合物を好適に使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。

Figure 2013159742
Examples of the compound represented by the formula (1) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, and the following formula: The compound represented by the following formula (Si363 manufactured by EVONIK-DEGUSSA) and the like can be used, and a compound represented by the following formula can be preferably used. These may be used alone or in combination of two or more.
Figure 2013159742

次に、式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物について説明する。 Next, the compound containing the bond unit A represented by the formula (2) and the bond unit B represented by the formula (3) will be described.

式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物は、ビス−(3−トリエトキシシリルプロピル)テトラスルフィドなどのポリスルフィドシランに比べ、加工中の粘度上昇が抑制される。これは結合単位Aのスルフィド部分がC−S−C結合であるため、テトラスルフィドやジスルフィドに比べ熱的に安定であることから、ムーニー粘度の上昇が少ないためと考えられる。 The compound containing the bond unit A represented by the formula (2) and the bond unit B represented by the formula (3) is more viscous during processing than a polysulfide silane such as bis- (3-triethoxysilylpropyl) tetrasulfide. The rise is suppressed. This is presumably because the increase in Mooney viscosity is small because the sulfide portion of the bond unit A is a C—S—C bond and is thermally stable compared to tetrasulfide and disulfide.

また、3−メルカプトプロピルトリメトキシシランなどのメルカプトシランに比べ、スコーチ時間の短縮が抑制される。これは、結合単位Bはメルカプトシランの構造を持っているが、結合単位Aの−C15部分が結合単位Bの−SH基を覆うため、ポリマーと反応しにくく、スコーチが発生しにくいためと考えられる。 Moreover, the shortening of the scorch time is suppressed as compared with mercaptosilane such as 3-mercaptopropyltrimethoxysilane. This is because the bonding unit B has a structure of mercaptosilane, but the —C 7 H 15 part of the bonding unit A covers the —SH group of the bonding unit B, so that it does not easily react with the polymer and scorch is less likely to occur. This is probably because of this.

上述した加工中の粘度上昇を抑制する効果や、スコーチ時間の短縮を抑制する効果を高めることができるという点から、上記構造のシランカップリング剤において、結合単位Aの含有量は、好ましくは30モル%以上、より好ましくは50モル%以上であり、好ましくは99モル%以下、より好ましくは90モル%以下である。また、結合単位Bの含有量は、好ましくは1モル%以上、より好ましくは5モル%以上、さらに好ましくは10モル%以上であり、好ましくは70モル%以下、より好ましくは65モル%以下、さらに好ましくは55モル%以下である。また、結合単位A及びBの合計含有量は、好ましくは95モル%以上、より好ましくは98モル%以上、特に好ましくは100モル%である。
なお、結合単位A、Bの含有量は、結合単位A、Bがシランカップリング剤の末端に位置する場合も含む量である。結合単位A、Bがシランカップリング剤の末端に位置する場合の形態は特に限定されず、結合単位A、Bを示す式(2)、(3)と対応するユニットを形成していればよい。
In the silane coupling agent having the above structure, the content of the bond unit A is preferably 30 from the viewpoint that the effect of suppressing the increase in viscosity during processing and the effect of suppressing the shortening of the scorch time can be enhanced. It is at least mol%, more preferably at least 50 mol%, preferably at most 99 mol%, more preferably at most 90 mol%. Further, the content of the bond unit B is preferably 1 mol% or more, more preferably 5 mol% or more, further preferably 10 mol% or more, preferably 70 mol% or less, more preferably 65 mol% or less, More preferably, it is 55 mol% or less. Further, the total content of the binding units A and B is preferably 95 mol% or more, more preferably 98 mol% or more, and particularly preferably 100 mol%.
The content of the bond units A and B is an amount including the case where the bond units A and B are located at the terminal of the silane coupling agent. The form in which the bonding units A and B are located at the end of the silane coupling agent is not particularly limited, as long as the units corresponding to the formulas (2) and (3) indicating the bonding units A and B are formed. .

201のハロゲンとしては、塩素、臭素、フッ素などがあげられる。 Examples of the halogen for R 201 include chlorine, bromine, and fluorine.

201の分岐若しくは非分岐の炭素数1〜30のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、へキシル基、へプチル基、2−エチルヘキシル基、オクチル基、ノニル基、デシル基などがあげられる。該アルキル基の炭素数は、好ましくは1〜12である。 Examples of the branched or unbranched alkyl group having 1 to 30 carbon atoms of R 201 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, iso-butyl group, sec-butyl group, tert- Examples thereof include a butyl group, a pentyl group, a hexyl group, a heptyl group, a 2-ethylhexyl group, an octyl group, a nonyl group, and a decyl group. The number of carbon atoms of the alkyl group is preferably 1-12.

201の分岐若しくは非分岐の炭素数2〜30のアルケニル基としては、ビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、2−ブテニル基、1−ペンテニル基、2−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、1−オクテニル基などがあげられる。該アルケニル基の炭素数は、好ましくは2〜12である。 Examples of the branched or unbranched C 2-30 alkenyl group of R 201 include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, and 2-pentenyl. Group, 1-hexenyl group, 2-hexenyl group, 1-octenyl group and the like. The alkenyl group preferably has 2 to 12 carbon atoms.

201の分岐若しくは非分岐の炭素数2〜30のアルキニル基としては、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、へプチニル基、オクチニル基、ノニニル基、デシニル基、ウンデシニル基、ドデシニル基などがあげられる。該アルキニル基の炭素数は、好ましくは2〜12である。 Examples of the branched or unbranched alkynyl group having 2 to 30 carbon atoms of R 201 include ethynyl group, propynyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, octynyl group, nonynyl group, decynyl group, undecynyl group, And dodecynyl group. The alkynyl group preferably has 2 to 12 carbon atoms.

202の分岐若しくは非分岐の炭素数1〜30のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基などがあげられる。該アルキレン基の炭素数は、好ましくは1〜12である。 Examples of the branched or unbranched alkylene group having 1 to 30 carbon atoms of R 202 include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, Examples include dodecylene group, tridecylene group, tetradecylene group, pentadecylene group, hexadecylene group, heptadecylene group, octadecylene group and the like. The alkylene group preferably has 1 to 12 carbon atoms.

202の分岐若しくは非分岐の炭素数2〜30のアルケニレン基としては、ビニレン基、1−プロペニレン基、2−プロペニレン基、1−ブテニレン基、2−ブテニレン基、1−ペンテニレン基、2−ペンテニレン基、1−ヘキセニレン基、2−ヘキセニレン基、1−オクテニレン基などがあげられる。該アルケニレン基の炭素数は、好ましくは2〜12である。 Examples of the branched or unbranched C2-C30 alkenylene group of R202 include vinylene group, 1-propenylene group, 2-propenylene group, 1-butenylene group, 2-butenylene group, 1-pentenylene group and 2-pentenylene. Group, 1-hexenylene group, 2-hexenylene group, 1-octenylene group and the like. The alkenylene group preferably has 2 to 12 carbon atoms.

202の分岐若しくは非分岐の炭素数2〜30のアルキニレン基としては、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、ヘキシニレン基、へプチニレン基、オクチニレン基、ノニニレン基、デシニレン基、ウンデシニレン基、ドデシニレン基などがあげられる。該アルキニレン基の炭素数は、好ましくは2〜12である。 Examples of branched or unbranched alkynylene group having 2 to 30 carbon atoms R 202, ethynylene group, propynylene group, butynylene group, pentynylene group, hexynylene group, heptynylene group, octynylene group, nonynylene group, decynylene group, undecynylene group, And dodecynylene group. The alkynylene group preferably has 2 to 12 carbon atoms.

式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物において、結合単位Aの繰り返し数(x)と結合単位Bの繰り返し数(y)の合計の繰り返し数(x+y)は、3〜300の範囲が好ましい。この範囲内であると、結合単位Bのメルカプトシランを、結合単位Aの−C15が覆うため、スコーチタイムが短くなることを抑制できるとともに、シリカやゴム成分との良好な反応性を確保することができる。 In the compound containing the bond unit A represented by the formula (2) and the bond unit B represented by the formula (3), the repetition of the total of the repeating number (x) of the bonding unit A and the repeating number (y) of the bonding unit B The number (x + y) is preferably in the range of 3 to 300. Within this range, since the mercaptosilane of the bond unit B is covered by —C 7 H 15 of the bond unit A, it is possible to suppress the scorch time from being shortened and to have good reactivity with silica and rubber components. Can be secured.

式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物としては、例えば、Momentive社製のNXT−Z30、NXT−Z45、NXT−Z60などを使用することができる。これらは、単独で用いてもよく、2種以上を併用してもよい。 For example, NXT-Z30, NXT-Z45, NXT-Z60, etc. manufactured by Momentive are used as the compound containing the binding unit A represented by the formula (2) and the coupling unit B represented by the formula (3). Can do. These may be used alone or in combination of two or more.

メルカプト基を有するシランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは0.5質量部以上、より好ましくは3質量部以上である。0.5質量部未満では、未加硫ゴム組成物の粘度が高く、良好な加工性を確保できないおそれがある。また、メルカプト基を有するシランカップリング剤の含有量は、好ましくは20質量部以下、より好ましくは10質量部以下である。20質量部を超えると、ゴム強度、耐摩耗性が低下する傾向がある。 The content of the silane coupling agent having a mercapto group is preferably 0.5 parts by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of silica. If it is less than 0.5 part by mass, the viscosity of the unvulcanized rubber composition is high, and good processability may not be ensured. Moreover, content of the silane coupling agent which has a mercapto group becomes like this. Preferably it is 20 mass parts or less, More preferably, it is 10 mass parts or less. If it exceeds 20 parts by mass, the rubber strength and wear resistance tend to decrease.

本発明のゴム組成物は、メルカプト基を有するシランカップリング剤とともに、他のシランカップリング剤を併用することができる。これにより、各性能の改善効果を高めることができる。他のシランカップリング剤としては、例えば、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)トリスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、3−トリメトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(2−トリメトキシシリルエチル)テトラスルフィド、3−トリエトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、2−トリエトキシシリルエチル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3−トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3−トリエトキシシリルプロピルメタクリレートモノスルフィド、3−トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3−ジエトキシメチルシリルプロピル)テトラスルフィド、3−メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾールテトラスルフィドなどがあげられ、ビス(3−トリエトキシシリルプロピル)テトラスルフィドを好適に使用できる。 In the rubber composition of the present invention, other silane coupling agents can be used in combination with the silane coupling agent having a mercapto group. Thereby, the improvement effect of each performance can be heightened. Examples of other silane coupling agents include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2- Triethoxysilylethyl) tetrasulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3 -Triethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazole tetras Fido, 3-triethoxysilylpropylbenzothiazolyl tetrasulfide, 3-triethoxysilylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, bis (3-diethoxymethylsilylpropyl) tetrasulfide, 3- Examples include mercaptopropyldimethoxymethylsilane, dimethoxymethylsilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, dimethoxymethylsilylpropylbenzothiazole tetrasulfide, and bis (3-triethoxysilylpropyl) tetrasulfide can be preferably used. .

他のシランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは0.5質量部以上、より好ましくは3質量部以上である。0.5質量部未満では、未加硫ゴム組成物の粘度が高く、良好な加工性を確保できないおそれがある。また、他のシランカップリング剤の含有量は、好ましくは20質量部以下、より好ましくは10質量部以下である。20質量部を超えると、ゴム強度、耐摩耗性が低下する傾向がある。 The content of the other silane coupling agent is preferably 0.5 parts by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of silica. If it is less than 0.5 part by mass, the viscosity of the unvulcanized rubber composition is high, and good processability may not be ensured. Moreover, content of another silane coupling agent becomes like this. Preferably it is 20 mass parts or less, More preferably, it is 10 mass parts or less. If it exceeds 20 parts by mass, the rubber strength and wear resistance tend to decrease.

シランカップリング剤の合計含有量は、シリカ100質量部に対して、好ましくは0.5質量部以上、より好ましくは3質量部以上である。0.5質量部未満では、未加硫ゴム組成物の粘度が高く、良好な加工性を確保できないおそれがある。また、シランカップリング剤の合計含有量は、好ましくは20質量部以下、より好ましくは10質量部以下である。20質量部を超えると、ゴム強度、耐摩耗性が低下する傾向がある。 The total content of the silane coupling agent is preferably 0.5 parts by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of silica. If it is less than 0.5 part by mass, the viscosity of the unvulcanized rubber composition is high, and good processability may not be ensured. Moreover, the total content of the silane coupling agent is preferably 20 parts by mass or less, more preferably 10 parts by mass or less. If it exceeds 20 parts by mass, the rubber strength and wear resistance tend to decrease.

本発明のタイヤ用ゴム組成物は、前記成分以外にも、ゴム組成物の製造に一般に使用される添加剤を適宜配合することができる。添加剤としては、公知のものを用いることができ、硫黄などの加硫剤;チアゾール系加硫促進剤、チウラム系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤などの加硫促進剤;ステアリン酸、酸化亜鉛などの加硫活性化剤;有機過酸化物;カーボンブラック、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカなどの充填剤;伸展油、滑剤などの加工助剤;老化防止剤を例示することができる。 In the tire rubber composition of the present invention, in addition to the above-mentioned components, additives generally used in the production of rubber compositions can be appropriately blended. Known additives can be used, such as sulfur vulcanizing agents; thiazole vulcanization accelerators, thiuram vulcanization accelerators, sulfenamide vulcanization accelerators, guanidine vulcanization accelerators. Vulcanization accelerators such as stearic acid and zinc oxide; organic peroxides; fillers such as carbon black, calcium carbonate, talc, alumina, clay, aluminum hydroxide and mica; Examples include processing aids such as lubricants; anti-aging agents.

カーボンブラックとしては、SAF、ISAF、HAF、MAF、FEF、SRF、GPF、APF、FF、CF、SCF及びECFのようなファーネスブラック(ファーネスカーボンブラック);アセチレンブラック(アセチレンカーボンブラック);FT及びMTのようなサーマルブラック(サーマルカーボンブラック);EPC、MPC及びCCのようなチャンネルブラック(チャンネルカーボンブラック);グラファイトなどをあげることができる。これらは1種または2種以上組み合わせて用いることができる。 Carbon black includes furnace black (furnace carbon black) such as SAF, ISAF, HAF, MAF, FEF, SRF, GPF, APF, FF, CF, SCF and ECF; acetylene black (acetylene carbon black); FT and MT Thermal black (thermal carbon black) such as: Channel black (channel carbon black) such as EPC, MPC and CC; Graphite and the like. These can be used alone or in combination of two or more.

カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上である。1質量部未満では、充分な補強性が得られないおそれがある。カーボンブラックの含有量は、好ましくは60質量部以下、より好ましくは30質量部以下、更に好ましくは15質量部以下、最も好ましくは10質量部以下である。60質量部を超えると、低燃費性が悪化する傾向がある。 The content of carbon black is preferably 1 part by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component. If the amount is less than 1 part by mass, sufficient reinforcement may not be obtained. The content of carbon black is preferably 60 parts by mass or less, more preferably 30 parts by mass or less, still more preferably 15 parts by mass or less, and most preferably 10 parts by mass or less. If it exceeds 60 parts by mass, the fuel efficiency tends to deteriorate.

カーボンブラックの窒素吸着比表面積(NSA)は、通常、5〜200m/gであり、下限は50m/g、上限は150m/gであることが好ましい。また、カーボンブラックのジブチルフタレート(DBP)吸収量は、通常、5〜300ml/100gであり、下限は80ml/100g、上限は180ml/100gであることが好ましい。カーボンブラックのNSAやDBP吸収量が上記範囲の下限未満では、補強効果が小さく耐摩耗性が低下する傾向があり、上記範囲の上限を超えると、分散性が悪く、ヒステリシスロスが増大し低燃費性が低下する傾向がある。該窒素吸着比表面積は、ASTM D4820−93に従って測定され、該DBP吸収量は、ASTM D2414−93に従って測定される。市販品としては、東海カーボン社製商品名シースト6、シースト7HM、シーストKH、デグッサ社製商品名CK3、SpecialBlack4A等を用いることができる。 Nitrogen adsorption specific surface area (N 2 SA) of carbon black is usually 5 to 200 m 2 / g, the lower limit is preferably 50 m 2 / g, the upper limit is 150 meters 2 / g. Carbon black has a dibutyl phthalate (DBP) absorption amount of usually 5 to 300 ml / 100 g, preferably a lower limit of 80 ml / 100 g and an upper limit of 180 ml / 100 g. If the N 2 SA or DBP absorption amount of the carbon black is less than the lower limit of the above range, the reinforcing effect tends to be small and the wear resistance tends to decrease. If the upper limit of the above range is exceeded, dispersibility is poor and hysteresis loss increases. There is a tendency for fuel efficiency to decrease. The nitrogen adsorption specific surface area is measured according to ASTM D4820-93, and the DBP absorption is measured according to ASTM D2414-93. As a commercial product, Tokai Carbon Co., Ltd. trade name Seast 6, Seast 7HM, Seast KH, Degussa trade name CK3, Special Black 4A, etc. can be used.

伸展油としては、アロマチック系鉱物油(粘度比重恒数(V.G.C.値)0.900〜1.049)、ナフテン系鉱物油(V.G.C.値0.850〜0.899)、パラフィン系鉱物油(V.G.C.値0.790〜0.849)などをあげることができる。伸展油の多環芳香族含有量は、好ましくは3質量%未満であり、より好ましくは1質量%未満である。該多環芳香族含有量は、英国石油学会346/92法に従って測定される。また、伸展油の芳香族化合物含有量(CA)は、好ましくは20質量%以上である。これらの伸展油は、2種以上組み合わされて用いられてもよい。 As the extending oil, aromatic mineral oil (viscosity specific gravity constant (VGC value) 0.900 to 1.049), naphthenic mineral oil (VGC value 0.850 to 0) 899), paraffinic mineral oil (VG value 0.790 to 0.849), and the like. The polycyclic aromatic content of the extender oil is preferably less than 3% by mass, more preferably less than 1% by mass. The polycyclic aromatic content is measured according to the British Petroleum Institute 346/92 method. Moreover, the aromatic compound content (CA) of the extending oil is preferably 20% by mass or more. These extending oils may be used in combination of two or more.

加硫促進剤としては、2−メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等のチウラム系加硫促進剤;N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド、N−t−ブチル−2−ベンゾチアゾールスルフェンアミド、N−オキシエチレン−2−ベンゾチアゾールスルフェンアミド、N−オキシエチレン−2−ベンゾチアゾールスルフェンアミド、N,N’−ジイソプロピル−2−ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤をあげることができ、その使用量は、ゴム成分100質量部に対して0.1〜5質量部が好ましく、さらに好ましくは0.2〜3質量部である。 Examples of the vulcanization accelerator include 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and thiazole vulcanization accelerators such as N-cyclohexyl-2-benzothiazylsulfenamide; tetramethylthiuram monosulfide, tetramethylthiuram disulfide Thiuram vulcanization accelerators such as N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N- Sulfenamide vulcanization accelerators such as oxyethylene-2-benzothiazole sulfenamide, N, N′-diisopropyl-2-benzothiazole sulfenamide; diphenylguanidine, diortolylguanidine, orthotolylbiguanidine, etc. Guani Can be mentioned emission-based vulcanization accelerator, its amount is preferably from 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component, more preferably from 0.2 to 3 parts by weight.

共役ジエン系重合体に、他のゴム成分や添加剤などを配合してゴム組成物を製造する方法としては、公知の方法、例えば、各成分をロールやバンバリーのような公知の混合機で混練する方法を用いることができる。 As a method for producing a rubber composition by blending other rubber components and additives with a conjugated diene polymer, a known method, for example, kneading each component with a known mixer such as a roll or Banbury. Can be used.

混練条件としては、加硫剤及び加硫促進剤以外の添加剤を配合する場合、混練温度は、通常50〜200℃であり、好ましくは80〜190℃であり、混練時間は、通常30秒〜30分であり、好ましくは1分〜30分である。 As kneading conditions, when additives other than the vulcanizing agent and the vulcanization accelerator are blended, the kneading temperature is usually 50 to 200 ° C., preferably 80 to 190 ° C., and the kneading time is usually 30 seconds. -30 minutes, preferably 1-30 minutes.

加硫剤、加硫促進剤を配合する場合、混練温度は、通常100℃以下であり、好ましくは室温〜80℃である。また、加硫剤、加硫促進剤を配合した組成物は、通常、プレス加硫などの加硫処理を行って用いられる。加硫温度としては、通常120〜200℃、好ましくは140〜180℃である。 When blending a vulcanizing agent and a vulcanization accelerator, the kneading temperature is usually 100 ° C. or lower, preferably room temperature to 80 ° C. A composition containing a vulcanizing agent and a vulcanization accelerator is usually used after vulcanization treatment such as press vulcanization. The vulcanization temperature is usually 120 to 200 ° C, preferably 140 to 180 ° C.

本発明のゴム組成物は、低燃費性、転がり抵抗とウェットグリップ性能、耐摩耗性及び加工性のバランスに優れており、これらの性能の顕著な改善効果を得ることができる。 The rubber composition of the present invention has an excellent balance between low fuel consumption, rolling resistance and wet grip performance, wear resistance, and processability, and can provide a remarkable improvement effect of these performances.

本発明のゴム組成物は、タイヤの各部材に好適に用いることができ、特にトレッドに好適に用いることができる。 The rubber composition of the present invention can be suitably used for each member of a tire, and can be particularly suitably used for a tread.

本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じてゴム成分に各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤのトレッドの形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧して、本発明の空気入りタイヤを製造できる。 The pneumatic tire of the present invention is produced by a usual method using the rubber composition. That is, if necessary, a rubber composition in which various additives are blended with a rubber component is extruded in accordance with the shape of the tread of the tire at an unvulcanized stage, and molded by a normal method on a tire molding machine. And it bonds together with another tire member, and forms an unvulcanized tire. This unvulcanized tire can be heated and pressurized in a vulcanizer to produce the pneumatic tire of the present invention.

本発明の空気入りタイヤは、乗用車用のスタッドレスタイヤやトラックバス用タイヤとして好適に用いることができる。 The pneumatic tire of the present invention can be suitably used as a studless tire for passenger cars or a tire for trucks and buses.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

製造例1<ポリブタジエンゴムBの合成>
以下、合成、重合時に用いた各種薬品について、まとめて説明する。なお、薬品は必要に応じて定法に従い精製を行った。
THF:関東化学(株)製無水テトラヒドロフラン
ブタジエン:東京化成工業(株)製1,3−ブタジエン
n−ブチルリチウム溶液:関東化学(株)製の1.6M n−ブチルリチウムヘキサン溶液
2,6−ジ−tert−ブチル−p−クレゾール:大内新興化学工業(株)製のノクラック200
シクロヘキサン:関東化学(株)製
Production Example 1 <Synthesis of Polybutadiene Rubber B>
Hereinafter, various chemicals used at the time of synthesis and polymerization will be described together. In addition, the chemical | medical agent refine | purified according to the usual method as needed.
THF: anhydrous tetrahydrofuran butadiene manufactured by Kanto Chemical Co., Ltd .: 1,3-butadiene n-butyllithium solution manufactured by Tokyo Chemical Industry Co., Ltd .: 1.6M n-butyllithium hexane solution 2,6- manufactured by Kanto Chemical Co., Ltd. Di-tert-butyl-p-cresol: Nocrack 200 manufactured by Ouchi Shinsei Chemical Co., Ltd.
Cyclohexane: manufactured by Kanto Chemical Co., Inc.

充分に窒素置換した3L耐圧容器にn−ヘキサンを18000mL、ブタジエンを2000g、THFを5mmol加え、40℃に昇温した。次に、n−ブチルリチウム溶液を11mL加えた後、50℃に昇温させ3時間撹拌した。次に、反応溶液にメタノール1mL及び2,6−tert−ブチル−p−クレゾール0.1gを添加後、スチームストリッピング処理によって重合体溶液から凝集体を回収し、得られた凝集体を24時間減圧乾燥させ、ポリブタジエンゴムBを得た。 To a 3 L pressure-resistant vessel sufficiently purged with nitrogen, 18000 mL of n-hexane, 2000 g of butadiene, and 5 mmol of THF were added, and the temperature was raised to 40 ° C. Next, after adding 11 mL of n-butyllithium solutions, it heated up at 50 degreeC and stirred for 3 hours. Next, 1 mL of methanol and 0.1 g of 2,6-tert-butyl-p-cresol are added to the reaction solution, and then aggregates are collected from the polymer solution by steam stripping, and the obtained aggregates are recovered for 24 hours. The polybutadiene rubber B was obtained by drying under reduced pressure.

以下に、実施例及び比較例で用いた各種薬品について説明する。
天然ゴム:TSR20
ポリブタジエンゴムA:宇部興産(株)製のウベポールBR150B
(Mw=43.7万、Mn=19.0万、Mw/Mn=2.3、
ビニル構造=1.2%、シス構造:トランス構造=98.2:1.8)
ポリブタジエンゴムB:製造例1で重合したゴム
(Mw=27.1万、Mn=24.4万、Mw/Mn=1.11、
ビニル構造=13.9%、シス構造:トランス構造=17.8:82.2)
ポリブタジエンゴムC:宇部興産(株)製のウベポールMBR
(Mw=52.3万、Mn=21.0万、Mw/Mn=2.5、
ビニル構造=11.4%、シス構造:トランス構造=97.7:2.3)
シリカ:デグッサ社製のウルトラシルVN3−G(NSA:175m/g)
シランカップリング剤A:デグッサ社製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
シランカップリング剤B:Momentive製のNXT−Z45(結合単位Aと結合単位Bとの共重合体(上記一般式(1)、(2)において、結合単位A:55モル%、結合単位B:45モル%)
カーボンブラック:三菱化学(株)製のダイアブラックN339(NSA:96m/g、DBP吸収量:124ml/100g)
オイル:(株)ジャパンエナジー製のX−140
老化防止剤:住友化学(株)製のアンチゲン3C
ステアリン酸:日油(株)製のビーズステアリン酸つばき
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
ワックス:大内新興化学工業(株)製のサンノックN
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤1:住友化学(株)製のソクシノールCZ
加硫促進剤2:住友化学(株)製のソクシノールD
Below, various chemical | medical agents used by the Example and the comparative example are demonstrated.
Natural rubber: TSR20
Polybutadiene rubber A: Ubepol BR150B manufactured by Ube Industries, Ltd.
(Mw = 437,000, Mn = 19.0 million, Mw / Mn = 2.3,
Vinyl structure = 1.2%, cis structure: trans structure = 98.2: 1.8)
Polybutadiene rubber B: Rubber polymerized in Production Example 1 (Mw = 21,000, Mn = 24,000, Mw / Mn = 1.11.
(Vinyl structure = 13.9%, cis structure: trans structure = 17.8: 82.2)
Polybutadiene rubber C: Ubepol MBR manufactured by Ube Industries, Ltd.
(Mw = 523,000, Mn = 21,000, Mw / Mn = 2.5,
(Vinyl structure = 11.4%, cis structure: trans structure = 97.7: 2.3)
Silica: Ultrasil VN3-G (N 2 SA: 175 m 2 / g) manufactured by Degussa
Silane coupling agent A: Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by Degussa
Silane coupling agent B: NXT-Z45 manufactured by Momentive (copolymer of bond unit A and bond unit B (in the above general formulas (1) and (2), bond unit A: 55 mol%, bond unit B: 45 mol%)
Carbon black: Dia Black N339 manufactured by Mitsubishi Chemical Corporation (N 2 SA: 96 m 2 / g, DBP absorption: 124 ml / 100 g)
Oil: X-140 manufactured by Japan Energy Co., Ltd.
Anti-aging agent: Antigen 3C manufactured by Sumitomo Chemical Co., Ltd.
Stearic acid: Beads manufactured by NOF Corporation Zinc stearate Zinc oxide: Zinc flower No. 1 manufactured by Mitsui Kinzoku Mining Co., Ltd. Wax: Sunnock N manufactured by Ouchi Shinsei Chemical Co., Ltd.
Sulfur: Powder sulfur vulcanization accelerator manufactured by Tsurumi Chemical Industry Co., Ltd. 1: Soxinol CZ manufactured by Sumitomo Chemical Co., Ltd.
Vulcanization accelerator 2: Soxinol D manufactured by Sumitomo Chemical Co., Ltd.

実施例1〜8及び比較例1〜9
表1および2に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を150℃の条件下で5分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で20分間、0.5mm厚の金型でプレス加硫し、加硫ゴム組成物を得た。
また、得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、170℃で12分間加硫し、試験用タイヤ(サイズ:195/65R15)を製造した。
得られたタイヤを使用して、下記方法に従って評価した。その結果を表1および2に示す。
Examples 1-8 and Comparative Examples 1-9
In accordance with the contents shown in Tables 1 and 2, materials other than sulfur and a vulcanization accelerator were kneaded for 5 minutes at 150 ° C. using a 1.7 L Banbury mixer manufactured by Kobe Steel, Ltd., and mixed. A kneaded paste was obtained. Next, sulfur and a vulcanization accelerator were added to the obtained kneaded product, and kneaded for 5 minutes under the condition of 80 ° C. using an open roll to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press vulcanized with a 0.5 mm thick mold at 170 ° C. for 20 minutes to obtain a vulcanized rubber composition.
Further, the obtained unvulcanized rubber composition is molded into a tread shape and bonded together with other tire members on a tire molding machine to form an unvulcanized tire, which is vulcanized at 170 ° C. for 12 minutes, and tested. Tires (size: 195 / 65R15) were manufactured.
The obtained tire was used and evaluated according to the following method. The results are shown in Tables 1 and 2.

Figure 2013159742
Figure 2013159742

Figure 2013159742
Figure 2013159742

<評価項目及び試験方法>
低発熱指数
(株)上島製作所製スペクトロメーターを用いて、動的歪振幅1%、周波数10Hz、温度50℃で加硫ゴム組成物のtanδを測定した。tanδの逆数の値について比較例1を100として指数表示した。数値が大きいほど転がり抵抗が小さく、低燃費性に優れることを示している。
耐摩耗性指数
タイヤサイズ195/65R15にて、国産FF車に装着し、走行距離8000km後のタイヤトレッド部の溝深さを測定し、タイヤ溝深さが1mm減るときの走行距離を算出し下記の式により指数化した。
(1mm溝深さが減るときの走行距離)÷(比較例1のタイヤ溝が1mm減るときの走行距離)×100で指数が大きいほど、耐摩耗性が良好である。
ゴム強度指数
JIS K6251に準じて引張試験を行い、破断伸びを測定した。測定結果を、比較例1を100とした指数で示した。指数が大きい程、破壊強度が大きいことを示している。
(ゴム強度指数)=(各配合の破壊強度)/(比較例1の破壊強度)×100
ウェットグリップ性能指数
各試験用タイヤを車両(国産FF2000cc)の全輪に装着して、湿潤アスファルト路面にて初速度100km/hからの制動距離を求めた。結果は指数で表し、数値が大きいほどウェットスキッド性能(ウェットグリップ性能)が良好である。指数は次の式で求めた。
(ウェットグリップ性能指数)=(比較例1の制動距離)/(各配合の制動距離)×100
ドライ操縦安定性指数
試作タイヤを国産FF2000ccの全輪に装着し、テストコースでドライバーの官能評価により、操縦安定性を評価した。評価は比較例1を100点として相対評価をした。評点が大きいほど操縦安定性に優れている。
<Evaluation items and test methods>
The tan δ of the vulcanized rubber composition was measured at a dynamic strain amplitude of 1%, a frequency of 10 Hz, and a temperature of 50 ° C. using a spectrometer manufactured by Ueshima Seisakusho Co., Ltd. The reciprocal value of tan δ was expressed as an index with Comparative Example 1 being 100. Larger values indicate lower rolling resistance and better fuel efficiency.
Wear resistance index tire size 195 / 65R15, mounted on a domestic FF car, measure the groove depth of the tire tread after mileage 8000km, calculate the mileage when the tire groove depth decreases by 1mm It was indexed by the following formula.
(Driving distance when 1 mm groove depth decreases) ÷ (traveling distance when tire groove of Comparative Example 1 decreases by 1 mm) × 100, the larger the index, the better the wear resistance.
A tensile test was conducted according to the rubber strength index JIS K6251 to measure the elongation at break. The measurement results are shown as an index with Comparative Example 1 as 100. The larger the index, the greater the breaking strength.
(Rubber strength index) = (Fracture strength of each compound) / (Fracture strength of Comparative Example 1) × 100
Wet grip performance index Each test tire was mounted on all wheels of a vehicle (domestic FF2000cc), and a braking distance from an initial speed of 100 km / h was determined on a wet asphalt road surface. The result is expressed as an index. The larger the value, the better the wet skid performance (wet grip performance). The index was calculated by the following formula.
(Wet grip performance index) = (Brake distance of Comparative Example 1) / (Brake distance of each formulation) × 100
Dry steering stability index prototype tires were mounted on all domestic FF2000cc wheels, and steering stability was evaluated by sensory evaluation of the driver on the test course. The evaluation was made by making the comparative example 1 100 points. The greater the score, the better the steering stability.

実施例1〜3において、比較例1〜2に対しポリブタジエンCの添加効果(特に低発熱性とウェットグリップ)が得られている。
実施例3において、比較例1〜2、7〜9に対しポリブタジエンCはシリカ配合で効果が得られている。
実施例4において、比較例3〜4に対しポリブタジエンCはシリカ配合かつメルカプト系シランカップリング剤の組み合わせたゴム組成物で性能における相乗効果が得られている。
比較例5〜6は、請求規定量外で性能が偏っている結果が得られている。
In Examples 1 to 3, the effect of adding polybutadiene C (particularly low heat build-up and wet grip) is obtained with respect to Comparative Examples 1 and 2.
In Example 3, with respect to Comparative Examples 1-2 and 7-9, the effect of polybutadiene C is obtained by blending silica.
In Example 4, compared with Comparative Examples 3 to 4, polybutadiene C is a rubber composition in which a silica compound and a mercapto silane coupling agent are combined, and a synergistic effect in performance is obtained.
In Comparative Examples 5 to 6, results are obtained in which the performance is biased outside the prescribed amount.

Claims (3)

ミクロ構造のビニル構造の割合が10%以上、かつシス構造:トランス構造比が85:15〜100:0であるポリブタジエンを10〜65質量%、かつポリイソプレン系ゴムを35〜90質量%含むゴム成分100質量部に対し、窒素吸着比表面積が40〜400m/gのシリカを5〜150質量部含むタイヤ用ゴム組成物。 A rubber containing 10 to 65 mass% of polybutadiene having a ratio of microstructure vinyl structure of 10% or more, and having a cis structure: trans structure ratio of 85:15 to 100: 0, and 35 to 90 mass% of polyisoprene rubber. A rubber composition for tires containing 5 to 150 parts by mass of silica having a nitrogen adsorption specific surface area of 40 to 400 m 2 / g with respect to 100 parts by mass of the component. さらに、メルカプト基を有するカップリング剤を、シリカ100質量部に対して0.5〜20質量部含む請求項1記載のタイヤ用ゴム組成物。 Furthermore, the rubber composition for tires of Claim 1 which contains 0.5-20 mass parts of coupling agents which have a mercapto group with respect to 100 mass parts of silica. メルカプト基を含有するカップリング剤が、下記式(1)で表される化合物、及び/又は下記式(2)で示される結合単位Aと下記式(3)で示される結合単位Bとを含む化合物カップリング剤である請求項2記載のタイヤ用ゴム組成物。
Figure 2013159742
(式(1)中、R101〜R103は、分岐若しくは非分岐の炭素数1〜12のアルキル基、分岐若しくは非分岐の炭素数1〜12のアルコキシ基、又は−O−(R111−O)−R112(z個のR111は、分岐若しくは非分岐の炭素数1〜30の2価の炭化水素基を表す。z個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1〜30のアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニル基、炭素数6〜30のアリール基、又は炭素数7〜30のアラルキル基を表す。zは1〜30の整数を表す。)で表される基を表す。R101〜R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1〜6のアルキレン基を表す。)
Figure 2013159742
Figure 2013159742
(式(2)及び(3)中、R201は水素、ハロゲン、分岐若しくは非分岐の炭素数1〜30のアルキル基、分岐若しくは非分岐の炭素数2〜30のアルケニル基、分岐若しくは非分岐の炭素数2〜30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを表す。R202は分岐若しくは非分岐の炭素数1〜30のアルキレン基、分岐若しくは非分岐の炭素数2〜30のアルケニレン基、又は分岐若しくは非分岐の炭素数2〜30のアルキニレン基を表す。R201とR202とで環構造を形成してもよい。)
The coupling agent containing a mercapto group includes a compound represented by the following formula (1) and / or a binding unit A represented by the following formula (2) and a binding unit B represented by the following formula (3). The rubber composition for tires according to claim 2, which is a compound coupling agent.
Figure 2013159742
(In the formula (1), R 101 to R 103 are each a branched or unbranched C 1-12 alkyl group, a branched or unbranched C 1-12 alkoxy group, or —O— (R 111 — O) z- R 112 (z R 111 represents a branched or unbranched divalent hydrocarbon group having 1 to 30 carbon atoms. The z R 111 s may be the same as or different from each other. 112 represents a branched or unbranched alkyl group having 1 to 30 carbon atoms, a branched or unbranched alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms. Z represents an integer of 1 to 30.) R 101 to R 103 may be the same as or different from each other, and R 104 has 1 to 6 carbon atoms which are branched or unbranched. Represents an alkylene group of
Figure 2013159742
Figure 2013159742
(In the formulas (2) and (3), R 201 is hydrogen, halogen, branched or unbranched alkyl group having 1 to 30 carbon atoms, branched or unbranched alkenyl group having 2 to 30 carbon atoms, branched or unbranched. Or an alkyl group substituted with a hydroxyl group or a carboxyl group, and R 202 represents a branched or unbranched C 1-30 alkylene group, branched or It represents an unbranched C2-C30 alkenylene group or a branched or unbranched C2-C30 alkynylene group, and R 201 and R 202 may form a ring structure.)
JP2012024349A 2012-02-07 2012-02-07 Rubber composition for tire Active JP5829541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012024349A JP5829541B2 (en) 2012-02-07 2012-02-07 Rubber composition for tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012024349A JP5829541B2 (en) 2012-02-07 2012-02-07 Rubber composition for tire

Publications (2)

Publication Number Publication Date
JP2013159742A true JP2013159742A (en) 2013-08-19
JP5829541B2 JP5829541B2 (en) 2015-12-09

Family

ID=49172272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012024349A Active JP5829541B2 (en) 2012-02-07 2012-02-07 Rubber composition for tire

Country Status (1)

Country Link
JP (1) JP5829541B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193478A (en) * 2017-05-17 2018-12-06 住友ゴム工業株式会社 Rubber composition for tire, and tire
JP2021001267A (en) * 2019-06-21 2021-01-07 住友ゴム工業株式会社 Rubber composition, tread, tire and manufacturing method
WO2021024723A1 (en) * 2019-08-08 2021-02-11 住友ゴム工業株式会社 Rubber composition for tire and tire
WO2021090660A1 (en) * 2019-11-06 2021-05-14 住友ゴム工業株式会社 Rubber composition for tires, and tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149924A (en) * 1997-08-01 1999-02-23 Ube Ind Ltd High cis form-high vinyl content polybutadiene composition
JP2000344944A (en) * 1999-06-02 2000-12-12 Nippon Mitsubishi Oil Corp Rubber composition for automotive tire tread
JP2002265678A (en) * 2001-03-14 2002-09-18 Ube Ind Ltd Silica-compounded rubber composition for tire
JP2011140613A (en) * 2009-12-09 2011-07-21 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149924A (en) * 1997-08-01 1999-02-23 Ube Ind Ltd High cis form-high vinyl content polybutadiene composition
JP2000344944A (en) * 1999-06-02 2000-12-12 Nippon Mitsubishi Oil Corp Rubber composition for automotive tire tread
JP2002265678A (en) * 2001-03-14 2002-09-18 Ube Ind Ltd Silica-compounded rubber composition for tire
JP2011140613A (en) * 2009-12-09 2011-07-21 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193478A (en) * 2017-05-17 2018-12-06 住友ゴム工業株式会社 Rubber composition for tire, and tire
JP7403207B2 (en) 2017-05-17 2023-12-22 住友ゴム工業株式会社 Rubber composition for tires and tires
JP2021001267A (en) * 2019-06-21 2021-01-07 住友ゴム工業株式会社 Rubber composition, tread, tire and manufacturing method
WO2021024723A1 (en) * 2019-08-08 2021-02-11 住友ゴム工業株式会社 Rubber composition for tire and tire
JP2021025006A (en) * 2019-08-08 2021-02-22 住友ゴム工業株式会社 Tire rubber composition and tire
CN114207008A (en) * 2019-08-08 2022-03-18 住友橡胶工业株式会社 Rubber composition for tire and tire
WO2021090660A1 (en) * 2019-11-06 2021-05-14 住友ゴム工業株式会社 Rubber composition for tires, and tire
JP2021075601A (en) * 2019-11-06 2021-05-20 住友ゴム工業株式会社 Rubber composition for tires, and tire
CN114641524A (en) * 2019-11-06 2022-06-17 住友橡胶工业株式会社 Rubber composition for tire and tire

Also Published As

Publication number Publication date
JP5829541B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP6351495B2 (en) Pneumatic tire
JP5097803B2 (en) Rubber composition for tire and pneumatic tire
JP5872125B1 (en) Rubber composition and tire
JP2013234252A (en) Rubber composition for tire and pneumatic tire
JP6208422B2 (en) Rubber composition for tire and pneumatic tire
JP2015174991A (en) pneumatic tire
JP2019182906A (en) Rubber composition for tires, and pneumatic tire
JP5829541B2 (en) Rubber composition for tire
JP6005986B2 (en) Rubber composition for tire and pneumatic tire
JP2011148904A (en) Rubber composition for clinch apex or chafer, and pneumatic tire
JP6285214B2 (en) Pneumatic tires for winter
JP2019182907A (en) Rubber composition for tire, and pneumatic tire
JPWO2013046850A1 (en) Rubber composition for tire and pneumatic tire
JP6208428B2 (en) Rubber composition for tire and pneumatic tire
JP6448973B2 (en) Pneumatic tires for winter
JP2019182910A (en) Rubber composition for tire, and pneumatic tire
JP2019182908A (en) Rubber composition for tires, and pneumatic tire
JP2017165409A (en) Pneumatic tire
JP6030104B2 (en) Manufacturing method of tire rubber composition and tire
WO2012144541A1 (en) Rubber composition for tires and pneumatic tire
JP2015174990A (en) pneumatic tire
JP6358967B2 (en) Manufacturing method of tire rubber composition and tire
JP6208415B2 (en) Rubber composition for tread and pneumatic tire
JP2018076469A (en) Rubber composition, method for producing rubber composition and tire
JP5503684B2 (en) Rubber composition for sidewall or base tread, and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151022

R150 Certificate of patent or registration of utility model

Ref document number: 5829541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250