WO2012144541A1 - Rubber composition for tires and pneumatic tire - Google Patents

Rubber composition for tires and pneumatic tire Download PDF

Info

Publication number
WO2012144541A1
WO2012144541A1 PCT/JP2012/060531 JP2012060531W WO2012144541A1 WO 2012144541 A1 WO2012144541 A1 WO 2012144541A1 JP 2012060531 W JP2012060531 W JP 2012060531W WO 2012144541 A1 WO2012144541 A1 WO 2012144541A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
branched
rubber composition
diene polymer
silica
Prior art date
Application number
PCT/JP2012/060531
Other languages
French (fr)
Japanese (ja)
Inventor
里美 山内
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Publication of WO2012144541A1 publication Critical patent/WO2012144541A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives

Definitions

  • the present invention relates to a rubber composition for tires and a pneumatic tire using the same.
  • a method of replacing carbon black with silica is known.
  • a rubber composition blended with silica tends to have a low dry grip performance, and when traveling, the rubber stiffness decreases and the dry grip performance tends to further decrease.
  • Silica has a hydrophilic silanol group on its surface, so it has a lower affinity with rubber (especially natural rubber, butadiene rubber, styrene butadiene rubber, etc. often used for tires) and wear resistance than carbon black. There was a tendency to be inferior in terms of property and mechanical strength (tensile strength and elongation at break).
  • Patent Document 1 discloses a rubber composition containing specific silica (linear silica) and capable of improving wet grip performance and dry grip performance while maintaining low fuel consumption. However, there is room for improvement in terms of improving fuel economy, wet grip performance, dry grip performance, wear resistance, and workability.
  • the present invention provides a rubber composition for a tire that solves the above-described problems and can improve fuel economy, wet grip performance, dry grip performance, wear resistance, and processability, and a pneumatic tire using the same. Objective.
  • the present invention includes a diene polymer and silica
  • the diene polymer is a modified diene polymer obtained by reacting the following (A) and (B):
  • the silica has three or more particles adjacent to one particle as the branched particle X
  • the average length L 1 between the branched particles XX including the branched particle X is 30 to 400 nm.
  • the present invention relates to a tire rubber composition.
  • A represents a branched or unbranched alkylene group, a branched or unbranched arylene group, or a derivative thereof.
  • the present invention also relates to a tire rubber composition obtained by kneading a modified diene polymer obtained by reacting the above (A) and (B) with silica sol.
  • the compound represented by the above formula (1) is a compound represented by the following formula (2).
  • the modifying agent is preferably a compound represented by the following formula (3).
  • R 3 and R 4 are the same or different and each represents a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group is selected from the group consisting of ethers and tertiary amines.
  • R 5 and R 6 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, the hydrocarbon group being an ether, and 3 It may have at least one group selected from the group consisting of a tertiary amine, R 7 represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group is an ether, a tertiary amine, an epoxy And at least one group selected from the group consisting of carbonyl, and halogen, n represents an integer of 1 to 6.)
  • the modifiers introduced at both ends of the active conjugated diene polymer are the same.
  • the content of the diene polymer in 100% by mass of the rubber component is preferably 5% by mass or more.
  • the conjugated diene monomer is preferably 1,3-butadiene and / or isoprene, and the aromatic vinyl monomer is preferably styrene.
  • the modified diene polymer is preferably a modified styrene butadiene rubber obtained by polymerizing 1,3-butadiene and styrene.
  • the silica preferably has an average aspect ratio L 1 / D of 3 to 100 between the branched particles XX including the branched particles X when the average primary particle diameter is D.
  • the tire rubber composition preferably contains 5 to 150 parts by mass of the silica with respect to 100 parts by mass of the rubber component.
  • the tire rubber composition is preferably used as a tread rubber composition.
  • the present invention also relates to a pneumatic tire using the rubber composition.
  • the present invention since it is a tire rubber composition containing a specific modified diene polymer and a specific silica, low fuel consumption, wet grip performance, dry grip performance, wear resistance, workability Can be improved. Further, since it is a tire rubber composition obtained by kneading a specific modified diene polymer and silica sol, low fuel consumption, wet grip performance, dry grip performance, abrasion resistance And processability can be improved. Therefore, the pneumatic tire excellent in the above-mentioned performance can be provided by using these rubber compositions for each member of the tire such as a tread.
  • FIG. 3 is a schematic diagram of a branched particle X.
  • FIG. Outline of average primary particle diameter of silica, average length of XX between branched particles including branched particle X (L 1 ), and average length of XX between branched particles not including branched particle X (L 2 ) It is a schematic diagram.
  • the rubber composition for tires of the present invention includes a diene polymer and silica, and the diene polymer is obtained by reacting the following (A) and (B) with a modified diene polymer (hereinafter referred to as “diene polymer”). , Also referred to as a modified diene polymer), and when the above-mentioned silica has three or more particles adjacent to one particle as the branched particle X, the inter-branched particle XX including the branched particle X
  • the average length L 1 is 30 to 400 nm (structure silica (linear silica)).
  • A represents a branched or unbranched alkylene group, a branched or unbranched arylene group, or a derivative thereof.
  • the polymer chain obtained by the polymerization reaction (above (A) (Active conjugated diene polymer)) has both ends as living polymer ends. Therefore, both ends of the active conjugated diene polymer (A) can be modified with the modifier (B), and the modified diene polymer obtained by modifying both ends of (A) with the above (B) Compared with the case where only one end is modified, excellent fuel economy, wet grip performance, dry grip performance, and wear resistance can be obtained, and these performances can be improved in a well-balanced manner.
  • a method for introducing functional groups (modifying groups) at both ends a method in which polymerization is performed using a polymerization initiator having a functional group, and a modifier is further reacted at the polymerization ends can be considered.
  • the functional group of the polymerization initiator is present at one end, and the functional group due to the modifier is present at the other end.
  • the functional group of the polymerization initiator generally has a weak interaction with silica, the balance between low fuel consumption, wet grip performance, dry grip performance, and wear resistance is poor.
  • the functional group which a polymerization initiator has is easy to detach
  • the polarity of the functional group possessed by the polymerization initiator when the polarity of the functional group possessed by the polymerization initiator is high, it can coordinate to the end of the living polymer to affect the reaction between the polymerization end and the modifier, and any functional group can be introduced to the end of the polymerization. Can not.
  • (A) is obtained by using (C) as a polymerization initiator, the polymer chain extends in two directions by the polymerization reaction, and there are two living polymer terminals. A functional group can be introduced. Therefore, by blending the modified diene polymer obtained by reacting the above (A) and (B), rubber excellent in fuel economy, wet grip performance, dry grip performance, and wear resistance balance performance A composition is obtained.
  • the occluder rubber (rubber which is encapsulated in the silica aggregate and cannot be distorted) produced by the aggregation of the silica particles is reduced, and the local stress concentration, that is, the local Distortion is reduced.
  • extension of a tire (at the time of low distortion) can be reduced, and rolling resistance can be reduced.
  • the structure silica is oriented in the tread circumferential direction of the tire when the tire is highly stretched (during high strain) such as during sudden braking or sharp turning. As a result, the rubber in the vicinity of the structure silica is abruptly distorted and the hysteresis loss is increased, thereby improving the dry grip performance.
  • the improvement effect of each can be synergistically enhanced by the combined use of the modified diene polymer and the structure silica.
  • the processability may be lowered.
  • the processability can be improved by using the modified diene polymer in combination with the structure silica.
  • the rubber composition containing the structure silica of the present invention can be produced, for example, by kneading the modified diene polymer and silica sol.
  • the diene polymer is a modified diene polymer obtained by reacting (A) and (B).
  • (A) is an active conjugated diene polymer having an alkali metal end obtained by polymerizing a conjugated diene monomer or a conjugated diene monomer and an aromatic vinyl monomer in the presence of (C).
  • the active conjugated diene polymer has two alkali metal terminals.
  • (C) is a chemical species obtained by reacting a compound represented by the following formula (1) with an organic alkali metal compound.
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a branched or unbranched alkyl group, a branched or unbranched aryl group, a branched or unbranched alkoxy group, a branched or unbranched silyloxy group, branched or Represents an unbranched acetal group, carboxyl group (—COOH), mercapto group (—SH) or a derivative thereof, and A represents a branched or unbranched alkylene group, a branched or unbranched arylene group or a derivative thereof. .
  • Examples of the branched or unbranched alkyl group for R 1 and R 2 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, iso-butyl group, sec-butyl group, tert- 1 to 30 carbon atoms such as butyl group, pentyl group, hexyl group, heptyl group, 2-ethylhexyl group, octyl group, nonyl group, decyl group, etc. (preferably 1 to 8 carbon atoms, more preferably 1 to 3 carbon atoms) 4, more preferably an alkyl group having 1 to 2 carbon atoms.
  • the alkyl group includes a group in which a hydrogen atom of the alkyl group is substituted with an aryl group (such as a phenyl group).
  • Examples of the branched or unbranched aryl group for R 1 and R 2 include those having 6 to 18 carbon atoms (preferably 6 to 8 carbon atoms) such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and a biphenyl group.
  • An aryl group is mentioned.
  • the aryl group includes a group in which a hydrogen atom of the aryl group is substituted with an alkyl group (such as a methyl group).
  • Examples of the branched or unbranched alkoxy group for R 1 and R 2 include 1 to 8 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group. And an alkoxy group (preferably having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms).
  • the alkoxy group includes a cycloalkoxy group (such as a cycloalkoxy group having 5 to 8 carbon atoms such as a cyclohexyloxy group), an aryloxy group (an aryloxy group having 6 to 8 carbon atoms such as a phenoxy group and a benzyloxy group), etc. ) Is also included.
  • a cycloalkoxy group such as a cycloalkoxy group having 5 to 8 carbon atoms such as a cyclohexyloxy group
  • an aryloxy group an aryloxy group having 6 to 8 carbon atoms such as a phenoxy group and a benzyloxy group
  • Examples of the branched or unbranched silyloxy group of R 1 and R 2 include, for example, a silyloxy group substituted with an aliphatic group or aromatic group having 1 to 20 carbon atoms (trimethylsilyloxy group, triethylsilyloxy group, triisopropylsilyl group).
  • a silyloxy group substituted with an aliphatic group or aromatic group having 1 to 20 carbon atoms trimethylsilyloxy group, triethylsilyloxy group, triisopropylsilyl group.
  • Examples of the branched or unbranched acetal group of R 1 and R 2 include groups represented by —C (RR ′) — OR ′′ and —O—C (RR ′) — OR ′′.
  • Examples of the former include a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group, an isopropoxymethyl group, a t-butoxymethyl group, and a neopentyloxymethyl group.
  • the latter includes a methoxymethoxy group, an ethoxy group, and the like.
  • a methoxy group, propoxymethoxy group, i-propoxymethoxy group, n-butoxymethoxy group, t-butoxymethoxy group, n-pentyloxymethoxy group, n-hexyloxymethoxy group, cyclopentyloxymethoxy group, cyclohexyloxymethoxy group, etc. Can be mentioned.
  • R 1 and R 2 are preferably a hydrogen atom, a branched or unbranched alkyl group, or a branched or unbranched aryl group. This can improve the balance of fuel efficiency, wet grip performance, dry grip performance, and wear resistance. Moreover, it is preferable that R 1 and R 2 are the same group because the polymer can be grown uniformly in two directions.
  • Examples of the branched or unbranched alkylene group of A include, for example, a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, and a dodecylene group.
  • alkylene group having 1 to 30 carbon atoms such as a group, tridecylene group, tetradecylene group, pentadecylene group, hexadecylene group, heptadecylene group and octadecylene group.
  • Examples of the derivative of the alkylene group of A include an alkylene group substituted with an aryl group or an arylene group.
  • arylene group of A a phenylene group, a tolylene group, a xylylene group, a naphthylene group etc. are mentioned, for example.
  • Examples of the derivative of the arylene group of A include an arylene group substituted with an alkylene group.
  • a branched or unbranched arylene group is preferable, and a phenylene group (a compound represented by the following formula (2)) is more preferable. This can improve the balance of fuel efficiency, wet grip performance, dry grip performance, and wear resistance.
  • R 1 and R 2 in the formula (2) are the same as R 1 and R 2 in the formula (1).
  • Specific examples of the compound represented by the above formula (1) or (2) include 1,2-divinylbenzene, 1,3-divinylbenzene, 1,4-divinylbenzene, 1,2-diisopropenylbenzene, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, 1,2-diisobutenylbenzene, 1,3-diisobutenylbenzene, 1,4-diisobutenylbenzene, 1,3-phenylenebis (1 -Vinylbenzene), 1,4-phenylenebis (1-vinylbenzene), 1,1'-methylenebis (2-vinylbenzene), 1,1'-methylenebis (3-vinylbenzene), 1,1'-methylenebis (4-vinylbenzene) and the like. These may be used alone or in combination of two or more. Of these, 1,3-divinylbenzene, 1,3-diiso
  • Examples of the organic alkali metal compound used in the present invention include hydrocarbon compounds containing an alkali metal such as lithium, sodium, potassium, rubidium, and cesium. Of these, lithium or sodium compounds having 2 to 20 carbon atoms are preferred. Specific examples thereof include, for example, ethyl lithium, n-propyl lithium, iso-propyl lithium, n-butyl lithium, sec-butyl lithium, t-octyl lithium, n-decyl lithium, phenyl lithium, 2-naphthyl lithium, 2 -Butyl-phenyllithium, 4-phenyl-butyllithium, cyclohexyllithium, 4-cyclopentyllithium, 1,4-dilithio-butene-2 and the like. Among these, n-butyllithium or sec-butyllithium is preferable in that the reaction proceeds rapidly to give a polymer having a narrow molecular weight distribution.
  • the method for preparing (C) is not particularly limited as long as it is a method in which the compound represented by the above formula (1) is brought into contact with the organic alkali metal compound.
  • the compound represented by the formula (1) and the organic alkali metal compound are separately dissolved in an organic solvent inert to the reaction, for example, a hydrocarbon solvent, and represented by the formula (1).
  • (C) can be prepared by dropping the organic alkali metal compound solution into the compound solution with stirring.
  • the reaction temperature for preparing (C) is preferably 40 to 60 ° C.
  • the hydrocarbon solvent does not deactivate the organic alkali metal compound (alkali metal catalyst), and the suitable hydrocarbon solvent is selected from aliphatic hydrocarbons, aromatic hydrocarbons, and alicyclic hydrocarbons.
  • propane having 2 to 12 carbon atoms propane having 2 to 12 carbon atoms, n-butane, iso-butane, n-pentane, iso-pentane, n-hexane, cyclohexane, propene, 1-butene, iso-butene, trans-2-butene, Examples thereof include cis-2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, benzene, toluene, xylene, and ethylbenzene.
  • these solvents can be used in mixture of 2 or more types.
  • conjugated diene monomer used in the present invention examples include 1,3-butadiene, isoprene, 1,3-pentadiene (piperine), 2,3-dimethyl-1,3-butadiene, 1,3-hexadiene and the like. Of these, 1,3-butadiene and isoprene are preferred from the viewpoint of the physical properties of the resulting polymer and the availability for industrial implementation.
  • aromatic vinyl monomer used in the present invention examples include styrene, ⁇ -methylstyrene, vinyl toluene, vinyl naphthalene, divinyl benzene, trivinyl benzene, divinyl naphthalene and the like.
  • styrene is preferred from the viewpoint of the physical properties of the polymer obtained and the availability for industrial implementation.
  • the monomer only a conjugated diene monomer may be used, or a conjugated diene monomer and an aromatic vinyl monomer may be used in combination.
  • the ratio by mass of the conjugated diene monomer / aromatic vinyl monomer is preferably 50/50 to 90/10, more preferably 55/45 to 85/15. It is. If the ratio is less than 50/50, the polymer rubber becomes insoluble in the hydrocarbon solvent, and uniform polymerization may not be possible. On the other hand, if the ratio exceeds 90/10, the strength of the polymer rubber may be reduced. May decrease.
  • the modified diene polymer is preferably obtained by copolymerizing a conjugated diene monomer and an aromatic vinyl monomer, and is obtained by copolymerizing 1,3-butadiene and styrene (modified styrene butadiene rubber). Is particularly preferred.
  • a modified copolymer fuel economy, wet grip performance, dry grip performance, and wear resistance can be improved.
  • low-fuel-consumption property, wet grip performance, dry grip performance, abrasion resistance, and workability can be suitably improved by using together with the structure silica.
  • hydrocarbon solvent As a hydrocarbon solvent, the thing similar to the case of the preparation of said (C) can be used conveniently.
  • the randomizer is a microstructure control of a conjugated diene moiety in a polymer, for example, an increase in 1,2-bonds in butadiene, a 3,4-bond in isoprene, or a control of the composition distribution of monomer units in the polymer. It is a compound having an action such as randomization of butadiene units and styrene units in a butadiene-styrene copolymer.
  • ether compounds or tertiary amines are preferred from the viewpoint of industrial availability.
  • ether compounds include cyclic ethers such as tetrahydrofuran, tetrahydropyran, and 1,4-dioxane; aliphatic monoethers such as diethyl ether and dibutyl ether; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, Examples thereof include aliphatic ethers such as diethylene glycol dibutyl ether; aromatic ethers such as diphenyl ether and anisole.
  • tertiary amine compounds include triethylamine, tripropylamine, tributylamine, N, N, N ′, N′-tetramethylethylenediamine, N, N-diethylaniline, pyridine, quinoline, etc. Can give.
  • (B) is a modifier having a functional group.
  • (B) is preferably a compound having a functional group containing at least one atom selected from the group consisting of nitrogen, oxygen and silicon.
  • functional groups include amino groups, amide groups, alkoxysilyl groups, isocyanate groups, imino groups, imidazole groups, urea groups, ether groups (especially epoxy groups), carbonyl groups, carboxyl groups, hydroxyl groups, nitrile groups, pyridyls. Group, diglycidylamino group and the like. These functional groups may have a substituent. Of these, amino groups, alkoxysilyl groups, ether groups (particularly epoxy groups), carbonyl groups, hydroxyl groups, carboxyl groups, and diglycidylamino groups are preferred because of their high reactivity with silica.
  • (B) is preferably a compound represented by the following formula (3). Moreover, it is preferable that (B) to be used is one type (the modifiers introduced at both ends of (A) are the same). By using only one type of (B), the same functional group can be introduced at both ends of (A), and the reactivity with silica is stabilized by forming uniform polymer ends.
  • the compound represented by the following formula (3) is a polyfunctional compound having two or more epoxy groups.
  • a hydroxyl group can be introduced into the polymer chain by reacting the active terminal of the active conjugated diene polymer (A) with an epoxy group.
  • the polyfunctional compound since the polyfunctional compound has two or more epoxy groups in the molecule, one polyfunctional compound reacts with the active terminal of a plurality of active conjugated diene polymers (A), so that two or more The polymer chains can be coupled. Therefore, a modified diene polymer having three or more sites (terminals and the like) modified with the polyfunctional compound can also be obtained. By increasing the number of modified sites (terminals, etc.) of the modified diene polymer, the balance between fuel efficiency, wet grip performance, dry grip performance, and wear resistance can be improved.
  • R 3 and R 4 are the same or different and each represents a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group is selected from the group consisting of ethers and tertiary amines.
  • R 5 and R 6 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, the hydrocarbon group being an ether, and 3 It may have at least one group selected from the group consisting of a tertiary amine, R 7 represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group is an ether, a tertiary amine, an epoxy And at least one group selected from the group consisting of carbonyl, and halogen, n represents an integer of 1 to 6.
  • R 3 and R 4 are preferably an alkylene group having 1 to 10 carbon atoms (preferably having 1 to 3 carbon atoms).
  • R 5 and R 6 are preferably a hydrogen atom.
  • R 7 is a hydrocarbon group having 3 to 20 carbon atoms (preferably 6 to 10 carbon atoms, more preferably 8 carbon atoms), and is a cycloalkyl group, cycloalkylene group, cycloalkane represented by the following formula or the like.
  • a triyl group is preferable, and a cycloalkylene group is more preferable.
  • N is preferably 2 to 3.
  • Examples of the compound represented by the above formula (3) include tetraglycidylmetaxylenediamine, tetraglycidylaminodiphenylmethane, tetraglycidyl-p-phenylenediamine, diglycidylaminomethylcyclohexane, tetraglycidyl-1,3-bisaminomethyl. Cyclohexane or the like is preferably used.
  • the diene polymer (modified diene polymer) is obtained by reacting (A) and (B) in an organic solvent inert to the reaction, such as a hydrocarbon solvent.
  • hydrocarbon solvent As a hydrocarbon solvent, the thing similar to the case of the preparation of said (C) can be used conveniently.
  • the amount of the modifier (B) having a functional group is preferably 0.1 to 10 mol, more preferably 0.5 to 2 mol, relative to 1 mol of the organic alkali metal compound.
  • the amount is less than 0.1 mol, the effect of improving the fuel efficiency is small. Conversely, when the amount exceeds 10 mol, (B) remains in the polymerization solvent. This is economically undesirable because it requires a separation step.
  • the reaction temperature and reaction time can be selected in a wide range. In general, the temperature is from room temperature (25) to 80 ° C. for several seconds to several hours.
  • the reaction may be performed by bringing (A) and (B) into contact.
  • a method of polymerizing a diene polymer using (C) and adding a predetermined amount of (B) to the polymer solution For example, it can be exemplified as a preferred embodiment, but is not limited to this method.
  • a coupling agent represented by the general formula R a MX b may be added before or after the reaction of (A) and (B) (wherein R is an alkyl group, an alkenyl group, A cycloalkenyl group or an aromatic hydrocarbon group, M is a silicon or tin atom, X is a halogen atom, a is an integer of 0 to 2, and b is an integer of 2 to 4.
  • the amount of the coupling agent is preferably 0.03 to 0.4 mol, more preferably 0.05 to 0.3 mol, per mol of the organic alkali metal compound (alkali metal catalyst) used. When the amount used is less than 0.03, the effect of improving the workability is small. Conversely, when the amount exceeds 0.4 mol, the alkali metal terminal reacting with the modifier having a functional group is reduced, and the fuel efficiency is improved. The effect is reduced.
  • the modified diene polymer can be coagulated by a coagulation method used in the production of rubber by ordinary solution polymerization such as addition of a coagulant or steam coagulation, and can be separated from the reaction solvent.
  • the solidification temperature is not limited at all.
  • a diene polymer (modified diene polymer) is obtained by drying the coagulated product separated from the reaction solvent.
  • a band drier, an extrusion drier, etc. used in normal synthetic rubber production can be used, and the drying temperature is not limited at all.
  • the Mooney viscosity (ML 1 + 4 ) (100 ° C.) of the diene polymer is preferably 10 to 200, more preferably 20 to 150.
  • the upper limit is more preferably 100 or less, and particularly preferably 75 or less.
  • Mooney viscosity is less than 10
  • mechanical properties such as the tensile strength of the vulcanizate may be reduced.
  • the viscosity exceeds 200, the miscibility is poor when used in combination with other rubbers. Processing operability may deteriorate, and the mechanical properties of the resulting vulcanizate of the rubber composition may deteriorate.
  • the Mooney viscosity can be measured by the method described in the examples.
  • the vinyl content of the conjugated diene part of the diene polymer is not particularly limited, but is preferably 10 to 70 mol%, more preferably 15 to 60 mol%.
  • the lower limit is more preferably 35 mol% or more, particularly preferably 40 mol% or more, and most preferably 50 mol% or more. If it is less than 10 mol%, the glass transition temperature of the polymer will be low, and when used as a polymer for tires, the grip performance may be inferior. On the other hand, if it exceeds 70 mol%, the glass transition temperature of the polymer will be low. The temperature rises and the resilience may be inferior.
  • the vinyl content (1,2-bond butadiene unit amount) can be measured by infrared absorption spectrum analysis.
  • the content of the diene polymer in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 40% by mass or more, and particularly preferably 60% by mass or more. If it is less than 5% by mass, sufficient fuel economy, wet grip performance, dry grip performance, wear resistance, and processability may not be obtained.
  • the content of the diene polymer may be 100% by mass, but is preferably 90% by mass or less.
  • other rubber components may be used in combination with the diene polymer.
  • examples of other rubber components include natural rubber (NR), butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), ethylene propylene diene rubber (EPDM), chloroprene rubber (CR), Examples include acrylonitrile butadiene rubber (NBR).
  • a rubber component may be used independently and may use 2 or more types together.
  • NR and BR are preferable because of the improvement in rubber strength, high wear resistance, and high crack growth resistance. Further, when NR or BR is used together with the diene polymer, the effect of improving wet grip performance, wear resistance, and workability is great by the combined use with the structure silica.
  • the NR is not particularly limited, and for example, those commonly used in the tire industry such as SIR20, RSS # 3, TSR20 and the like can be used.
  • the content of NR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more. If it is less than 5% by mass, fuel economy and wear resistance may be reduced.
  • the NR content is preferably 40% by mass or less, more preferably 30% by mass or less. If it exceeds 40% by mass, the dry grip performance may be lowered.
  • the BR is not particularly limited.
  • BR containing a syndiotactic polybutadiene crystal such as can be used.
  • BR having a cis content of 95% by mass or more is preferable because it has a low glass transition temperature (Tg) and is advantageous for low temperature characteristics.
  • the content of BR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more. If it is less than 5% by mass, fuel economy and wear resistance may be reduced.
  • the BR content is preferably 40% by mass or less, more preferably 30% by mass or less. If it exceeds 40 mass%, wet grip performance, dry grip performance, and workability may be deteriorated.
  • the structure silica (linear silica) used in the present invention has three or more particles adjacent to one particle (hereinafter referred to as a branched particle X), and the branched particle X and a particle adjacent thereto. As a result, a branched structure is formed.
  • the branched particle X is a particle X of the particles in FIG. 1 which is a schematic explanatory diagram of the branched particle, and is adjacent to three or more other particles.
  • structure silica what has a branched structure (for example, FIG. 2) and what does not have are mentioned, However, Since the structured silica which does not have a branched structure will aggregate immediately, it does not exist substantially.
  • the average length (L 1 in FIG. 2) between the branched particles XX including the branched particles X of the structure silica is 30 nm or more, preferably 40 nm or more. If it is less than 30 nm, there is a tendency that the dry grip performance cannot be sufficiently improved.
  • L 1 is 400 nm or less, preferably 200 nm or less, more preferably 100 nm or less. When it exceeds 400 nm, hysteresis loss increases and fuel efficiency tends to deteriorate.
  • the average primary particle size of the structure silica (D, see FIG. 2 which is a schematic explanatory diagram of structure silica containing branched particles) is preferably 5 nm or more, more preferably 7 nm or more. If it is less than 5 nm, the hysteresis loss increases and the fuel efficiency tends to deteriorate. Further, D is preferably 1000 nm or less, more preferably 100 nm or less, and still more preferably 18 nm or less. If it exceeds 1000 nm, the dry grip performance tends not to be sufficiently improved.
  • the average aspect ratio (L 1 / D) of the XX between the branched particles including the branched particle X of the structure silica is preferably 3 or more, more preferably 4 or more. If it is less than 3, there is a tendency that the dry grip performance cannot be sufficiently improved.
  • L 1 / D is preferably 100 or less, more preferably 30 or less. When L 1 / D exceeds 100, hysteresis loss increases and fuel efficiency tends to deteriorate.
  • silica D, L 1 and L 1 / D can be measured by observation with a transmission electron microscope of silica dispersed in a vulcanized rubber composition.
  • L 1 / D is 5.
  • the content of the structure silica is preferably 5 parts by mass or more, more preferably 45 parts by mass or more, and still more preferably 65 parts by mass or more with respect to 100 parts by mass of the rubber component. If it is less than 5 mass parts, there exists a tendency for the effect which mix
  • the content of the structure silica is preferably 150 parts by mass or less, more preferably 120 parts by mass or less, and still more preferably 100 parts by mass or less. When it exceeds 150 parts by mass, the rigidity of the rubber composition increases, and the workability and wet grip performance tend to deteriorate.
  • silane coupling agent in the rubber composition of the present invention, it is preferable to use a silane coupling agent together with the structure silica.
  • the silane coupling agent include sulfide, mercapto, vinyl, amino, glycidoxy, nitro, and chloro silane coupling agents.
  • a sulfide system is preferable because the effects of the present invention can be obtained satisfactorily.
  • bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3- Triethoxysilylpropyl) disulfide and bis (2-triethoxysilylethyl) disulfide are preferred, and bis (3-triethoxysilylpropyl) disulfide is more preferred.
  • the content of the silane coupling agent is preferably 1 part by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of the structure silica. If it is less than 1 part by mass, the dry grip performance and workability tend not to be improved sufficiently.
  • the content of the silane coupling agent is preferably 20 parts by mass or less, more preferably 12 parts by mass or less. When it exceeds 20 parts by mass, there is a tendency that an effect commensurate with the increase in cost cannot be obtained.
  • the rubber composition of the present invention includes compounding agents conventionally used in the tire industry, such as reinforcing fillers such as carbon black, various softening agents, various anti-aging agents, waxes, and stearic acid.
  • Vulcanizing agents such as zinc oxide and sulfur, various vulcanization accelerators, and the like can be blended.
  • the rubber composition of the present invention preferably contains carbon black.
  • carbon black is not particularly limited, and for example, GPF, HAF, ISAF, SAF and the like can be used.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 30 m 2 / g or more, more preferably 70 m 2 / g or more, and still more preferably 100 m 2 / g or more.
  • N 2 SA is less than 30 m 2 / g, there is a tendency that sufficient reinforcing properties cannot be obtained.
  • N 2 SA is preferably 250 meters 2 / g or less of carbon black, more preferably not more than 150m 2 / g, 125m 2 / g or less is more preferable.
  • N 2 SA is more than 250 meters 2 / g, the viscosity of the unvulcanized becomes very high, processability tends to be deteriorated. In addition, fuel efficiency tends to deteriorate.
  • the nitrogen adsorption specific surface area of carbon black is measured according to JIS K6217-2: 2001.
  • Carbon black has a dibutyl phthalate (DBP) oil absorption of preferably 70 ml / 100 g or more, more preferably 90 ml / 100 g or more.
  • the DBP oil absorption of carbon black is preferably 160 ml / 100 g or less, more preferably 117 ml / 100 g or less. By making it within this range, fuel economy, wet grip performance, dry grip performance, and wear resistance can be improved in a well-balanced manner.
  • the DBP oil absorption of carbon black is measured according to JIS K6217-4: 2001.
  • the content of carbon black is preferably 5 parts by mass or more, more preferably 8 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the amount is less than 5 parts by mass, the effect of blending carbon black may not be sufficiently obtained.
  • the content of carbon black is preferably 20 parts by mass or less, more preferably 15 parts by mass or less. If it exceeds 20 parts by mass, the fuel efficiency tends to deteriorate.
  • vulcanization accelerators examples include sulfenamide, thiazole, thiuram, thiourea, guanidine, dithiocarbamic acid, aldehyde-amine or aldehyde-ammonia, imidazoline, or xanthate vulcanization accelerators. Agents. Of these, sulfenamide vulcanization accelerators are preferred because the effects of the present invention can be obtained satisfactorily.
  • sulfenamide vulcanization accelerator examples include N-tert-butyl-2-benzothiazolylsulfenamide (TBBS), N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N, N And '-dicyclohexyl-2-benzothiazolylsulfenamide (DZ).
  • TBBS N-tert-butyl-2-benzothiazolylsulfenamide
  • CBS N-cyclohexyl-2-benzothiazolylsulfenamide
  • DZ N And '-dicyclohexyl-2-benzothiazolylsulfenamide
  • CBS is preferable because the effects of the present invention can be obtained satisfactorily, and it is more preferable to use CBS and N, N′-diphenylguanidine in combination.
  • the above components are kneaded using a rubber kneader such as a Banbury mixer or an open roll, and then vulcanized. It can be manufactured by a method or the like.
  • knead the silica sol together with a rubber component containing the modified diene polymer in a rubber kneading apparatus from the viewpoint that the rubber composition of the present invention in which structure silica is formed can be easily produced.
  • a final kneading step in which the kneaded product obtained by the base kneading step, the vulcanizing agent, and the vulcanization accelerator are kneaded at 30 to 70 ° C. (preferably 40 to 60 ° C.) for 3 to 10 minutes;
  • a vulcanization step of vulcanizing the unvulcanized rubber composition obtained by the finish kneading step at 150 to 190 ° C. (preferably 160 to 180 ° C.) for 5 to 30 minutes is more preferable.
  • the preferable compounding amount (silica conversion) of silica sol is the same as that of the above-mentioned structure silica.
  • a structure silica such as the base kneading step
  • L 1 of structure silica tends to likely too long, toluene It is preferable to knead without using.
  • silica sol refers to a colloidal solution in which silica is dispersed in a solvent.
  • the silica sol is not particularly limited, but a colloidal solution in which elongated silica is dispersed in a solvent is preferable because a structure silica can be suitably formed.
  • a colloidal solution in which elongated silica is dispersed in an organic solvent (organo Silica sol) is more preferable.
  • the elongated silica means a silica (secondary particle) having a chain shape in which a plurality of primary particles such as a spherical shape and a granular shape are connected. It may be linear or branched.
  • the solvent for dispersing silica is not particularly limited, but alcohols such as methanol and isopropanol are preferable, and isopropanol is more preferable.
  • the average particle diameter of primary particles constituting silica (secondary particles) contained in the silica sol is preferably 1 to 100 nm, more preferably 5 to 80 nm.
  • the average particle size of the primary particles was determined by visually measuring the particle size (average diameter) of 50 primary particles in a photograph taken with a transmission electron microscope JEM2100FX manufactured by JEOL. .
  • the average diameter of the primary particles is an average value of thicknesses (diameters) measured at arbitrary 50 locations of the silica (secondary particles) in the electron micrograph.
  • silica (secondary particles) has a constriction and a bead shape, it can be obtained as an average value of the diameters of 50 bead beads in an electron micrograph.
  • each rosary has a major axis and a minor axis, that is, when each rosary is elongated, the minor axis is measured.
  • the average particle diameter of silica (secondary particles) contained in the silica sol is preferably 20 to 300 nm, more preferably 30 to 150 nm.
  • the average particle diameter of silica (secondary particles) can be measured by a dynamic light scattering method, and specifically, can be measured by the following method.
  • the average particle diameter of silica (secondary particles) was measured with a laser particle analysis system ELS-8000 (cumulant analysis) manufactured by Otsuka Electronics Co., Ltd.
  • the measurement conditions are a temperature of 25 ° C., an angle between incident light and a detector of 90 °, and the number of integrations of 100 times.
  • the measurement concentration was usually about 5 ⁇ 10 ⁇ 3 mass%.
  • the silica (secondary particles) can be obtained by, for example, the method described in claim 2 of the pamphlet of International Publication No. 00/15552 and the disclosure of the specification related thereto, Patent No. 2803134, Patent No. 2926915 It can manufacture according to the method etc. as described in the disclosure part of claim
  • the rubber composition of the present invention can be used for each member of a tire, and in particular, can be suitably used for a tread (particularly a cap tread).
  • the pneumatic tire of the present invention is produced by a usual method using the rubber composition. That is, if necessary, a rubber composition containing various additives is extruded in accordance with the shape of each member of the tire (especially, the tread (cap tread)) at an unvulcanized stage, and is applied to the tire molding machine. Then, after forming by an ordinary method and pasting together with other tire members to form an unvulcanized tire, the tire can be manufactured by heating and pressing in a vulcanizer.
  • the pneumatic tire of the present invention is preferably used as a tire for passenger cars, a tire for trucks and buses, a tire for motorcycles, a tire for competition, and the like, and more preferably used as a tire for passenger cars.
  • Production Example 1 (Preparation of polymerization initiator) Add 10 ml of 1,3-divinylbenzene in hexane (1.6 M) to a 100 ml pressure-resistant container thoroughly purged with nitrogen, and drop 20 ml of n-butyllithium hexane solution (1.6 M) at 0 ° C. A polymerization initiator solution was obtained by stirring for a period of time.
  • Production Example 2 (Preparation of diene polymer (modified diene polymer)) To a 1000 ml pressure vessel fully purged with nitrogen, add 600 ml of cyclohexane, 0.12 mol of styrene, 0.8 mol of 1,3-butadiene, 0.7 mmol of N, N, N ′, N′-tetramethylethylenediamine, and further manufacture 1.5 ml of the polymerization initiator solution obtained in Example 1 was added and stirred at 40 ° C. Three hours later, 1.0 mmol of tetraglycidyl-1,3-bisaminomethylcyclohexane as a modifier was added and stirred.
  • Mooney viscosity Heated by preheating for 1 minute using a Mooney viscosity tester in accordance with JIS K 6300-1 “Unvulcanized rubber-Physical properties-Part 1: Determination of viscosity and scorch time using Mooney viscometer” Under the temperature condition of 100 ° C., the small rotor was rotated, and the Mooney viscosity (ML 1 + 4/100 ° C.) of the diene polymer after 4 minutes was measured. The numbers after the decimal point are rounded off. As a result, the Mooney viscosity of the diene polymer was 60.
  • the vinyl content of the diene polymer was measured by infrared absorption spectrum analysis. As a result, the vinyl content of the diene polymer was 57 mol%.
  • Diene polymer Diene polymer SBR prepared in Production Example 2 above: S15 coupled with E15 (a compound having an epoxy group (tetraglycidyl-1,3-bisaminomethylcyclohexane) manufactured by Asahi Kasei Chemicals Corporation) -SBR, styrene unit amount: 23% by mass, vinyl unit amount: 64% by mass, terminal group: OH (one-end modified SBR))
  • BR Nipol BR1220 (cis content: 97% by mass) manufactured by Nippon Zeon Co., Ltd.
  • NR RSS # 3 Carbon black: Seast N220 manufactured by Mitsubishi Chemical Corporation (N220, N 2 SA: 114 m 2 / g, DBP oil absorption: 114 ml / 100 g)
  • silica sol elongated isopropanol-dispersed silica sol (average particle diameter of silica (secondary particles) measured by dynamic light scattering method): 40 to 100 nm), silica content: 15% by mass) (the amounts shown in Table 2 indicate the amount of silica in the organosilica sol)
  • Aroma oil Process X-140 manufactured by JX Nippon Oil & Energy Anti-aging agent: Antigen 6C (N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine) manufactured by Sumitomo Chemical Co., Ltd.
  • Wax Sunnock N manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • Sulfur Powder sulfur vulcanization accelerator manufactured by Karuizawa Sulfur Co., Ltd. (1): Noxeller CZ (N-cyclohexyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • a sample was cut out from the tread of the test tire, and the silica dispersed in the sample was observed with a transmission electron microscope.
  • the average primary particle diameter (D) of silica and the distance between the branched particles XX including the branched particles X were measured.
  • the average aspect ratio of the XX between the branched particles including the branched particle X (L 1 / D)
  • the average aspect ratio (L 2 / D) of XX between the branched particles not including the branched particle X was calculated.
  • the numerical value was an average value obtained by measuring 30 locations.
  • the test tire was mounted on a passenger car equipped with 1800 cc-class ABS, the amount of decrease in groove depth after traveling 30000 km in an urban area was measured, and the travel distance when the groove depth decreased by 1 mm was calculated. Furthermore, the abrasion resistance index of Comparative Example 5 was set to 100, and the amount of decrease in the groove depth of each formulation was displayed as an index according to the following formula. In addition, it shows that it is excellent in abrasion resistance, so that an abrasion resistance index
  • (Abrasion resistance index) (travel distance when the groove depth is reduced by 1 mm in each formulation) / (travel distance when the groove of the tire of Comparative Example 5 is reduced by 1 mm) ⁇ 100
  • Mooney viscosity About the obtained unvulcanized rubber composition, it measured at 130 degreeC according to the measuring method of the Mooney viscosity based on JISK6300.
  • the Mooney viscosity (ML 1 + 4 ) of Comparative Example 5 was set to 100, and indexed by the following formula (Mooney viscosity index). The larger the index, the lower the Mooney viscosity and the better the processability.
  • (Mooney viscosity index) (ML 1 + 4 of Comparative Example 5) / (ML 1 + 4 of each formulation) ⁇ 100

Abstract

Provided are: a rubber composition for tires, which is capable of improving fuel consumption saving, wet grip performance, dry grip performance, wear resistance and processability; and a pneumatic tire which uses the rubber composition for tires. The present invention relates to a rubber composition for tires, which contains a diene polymer and silica. The diene polymer is a modified diene polymer that is obtained by reacting the substance (A) and the substance (B) described below. When a particle of silica having three or more particles adjacent thereto is considered as a branch particle (X), the silica has an average length (L1) between branch particles X-X including the branch particles Xs of 30-400 nm. (A) an active conjugated diene polymer having an alkali metal end, said active conjugated diene polymer being obtained by polymerizing a conjugated diene monomer or a conjugated diene monomer and an aromatic vinyl monomer in the presence of the substance (C) described below (B) a modifying agent having a functional group (C) a chemical species which is obtained by reacting a compound represented by formula (1) with an organic alkali metal compound

Description

タイヤ用ゴム組成物及び空気入りタイヤRubber composition for tire and pneumatic tire
本発明は、タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤに関する。 The present invention relates to a rubber composition for tires and a pneumatic tire using the same.
近年、環境問題への関心の高まりから、自動車に対して低燃費化の要求が強くなっており、自動車用タイヤに用いるゴム組成物に対しても転がり抵抗の低減(低燃費化)が要求されている。 In recent years, interest in environmental issues has increased, and there has been a strong demand for lower fuel consumption for automobiles, and a reduction in rolling resistance (lower fuel consumption) is also required for rubber compositions used in automobile tires. ing.
しかしながら、一般に、低速走行時などのタイヤの低伸張時(低歪時)に応力やヒステリシスロスを低減することで転がり抵抗を低減したゴム組成物は、急ブレーキ時などのタイヤの高伸張時(高歪時)にも応力やヒステリシスロスが低減してしまい、ドライグリップ性能が低下する傾向があった。そのため、転がり抵抗の低減とドライグリップ性能の向上とを両立させることは困難であった。 However, in general, a rubber composition that has reduced rolling resistance by reducing stress and hysteresis loss when the tire is low stretched (low strain) during low-speed driving or the like is used when the tire is highly stretched during sudden braking ( Stress and hysteresis loss were reduced even during high strain), and dry grip performance tended to decrease. Therefore, it has been difficult to achieve both reduction in rolling resistance and improvement in dry grip performance.
ゴム組成物において低燃費化を満足させる方法としては、補強用充填剤の含有量を減量する方法が知られている。しかし、ゴム組成物の硬度が低下するためタイヤが軟化し、操縦安定性、ウェットグリップ性能、耐摩耗性が低下するという問題があった。 As a method for satisfying the reduction in fuel consumption in the rubber composition, a method for reducing the content of the reinforcing filler is known. However, since the hardness of the rubber composition is lowered, the tire is softened, and there is a problem that steering stability, wet grip performance, and wear resistance are lowered.
ゴム組成物において低燃費化を満足させる他の方法としては、カーボンブラックをシリカで代替する方法が知られている。しかし、シリカを配合したゴム組成物は、ドライグリップ性能が低下する傾向があり、走行を重ねると、ゴムの剛性が低下してドライグリップ性能が更に低下する傾向があることが知られている。また、シリカは、表面に親水性シラノール基が存在するため、カーボンブラックに比べゴム(特に、タイヤ用でよく使われる天然ゴム、ブタジエンゴム、スチレンブタジエンゴムなど)との親和性が低く、耐摩耗性や力学強度(引張強度や破断伸び)の点で劣る傾向があった。 As another method of satisfying the reduction in fuel consumption in a rubber composition, a method of replacing carbon black with silica is known. However, it is known that a rubber composition blended with silica tends to have a low dry grip performance, and when traveling, the rubber stiffness decreases and the dry grip performance tends to further decrease. Silica has a hydrophilic silanol group on its surface, so it has a lower affinity with rubber (especially natural rubber, butadiene rubber, styrene butadiene rubber, etc. often used for tires) and wear resistance than carbon black. There was a tendency to be inferior in terms of property and mechanical strength (tensile strength and elongation at break).
特許文献1には、特定のシリカ(直鎖シリカ)を含み、低燃費性を維持しつつ、ウェットグリップ性能、ドライグリップ性能を向上できるゴム組成物が開示されている。しかしながら、低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性、加工性を改善する点については改善の余地がある。 Patent Document 1 discloses a rubber composition containing specific silica (linear silica) and capable of improving wet grip performance and dry grip performance while maintaining low fuel consumption. However, there is room for improvement in terms of improving fuel economy, wet grip performance, dry grip performance, wear resistance, and workability.
特開2007-154158号公報JP 2007-154158 A
本発明は、前記課題を解決し、低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性、加工性を向上できるタイヤ用ゴム組成物、及びこれを用いた空気入りタイヤを提供することを目的とする。 The present invention provides a rubber composition for a tire that solves the above-described problems and can improve fuel economy, wet grip performance, dry grip performance, wear resistance, and processability, and a pneumatic tire using the same. Objective.
本発明は、ジエン系重合体とシリカとを含み、
上記ジエン系重合体が、下記(A)と(B)を反応させて得られる変性されたジエン系重合体であり、
上記シリカが、1つの粒子に対して隣接する粒子が3つ以上の粒子を分岐粒子Xとしたとき、分岐粒子Xを含む分岐粒子間X-Xの平均長L1が30~400nmのものであるタイヤ用ゴム組成物に関する。
(A):下記(C)の存在下に、共役ジエンモノマー又は共役ジエンモノマーと芳香族ビニルモノマーとを重合させることにより得られるアルカリ金属末端を有する活性共役ジエン系重合体
(B):官能基を有する変性剤
(C):下記式(1)で表される化合物と有機アルカリ金属化合物を反応させて得られる化学種
Figure JPOXMLDOC01-appb-C000005
(式(1)中、R及びRは、同一若しくは異なって、水素原子、分岐若しくは非分岐のアルキル基、分岐若しくは非分岐のアリール基、分岐若しくは非分岐のアルコキシ基、分岐若しくは非分岐のシリルオキシ基、分岐若しくは非分岐のアセタール基、カルボキシル基、メルカプト基又はこれらの誘導体を示す。Aは、分岐若しくは非分岐のアルキレン基、分岐若しくは非分岐のアリーレン基又はこれらの誘導体を示す。)
The present invention includes a diene polymer and silica,
The diene polymer is a modified diene polymer obtained by reacting the following (A) and (B):
When the silica has three or more particles adjacent to one particle as the branched particle X, the average length L 1 between the branched particles XX including the branched particle X is 30 to 400 nm. The present invention relates to a tire rubber composition.
(A): an active conjugated diene polymer having an alkali metal end obtained by polymerizing a conjugated diene monomer or a conjugated diene monomer and an aromatic vinyl monomer in the presence of (C) below (B): functional group Modifier (C) having: a chemical species obtained by reacting a compound represented by the following formula (1) with an organic alkali metal compound
Figure JPOXMLDOC01-appb-C000005
(In Formula (1), R 1 and R 2 are the same or different and are a hydrogen atom, a branched or unbranched alkyl group, a branched or unbranched aryl group, a branched or unbranched alkoxy group, branched or unbranched. A silyloxy group, a branched or unbranched acetal group, a carboxyl group, a mercapto group, or a derivative thereof, A represents a branched or unbranched alkylene group, a branched or unbranched arylene group, or a derivative thereof.
本発明はまた、上記(A)と(B)を反応させて得られる変性されたジエン系重合体と、シリカゾルとを混練して得られるタイヤ用ゴム組成物に関する。 The present invention also relates to a tire rubber composition obtained by kneading a modified diene polymer obtained by reacting the above (A) and (B) with silica sol.
上記式(1)で表される化合物が下記式(2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
It is preferable that the compound represented by the above formula (1) is a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000006
上記変性剤が下記式(3)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
(式(3)中、R及びRは、同一又は異なって、炭素数1~10の炭化水素基を表し、該炭化水素基は、エーテル、及び3級アミンからなる群より選択される少なくとも1種の基を有してもよい。R及びRは、同一若しくは異なって、水素原子、又は炭素数1~20の炭化水素基を表し、該炭化水素基は、エーテル、及び3級アミンからなる群より選択される少なくとも1種の基を有してもよい。Rは、炭素数1~20の炭化水素基を表し、該炭化水素基は、エーテル、3級アミン、エポキシ、カルボニル、及びハロゲンからなる群より選択される少なくとも1種の基を有してもよい。nは1~6の整数を表す。)
The modifying agent is preferably a compound represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000007
(In Formula (3), R 3 and R 4 are the same or different and each represents a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group is selected from the group consisting of ethers and tertiary amines. R 5 and R 6 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, the hydrocarbon group being an ether, and 3 It may have at least one group selected from the group consisting of a tertiary amine, R 7 represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group is an ether, a tertiary amine, an epoxy And at least one group selected from the group consisting of carbonyl, and halogen, n represents an integer of 1 to 6.)
上記活性共役ジエン系重合体の両末端に導入した変性剤が同一であることが好ましい。 It is preferable that the modifiers introduced at both ends of the active conjugated diene polymer are the same.
ゴム成分100質量%中の上記ジエン系重合体の含有量が5質量%以上であることが好ましい。 The content of the diene polymer in 100% by mass of the rubber component is preferably 5% by mass or more.
上記共役ジエンモノマーが1,3-ブタジエン及び/又はイソプレンであり、上記芳香族ビニルモノマーがスチレンであることが好ましい。 The conjugated diene monomer is preferably 1,3-butadiene and / or isoprene, and the aromatic vinyl monomer is preferably styrene.
上記変性されたジエン系重合体が1,3-ブタジエン及びスチレンを重合させることにより得られる変性スチレンブタジエンゴムであることが好ましい。 The modified diene polymer is preferably a modified styrene butadiene rubber obtained by polymerizing 1,3-butadiene and styrene.
上記シリカが、平均1次粒子径をDとしたとき、分岐粒子Xを含む分岐粒子間X-Xの平均アスペクト比L1/Dが3~100のものであることが好ましい。 The silica preferably has an average aspect ratio L 1 / D of 3 to 100 between the branched particles XX including the branched particles X when the average primary particle diameter is D.
上記タイヤ用ゴム組成物は、ゴム成分100質量部に対して、上記シリカを5~150質量部含むことが好ましい。 The tire rubber composition preferably contains 5 to 150 parts by mass of the silica with respect to 100 parts by mass of the rubber component.
上記タイヤ用ゴム組成物は、トレッド用ゴム組成物として用いられることが好ましい。 The tire rubber composition is preferably used as a tread rubber composition.
本発明はまた、上記ゴム組成物を用いた空気入りタイヤに関する。 The present invention also relates to a pneumatic tire using the rubber composition.
本発明によれば、変性された特定のジエン系重合体と、特定のシリカとを含むタイヤ用ゴム組成物であるので、低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性、加工性を向上できる。また、本発明によれば、変性された特定のジエン系重合体と、シリカゾルとを混練して得られるタイヤ用ゴム組成物であるので、低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性、加工性を向上できる。従って、これらのゴム組成物をトレッドなどタイヤの各部材に使用することで前述の性能に優れた空気入りタイヤを提供できる。 According to the present invention, since it is a tire rubber composition containing a specific modified diene polymer and a specific silica, low fuel consumption, wet grip performance, dry grip performance, wear resistance, workability Can be improved. Further, according to the present invention, since it is a tire rubber composition obtained by kneading a specific modified diene polymer and silica sol, low fuel consumption, wet grip performance, dry grip performance, abrasion resistance And processability can be improved. Therefore, the pneumatic tire excellent in the above-mentioned performance can be provided by using these rubber compositions for each member of the tire such as a tread.
分岐粒子Xについての概略模式図である。3 is a schematic diagram of a branched particle X. FIG. シリカの平均1次粒子径、分岐粒子Xを含む分岐粒子間X-Xの平均長(L)、及び分岐粒子Xを含まない分岐粒子間X-Xの平均長(L)についての概略模式図である。Outline of average primary particle diameter of silica, average length of XX between branched particles including branched particle X (L 1 ), and average length of XX between branched particles not including branched particle X (L 2 ) It is a schematic diagram.
本発明のタイヤ用ゴム組成物は、ジエン系重合体とシリカとを含み、上記ジエン系重合体が、下記(A)と(B)を反応させて得られる変性されたジエン系重合体(以下、変性ジエン系重合体ともいう)であり、上記シリカが、1つの粒子に対して隣接する粒子が3つ以上の粒子を分岐粒子Xとしたとき、分岐粒子Xを含む分岐粒子間X-Xの平均長L1が30~400nmのもの(ストラクチャーシリカ(直鎖シリカ))である。
(A):下記(C)の存在下に、共役ジエンモノマー又は共役ジエンモノマーと芳香族ビニルモノマーとを重合させることにより得られるアルカリ金属末端を有する活性共役ジエン系重合体
(B):官能基を有する変性剤
(C):下記式(1)で表される化合物と有機アルカリ金属化合物を反応させて得られる化学種
Figure JPOXMLDOC01-appb-C000008
(式(1)中、R及びRは、同一若しくは異なって、水素原子、分岐若しくは非分岐のアルキル基、分岐若しくは非分岐のアリール基、分岐若しくは非分岐のアルコキシ基、分岐若しくは非分岐のシリルオキシ基、分岐若しくは非分岐のアセタール基、カルボキシル基、メルカプト基又はこれらの誘導体を示す。Aは、分岐若しくは非分岐のアルキレン基、分岐若しくは非分岐のアリーレン基又はこれらの誘導体を示す。)
The rubber composition for tires of the present invention includes a diene polymer and silica, and the diene polymer is obtained by reacting the following (A) and (B) with a modified diene polymer (hereinafter referred to as “diene polymer”). , Also referred to as a modified diene polymer), and when the above-mentioned silica has three or more particles adjacent to one particle as the branched particle X, the inter-branched particle XX including the branched particle X The average length L 1 is 30 to 400 nm (structure silica (linear silica)).
(A): an active conjugated diene polymer having an alkali metal end obtained by polymerizing a conjugated diene monomer or a conjugated diene monomer and an aromatic vinyl monomer in the presence of (C) below (B): functional group Modifier (C) having: a chemical species obtained by reacting a compound represented by the following formula (1) with an organic alkali metal compound
Figure JPOXMLDOC01-appb-C000008
(In Formula (1), R 1 and R 2 are the same or different and are a hydrogen atom, a branched or unbranched alkyl group, a branched or unbranched aryl group, a branched or unbranched alkoxy group, branched or unbranched. A silyloxy group, a branched or unbranched acetal group, a carboxyl group, a mercapto group, or a derivative thereof, A represents a branched or unbranched alkylene group, a branched or unbranched arylene group, or a derivative thereof.
上記式(1)で表される化合物と有機アルカリ金属化合物を反応させて得られる化学種(C)を重合開始剤として、重合反応を行うため、重合反応により得られるポリマー鎖(上記(A)(活性共役ジエン系重合体))は、その両末端がリビングポリマー末端となる。そのため、活性共役ジエン系重合体(A)の両末端を変性剤(B)により変性することができ、上記(A)の両末端を上記(B)により変性された上記変性ジエン系重合体は、片末端のみが変性されている場合に比べて、優れた低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性が得られ、これらの性能をバランス良く改善できる。 In order to perform the polymerization reaction using the chemical species (C) obtained by reacting the compound represented by the above formula (1) and the organic alkali metal compound as a polymerization initiator, the polymer chain obtained by the polymerization reaction (above (A) (Active conjugated diene polymer)) has both ends as living polymer ends. Therefore, both ends of the active conjugated diene polymer (A) can be modified with the modifier (B), and the modified diene polymer obtained by modifying both ends of (A) with the above (B) Compared with the case where only one end is modified, excellent fuel economy, wet grip performance, dry grip performance, and wear resistance can be obtained, and these performances can be improved in a well-balanced manner.
これに対し、両末端に官能基(変性基)を導入する方法として、官能基を有する重合開始剤を用いて重合し、さらに、重合末端に変性剤を反応させる方法が考えられる。この場合には、片方の末端には、重合開始剤が有する官能基が、もう一方の末端には、変性剤による官能基が存在することとなる。しかし、重合開始剤が有する官能基は、一般的にシリカとの相互作用が弱いため、低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性のバランス性能が劣る。また、重合開始剤が有する官能基は、脱離しやすいため、エネルギー損失増大の一因となり、低燃費性に劣る。さらに、重合開始剤が有する官能基の極性が高い場合には、リビングポリマー末端に配位して重合末端と変性剤との反応に影響を及ぼし、任意の官能基を重合末端に導入することができない。 On the other hand, as a method for introducing functional groups (modifying groups) at both ends, a method in which polymerization is performed using a polymerization initiator having a functional group, and a modifier is further reacted at the polymerization ends can be considered. In this case, the functional group of the polymerization initiator is present at one end, and the functional group due to the modifier is present at the other end. However, since the functional group of the polymerization initiator generally has a weak interaction with silica, the balance between low fuel consumption, wet grip performance, dry grip performance, and wear resistance is poor. Moreover, since the functional group which a polymerization initiator has is easy to detach | leave, it becomes a cause of an increase in energy loss and is inferior to low fuel consumption. Furthermore, when the polarity of the functional group possessed by the polymerization initiator is high, it can coordinate to the end of the living polymer to affect the reaction between the polymerization end and the modifier, and any functional group can be introduced to the end of the polymerization. Can not.
一方、上記(A)は、重合開始剤として上記(C)を使用して得られるため、重合反応により2方向にポリマー鎖が伸び、2個のリビングポリマー末端が存在するため、任意の変性剤により官能基を導入することができる。そのため、上記(A)と(B)を反応させて得られる上記変性ジエン系重合体を配合することにより、低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性のバランス性能に優れたゴム組成物が得られる。 On the other hand, since (A) is obtained by using (C) as a polymerization initiator, the polymer chain extends in two directions by the polymerization reaction, and there are two living polymer terminals. A functional group can be introduced. Therefore, by blending the modified diene polymer obtained by reacting the above (A) and (B), rubber excellent in fuel economy, wet grip performance, dry grip performance, and wear resistance balance performance A composition is obtained.
また、上記ストラクチャーシリカを配合することで、シリカ粒子の凝集が生み出すオクルードラバー(シリカの凝集体に包み込まれ、歪むことができないゴム)が減少し、局所的な応力集中、すなわち、局所的な歪みが減少する。これにより、タイヤの低伸張時(低歪時)におけるヒステリシスロスを低減し、転がり抵抗を低減することができる。更に、上記ストラクチャーシリカは、急ブレーキや急カーブ時などのタイヤの高伸張時(高歪時)、タイヤのトレッド周方向に配向する。これにより、ストラクチャーシリカ近傍のゴムが急激に歪み、ヒステリシスロスが増大して、ドライグリップ性能を改善できる。 Also, by blending the above structure silica, the occluder rubber (rubber which is encapsulated in the silica aggregate and cannot be distorted) produced by the aggregation of the silica particles is reduced, and the local stress concentration, that is, the local Distortion is reduced. Thereby, the hysteresis loss at the time of the low expansion | extension of a tire (at the time of low distortion) can be reduced, and rolling resistance can be reduced. Furthermore, the structure silica is oriented in the tread circumferential direction of the tire when the tire is highly stretched (during high strain) such as during sudden braking or sharp turning. As a result, the rubber in the vicinity of the structure silica is abruptly distorted and the hysteresis loss is increased, thereby improving the dry grip performance.
そして、上記変性ジエン系重合体及び上記ストラクチャーシリカの併用により、それぞれの改善効果を相乗的に高めることができる。また、一般的に、変性ゴムを使用した場合、加工性の低下が懸念されるが、本発明では、上記変性ジエン系重合体を上記ストラクチャーシリカと併用することにより、加工性をも向上できる。これらの作用により、低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性、加工性を相乗的に向上できる。 And the improvement effect of each can be synergistically enhanced by the combined use of the modified diene polymer and the structure silica. In general, when a modified rubber is used, the processability may be lowered. However, in the present invention, the processability can be improved by using the modified diene polymer in combination with the structure silica. These effects can synergistically improve fuel efficiency, wet grip performance, dry grip performance, wear resistance, and workability.
本発明の上記ストラクチャーシリカを含むゴム組成物は、例えば、上記変性ジエン系重合体と、シリカゾルとを混練して製造できる。 The rubber composition containing the structure silica of the present invention can be produced, for example, by kneading the modified diene polymer and silica sol.
本発明において、ジエン系重合体は、(A)と(B)を反応させて得られる変性されたジエン系重合体である。 In the present invention, the diene polymer is a modified diene polymer obtained by reacting (A) and (B).
(A)は、(C)の存在下に、共役ジエンモノマー又は共役ジエンモノマーと芳香族ビニルモノマーとを重合させることにより得られるアルカリ金属末端を有する活性共役ジエン系重合体である。なお、活性共役ジエン系重合体は、2個のアルカリ金属末端を有する。 (A) is an active conjugated diene polymer having an alkali metal end obtained by polymerizing a conjugated diene monomer or a conjugated diene monomer and an aromatic vinyl monomer in the presence of (C). The active conjugated diene polymer has two alkali metal terminals.
(C)は、下記式(1)で表される化合物と有機アルカリ金属化合物とを反応させて得られる化学種である。 (C) is a chemical species obtained by reacting a compound represented by the following formula (1) with an organic alkali metal compound.
Figure JPOXMLDOC01-appb-C000009
(R及びRは、同一若しくは異なって、水素原子、分岐若しくは非分岐のアルキル基、分岐若しくは非分岐のアリール基、分岐若しくは非分岐のアルコキシ基、分岐若しくは非分岐のシリルオキシ基、分岐若しくは非分岐のアセタール基、カルボキシル基(-COOH)、メルカプト基(-SH)又はこれらの誘導体を示す。Aは、分岐若しくは非分岐のアルキレン基、分岐若しくは非分岐のアリーレン基又はこれらの誘導体を示す。)
Figure JPOXMLDOC01-appb-C000009
(R 1 and R 2 are the same or different and each represents a hydrogen atom, a branched or unbranched alkyl group, a branched or unbranched aryl group, a branched or unbranched alkoxy group, a branched or unbranched silyloxy group, branched or Represents an unbranched acetal group, carboxyl group (—COOH), mercapto group (—SH) or a derivative thereof, and A represents a branched or unbranched alkylene group, a branched or unbranched arylene group or a derivative thereof. .)
及びRの上記分岐若しくは非分岐のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基、デシル基等の炭素数1~30(好ましくは炭素数1~8、より好ましくは炭素数1~4、更に好ましくは炭素数1~2)のアルキル基等が挙げられる。なお、アルキル基には、アルキル基が有する水素原子がアリール基(フェニル基等)により置換された基も含む。 Examples of the branched or unbranched alkyl group for R 1 and R 2 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, iso-butyl group, sec-butyl group, tert- 1 to 30 carbon atoms such as butyl group, pentyl group, hexyl group, heptyl group, 2-ethylhexyl group, octyl group, nonyl group, decyl group, etc. (preferably 1 to 8 carbon atoms, more preferably 1 to 3 carbon atoms) 4, more preferably an alkyl group having 1 to 2 carbon atoms. The alkyl group includes a group in which a hydrogen atom of the alkyl group is substituted with an aryl group (such as a phenyl group).
及びRの上記分岐若しくは非分岐のアリール基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基などの炭素数6~18(好ましくは炭素数6~8)のアリール基が挙げられる。なお、アリール基には、アリール基が有する水素原子がアルキル基(メチル基等)により置換された基も含む。 Examples of the branched or unbranched aryl group for R 1 and R 2 include those having 6 to 18 carbon atoms (preferably 6 to 8 carbon atoms) such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and a biphenyl group. An aryl group is mentioned. The aryl group includes a group in which a hydrogen atom of the aryl group is substituted with an alkyl group (such as a methyl group).
及びRの上記分岐若しくは非分岐のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等の炭素数1~8のアルコキシ基(好ましくは炭素数1~6、より好ましくは炭素数1~4)等が挙げられる。なお、アルコキシ基には、シクロアルコキシ基(シクロヘキシルオキシ基等の炭素数5~8のシクロアルコキシ基等)、アリールオキシ基(フェノキシ基、ベンジルオキシ基等の炭素数6~8のアリールオキシ基等)も含まれる。 Examples of the branched or unbranched alkoxy group for R 1 and R 2 include 1 to 8 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group. And an alkoxy group (preferably having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms). The alkoxy group includes a cycloalkoxy group (such as a cycloalkoxy group having 5 to 8 carbon atoms such as a cyclohexyloxy group), an aryloxy group (an aryloxy group having 6 to 8 carbon atoms such as a phenoxy group and a benzyloxy group), etc. ) Is also included.
及びRの上記分岐若しくは非分岐のシリルオキシ基としては、例えば、炭素数1~20の脂肪族基、芳香族基が置換したシリルオキシ基(トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリイソプロピルシリルオキシ基、ジエチルイソプロピルシリルオキシ基、t-ブチルジメチルシリルオキシ基、t-ブチルジフェニルシリルオキシ基、トリベンジルシリルオキシ基、トリフェニルシリルオキシ基、トリ-p-キシリルシリルオキシ基等)等が挙げられる。 Examples of the branched or unbranched silyloxy group of R 1 and R 2 include, for example, a silyloxy group substituted with an aliphatic group or aromatic group having 1 to 20 carbon atoms (trimethylsilyloxy group, triethylsilyloxy group, triisopropylsilyl group). Oxy group, diethylisopropylsilyloxy group, t-butyldimethylsilyloxy group, t-butyldiphenylsilyloxy group, tribenzylsilyloxy group, triphenylsilyloxy group, tri-p-xylylsilyloxy group, etc.) Can be mentioned.
及びRの上記分岐若しくは非分岐のアセタール基としては、例えば、-C(RR’)-OR″、-O-C(RR’)-OR″で表される基を挙げることができる。前者としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、イソプロポキシメチル基、t-ブトキシメチル基、ネオペンチルオキシメチル基等が挙げられ、後者としては、メトキシメトキシ基、エトキシメトキシ基、プロポキシメトキシ基、i-プロポキシメトキシ基、n-ブトキシメトキシ基、t-ブトキシメトキシ基、n-ペンチルオキシメトキシ基、n-ヘキシルオキシメトキシ基、シクロペンチルオキシメトキシ基、シクロヘキシルオキシメトキシ基等を挙げることができる。 Examples of the branched or unbranched acetal group of R 1 and R 2 include groups represented by —C (RR ′) — OR ″ and —O—C (RR ′) — OR ″. . Examples of the former include a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group, an isopropoxymethyl group, a t-butoxymethyl group, and a neopentyloxymethyl group. The latter includes a methoxymethoxy group, an ethoxy group, and the like. A methoxy group, propoxymethoxy group, i-propoxymethoxy group, n-butoxymethoxy group, t-butoxymethoxy group, n-pentyloxymethoxy group, n-hexyloxymethoxy group, cyclopentyloxymethoxy group, cyclohexyloxymethoxy group, etc. Can be mentioned.
及びRとしては、水素原子、分岐若しくは非分岐のアルキル基、分岐若しくは非分岐のアリール基が好ましい。これにより、低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性のバランスを改善できる。また、2方向へ均等にポリマーを成長させることができるという理由から、R、Rが同一の基であることが好ましい。 R 1 and R 2 are preferably a hydrogen atom, a branched or unbranched alkyl group, or a branched or unbranched aryl group. This can improve the balance of fuel efficiency, wet grip performance, dry grip performance, and wear resistance. Moreover, it is preferable that R 1 and R 2 are the same group because the polymer can be grown uniformly in two directions.
Aの上記分岐若しくは非分岐のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基等の炭素数1~30(好ましくは炭素数1~8、より好ましくは炭素数1~4)のアルキレン基が挙げられる。 Examples of the branched or unbranched alkylene group of A include, for example, a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, and a dodecylene group. And an alkylene group having 1 to 30 carbon atoms (preferably 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms) such as a group, tridecylene group, tetradecylene group, pentadecylene group, hexadecylene group, heptadecylene group and octadecylene group. .
Aの上記アルキレン基の誘導体としては、例えば、アリール基やアリーレン基が置換したアルキレン基等が挙げられる。 Examples of the derivative of the alkylene group of A include an alkylene group substituted with an aryl group or an arylene group.
Aの上記アリーレン基としては、例えば、フェニレン基、トリレン基、キシリレン基、ナフチレン基などが挙げられる。 As said arylene group of A, a phenylene group, a tolylene group, a xylylene group, a naphthylene group etc. are mentioned, for example.
Aの上記アリーレン基の誘導体としては、例えば、アルキレン基が置換したアリーレン基等が挙げられる。 Examples of the derivative of the arylene group of A include an arylene group substituted with an alkylene group.
Aとしては、分岐若しくは非分岐のアリーレン基が好ましく、フェニレン基(下記式(2)で表される化合物)がより好ましい。これにより、低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性のバランスを改善できる。 As A, a branched or unbranched arylene group is preferable, and a phenylene group (a compound represented by the following formula (2)) is more preferable. This can improve the balance of fuel efficiency, wet grip performance, dry grip performance, and wear resistance.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
上記式(2)のR及びRは、上記式(1)のR及びRと同様である。 R 1 and R 2 in the formula (2) are the same as R 1 and R 2 in the formula (1).
上記式(1)又は(2)で表される化合物の具体例としては、1,2-ジビニルベンゼン、1,3-ジビニルベンゼン、1,4-ジビニルベンゼン、1,2-ジイソプロペニルベンゼン、1,3-ジイソプロペニルベンゼン、1,4-ジイソプロペニルベンゼン、1,2-ジイソブテニルベンゼン、1,3-ジイソブテニルベンゼン、1,4-ジイソブテニルベンゼン、1,3-フェニレンビス(1-ビニルベンゼン)、1,4-フェニレンビス(1-ビニルベンゼン)、1,1’-メチレンビス(2-ビニルベンゼン)、1,1’-メチレンビス(3-ビニルベンゼン)、1,1’-メチレンビス(4-ビニルベンゼン)等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、1,3-ジビニルベンゼン、1,3-ジイソプロペニルベンゼン、1,3-フェニレンビス(1-ビニルベンゼン)が好ましい。 Specific examples of the compound represented by the above formula (1) or (2) include 1,2-divinylbenzene, 1,3-divinylbenzene, 1,4-divinylbenzene, 1,2-diisopropenylbenzene, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, 1,2-diisobutenylbenzene, 1,3-diisobutenylbenzene, 1,4-diisobutenylbenzene, 1,3-phenylenebis (1 -Vinylbenzene), 1,4-phenylenebis (1-vinylbenzene), 1,1'-methylenebis (2-vinylbenzene), 1,1'-methylenebis (3-vinylbenzene), 1,1'-methylenebis (4-vinylbenzene) and the like. These may be used alone or in combination of two or more. Of these, 1,3-divinylbenzene, 1,3-diisopropenylbenzene, and 1,3-phenylenebis (1-vinylbenzene) are preferable.
本発明に用いられる有機アルカリ金属化合物としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金属を含有する炭化水素化合物が挙げられる。なかでも、2~20個の炭素原子を有するリチウム又はナトリウム化合物が好ましい。その具体例としては、例えば、エチルリチウム、n-プロピルリチウム、iso-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチル-フェニルリチウム、4-フェニル-ブチルリチウム、シクロヘキシルリチウム、4-シクロペンチルリチウム、1,4-ジリチオ-ブテン-2等が挙げられる。なかでも、迅速に反応が進行して分子量分布が狭いポリマーを与える点で、n-ブチルリチウム又はsec-ブチルリチウムが好ましい。 Examples of the organic alkali metal compound used in the present invention include hydrocarbon compounds containing an alkali metal such as lithium, sodium, potassium, rubidium, and cesium. Of these, lithium or sodium compounds having 2 to 20 carbon atoms are preferred. Specific examples thereof include, for example, ethyl lithium, n-propyl lithium, iso-propyl lithium, n-butyl lithium, sec-butyl lithium, t-octyl lithium, n-decyl lithium, phenyl lithium, 2-naphthyl lithium, 2 -Butyl-phenyllithium, 4-phenyl-butyllithium, cyclohexyllithium, 4-cyclopentyllithium, 1,4-dilithio-butene-2 and the like. Among these, n-butyllithium or sec-butyllithium is preferable in that the reaction proceeds rapidly to give a polymer having a narrow molecular weight distribution.
(C)の調製方法は、上記式(1)で表される化合物と上記有機アルカリ金属化合物とを接触させる方法であれば特に制限はない。具体的には、反応に不活性な有機溶剤、例えば炭化水素溶剤に、上記式(1)で表される化合物、上記有機アルカリ金属化合物をそれぞれ別々に溶解し、当該式(1)で表される化合物溶液に当該有機アルカリ金属化合物溶液を撹拌下で滴下することにより(C)を調製できる。なお、(C)を調製する際の反応温度は、40~60℃が好ましい。 The method for preparing (C) is not particularly limited as long as it is a method in which the compound represented by the above formula (1) is brought into contact with the organic alkali metal compound. Specifically, the compound represented by the formula (1) and the organic alkali metal compound are separately dissolved in an organic solvent inert to the reaction, for example, a hydrocarbon solvent, and represented by the formula (1). (C) can be prepared by dropping the organic alkali metal compound solution into the compound solution with stirring. The reaction temperature for preparing (C) is preferably 40 to 60 ° C.
炭化水素溶剤としては、上記有機アルカリ金属化合物(アルカリ金属触媒)を失活させないものであり、適当な炭化水素溶剤としては、脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素から選ばれ、特に炭素数が2~12であるプロパン、n-ブタン、iso-ブタン、n-ペンタン、iso-ペンタン、n-ヘキサン、シクロヘキサン、プロペン、1-ブテン、iso-ブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼンなどをあげることができる。また、これらの溶剤は2種以上を混合して使用することができる。 The hydrocarbon solvent does not deactivate the organic alkali metal compound (alkali metal catalyst), and the suitable hydrocarbon solvent is selected from aliphatic hydrocarbons, aromatic hydrocarbons, and alicyclic hydrocarbons. In particular, propane having 2 to 12 carbon atoms, n-butane, iso-butane, n-pentane, iso-pentane, n-hexane, cyclohexane, propene, 1-butene, iso-butene, trans-2-butene, Examples thereof include cis-2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, benzene, toluene, xylene, and ethylbenzene. Moreover, these solvents can be used in mixture of 2 or more types.
本発明に用いられる共役ジエンモノマーとしては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン(ピペリン)、2,3-ジメチル-1,3-ブタジエン、1,3-ヘキサジエン等が挙げられる。なかでも、得られる重合体の物性、工業的に実施する上での入手性の観点から、1,3-ブタジエン、イソプレンが好ましい。 Examples of the conjugated diene monomer used in the present invention include 1,3-butadiene, isoprene, 1,3-pentadiene (piperine), 2,3-dimethyl-1,3-butadiene, 1,3-hexadiene and the like. Of these, 1,3-butadiene and isoprene are preferred from the viewpoint of the physical properties of the resulting polymer and the availability for industrial implementation.
本発明に用いられる芳香族ビニルモノマーとしては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン等が挙げられる。なかでも、得られる重合体の物性、工業的に実施する上での入手性の観点から、スチレンが好ましい。 Examples of the aromatic vinyl monomer used in the present invention include styrene, α-methylstyrene, vinyl toluene, vinyl naphthalene, divinyl benzene, trivinyl benzene, divinyl naphthalene and the like. Of these, styrene is preferred from the viewpoint of the physical properties of the polymer obtained and the availability for industrial implementation.
モノマーとしては、共役ジエンモノマーのみを用いてもよく、共役ジエンモノマーと芳香族ビニルモノマーを併用してもよい。共役ジエンモノマーと芳香族ビニルモノマーを併用する場合の両者の比率は、共役ジエンモノマー/芳香族ビニルモノマーの質量比で50/50~90/10が好ましく、より好ましくは55/45~85/15である。該比が50/50未満であると、重合体ゴムが炭化水素溶剤に不溶となり、均一な重合が不可能となる場合があり、一方該比が90/10を越えると重合体ゴムの強度が低下する場合がある。 As the monomer, only a conjugated diene monomer may be used, or a conjugated diene monomer and an aromatic vinyl monomer may be used in combination. When the conjugated diene monomer and the aromatic vinyl monomer are used in combination, the ratio by mass of the conjugated diene monomer / aromatic vinyl monomer is preferably 50/50 to 90/10, more preferably 55/45 to 85/15. It is. If the ratio is less than 50/50, the polymer rubber becomes insoluble in the hydrocarbon solvent, and uniform polymerization may not be possible. On the other hand, if the ratio exceeds 90/10, the strength of the polymer rubber may be reduced. May decrease.
変性ジエン系重合体としては、共役ジエンモノマーと芳香族ビニルモノマーを共重合させることにより得られるものが好ましく、1,3-ブタジエン及びスチレンを共重合させることにより得られるもの(変性スチレンブタジエンゴム)が特に好ましい。このような変性共重合体を使用すると、低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性を改善できる。また、上記ストラクチャーシリカとの併用により、低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性、加工性を好適に向上できる。 The modified diene polymer is preferably obtained by copolymerizing a conjugated diene monomer and an aromatic vinyl monomer, and is obtained by copolymerizing 1,3-butadiene and styrene (modified styrene butadiene rubber). Is particularly preferred. When such a modified copolymer is used, fuel economy, wet grip performance, dry grip performance, and wear resistance can be improved. Moreover, low-fuel-consumption property, wet grip performance, dry grip performance, abrasion resistance, and workability can be suitably improved by using together with the structure silica.
(A)の調製方法としては、重合開始剤として(C)を用いる以外は特に制限はなく、従来公知の方法を用いることができる。具体的には、反応に不活性な有機溶剤、例えば炭化水素溶剤中において、重合開始剤として(C)を用いて、共役ジエンモノマー又は共役ジエンモノマーと芳香族ビニルモノマーとを必要に応じてランダマイザーの存在下で重合させることにより、目的の2個のアルカリ金属末端を有する活性共役ジエン系重合体が得られる。 There is no restriction | limiting in particular as a preparation method of (A) except using (C) as a polymerization initiator, A conventionally well-known method can be used. Specifically, a conjugated diene monomer or a conjugated diene monomer and an aromatic vinyl monomer are optionally used in a reaction inert organic solvent such as a hydrocarbon solvent, using (C) as a polymerization initiator. By polymerizing in the presence of a mizer, an active conjugated diene-based polymer having two target alkali metal ends can be obtained.
炭化水素溶剤としては、上記(C)の調製の場合と同様のものを好適に使用できる。 As a hydrocarbon solvent, the thing similar to the case of the preparation of said (C) can be used conveniently.
ランダマイザーとは、重合体中の共役ジエン部分のミクロ構造制御、例えばブタジエンにおける1,2-結合、イソプレンにおける3,4-結合の増加など、あるいは重合体におけるモノマー単位の組成分布の制御、例えばブタジエン-スチレン共重合体におけるブタジエン単位、スチレン単位のランダム化などの作用を有する化合物のことである。 The randomizer is a microstructure control of a conjugated diene moiety in a polymer, for example, an increase in 1,2-bonds in butadiene, a 3,4-bond in isoprene, or a control of the composition distribution of monomer units in the polymer. It is a compound having an action such as randomization of butadiene units and styrene units in a butadiene-styrene copolymer.
ランダマイザーとして、各種の化合物を使用できる。なかでも、エーテル化合物又は第三級アミンが、工業的実施上の入手容易性の点で好ましい。エーテル化合物としては、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサンなどの環状エーテル;ジエチルエーテル、ジブチルエーテルなどの脂肪族モノエーテル;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテルなどの脂肪族ジエ-テル;ジフェニルエーテル、アニソールなどの芳香族エーテルがあげられる。また、第三級アミン化合物の例としては、トリエチルアミン、トリプロピルアミン、トリブチルアミンなどのほかに、N,N,N’,N’-テトラメチルエチレンジアミン、N,N-ジエチルアニリン、ピリジン、キノリンなどをあげることができる。 Various compounds can be used as a randomizer. Of these, ether compounds or tertiary amines are preferred from the viewpoint of industrial availability. Examples of ether compounds include cyclic ethers such as tetrahydrofuran, tetrahydropyran, and 1,4-dioxane; aliphatic monoethers such as diethyl ether and dibutyl ether; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, Examples thereof include aliphatic ethers such as diethylene glycol dibutyl ether; aromatic ethers such as diphenyl ether and anisole. Examples of tertiary amine compounds include triethylamine, tripropylamine, tributylamine, N, N, N ′, N′-tetramethylethylenediamine, N, N-diethylaniline, pyridine, quinoline, etc. Can give.
(B)は、官能基を有する変性剤である。(B)としては、窒素、酸素、およびケイ素からなる群より選択される少なくとも1種の原子を含む官能基を有する化合物が好ましい。
官能基としては、例えばアミノ基、アミド基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基(特に、エポキシ基)、カルボニル基、カルボキシル基、ヒドロキシル基、ニトリル基、ピリジル基、ジグリシジルアミノ基等があげられる。なお、これらの官能基は、置換基を有していてもよい。なかでも、シリカとの反応性が高いという理由から、アミノ基、アルコキシシリル基、エーテル基(特に、エポキシ基)、カルボニル基、ヒドロキシル基、カルボキシル基、ジグリシジルアミノ基が好ましい。
(B) is a modifier having a functional group. (B) is preferably a compound having a functional group containing at least one atom selected from the group consisting of nitrogen, oxygen and silicon.
Examples of functional groups include amino groups, amide groups, alkoxysilyl groups, isocyanate groups, imino groups, imidazole groups, urea groups, ether groups (especially epoxy groups), carbonyl groups, carboxyl groups, hydroxyl groups, nitrile groups, pyridyls. Group, diglycidylamino group and the like. These functional groups may have a substituent. Of these, amino groups, alkoxysilyl groups, ether groups (particularly epoxy groups), carbonyl groups, hydroxyl groups, carboxyl groups, and diglycidylamino groups are preferred because of their high reactivity with silica.
(B)としては、下記式(3)で表される化合物が好ましい。また、使用する(B)は、1種類である((A)の両末端に導入する変性剤が同一である)ことが好ましい。使用する(B)を1種類とすることにより、(A)の両末端に同一の官能基を導入することができ、均一なポリマー末端となることで、シリカとの反応性が安定する。 (B) is preferably a compound represented by the following formula (3). Moreover, it is preferable that (B) to be used is one type (the modifiers introduced at both ends of (A) are the same). By using only one type of (B), the same functional group can be introduced at both ends of (A), and the reactivity with silica is stabilized by forming uniform polymer ends.
下記式(3)で表される化合物は、2個以上のエポキシ基を有する多官能化合物である。活性共役ジエン系重合体(A)の活性末端と、エポキシ基が反応することにより、重合体鎖に水酸基を導入できる。さらに、上記多官能化合物は、分子中に2個以上のエポキシ基を有するため、1の多官能化合物が複数の活性共役ジエン系重合体(A)の活性末端と反応することにより、2個以上の重合体鎖をカップリングすることができる。そのため、該多官能化合物により変性された部位(末端など)を3個以上有する変性ジエン系重合体も得られる。変性ジエン系重合体の変性された部位(末端など)の数が増加することにより、より低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性のバランスを改善できる。 The compound represented by the following formula (3) is a polyfunctional compound having two or more epoxy groups. A hydroxyl group can be introduced into the polymer chain by reacting the active terminal of the active conjugated diene polymer (A) with an epoxy group. Furthermore, since the polyfunctional compound has two or more epoxy groups in the molecule, one polyfunctional compound reacts with the active terminal of a plurality of active conjugated diene polymers (A), so that two or more The polymer chains can be coupled. Therefore, a modified diene polymer having three or more sites (terminals and the like) modified with the polyfunctional compound can also be obtained. By increasing the number of modified sites (terminals, etc.) of the modified diene polymer, the balance between fuel efficiency, wet grip performance, dry grip performance, and wear resistance can be improved.
Figure JPOXMLDOC01-appb-C000011
(式(3)中、R及びRは、同一又は異なって、炭素数1~10の炭化水素基を表し、該炭化水素基は、エーテル、及び3級アミンからなる群より選択される少なくとも1種の基を有してもよい。R及びRは、同一若しくは異なって、水素原子、又は炭素数1~20の炭化水素基を表し、該炭化水素基は、エーテル、及び3級アミンからなる群より選択される少なくとも1種の基を有してもよい。Rは、炭素数1~20の炭化水素基を表し、該炭化水素基は、エーテル、3級アミン、エポキシ、カルボニル、及びハロゲンからなる群より選択される少なくとも1種の基を有してもよい。nは1~6の整数を表す。)
Figure JPOXMLDOC01-appb-C000011
(In Formula (3), R 3 and R 4 are the same or different and each represents a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group is selected from the group consisting of ethers and tertiary amines. R 5 and R 6 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, the hydrocarbon group being an ether, and 3 It may have at least one group selected from the group consisting of a tertiary amine, R 7 represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group is an ether, a tertiary amine, an epoxy And at least one group selected from the group consisting of carbonyl, and halogen, n represents an integer of 1 to 6.)
及びRは、炭素数1~10のアルキレン基(好ましくは炭素数1~3)が好ましい。R及びRは、水素原子が好ましい。Rは、炭素数3~20の炭化水素基(好ましくは炭素数6~10、より好ましくは炭素数8)が挙げられ、下記式などで表されるシクロアルキル基、シクロアルキレン基、シクロアルカントリイル基が好ましく、シクロアルキレン基がより好ましい。 R 3 and R 4 are preferably an alkylene group having 1 to 10 carbon atoms (preferably having 1 to 3 carbon atoms). R 5 and R 6 are preferably a hydrogen atom. R 7 is a hydrocarbon group having 3 to 20 carbon atoms (preferably 6 to 10 carbon atoms, more preferably 8 carbon atoms), and is a cycloalkyl group, cycloalkylene group, cycloalkane represented by the following formula or the like. A triyl group is preferable, and a cycloalkylene group is more preferable.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
また、nは2~3であることが好ましい。上記式(3)で表される化合物としては、例えば、テトラグリシジルメタキシレンジアミン、テトラグリシジルアミノジフェニルメタン、テトラグリシジル-p-フェニレンジアミン、ジグリシジルアミノメチルシクロヘキサン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等が好適に用いられる。 N is preferably 2 to 3. Examples of the compound represented by the above formula (3) include tetraglycidylmetaxylenediamine, tetraglycidylaminodiphenylmethane, tetraglycidyl-p-phenylenediamine, diglycidylaminomethylcyclohexane, tetraglycidyl-1,3-bisaminomethyl. Cyclohexane or the like is preferably used.
本発明において、ジエン系重合体(変性ジエン系重合体)は、反応に不活性な有機溶剤、例えば炭化水素溶剤中において、(A)と(B)を反応させて得られる。 In the present invention, the diene polymer (modified diene polymer) is obtained by reacting (A) and (B) in an organic solvent inert to the reaction, such as a hydrocarbon solvent.
炭化水素溶剤としては、上記(C)の調製の場合と同様のものを好適に使用できる。 As a hydrocarbon solvent, the thing similar to the case of the preparation of said (C) can be used conveniently.
官能基を有する変性剤(B)の量は、有機アルカリ金属化合物1モルに対して、好ましくは0.1~10モルであり、より好ましくは0.5~2モルである。0.1モル未満であると、低燃費性の改良効果が少なく、逆に10モルを超えると、(B)が重合溶媒中に残存するため、その溶媒をリサイクル使用する場合には溶媒からの分離工程を必要とする等、経済的に好ましくない。 The amount of the modifier (B) having a functional group is preferably 0.1 to 10 mol, more preferably 0.5 to 2 mol, relative to 1 mol of the organic alkali metal compound. When the amount is less than 0.1 mol, the effect of improving the fuel efficiency is small. Conversely, when the amount exceeds 10 mol, (B) remains in the polymerization solvent. This is economically undesirable because it requires a separation step.
(A)と(B)との反応は、迅速に起きるため、反応温度及び反応時間は広範囲に選択できる。一般的には、室温(25)~80℃、数秒~数時間である。反応は、(A)と(B)とを接触させればよく、例えば、(C)を用いて、ジエン系重合体を重合し、該重合体溶液中に(B)を所定量添加する方法が、好ましい態様として例示できるが、この方法に限定されるものではない。 Since the reaction between (A) and (B) occurs rapidly, the reaction temperature and reaction time can be selected in a wide range. In general, the temperature is from room temperature (25) to 80 ° C. for several seconds to several hours. The reaction may be performed by bringing (A) and (B) into contact. For example, a method of polymerizing a diene polymer using (C) and adding a predetermined amount of (B) to the polymer solution. However, it can be exemplified as a preferred embodiment, but is not limited to this method.
混練加工性の観点から、(A)と(B)の反応前又は反応後に、一般式RMXで示されるカップリング剤を添加してもよい(式中Rはアルキル基、アルケニル基、シクロアルケニル基又は芳香族炭化水素基、Mはケイ素又はスズ原子、Xはハロゲン原子、aは0~2の整数、bは2~4の整数を表す)。カップリング剤の量は、使用する有機アルカリ金属化合物(アルカリ金属触媒)1モル当たり、好ましくは0.03~0.4モルであり、より好ましくは0.05~0.3モルである。該使用量が0.03未満の場合は加工性の改良効果が少なく、逆に0.4モルを超える場合は、官能基を有する変性剤と反応するアルカリ金属末端が少なくなり、低燃費性改良効果が小さくなる。 From the viewpoint of kneadability, a coupling agent represented by the general formula R a MX b may be added before or after the reaction of (A) and (B) (wherein R is an alkyl group, an alkenyl group, A cycloalkenyl group or an aromatic hydrocarbon group, M is a silicon or tin atom, X is a halogen atom, a is an integer of 0 to 2, and b is an integer of 2 to 4. The amount of the coupling agent is preferably 0.03 to 0.4 mol, more preferably 0.05 to 0.3 mol, per mol of the organic alkali metal compound (alkali metal catalyst) used. When the amount used is less than 0.03, the effect of improving the workability is small. Conversely, when the amount exceeds 0.4 mol, the alkali metal terminal reacting with the modifier having a functional group is reduced, and the fuel efficiency is improved. The effect is reduced.
反応終了後、変性されたジエン系重合体は、凝固剤の添加あるいはスチーム凝固など通常の溶液重合によるゴムの製造において使用される凝固方法により凝固でき、反応溶媒中から分離できる。なお、凝固温度も何ら制限されない。 After completion of the reaction, the modified diene polymer can be coagulated by a coagulation method used in the production of rubber by ordinary solution polymerization such as addition of a coagulant or steam coagulation, and can be separated from the reaction solvent. The solidification temperature is not limited at all.
反応溶媒から分離した凝固物を乾燥することにより、ジエン系重合体(変性ジエン系重合体)が得られる。凝固物の乾燥は、通常の合成ゴムの製造で用いられるバンドドライヤー、押し出し型のドライヤー等が使用でき、乾燥温度も何ら制限されない。 A diene polymer (modified diene polymer) is obtained by drying the coagulated product separated from the reaction solvent. For drying the coagulated product, a band drier, an extrusion drier, etc. used in normal synthetic rubber production can be used, and the drying temperature is not limited at all.
上記ジエン系重合体のムーニー粘度(ML1+4)(100℃)は、好ましくは10~200、より好ましくは20~150である。上限は、更に好ましくは100以下、特に好ましくは75以下である。ムーニー粘度が10未満であると、加硫物の引張り強度等の機械物性が低下する場合があり、一方該粘度が200を越えると、他のゴムと組み合わせて使用する場合に混和性が悪く、加工操作性が悪化し、得られたゴム組成物の加硫物の機械物性が低下する場合がある。なお、ムーニー粘度は、実施例に記載の方法により測定出来る。 The Mooney viscosity (ML 1 + 4 ) (100 ° C.) of the diene polymer is preferably 10 to 200, more preferably 20 to 150. The upper limit is more preferably 100 or less, and particularly preferably 75 or less. When the Mooney viscosity is less than 10, mechanical properties such as the tensile strength of the vulcanizate may be reduced. On the other hand, when the viscosity exceeds 200, the miscibility is poor when used in combination with other rubbers. Processing operability may deteriorate, and the mechanical properties of the resulting vulcanizate of the rubber composition may deteriorate. The Mooney viscosity can be measured by the method described in the examples.
上記ジエン系重合体の共役ジエン部のビニル含量は、特に限定されないが、好ましくは10~70モル%、より好ましくは15~60モル%である。下限は、更に好ましくは35モル%以上、特に好ましくは40モル%以上、最も好ましくは50モル%以上である。10モル%未満であると、重合体のガラス転移温度が低温となり、タイヤ用のポリマ-として用いた場合、グリップ性能が劣る場合があり、一方、70モル%を越えると、重合体のガラス転移温度が上昇し、反撥弾性に劣る場合がある。
なお、ビニル含量(1,2-結合ブタジエン単位量)は、赤外吸収スペクトル分析法によって測定できる。
The vinyl content of the conjugated diene part of the diene polymer is not particularly limited, but is preferably 10 to 70 mol%, more preferably 15 to 60 mol%. The lower limit is more preferably 35 mol% or more, particularly preferably 40 mol% or more, and most preferably 50 mol% or more. If it is less than 10 mol%, the glass transition temperature of the polymer will be low, and when used as a polymer for tires, the grip performance may be inferior. On the other hand, if it exceeds 70 mol%, the glass transition temperature of the polymer will be low. The temperature rises and the resilience may be inferior.
The vinyl content (1,2-bond butadiene unit amount) can be measured by infrared absorption spectrum analysis.
ゴム成分100質量%中の上記ジエン系重合体の含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは40質量%以上、特に好ましくは60質量%以上である。5質量%未満であると、充分な低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性、加工性を得ることができないおそれがある。該ジエン系重合体の含有量は、100質量%であってもよいが、好ましくは90質量%以下である。 The content of the diene polymer in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 40% by mass or more, and particularly preferably 60% by mass or more. If it is less than 5% by mass, sufficient fuel economy, wet grip performance, dry grip performance, wear resistance, and processability may not be obtained. The content of the diene polymer may be 100% by mass, but is preferably 90% by mass or less.
本発明のゴム組成物は、上記ジエン系重合体と共に、他のゴム成分を併用してもよい。他のゴム成分としては、例えば、天然ゴム(NR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)等が挙げられる。ゴム成分は、単独で用いてもよく、2種以上を併用してもよい。なかでも、ゴムの強度向上と、耐摩耗性、耐亀裂成長性が高いという理由から、NR、BRが好ましい。
また、上記ジエン系重合体と共にNRやBRを使用した場合、上記ストラクチャーシリカとの併用により、ウェットグリップ性能、耐摩耗性、加工性の向上効果が大きい。
In the rubber composition of the present invention, other rubber components may be used in combination with the diene polymer. Examples of other rubber components include natural rubber (NR), butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), ethylene propylene diene rubber (EPDM), chloroprene rubber (CR), Examples include acrylonitrile butadiene rubber (NBR). A rubber component may be used independently and may use 2 or more types together. Of these, NR and BR are preferable because of the improvement in rubber strength, high wear resistance, and high crack growth resistance.
Further, when NR or BR is used together with the diene polymer, the effect of improving wet grip performance, wear resistance, and workability is great by the combined use with the structure silica.
NRとしては、特に限定されず、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。 The NR is not particularly limited, and for example, those commonly used in the tire industry such as SIR20, RSS # 3, TSR20 and the like can be used.
本発明のゴム組成物にNRが配合される場合、ゴム成分100質量%中のNRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上である。5質量%未満であると、低燃費性、耐摩耗性が低下するおそれがある。該NRの含有量は、好ましくは40質量%以下、より好ましくは30質量%以下である。40質量%を超えると、ドライグリップ性能が低下するおそれがある。 When NR is blended in the rubber composition of the present invention, the content of NR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more. If it is less than 5% by mass, fuel economy and wear resistance may be reduced. The NR content is preferably 40% by mass or less, more preferably 30% by mass or less. If it exceeds 40% by mass, the dry grip performance may be lowered.
BRとしては特に限定されず、例えば、日本ゼオン(株)製のBR1220、BR1250H、宇部興産(株)製のBR130B、BR150B等の高シス含有量のBR、宇部興産(株)製のVCR412、VCR617等のシンジオタクチックポリブタジエン結晶を含有するBR等を使用できる。なかでも、ガラス転移温度(Tg)が低く、低温特性に有利であるという理由から、シス含量が95質量%以上のBRが好ましい。 The BR is not particularly limited. For example, BR1220 and BR1250H manufactured by Nippon Zeon Co., Ltd., BR130B and BR150B manufactured by Ube Industries, Ltd., BR with high cis content, VCR412 and VCR617 manufactured by Ube Industries, Ltd. BR containing a syndiotactic polybutadiene crystal such as can be used. Among these, BR having a cis content of 95% by mass or more is preferable because it has a low glass transition temperature (Tg) and is advantageous for low temperature characteristics.
本発明のゴム組成物にBRが配合される場合、ゴム成分100質量%中のBRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上である。5質量%未満であると、低燃費性、耐摩耗性が低下するおそれがある。該BRの含有量は、好ましくは40質量%以下、より好ましくは30質量%以下である。40質量%を超えると、ウェットグリップ性能、ドライグリップ性能、加工性が低下するおそれがある。 When BR is blended in the rubber composition of the present invention, the content of BR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more. If it is less than 5% by mass, fuel economy and wear resistance may be reduced. The BR content is preferably 40% by mass or less, more preferably 30% by mass or less. If it exceeds 40 mass%, wet grip performance, dry grip performance, and workability may be deteriorated.
本発明で使用するストラクチャーシリカ(直鎖シリカ)は、1つの粒子に対して隣接する粒子が3つ以上の粒子(以下、分岐粒子Xとする)を有し、分岐粒子Xとそれに隣接する粒子により分岐構造が形成される。分岐粒子Xとは、分岐粒子の概略説明図である図1における粒子のうちの粒子Xであり、3個以上の他の粒子と隣接している。なお、ストラクチャーシリカとしては、分岐構造を有するもの(例えば図2)と有しないものが挙げられるが、分岐構造を有しないストラクチャーシリカは、すぐに凝集してしまうため、実質的に存在しない。 The structure silica (linear silica) used in the present invention has three or more particles adjacent to one particle (hereinafter referred to as a branched particle X), and the branched particle X and a particle adjacent thereto. As a result, a branched structure is formed. The branched particle X is a particle X of the particles in FIG. 1 which is a schematic explanatory diagram of the branched particle, and is adjacent to three or more other particles. In addition, as structure silica, what has a branched structure (for example, FIG. 2) and what does not have are mentioned, However, Since the structured silica which does not have a branched structure will aggregate immediately, it does not exist substantially.
ストラクチャーシリカの分岐粒子Xを含む分岐粒子間X-Xの平均長(図2におけるL1)は、30nm以上、好ましくは40nm以上である。30nm未満では、ドライグリップ性能を充分に改善できない傾向がある。また、L1は、400nm以下、好ましくは200nm以下、更に好ましくは100nm以下である。400nmを超えると、ヒステリシスロスが増大し、低燃費性が悪化する傾向がある。 The average length (L 1 in FIG. 2) between the branched particles XX including the branched particles X of the structure silica is 30 nm or more, preferably 40 nm or more. If it is less than 30 nm, there is a tendency that the dry grip performance cannot be sufficiently improved. L 1 is 400 nm or less, preferably 200 nm or less, more preferably 100 nm or less. When it exceeds 400 nm, hysteresis loss increases and fuel efficiency tends to deteriorate.
ストラクチャーシリカの平均1次粒子径(D、分岐粒子を含むストラクチャーシリカの概略説明図である図2参照)は、好ましくは5nm以上、より好ましくは7nm以上である。5nm未満では、ヒステリシスロスが増大し、低燃費性が悪化する傾向がある。また、Dは、好ましくは1000nm以下、より好ましくは100nm以下、更に好ましくは18nm以下である。1000nmを超えると、ドライグリップ性能を充分に改善できない傾向がある。 The average primary particle size of the structure silica (D, see FIG. 2 which is a schematic explanatory diagram of structure silica containing branched particles) is preferably 5 nm or more, more preferably 7 nm or more. If it is less than 5 nm, the hysteresis loss increases and the fuel efficiency tends to deteriorate. Further, D is preferably 1000 nm or less, more preferably 100 nm or less, and still more preferably 18 nm or less. If it exceeds 1000 nm, the dry grip performance tends not to be sufficiently improved.
ストラクチャーシリカの分岐粒子Xを含む分岐粒子間X-Xの平均アスペクト比(L1/D)は、好ましくは3以上、より好ましくは4以上である。3未満では、ドライグリップ性能を充分に改善できない傾向がある。また、L1/Dは、好ましくは100以下、より好ましくは30以下である。L1/Dが100を超えると、ヒステリシスロスが増大し、低燃費性が悪化する傾向がある。 The average aspect ratio (L 1 / D) of the XX between the branched particles including the branched particle X of the structure silica is preferably 3 or more, more preferably 4 or more. If it is less than 3, there is a tendency that the dry grip performance cannot be sufficiently improved. L 1 / D is preferably 100 or less, more preferably 30 or less. When L 1 / D exceeds 100, hysteresis loss increases and fuel efficiency tends to deteriorate.
なお、本発明では、シリカのD、L1及びL1/Dは、加硫ゴム組成物中に分散したシリカを透過型電子顕微鏡観察により測定することができる。例えば、図2において、粒子が真球とした場合には、L1/Dは5となる。 In the present invention, silica D, L 1 and L 1 / D can be measured by observation with a transmission electron microscope of silica dispersed in a vulcanized rubber composition. For example, in FIG. 2, when the particle is a true sphere, L 1 / D is 5.
ストラクチャーシリカの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは45質量部以上、更に好ましくは65質量部以上である。5質量部未満では、ストラクチャーシリカを配合した効果が充分に得られない傾向がある。また、ストラクチャーシリカの含有量は、好ましくは150質量部以下、より好ましくは120質量部以下、更に好ましくは100質量部以下である。150質量部を超えると、ゴム組成物の剛性が高くなり、加工性及びウェットグリップ性能が悪化する傾向がある。 The content of the structure silica is preferably 5 parts by mass or more, more preferably 45 parts by mass or more, and still more preferably 65 parts by mass or more with respect to 100 parts by mass of the rubber component. If it is less than 5 mass parts, there exists a tendency for the effect which mix | blended structure silica is not fully acquired. The content of the structure silica is preferably 150 parts by mass or less, more preferably 120 parts by mass or less, and still more preferably 100 parts by mass or less. When it exceeds 150 parts by mass, the rigidity of the rubber composition increases, and the workability and wet grip performance tend to deteriorate.
本発明のゴム組成物には、上記ストラクチャーシリカと共に、シランカップリング剤を使用することが好ましい。シランカップリング剤としては、例えば、スルフィド系、メルカプト系、ビニル系、アミノ系、グリシドキシ系、ニトロ系、クロロ系シランカップリング剤などが挙げられる。なかでも、本発明の効果が良好に得られるという理由から、スルフィド系が好ましい。 In the rubber composition of the present invention, it is preferable to use a silane coupling agent together with the structure silica. Examples of the silane coupling agent include sulfide, mercapto, vinyl, amino, glycidoxy, nitro, and chloro silane coupling agents. Among these, a sulfide system is preferable because the effects of the present invention can be obtained satisfactorily.
スルフィド系シランカップリング剤としては、本発明の効果が良好に得られるという理由から、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィドが好ましく、ビス(3-トリエトキシシリルプロピル)ジスルフィドがより好ましい。 As the sulfide-based silane coupling agent, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3- Triethoxysilylpropyl) disulfide and bis (2-triethoxysilylethyl) disulfide are preferred, and bis (3-triethoxysilylpropyl) disulfide is more preferred.
シランカップリング剤の含有量は、ストラクチャーシリカ100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上である。1質量部未満では、ドライグリップ性能、加工性を充分に改善できない傾向がある。また、シランカップリング剤の含有量は、好ましくは20質量部以下、より好ましくは12質量部以下である。20質量部を超えると、コストの増加に見合った効果が得られない傾向がある。 The content of the silane coupling agent is preferably 1 part by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of the structure silica. If it is less than 1 part by mass, the dry grip performance and workability tend not to be improved sufficiently. The content of the silane coupling agent is preferably 20 parts by mass or less, more preferably 12 parts by mass or less. When it exceeds 20 parts by mass, there is a tendency that an effect commensurate with the increase in cost cannot be obtained.
本発明のゴム組成物には、前記成分以外にも、タイヤ工業で従来使用されている配合剤、例えば、カーボンブラック等の補強用充填剤、各種軟化剤、各種老化防止剤、ワックス、ステアリン酸、酸化亜鉛、硫黄などの加硫剤、各種加硫促進剤などを配合することができる。 In addition to the components described above, the rubber composition of the present invention includes compounding agents conventionally used in the tire industry, such as reinforcing fillers such as carbon black, various softening agents, various anti-aging agents, waxes, and stearic acid. Vulcanizing agents such as zinc oxide and sulfur, various vulcanization accelerators, and the like can be blended.
本発明のゴム組成物は、カーボンブラックを含有することが好ましい。これにより、良好な補強性が得られ、耐摩耗性、耐久性をより改善できる。
カーボンブラックとしては特に限定されず、例えば、GPF、HAF、ISAF、SAFなどを用いることができる。
The rubber composition of the present invention preferably contains carbon black. As a result, good reinforcement can be obtained, and wear resistance and durability can be further improved.
The carbon black is not particularly limited, and for example, GPF, HAF, ISAF, SAF and the like can be used.
カーボンブラックのチッ素吸着比表面積(NSA)は30m/g以上が好ましく、70m/g以上がより好ましく、100m/g以上が更に好ましい。NSAが30m/g未満では、充分な補強性が得られない傾向がある。また、カーボンブラックのNSAは250m/g以下が好ましく、150m/g以下がより好ましく、125m/g以下が更に好ましい。NSAが250m/gを超えると、未加硫時の粘度が非常に高くなり、加工性が悪化する傾向がある。また、低燃費性が悪化する傾向がある。
なお、カーボンブラックのチッ素吸着比表面積は、JIS K6217-2:2001に準拠して測定される。
The nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 30 m 2 / g or more, more preferably 70 m 2 / g or more, and still more preferably 100 m 2 / g or more. When N 2 SA is less than 30 m 2 / g, there is a tendency that sufficient reinforcing properties cannot be obtained. Also, N 2 SA is preferably 250 meters 2 / g or less of carbon black, more preferably not more than 150m 2 / g, 125m 2 / g or less is more preferable. When N 2 SA is more than 250 meters 2 / g, the viscosity of the unvulcanized becomes very high, processability tends to be deteriorated. In addition, fuel efficiency tends to deteriorate.
The nitrogen adsorption specific surface area of carbon black is measured according to JIS K6217-2: 2001.
カーボンブラックのジブチルフタレート(DBP)吸油量は、好ましくは70ml/100g以上、より好ましくは90ml/100g以上である。また、カーボンブラックのDBP吸油量は、好ましくは160ml/100g以下、より好ましくは117ml/100g以下である。該範囲内とすることによって、低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性をバランスよく改善できる。
なお、カーボンブラックのDBP吸油量は、JIS K6217-4:2001に準拠して測定される。
Carbon black has a dibutyl phthalate (DBP) oil absorption of preferably 70 ml / 100 g or more, more preferably 90 ml / 100 g or more. The DBP oil absorption of carbon black is preferably 160 ml / 100 g or less, more preferably 117 ml / 100 g or less. By making it within this range, fuel economy, wet grip performance, dry grip performance, and wear resistance can be improved in a well-balanced manner.
The DBP oil absorption of carbon black is measured according to JIS K6217-4: 2001.
本発明のゴム組成物にカーボンブラックが配合される場合、カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは8質量部以上である。5質量部未満の場合、カーボンブラックを配合した効果が充分に得られないおそれがある。また、カーボンブラックの含有量は、好ましくは20質量部以下、より好ましくは15質量部以下である。20質量部を超えると、低燃費性が悪化する傾向がある。 When carbon black is blended in the rubber composition of the present invention, the content of carbon black is preferably 5 parts by mass or more, more preferably 8 parts by mass or more with respect to 100 parts by mass of the rubber component. When the amount is less than 5 parts by mass, the effect of blending carbon black may not be sufficiently obtained. Further, the content of carbon black is preferably 20 parts by mass or less, more preferably 15 parts by mass or less. If it exceeds 20 parts by mass, the fuel efficiency tends to deteriorate.
加硫促進剤としては、例えば、スルフェンアミド系、チアゾール系、チウラム系、チオウレア系、グアニジン系、ジチオカルバミン酸系、アルデヒド-アミン系若しくはアルデヒド-アンモニア系、イミダゾリン系、又は、キサンテート系加硫促進剤が挙げられる。なかでも、本発明の効果が良好に得られるという理由から、スルフェンアミド系加硫促進剤が好ましい。 Examples of vulcanization accelerators include sulfenamide, thiazole, thiuram, thiourea, guanidine, dithiocarbamic acid, aldehyde-amine or aldehyde-ammonia, imidazoline, or xanthate vulcanization accelerators. Agents. Of these, sulfenamide vulcanization accelerators are preferred because the effects of the present invention can be obtained satisfactorily.
スルフェンアミド系加硫促進剤としては、例えば、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(TBBS)、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N,N’-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(DZ)等が挙げられる。なかでも、本発明の効果が良好に得られるという理由から、CBSが好ましく、CBSとN,N’-ジフェニルグアニジンとを併用することがより好ましい。 Examples of the sulfenamide vulcanization accelerator include N-tert-butyl-2-benzothiazolylsulfenamide (TBBS), N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N, N And '-dicyclohexyl-2-benzothiazolylsulfenamide (DZ). Among these, CBS is preferable because the effects of the present invention can be obtained satisfactorily, and it is more preferable to use CBS and N, N′-diphenylguanidine in combination.
本発明のタイヤ用ゴム組成物の製造方法としては、公知の方法を採用することができ、例えば、上記各成分をバンバリーミキサー、オープンロール等のゴム混練装置を用いて混練し、その後加硫する方法等により製造できる。 As a method for producing the tire rubber composition of the present invention, a known method can be employed. For example, the above components are kneaded using a rubber kneader such as a Banbury mixer or an open roll, and then vulcanized. It can be manufactured by a method or the like.
特に、ストラクチャーシリカが形成された前述の本発明のゴム組成物を容易に製造できるという点から、シリカゾルを、上記変性ジエン系重合体を含むゴム成分などと共にゴム混練装置で混練することが好ましく、具体的には、
(I)上記変性ジエン系重合体を含むゴム成分と、シリカゾルと、必要に応じて、カーボンブラック、シランカップリング剤、酸化亜鉛、ステアリン酸、軟化剤、老化防止剤、ワックス等を80~120℃(好ましくは90~110℃)で3~10 分間混練するベース練り工程と、
(II)ベース練り工程により得られた混練物と、加硫剤と、加硫促進剤とを30~70℃(好ましくは40~60℃)で3~10分間混練する仕上げ練り工程と、
(III)仕上げ練り工程により得られた未加硫ゴム組成物を150~190℃(好ましくは160~180℃)で5~30分間加硫する加硫工程とを含む製造方法がより好ましい。
In particular, it is preferable to knead the silica sol together with a rubber component containing the modified diene polymer in a rubber kneading apparatus from the viewpoint that the rubber composition of the present invention in which structure silica is formed can be easily produced. In particular,
(I) A rubber component containing the modified diene polymer, silica sol, and carbon black, silane coupling agent, zinc oxide, stearic acid, softener, anti-aging agent, wax, etc. A base kneading step of kneading at 0 ° C. (preferably 90-110 ° C.) for 3-10 minutes
(II) a final kneading step in which the kneaded product obtained by the base kneading step, the vulcanizing agent, and the vulcanization accelerator are kneaded at 30 to 70 ° C. (preferably 40 to 60 ° C.) for 3 to 10 minutes;
(III) A vulcanization step of vulcanizing the unvulcanized rubber composition obtained by the finish kneading step at 150 to 190 ° C. (preferably 160 to 180 ° C.) for 5 to 30 minutes is more preferable.
シリカゾルの好ましい配合量(シリカ換算)は、上述のストラクチャーシリカと同様である。 The preferable compounding amount (silica conversion) of silica sol is the same as that of the above-mentioned structure silica.
なお、ストラクチャーシリカを形成する混練工程(ベース練り工程など)では、ゴムの良溶媒であるトルエン中で各成分を混練りすると、ストラクチャーシリカのLが過度に長くなりやすい傾向があるため、トルエンを用いずに混練りすることが好ましい。 In the kneading step of forming a structure silica (such as the base kneading step), when kneading the respective components in toluene is a good solvent for rubber, for L 1 of structure silica tends to likely too long, toluene It is preferable to knead without using.
本明細書において、シリカゾルとは、溶媒にシリカを分散させたコロイド溶液をいう。シリカゾルとしては、特に限定されないが、好適にストラクチャーシリカを形成できるという理由から、細長い形状のシリカが溶媒中に分散したコロイド溶液が好ましく、細長い形状のシリカが有機溶媒中に分散したコロイド溶液(オルガノシリカゾル)がより好ましい。ここで、細長い形状のシリカとは、球状や粒状などの一次粒子が複数個繋がった鎖のような形状のシリカ(二次粒子)を意味する。なお、線状であっても分岐したものであってもよい。 In this specification, silica sol refers to a colloidal solution in which silica is dispersed in a solvent. The silica sol is not particularly limited, but a colloidal solution in which elongated silica is dispersed in a solvent is preferable because a structure silica can be suitably formed. A colloidal solution in which elongated silica is dispersed in an organic solvent (organo Silica sol) is more preferable. Here, the elongated silica means a silica (secondary particle) having a chain shape in which a plurality of primary particles such as a spherical shape and a granular shape are connected. It may be linear or branched.
また、シリカを分散させる溶媒としては、特に限定されないが、メタノール、イソプロパノール等のアルコールが好ましく、イソプロパノールがより好ましい。 The solvent for dispersing silica is not particularly limited, but alcohols such as methanol and isopropanol are preferable, and isopropanol is more preferable.
シリカゾルに含まれるシリカ(二次粒子)を構成する一次粒子の平均粒子径は、好ましくは1~100nm、より好ましくは5~80nmである。
一次粒子の平均粒子径は、日本電子製透過電子顕微鏡JEM2100FXで撮影した写真において、目視で50個の一次粒子の粒子径(平均直径)を測定し、それらを平均した値を平均粒子径とした。
The average particle diameter of primary particles constituting silica (secondary particles) contained in the silica sol is preferably 1 to 100 nm, more preferably 5 to 80 nm.
The average particle size of the primary particles was determined by visually measuring the particle size (average diameter) of 50 primary particles in a photograph taken with a transmission electron microscope JEM2100FX manufactured by JEOL. .
なお、一次粒子の平均直径は、シリカ(二次粒子)が細長形状である場合、電子顕微鏡写真における、シリカ(二次粒子)の任意の50箇所で測定した太さ(直径)の平均値として求めることができ、シリカ(二次粒子)がくびれを有し数珠状である場合、電子顕微鏡写真における、50個の各数珠の直径の平均値として求めることができる。各数珠に長径と短径がある場合、即ち各数珠が細長状である場合は、短径を測定する。 In addition, when the silica (secondary particles) has an elongated shape, the average diameter of the primary particles is an average value of thicknesses (diameters) measured at arbitrary 50 locations of the silica (secondary particles) in the electron micrograph. When silica (secondary particles) has a constriction and a bead shape, it can be obtained as an average value of the diameters of 50 bead beads in an electron micrograph. When each rosary has a major axis and a minor axis, that is, when each rosary is elongated, the minor axis is measured.
シリカゾルに含まれるシリカ(二次粒子)の平均粒子径は、好ましくは20~300nm、より好ましくは30~150nmである。シリカ(二次粒子)の平均粒子径は動的光散乱法によって測定することができ、具体的には、以下の方法により測定することができる。
シリカ(二次粒子)の平均粒子径は、大塚電子(株)製のレーザー粒子解析システムELS-8000(キュムラント解析)で測定した。測定条件は、温度25℃、入射光と検出器との角度90°、積算回数100回であり、分散溶媒の屈折率として水の屈折率(1.333)を入力する。測定濃度は、通常5×10-3質量%程度で行った。
The average particle diameter of silica (secondary particles) contained in the silica sol is preferably 20 to 300 nm, more preferably 30 to 150 nm. The average particle diameter of silica (secondary particles) can be measured by a dynamic light scattering method, and specifically, can be measured by the following method.
The average particle diameter of silica (secondary particles) was measured with a laser particle analysis system ELS-8000 (cumulant analysis) manufactured by Otsuka Electronics Co., Ltd. The measurement conditions are a temperature of 25 ° C., an angle between incident light and a detector of 90 °, and the number of integrations of 100 times. The measurement concentration was usually about 5 × 10 −3 mass%.
上記シリカ(二次粒子)は、例えば、国際公開第00/15552号パンフレットの請求の範囲第2項、及びそれに関する明細書の開示部分に記載の方法、特許2803134号公報、特許2926915公報の請求項2及びそれに関する明細書の開示部分に記載の方法等に準じて製造することができる。 The silica (secondary particles) can be obtained by, for example, the method described in claim 2 of the pamphlet of International Publication No. 00/15552 and the disclosure of the specification related thereto, Patent No. 2803134, Patent No. 2926915 It can manufacture according to the method etc. as described in the disclosure part of claim | item 2 and the specification regarding it.
本発明に使用することができる上記シリカ(二次粒子)の具体例としては、日産化学工業(株)製の「スノーテックス-OUP」(平均二次粒子径:40~100nm)、同「スノーテックス-UP」(平均二次粒子径:40~100nm)、同「スノーテックスPS-M」(平均二次粒子径:80~150nm)、同「スノーテックスPS-MO」(平均二次粒子径:80~150nm)、同「スノーテックスPS-S」(平均二次粒子径:80~120nm)、同「スノーテックスPS-SO」(平均二次粒子径:80~120nm)、「IPA-ST-UP」(平均二次粒子径:40~100nm)、扶桑化学工業(株)製の「クォートロンPL-7」(平均二次粒子径:130nm)等が挙げられる。なかでも、好適にストラクチャーシリカを形成できるという理由から、IPA-ST-UPが好ましい。 Specific examples of the silica (secondary particles) that can be used in the present invention include “Snowtex-OUP” (average secondary particle size: 40 to 100 nm) manufactured by Nissan Chemical Industries, Ltd. “Tex-UP” (average secondary particle size: 40 to 100 nm), “Snowtex PS-M” (average secondary particle size: 80 to 150 nm), “Snowtex PS-MO” (average secondary particle size) : 80-150 nm), “Snowtex PS-S” (average secondary particle size: 80-120 nm), “Snowtex PS-SO” (average secondary particle size: 80-120 nm), “IPA-ST” -UP "(average secondary particle size: 40 to 100 nm)," Quatron PL-7 "(average secondary particle size: 130 nm) manufactured by Fuso Chemical Co., Ltd., and the like. Among these, IPA-ST-UP is preferable because it can form a structure silica suitably.
本発明のゴム組成物は、タイヤの各部材に使用でき、なかでも、トレッド(特にキャップトレッド)に好適に使用できる。 The rubber composition of the present invention can be used for each member of a tire, and in particular, can be suitably used for a tread (particularly a cap tread).
本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤの各部材(特に、トレッド(キャップトレッド))の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材と共に貼り合わせ、未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造することができる。 The pneumatic tire of the present invention is produced by a usual method using the rubber composition. That is, if necessary, a rubber composition containing various additives is extruded in accordance with the shape of each member of the tire (especially, the tread (cap tread)) at an unvulcanized stage, and is applied to the tire molding machine. Then, after forming by an ordinary method and pasting together with other tire members to form an unvulcanized tire, the tire can be manufactured by heating and pressing in a vulcanizer.
本発明の空気入りタイヤは、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、競技用タイヤ等として好適に用いられ、特に乗用車用タイヤとしてより好適に用いられる。 The pneumatic tire of the present invention is preferably used as a tire for passenger cars, a tire for trucks and buses, a tire for motorcycles, a tire for competition, and the like, and more preferably used as a tire for passenger cars.
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.
以下、製造例で使用した各種薬品について、まとめて説明する。なお、薬品は必要に応じて定法に従い精製を行った。
シクロヘキサン:東京化成(株)製(純度99.5%以上)
スチレン:東京化成(株)製(純度99%以上)
1,3-ブタジエン:東京化成(株)製
N,N,N’,N’-テトラメチルエチレンジアミン:和光純薬(株)製
n-ブチルリチウム:和光純薬(株)製
1,3-ジビニルベンゼンのヘキサン溶液(1.6M):東京化成(株)製
イソプロパノール:和光純薬(株)製
2,6-tert-ブチル-p-クレゾール:和光純薬(株)製
テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン:和光純薬(株)製(下記式で表される化合物(変性剤))
Figure JPOXMLDOC01-appb-C000013
メタノール:関東化学(株)製
Hereinafter, various chemicals used in the production examples will be described together. In addition, the chemical | medical agent refine | purified according to the usual method as needed.
Cyclohexane: manufactured by Tokyo Chemical Industry Co., Ltd. (purity 99.5% or more)
Styrene: Tokyo Kasei Co., Ltd. (purity 99% or more)
1,3-Butadiene: N, N, N ′, N′-tetramethylethylenediamine manufactured by Tokyo Chemical Industry Co., Ltd .: n-butyllithium manufactured by Wako Pure Chemical Industries, Ltd .: 1,3-divinyl manufactured by Wako Pure Chemical Industries, Ltd. Benzene in hexane solution (1.6M): Tokyo Chemical Industry Co., Ltd. Isopropanol: Wako Pure Chemical Industries, Ltd. 2,6-tert-butyl-p-cresol: Wako Pure Chemical Industries, Ltd. Tetraglycidyl-1,3 -Bisaminomethylcyclohexane: Wako Pure Chemical Industries, Ltd. (compound represented by the following formula (modifier))
Figure JPOXMLDOC01-appb-C000013
Methanol: manufactured by Kanto Chemical Co., Inc.
製造例1
(重合開始剤の調製)
十分に窒素置換した100ml耐圧製容器に、1,3-ジビニルベンゼンのヘキサン溶液(1.6M)10mlを加え、0℃にてn-ブチルリチウムヘキサン溶液(1.6M)20mlを滴下し、1時間攪拌することで重合開始剤溶液を得た。
Production Example 1
(Preparation of polymerization initiator)
Add 10 ml of 1,3-divinylbenzene in hexane (1.6 M) to a 100 ml pressure-resistant container thoroughly purged with nitrogen, and drop 20 ml of n-butyllithium hexane solution (1.6 M) at 0 ° C. A polymerization initiator solution was obtained by stirring for a period of time.
製造例2
(ジエン系重合体(変性ジエン系重合体)の調製)
十分に窒素置換した1000ml耐圧製容器に、シクロヘキサン600ml、スチレン0.12mol、1,3-ブタジエン0.8mol、N,N,N’,N’-テトラメチルエチレンジアミン0.7mmolを加え、更に、製造例1で得られた重合開始剤溶液1.5mlを加えて40℃で攪拌した。3時間後、変性剤であるテトラグリシジル-1,3-ビスアミノメチルシクロヘキサンを1.0mmol加えて攪拌した。1時間後、イソプロパノール3mlを加えて重合を停止させた。反応溶液に2,6-tert-ブチル-p-クレゾール1gを添加後、メタノールで再沈殿処理を行い、加熱乾燥させてジエン系重合体(変性された部位(末端など)を2個以上有する変性ジエン系重合体)を得た。
Production Example 2
(Preparation of diene polymer (modified diene polymer))
To a 1000 ml pressure vessel fully purged with nitrogen, add 600 ml of cyclohexane, 0.12 mol of styrene, 0.8 mol of 1,3-butadiene, 0.7 mmol of N, N, N ′, N′-tetramethylethylenediamine, and further manufacture 1.5 ml of the polymerization initiator solution obtained in Example 1 was added and stirred at 40 ° C. Three hours later, 1.0 mmol of tetraglycidyl-1,3-bisaminomethylcyclohexane as a modifier was added and stirred. After 1 hour, 3 ml of isopropanol was added to terminate the polymerization. After adding 1 g of 2,6-tert-butyl-p-cresol to the reaction solution, reprecipitation treatment with methanol, and heat drying to modify a diene polymer (more than two modified sites (terminals, etc.)) Diene polymer) was obtained.
得られたジエン系重合体について下記の評価を行った。 The following evaluation was performed about the obtained diene polymer.
(ムーニー粘度)
JIS K 6300-1「未加硫ゴム-物理特性-第1部:ムーニー粘度計による粘度及びスコーチタイムの求め方」に準じて、ムーニー粘度試験機を用いて、1分間の予熱によって熱せられた100℃の温度条件にて、小ローターを回転させ、4分間経過した時点でのジエン系重合体のムーニー粘度(ML1+4/100℃)を測定した。なお、小数点以下は、四捨五入した。その結果、ジエン系重合体のムーニー粘度は、60であった。
(Mooney viscosity)
Heated by preheating for 1 minute using a Mooney viscosity tester in accordance with JIS K 6300-1 “Unvulcanized rubber-Physical properties-Part 1: Determination of viscosity and scorch time using Mooney viscometer” Under the temperature condition of 100 ° C., the small rotor was rotated, and the Mooney viscosity (ML 1 + 4/100 ° C.) of the diene polymer after 4 minutes was measured. The numbers after the decimal point are rounded off. As a result, the Mooney viscosity of the diene polymer was 60.
(ビニル含量)
赤外吸収スペクトル分析により、ジエン系重合体のビニル含量を測定した。その結果、ジエン系重合体のビニル含量は、57モル%であった。
(Vinyl content)
The vinyl content of the diene polymer was measured by infrared absorption spectrum analysis. As a result, the vinyl content of the diene polymer was 57 mol%.
以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
ジエン系重合体:上記製造例2で調製したジエン系重合体
SBR:旭化成ケミカルズ(株)製のE15(エポキシ基を有する化合物(テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン)でカップリングしたS-SBR、スチレン単位量:23質量%、ビニル単位量:64質量%、末端基:OH(片末端変性SBR))
BR:日本ゼオン(株)製のNipolBR1220(シス含量:97質量%)
NR:RSS#3
カーボンブラック:三菱化学(株)製のシーストN220(N220、NSA:114m/g、DBP吸油量:114ml/100g)
シリカ(1):エボニックデグッサ社製のウルトラジルVN3(NSA:175m/g)
シリカ(2):日産化学工業(株)製のオルガノシリカゾルIPA-ST-UP(細長い形状のイソプロパノール分散シリカゾル(動的光散乱法によって測定されたシリカ(二次粒子)の平均粒子径:40~100nm)、シリカ含有率:15質量%)(表2に記載の量は、オルガノシリカゾル中のシリカ量を示す)
シランカップリング剤:エボニックデグッサ社製のSi75(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
ステアリン酸:日油(株)製のステアリン酸「椿」
アロマオイル:JX日鉱日石エネルギー(株)製のプロセスX-140
老化防止剤:住友化学(株)製のアンチゲン6C(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
ワックス:大内新興化学工業(株)製のサンノックN
硫黄:軽井沢硫黄(株)製の粉末硫黄
加硫促進剤(1):大内新興化学工業(株)製のノクセラーCZ(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)
加硫促進剤(2):大内新興化学工業(株)製のノクセラーD(N,N’-ジフェニルグアニジン)
Hereinafter, various chemicals used in Examples and Comparative Examples will be described together.
Diene polymer: Diene polymer SBR prepared in Production Example 2 above: S15 coupled with E15 (a compound having an epoxy group (tetraglycidyl-1,3-bisaminomethylcyclohexane) manufactured by Asahi Kasei Chemicals Corporation) -SBR, styrene unit amount: 23% by mass, vinyl unit amount: 64% by mass, terminal group: OH (one-end modified SBR))
BR: Nipol BR1220 (cis content: 97% by mass) manufactured by Nippon Zeon Co., Ltd.
NR: RSS # 3
Carbon black: Seast N220 manufactured by Mitsubishi Chemical Corporation (N220, N 2 SA: 114 m 2 / g, DBP oil absorption: 114 ml / 100 g)
Silica (1): Ultrasil VN3 manufactured by Evonik Degussa (N 2 SA: 175 m 2 / g)
Silica (2): Organosilica sol IPA-ST-UP manufactured by Nissan Chemical Industries, Ltd. (elongated isopropanol-dispersed silica sol (average particle diameter of silica (secondary particles) measured by dynamic light scattering method): 40 to 100 nm), silica content: 15% by mass) (the amounts shown in Table 2 indicate the amount of silica in the organosilica sol)
Silane coupling agent: Si75 (bis (3-triethoxysilylpropyl) disulfide) manufactured by Evonik Degussa
Zinc oxide: Zinc Hua 1 manufactured by Mitsui Mining & Smelting Co., Ltd.
Aroma oil: Process X-140 manufactured by JX Nippon Oil & Energy
Anti-aging agent: Antigen 6C (N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine) manufactured by Sumitomo Chemical Co., Ltd.
Wax: Sunnock N manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Sulfur: Powder sulfur vulcanization accelerator manufactured by Karuizawa Sulfur Co., Ltd. (1): Noxeller CZ (N-cyclohexyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical Co., Ltd.
Vulcanization accelerator (2): Noxeller D (N, N'-diphenylguanidine) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
実施例及び比較例
表2に示す配合内容に従い、バンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を100℃の条件下で5分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、50℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、他のタイヤ部材と貼り合わせてタイヤに成形し、170℃で20分間加硫することで試験用タイヤ(タイヤサイズ:195/65R15)を製造した。
Examples and Comparative Examples According to the formulation shown in Table 2, materials other than sulfur and a vulcanization accelerator were kneaded for 5 minutes at 100 ° C. using a Banbury mixer to obtain a kneaded product. Next, sulfur and a vulcanization accelerator were added to the obtained kneaded product, and kneaded for 5 minutes at 50 ° C. using an open roll to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition is molded into a tread shape, bonded to another tire member, molded into a tire, and vulcanized at 170 ° C. for 20 minutes to test tires (tire size: 195 / 65R15). ) Was manufactured.
得られた未加硫ゴム組成物、試験用タイヤを用いて以下の評価を行った。結果を表1及び2に示す。 The following evaluation was performed using the obtained unvulcanized rubber composition and the test tire. The results are shown in Tables 1 and 2.
(シリカの平均1次粒子径、平均長及び平均アスペクト比)
上記試験用タイヤのトレッドからサンプルを切り出し、該サンプル中に分散したシリカを透過型電子顕微鏡で観察し、シリカの平均1次粒子径(D)、分岐粒子Xを含む分岐粒子間X-Xの平均長(図2におけるL1)、分岐粒子Xを含まない分岐粒子間X-Xの平均長(図2におけるL)、分岐粒子Xを含む分岐粒子間X-Xの平均アスペクト比(L1/D)、分岐粒子Xを含まない分岐粒子間X-Xの平均アスペクト比(L/D)を算出した。数値は、30箇所を測定した平均値とした。
(Average primary particle diameter, average length and average aspect ratio of silica)
A sample was cut out from the tread of the test tire, and the silica dispersed in the sample was observed with a transmission electron microscope. The average primary particle diameter (D) of silica and the distance between the branched particles XX including the branched particles X were measured. The average length (L 1 in FIG. 2), the average length of the XX between the branched particles not including the branched particle X (L 2 in FIG. 2 ), the average aspect ratio of the XX between the branched particles including the branched particle X (L 1 / D), the average aspect ratio (L 2 / D) of XX between the branched particles not including the branched particle X was calculated. The numerical value was an average value obtained by measuring 30 locations.
(転がり抵抗)
転がり抵抗試験機を用い、試験用タイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、下記計算式により指数表示した。指数が大きいほど、転がり抵抗が低く、低燃費性に優れることを示す。
(転がり抵抗指数)=(比較例5の転がり抵抗)/(各配合の転がり抵抗)×100
(Rolling resistance)
Using a rolling resistance tester, the rolling resistance when the test tire was run at a rim (15 × 6JJ), internal pressure (230 kPa), load (3.43 kN), and speed (80 km / h) was measured. The index was expressed by the calculation formula. The larger the index, the lower the rolling resistance and the better the fuel efficiency.
(Rolling resistance index) = (Rolling resistance of Comparative Example 5) / (Rolling resistance of each formulation) × 100
(ドライグリップ性能)
試験用の車に上記試験用タイヤを装着させ、乾燥アスファルト路面のテストコースにて実車走行を行なった。このとき40km/hで走行させ、ブレーキをかけてから停止するまでの間の最大摩擦係数(μ)を測定し、比較例5のドライグリップ指数を100とし、下記計算式により、指数表示した。ドライグリップ指数が大きいほどドライグリップ性能に優れていることを示す。
(ドライグリップ指数)=(各配合の最大摩擦係数)/(比較例5の最大摩擦係数)×100
(Dry grip performance)
The test tire was mounted on a test vehicle, and the vehicle was driven on a dry asphalt road test course. At this time, the vehicle was run at 40 km / h, the maximum friction coefficient (μ) from when the brake was applied to when it was stopped was measured, the dry grip index of Comparative Example 5 was set to 100, and the index was displayed by the following formula. The larger the dry grip index, the better the dry grip performance.
(Dry grip index) = (Maximum friction coefficient of each formulation) / (Maximum friction coefficient of Comparative Example 5) × 100
(ウェットグリップ性能)
試験用の車に上記試験用タイヤを装着させ、湿潤アスファルト路面のテストコースにて実車走行を行なった。このとき40km/hで走行させ、ブレーキをかけてから停止するまでの間の最大摩擦係数(μ)を測定し、比較例5のウェットグリップ指数を100とし、下記計算式により、指数表示した。ウェットグリップ指数が大きいほどウェットグリップ性能に優れていることを示す。
(ウェットグリップ指数)=(各配合の最大摩擦係数)/(比較例5の最大摩擦係数)×100
(Wet grip performance)
The test tire was mounted on a test vehicle, and the vehicle was driven on a wet asphalt road test course. At this time, the vehicle was run at 40 km / h, the maximum friction coefficient (μ) from when the brake was applied to when it was stopped was measured, the wet grip index of Comparative Example 5 was set to 100, and the index was displayed by the following formula. The larger the wet grip index, the better the wet grip performance.
(Wet grip index) = (Maximum friction coefficient of each formulation) / (Maximum friction coefficient of Comparative Example 5) × 100
(耐摩耗性)
上記試験用タイヤを1800cc級のABSが装備された乗用車に装着し、市街地を30000km走行した後の溝深さの減少量を測定し、溝深さが1mm減少するときの走行距離を算出した。さらに、比較例5の耐摩耗性指数を100とし、下記計算式により、各配合の溝深さの減少量を指数表示した。なお、耐摩耗性指数が大きいほど、耐摩耗性に優れることを示す。
(耐摩耗性指数)=(各配合で1mm溝深さが減るときの走行距離)/(比較例5のタイヤの溝が1mm減るときの走行距離)x100
(Abrasion resistance)
The test tire was mounted on a passenger car equipped with 1800 cc-class ABS, the amount of decrease in groove depth after traveling 30000 km in an urban area was measured, and the travel distance when the groove depth decreased by 1 mm was calculated. Furthermore, the abrasion resistance index of Comparative Example 5 was set to 100, and the amount of decrease in the groove depth of each formulation was displayed as an index according to the following formula. In addition, it shows that it is excellent in abrasion resistance, so that an abrasion resistance index | exponent is large.
(Abrasion resistance index) = (travel distance when the groove depth is reduced by 1 mm in each formulation) / (travel distance when the groove of the tire of Comparative Example 5 is reduced by 1 mm) × 100
(ムーニー粘度)
得られた未加硫ゴム組成物について、JIS K6300に準拠したムーニー粘度の測定方法に従い、130℃で測定した。比較例5のムーニー粘度(ML1+4)を100とし、下記計算式により指数表示した(ムーニー粘度指数)。指数が大きいほどムーニー粘度が低く、加工性に優れる。
(ムーニー粘度指数)=(比較例5のML1+4)/(各配合のML1+4)x100
(Mooney viscosity)
About the obtained unvulcanized rubber composition, it measured at 130 degreeC according to the measuring method of the Mooney viscosity based on JISK6300. The Mooney viscosity (ML 1 + 4 ) of Comparative Example 5 was set to 100, and indexed by the following formula (Mooney viscosity index). The larger the index, the lower the Mooney viscosity and the better the processability.
(Mooney viscosity index) = (ML 1 + 4 of Comparative Example 5) / (ML 1 + 4 of each formulation) × 100
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
表1及び2より、変性された特定のジエン系重合体と、特定のシリカ(Lが特定の範囲内のストラクチャーシリカ)とを併用した実施例は、対応する比較例と比較して、低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性、加工性の全ての性能が大きく改善された。
また、実施例1、比較例1,2,5の結果より、上記併用により、低燃費性、ウェットグリップ性能、ドライグリップ性能、耐摩耗性、加工性を相乗的に向上できることが分かった。
From Tables 1 and 2, the examples in which the modified specific diene polymer and the specific silica (structure silica in which L 1 is in a specific range) are used in combination are low in comparison with the corresponding comparative examples. The fuel efficiency, wet grip performance, dry grip performance, wear resistance, and workability are all greatly improved.
Moreover, from the results of Example 1 and Comparative Examples 1, 2, and 5, it was found that the combined use can synergistically improve fuel efficiency, wet grip performance, dry grip performance, wear resistance, and workability.
X 分岐粒子
 
X Branched particle

Claims (12)

  1. ジエン系重合体とシリカとを含み、
    前記ジエン系重合体が、下記(A)と(B)を反応させて得られる変性されたジエン系重合体であり、
    前記シリカが、1つの粒子に対して隣接する粒子が3つ以上の粒子を分岐粒子Xとしたとき、分岐粒子Xを含む分岐粒子間X-Xの平均長L1が30~400nmのものであるタイヤ用ゴム組成物。
    (A):下記(C)の存在下に、共役ジエンモノマー又は共役ジエンモノマーと芳香族ビニルモノマーとを重合させることにより得られるアルカリ金属末端を有する活性共役ジエン系重合体
    (B):官能基を有する変性剤
    (C):下記式(1)で表される化合物と有機アルカリ金属化合物を反応させて得られる化学種
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R及びRは、同一若しくは異なって、水素原子、分岐若しくは非分岐のアルキル基、分岐若しくは非分岐のアリール基、分岐若しくは非分岐のアルコキシ基、分岐若しくは非分岐のシリルオキシ基、分岐若しくは非分岐のアセタール基、カルボキシル基、メルカプト基又はこれらの誘導体を示す。Aは、分岐若しくは非分岐のアルキレン基、分岐若しくは非分岐のアリーレン基又はこれらの誘導体を示す。)
    Including a diene polymer and silica;
    The diene polymer is a modified diene polymer obtained by reacting the following (A) and (B):
    When the silica has three or more particles adjacent to one particle as the branched particle X, the average length L 1 between the branched particles XX including the branched particle X is 30 to 400 nm. A rubber composition for a tire.
    (A): an active conjugated diene polymer having an alkali metal end obtained by polymerizing a conjugated diene monomer or a conjugated diene monomer and an aromatic vinyl monomer in the presence of (C) below (B): functional group Modifier (C) having: a chemical species obtained by reacting a compound represented by the following formula (1) with an organic alkali metal compound
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), R 1 and R 2 are the same or different and are a hydrogen atom, a branched or unbranched alkyl group, a branched or unbranched aryl group, a branched or unbranched alkoxy group, branched or unbranched. A silyloxy group, a branched or unbranched acetal group, a carboxyl group, a mercapto group, or a derivative thereof, A represents a branched or unbranched alkylene group, a branched or unbranched arylene group, or a derivative thereof.
  2. 下記(A)と(B)を反応させて得られる変性されたジエン系重合体と、シリカゾルとを混練して得られるタイヤ用ゴム組成物。
    (A):下記(C)の存在下に、共役ジエンモノマー又は共役ジエンモノマーと芳香族ビニルモノマーとを重合させることにより得られるアルカリ金属末端を有する活性共役ジエン系重合体
    (B):官能基を有する変性剤
    (C):下記式(1)で表される化合物と有機アルカリ金属化合物を反応させて得られる化学種
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、R及びRは、同一若しくは異なって、水素原子、分岐若しくは非分岐のアルキル基、分岐若しくは非分岐のアリール基、分岐若しくは非分岐のアルコキシ基、分岐若しくは非分岐のシリルオキシ基、分岐若しくは非分岐のアセタール基、カルボキシル基、メルカプト基又はこれらの誘導体を示す。Aは、分岐若しくは非分岐のアルキレン基、分岐若しくは非分岐のアリーレン基又はこれらの誘導体を示す。)
    A tire rubber composition obtained by kneading a modified diene polymer obtained by reacting the following (A) and (B) with silica sol.
    (A): an active conjugated diene polymer having an alkali metal end obtained by polymerizing a conjugated diene monomer or a conjugated diene monomer and an aromatic vinyl monomer in the presence of (C) below (B): functional group Modifier (C) having: a chemical species obtained by reacting a compound represented by the following formula (1) with an organic alkali metal compound
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (1), R 1 and R 2 are the same or different and are a hydrogen atom, a branched or unbranched alkyl group, a branched or unbranched aryl group, a branched or unbranched alkoxy group, branched or unbranched. A silyloxy group, a branched or unbranched acetal group, a carboxyl group, a mercapto group, or a derivative thereof, A represents a branched or unbranched alkylene group, a branched or unbranched arylene group, or a derivative thereof.
  3. 前記式(1)で表される化合物が下記式(2)で表される化合物である請求項1又は2記載のタイヤ用ゴム組成物。
    Figure JPOXMLDOC01-appb-C000003
    The tire rubber composition according to claim 1 or 2, wherein the compound represented by the formula (1) is a compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000003
  4. 前記変性剤が下記式(3)で表される化合物である請求項1~3のいずれかに記載のタイヤ用ゴム組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(3)中、R及びRは、同一又は異なって、炭素数1~10の炭化水素基を表し、該炭化水素基は、エーテル、及び3級アミンからなる群より選択される少なくとも1種の基を有してもよい。R及びRは、同一若しくは異なって、水素原子、又は炭素数1~20の炭化水素基を表し、該炭化水素基は、エーテル、及び3級アミンからなる群より選択される少なくとも1種の基を有してもよい。Rは、炭素数1~20の炭化水素基を表し、該炭化水素基は、エーテル、3級アミン、エポキシ、カルボニル、及びハロゲンからなる群より選択される少なくとも1種の基を有してもよい。nは1~6の整数を表す。)
    The tire rubber composition according to any one of claims 1 to 3, wherein the modifier is a compound represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000004
    (In Formula (3), R 3 and R 4 are the same or different and each represents a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group is selected from the group consisting of ethers and tertiary amines. R 5 and R 6 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, the hydrocarbon group being an ether, and 3 It may have at least one group selected from the group consisting of a tertiary amine, R 7 represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group is an ether, a tertiary amine, an epoxy And at least one group selected from the group consisting of carbonyl, and halogen, n represents an integer of 1 to 6.)
  5. 前記活性共役ジエン系重合体の両末端に導入した変性剤が同一である請求項1~4のいずれかに記載のタイヤ用ゴム組成物。 The tire rubber composition according to any one of claims 1 to 4, wherein the modifiers introduced at both ends of the active conjugated diene polymer are the same.
  6. ゴム成分100質量%中の前記ジエン系重合体の含有量が5質量%以上である請求項1~5のいずれかに記載のタイヤ用ゴム組成物。 The tire rubber composition according to any one of claims 1 to 5, wherein the content of the diene polymer in 100% by mass of the rubber component is 5% by mass or more.
  7. 前記共役ジエンモノマーが1,3-ブタジエン及び/又はイソプレンであり、前記芳香族ビニルモノマーがスチレンである請求項1~6のいずれかに記載のタイヤ用ゴム組成物。 7. The tire rubber composition according to claim 1, wherein the conjugated diene monomer is 1,3-butadiene and / or isoprene, and the aromatic vinyl monomer is styrene.
  8. 前記変性されたジエン系重合体が1,3-ブタジエン及びスチレンを重合させることにより得られる変性スチレンブタジエンゴムである請求項1~7のいずれかに記載のタイヤ用ゴム組成物。 The tire rubber composition according to any one of claims 1 to 7, wherein the modified diene polymer is a modified styrene butadiene rubber obtained by polymerizing 1,3-butadiene and styrene.
  9. 前記シリカが、平均1次粒子径をDとしたとき、分岐粒子Xを含む分岐粒子間X-Xの平均アスペクト比L1/Dが3~100のものである請求項1又は3~8のいずれかに記載のタイヤ用ゴム組成物。 The silica, an average primary particle diameter is D, the branch of the branch intergranular X-X of the particles comprising an X average aspect ratio L 1 / D is according to claim 1 or 3-8 is of 3 to 100 The rubber composition for tires in any one.
  10. ゴム成分100質量部に対して、前記シリカを5~150質量部含む請求項1又は3~9のいずれかに記載のタイヤ用ゴム組成物。 The tire rubber composition according to any one of claims 1 and 3 to 9, comprising 5 to 150 parts by mass of the silica with respect to 100 parts by mass of the rubber component.
  11. トレッド用ゴム組成物として用いられる請求項1~10のいずれかに記載のタイヤ用ゴム組成物。 The tire rubber composition according to any one of claims 1 to 10, which is used as a rubber composition for a tread.
  12. 請求項1~11のいずれかに記載のゴム組成物を用いた空気入りタイヤ。 A pneumatic tire using the rubber composition according to any one of claims 1 to 11.
PCT/JP2012/060531 2011-04-20 2012-04-19 Rubber composition for tires and pneumatic tire WO2012144541A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-094352 2011-04-20
JP2011094352A JP2012224769A (en) 2011-04-20 2011-04-20 Rubber composition for tire, and pneumatic tire

Publications (1)

Publication Number Publication Date
WO2012144541A1 true WO2012144541A1 (en) 2012-10-26

Family

ID=47041647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060531 WO2012144541A1 (en) 2011-04-20 2012-04-19 Rubber composition for tires and pneumatic tire

Country Status (2)

Country Link
JP (1) JP2012224769A (en)
WO (1) WO2012144541A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106029719A (en) * 2014-06-16 2016-10-12 Lg化学株式会社 Modified conjugated diene-based polymer, modified rubber composition containing same, and method for preparing modified conjugated diene-based polymer
EP3854843A4 (en) * 2018-09-20 2022-06-29 Bridgestone Corporation Rubber composition and tire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6215684B2 (en) * 2013-12-16 2017-10-18 住友ゴム工業株式会社 Tread rubber composition for motorcycle tire and motorcycle tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306962A (en) * 2005-04-27 2006-11-09 Asahi Kasei Chemicals Corp Modified polymer composition
JP2007154158A (en) * 2005-11-14 2007-06-21 Sumitomo Rubber Ind Ltd Rubber composition and pneumatic tire using the same in tread
JP2011231303A (en) * 2010-04-05 2011-11-17 Sumitomo Rubber Ind Ltd Rubber composition for tire, and pneumatic tire
WO2012057308A1 (en) * 2010-10-29 2012-05-03 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179729A (en) * 2000-12-15 2002-06-26 Bridgestone Corp Polymer and rubber composition using the same
JP5237545B2 (en) * 2006-12-06 2013-07-17 株式会社ブリヂストン Rubber composition and pneumatic tire using the same
JP2008195791A (en) * 2007-02-09 2008-08-28 Bridgestone Corp Method for producing modified liquid rubber composition
JP5209387B2 (en) * 2008-06-26 2013-06-12 株式会社ブリヂストン Method for producing modified liquid rubber composition
CN102177185A (en) * 2008-10-14 2011-09-07 旭化成化学株式会社 Modified conjugated diene polymer, method for producing the same, modified conjugated diene polymer composition, and tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306962A (en) * 2005-04-27 2006-11-09 Asahi Kasei Chemicals Corp Modified polymer composition
JP2007154158A (en) * 2005-11-14 2007-06-21 Sumitomo Rubber Ind Ltd Rubber composition and pneumatic tire using the same in tread
JP2011231303A (en) * 2010-04-05 2011-11-17 Sumitomo Rubber Ind Ltd Rubber composition for tire, and pneumatic tire
WO2012057308A1 (en) * 2010-10-29 2012-05-03 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106029719A (en) * 2014-06-16 2016-10-12 Lg化学株式会社 Modified conjugated diene-based polymer, modified rubber composition containing same, and method for preparing modified conjugated diene-based polymer
EP3854843A4 (en) * 2018-09-20 2022-06-29 Bridgestone Corporation Rubber composition and tire

Also Published As

Publication number Publication date
JP2012224769A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5097803B2 (en) Rubber composition for tire and pneumatic tire
JP6075943B2 (en) Rubber composition for tire and pneumatic tire
JP5552025B2 (en) Rubber composition for tire and pneumatic tire
JP5346352B2 (en) Rubber composition for tire and pneumatic tire
JP2018188567A (en) Tire tread and tire
JPWO2018190429A1 (en) Rubber composition for tire and pneumatic tire
JP2015174991A (en) pneumatic tire
EP2746332B1 (en) Tire rubber composition and pneumatic tire
WO2013046850A1 (en) Rubber composition for tire, and pneumatic tire
JP2012229383A (en) Rubber composition for tire and pneumatic tire
JP5827541B2 (en) Rubber composition for tire and pneumatic tire
WO2012144541A1 (en) Rubber composition for tires and pneumatic tire
JP5829541B2 (en) Rubber composition for tire
JP2012001697A (en) Rubber composition for sidewall and pneumatic tire
JP2018193478A (en) Rubber composition for tire, and tire
WO2012140979A1 (en) Rubber composition for tires and pneumatic tires
JP2019131646A (en) Tire rubber composition and tire
JP2013087180A (en) Rubber composition for tire, and pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774465

Country of ref document: EP

Kind code of ref document: A1