JP2013158091A - 回転電機制御システム - Google Patents

回転電機制御システム Download PDF

Info

Publication number
JP2013158091A
JP2013158091A JP2012015090A JP2012015090A JP2013158091A JP 2013158091 A JP2013158091 A JP 2013158091A JP 2012015090 A JP2012015090 A JP 2012015090A JP 2012015090 A JP2012015090 A JP 2012015090A JP 2013158091 A JP2013158091 A JP 2013158091A
Authority
JP
Japan
Prior art keywords
current command
demagnetization
electrical machine
rotating electrical
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012015090A
Other languages
English (en)
Inventor
Mikio Yamazaki
幹夫 山崎
Ryoji Sato
亮次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012015090A priority Critical patent/JP2013158091A/ja
Publication of JP2013158091A publication Critical patent/JP2013158091A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】回転電機制御システムにおいて、磁石の減磁率を取得する構成を使用して、磁石の減磁が生じた場合でも、低トルク領域で回転電機の要求トルクに対して近いまたは一致する実トルクを有効に出力できるようにすることである。
【解決手段】回転電機制御システム10は、永久磁石型の回転電機であるモータジェネレータMG2と、永久磁石の減磁が生じてない正常状態に対する永久磁石の減磁率を取得する減磁率算出部と、モータジェネレータMG2のトルク指令値T*に対応する電流指令値Id*,Iq*を生成する電流指令生成部34とを含む。電流指令生成部34は、永久磁石の減磁率αに応じてモータジェネレータMG2のトルク指令T*と電流指令Id*,Iq*との関係を変更するマップ変更部を有する。
【選択図】図2

Description

本発明は、永久磁石型の回転電機の駆動を制御する回転電機制御システムに関する。
従来から永久磁石型の同期モータ等の回転電機が使用されている。この回転電機は、ロータが永久磁石を持っている。ただし、永久磁石は、温度上昇により磁束が減少する減磁が生じることが分かっており、減磁が生じると、回転電機に要求されるトルクを発生できない可能性がある。
これに対して、特許文献1には、駆動モータの温度を検出する温度センサと、駆動モータの温度であるステータコイルの温度に基づいて駆動モータ用の制限率を算出する手段と、駆動モータの回転速度を算出する手段と、回転速度に対応して設定された最大トルクに対応する駆動モータの制限トルクを上記の制限率に基づいて算出する手段とを有する制御装置が記載されている。これにより、ステータコイルの温度に対応する制限率で駆動モータのトルクが制限されるので、駆動モータの特性が低下するのを防止できるとされている。
また、特許文献2には、交流モータの回転数を算出する手段と、交流モータへの供給電力を算出する手段とを含み、算出された回転数と供給電力とに基づいて交流モータの出力トルクを推定し、トルク制御におけるトルク指令値と推定された出力トルクとの偏差にしたがって、トルク指令値を修正する制御装置が記載されている。これにより、磁石温度に依存したモータ出力特性の変化を補償するように、トルク偏差を反映したモータ電流制御を行うことができるとされている。また、特許文献2には、永久磁石としてフェライトマグネットを使用することが記載されている。
また、特許文献3には、ロータコア及びステータを冷却する油の温度を検出するセンサと、複数のマップの中から油の温度に対応するマップを選択し、トルク指令値とモータ回転数とにより定まるマップ上の動作点から磁石温度を算出することと、予め求められたステータ温度と磁石温度との相関式に基づいて、温度センサにより得られるステータの温度から磁石温度を算出することとが記載されている。また、磁石温度が閾値より高く温度上昇が発生していると判定されると、制御モードを切り換えるためのモード切替判定で用いられる判定値を通常値から別の値に変更することが記載されている。たとえば、通常時に過変調PWM制御モードが適用される領域において、矩形波制御モードを選択するように設定できる。このため、モータ電流の高周波成分をカットして、永久磁石の温度上昇抑制を図れるとされている。
特開2004−364453号公報 特開2006−311770号公報 特開2009−171640号公報
永久磁石型の回転電機で永久磁石の温度が上昇することにより減磁が生じて、トルクが減少すると、運転者の意図した走行を行えない。すなわち、永久磁石型の回転電機のトルクのうち、永久磁石による磁石トルクTmは、次式で表される。
Tm=P×φ×Iq ・・・(1)
ここで、Pは極対数であり、φは永久磁石による電機子鎖交磁束であり、Iqは、回転電機のd軸q軸変換を用いた制御におけるq軸電流である。
(1)式から明らかなように、永久磁石に減磁が生じると、鎖交磁束φが減少し、磁石トルクTmが減少するため、回転電機のトルクが減少する。このため、例えば、磁石の減磁が生じたときに、回転電機を車両の駆動源として搭載するハイブリッド車や電気自動車等の電動車両で、重大な故障を防止するためのフェールセーフ走行や、車両を修理工場や路肩等の安全な場所に移動させる退避走行を、より安定して行えるようにする面から改良の余地がある。すなわち、車両のアクセルペダルの踏み込み等の操作部の操作量による運転者の加速指示に対応する要求トルクに対して、実際の出力トルクである実トルクが減少すると、運転者の意図した走行を行えず、車両の走行が不安定になる可能性がある。このように、磁石の減磁がない正常時と異なり、要求トルクに対して近いまたは一致する実トルクを有効に出力できない可能性がある。これに対して、本発明者は、後述するように、磁石の減磁率を取得する構成を使用して、特に低トルク領域でこの不都合をなくすことができる構成を考えた。
これに対して、特許文献1に記載された構成のように、ステータコイルの温度を測定してトルクを制限する場合には、ステータコイルの温度と磁石の温度とは一致しないことが通常であり、磁石の減磁が生じた場合に、低トルク領域でも要求トルクに対して近いまたは一致する実トルクを有効に出力できない可能性がある。
また、特許文献2及び特許文献3の場合も、磁石の減磁率を取得する構成を使用して、磁石の減磁が生じた場合でも、低トルク領域で要求トルクに対して近いまたは一致する実トルクを有効に出力できる構成は開示されていない。
本発明の目的は、回転電機制御システムにおいて、磁石の減磁率を取得する構成を使用して、磁石の減磁が生じた場合でも、低トルク領域で回転電機の要求トルクに対して近いまたは一致する実トルクを有効に出力できるようにすることである。
本発明に係る回転電機制御システムは、永久磁石型の回転電機の駆動を制御する回転電機制御システムであって、前記永久磁石の減磁が生じてない正常状態に対する前記永久磁石の減磁率を取得する減磁率取得部と、前記回転電機のトルク指令値に対応する電流指令値を生成する電流指令生成部とを備え、前記電流指令生成部は、前記永久磁石の減磁率に応じて前記回転電機のトルク指令と電流指令との関係を変更するトルク電流指令変更部を含むことを特徴とする回転電機制御システムである。また、好ましくは、前記永久磁石は、希土類磁石とする。
本発明に係る回転電機制御システムによれば、磁石の減磁率を取得する構成を使用して、磁石の減磁が生じた場合でも、低トルク領域で回転電機の要求トルクに対して近いまたは一致する実トルクを有効に出力できる。
本発明の実施形態の回転電機制御システムの1例を示す回路図である。 図1の制御部の構成を示すブロック図である。 図2の制御部において、減磁率に応じた電流指令マップを用いてトルク指令に対する電流指令を出力する様子を模式的に示す図である。 減磁率の算出方法の1例を説明するための図であり、(a)は永久磁石に減磁が生じていない正常時(基準状態)のq軸電圧のベクトル図であり、(b)は永久磁石に減磁が生じた場合のq軸電圧のベクトル図である。 図3において、減磁率に応じた複数の電流指令マップにおける、トルク指令、d軸電流及びq軸電流の関係の例を示す図である。 本発明の実施形態で、電流指令生成部で用いる正常時用(P1)、減磁率小用(P2)、及び減磁率大用(P3)のそれぞれのマップのトルク指令及び電流指令の関係を示す図である。 本発明の実施形態で、正常時(Q1)と減磁発生時(Q2)とでの、加速指示に対応する回転電機の要求トルクと実トルクとの関係の1例を示す図である。 従来例の回転電機制御システムを構成する制御部において、電流指令マップを用いてトルク指令に対する電流指令を出力する様子を模式的に示す図である。 図8において、電流指令マップにおける、トルク指令、d軸電流及びq軸電流の関係の1例を示す図である。 従来例において、正常時(Q1)と減磁発生時(Q3)とでの、加速指示に対応する回転電機の要求トルクと実トルクとの関係の1例を示す図である。
以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下では、回転電機として、車両に搭載されるモータジェネレータを説明するが、車両搭載用以外の用途に用いられる回転電機であってもよい。また、回転電機は、単にモータとして機能させるものを車両に搭載する電気自動車用や燃料電池車用等として使用するものでもよい。
以下では、全ての図面において同様の、または対応する要素には同一の符号を付し、重複する説明を省略する場合がある。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。
図1は、本発明の実施形態の回転電機制御システムの1例を示す回路図である。回転電機制御システム10は、図示しないエンジンと、主に走行用モータとして使用される回転電機であるモータジェネレータMG2との一方または両方を主駆動源として使用するハイブリッド車両に搭載して使用される。このような回転電機制御システム10は、モータジェネレータMG2と、直流電源であり蓄電部であるバッテリ12と、バッテリ12に接続された電圧変換部であるDC/DCコンバータ14と、DC/DCコンバータ14に接続された平滑コンデンサC1及び第2平滑コンデンサC2と、DC/DCコンバータ14の昇圧側とモータジェネレータMG2との間に接続される駆動回路であるインバータ16と、制御部18とを備える。なお、回転電機制御システム10を燃料電池車用として使用する場合、電源として燃料電池を使用することもできる。
なお、ハイブリッド車両は、主にエンジンにより駆動され、発電機として使用される図示しない別のモータジェネレータMG1と、別のモータジェネレータMG1を駆動する別のインバータとを備え、別のインバータは、DC/DCコンバータ14の昇圧側にインバータ16と並列に接続され、別のインバータに別のモータジェネレータMG1が接続される場合もある。本実施形態の制御部18は、別のインバータ及び別のモータジェネレータMG1も同様に制御できるが、以下の説明では、インバータ16及びモータジェネレータMG2を制御する場合を代表して説明する。
モータジェネレータMG2は、U相、V相、W相の3相型で永久磁石型の同期回転電機等の回転電機である。すなわち、モータジェネレータMG2は、ステータ17と、ステータ17に対向配置される回転可能で、永久磁石を含むロータ(図示せず)とを備える。すなわち、回転電機制御システム10は、永久磁石型のモータジェネレータMG2の駆動を制御する。モータジェネレータMG2は、バッテリ12から電力が供給される場合にモータとして機能し、車両の制動時には回生電力を回収する発電機として機能する。発電された電力は、インバータ16を介してバッテリ12に供給される。また、好ましくは、上記の永久磁石を希土類磁石とする。
DC/DCコンバータ14は、リアクトル20と、互いに直列接続された2つのスイッチング素子Saとを含む。2つのスイッチング素子Saの間にリアクトル20の一端が接続され、リアクトル20の他端がシステムリレーSR及びヒューズFを介してバッテリ12の正極側に接続されている。スイッチング素子Saは、例えばトランジスタ、IGBT等である。なお、図示の例では、システムリレーSRが、第1リレーR1と、第1リレーR1に並列に接続され、抵抗Rwが直列に接続された第2リレーR2とを含む。制御部18は、第1リレーR1及び第2リレーR2の一方をオンし、他方をオンするように制御することで、バッテリ12とDC/DCコンバータ14とを電気的に接続可能とする。なお、システムリレーSRの構成は、図示の例に限定するものではなく種々の構成を採用できる。
DC/DCコンバータ14の各スイッチング素子Saに逆並列にダイオードDaが接続され、2つのスイッチング素子Saの片側(図1の下側)のスイッチング素子Saにバッテリ12の負極側が接続されている。また、リアクトル20の他端とバッテリ12の負極側との間に平滑コンデンサC1が接続されている。また、2つのスイッチング素子Saの両端間とインバータ16との間に第2平滑コンデンサC2が接続されている。
このようなDC/DCコンバータ14は、制御部18によりスイッチング素子Saのスイッチングが制御され、バッテリ12の出力側電圧である低圧側電圧VLを昇圧した高圧側電圧VHをインバータ16に供給したり、インバータ16側から供給される高圧側電圧VHを降圧してバッテリ12側に供給する。このようなDC/DCコンバータ14の制御のために、回転電機制御システム10は、DC/DCコンバータ14の低圧側電圧VLを検出する低圧センサ22と、DC/DCコンバータ14の高圧側電圧VHを検出する高圧センサ24とを含む。
インバータ16は、互いに並列接続されたU相、V相、W相に対応する3本のアームAu、Av、Awを含み、各相アームAu、Av、Awは、互いに直列接続されたトランジスタ、IGBT等の2つのスイッチング素子Swを含む。各スイッチング素子Swに逆並列にダイオードDiが接続されている。各スイッチング素子Swは、制御部18によりスイッチングが制御されて、DC/DCコンバータ14の高圧側から供給された直流電圧を3相交流電圧に変換し、モータジェネレータMG2に出力する。また、車両の回生制動時には、モータジェネレータMG2からインバータ16に出力された3相交流電圧をインバータ16で直流電圧に変換して、DC/DCコンバータ14で降圧してからバッテリ12に供給し、バッテリ12を充電する。なお、本実施形態では、DC/DCコンバータ14を設けた場合を説明したが、DC/DCコンバータ14を省略して、バッテリ12の出力電圧をインバータ16に供給することもできる。また、ヒューズFも省略されることができる。
制御部18は、例えば論理回路を含む車載用コンピュータで構成されることができる。制御部18は、1つのコンピュータで構成されることができるが、複数のコンピュータをケーブル等で接続することにより構成されることもできる。例えば、制御部18は、モータジェネレータMG2の動作を制御するモータ制御部とすることができる。
例えば、制御部18は、CPUと、メモリ等の記憶部42と、インターフェース回路と、周辺回路とを含む。後述するマップや関係式やモータジェネレータMG2の制御ためのプログラム等は記憶部42に記憶されている。
次に、制御部18によりインバータ16を用いてモータジェネレータMG2の駆動を制御する構成を、図2等を用いて説明する。図2は、図1の制御部18の構成を示すブロック図である。図2に示すように、回転電機制御システム10は、モータジェネレータMG2の予め設定された所定時間当たりの回転角度を検出する回転角度検出部である回転角度センサMRを備える。回転角度センサMRの検出値は制御部18に入力されている。なお、回転角度センサMRの代わりに、モータジェネレータMG2の所定時間当たりの回転数を検出する回転数センサを設けて、回転数センサの検出値を制御部18に入力することもできる。制御部18は、回転角度センサMRの検出値に基づいて、モータジェネレータMG2の所定時間当たりの回転数や回転角速度ωを算出することができる。例えば、制御部18は、回転角度センサMRの検出値からモータジェネレータMG2の回転角速度ωを算出する角速度算出部25を有する。この場合、回転角度センサMRと角速度算出部25とにより、角速度取得部が構成される。
また、回転電機制御システム10は、モータジェネレータMG2の各相のステータコイル26u、26v、26wとインバータ16とを接続する動力線を流れる電流を検出する電流センサ28を備える。電流センサ28については、後で詳しく説明する。
また、図2では、制御部18のうち、正弦波PWM制御でモータ制御を行う部分を機能に分けて示している。すなわち、制御部18は、図示しないモード切替部を含み、モード切替部は、変調度やdq平面上で表されるモータジェネレータMG2の動作点に応じて、モータジェネレータMG2の制御を、正弦波PWM制御モードと過変調制御モードと矩形波制御モードとのいずれで行うかを切替可能としている。
正弦波PWM制御モードは、モータジェネレータMG2を正弦波PWM制御により制御する。過変調制御モードは、モータジェネレータMG2を過変調制御により制御する。矩形波制御モードは、モータジェネレータMG2を矩形波制御により制御する。
ここで「変調度(=変調率)」とは、システム電圧であり、インバータ16の入力電圧である、DC/DCコンバータ14の高圧側電圧VHに対する、モータジェネレータ印加電圧である線間電圧の実効値Jの比(J/VH)である。このため、d軸q軸制御におけるd軸電圧指令をVdとし、q軸電流指令をVqとして、変調度Eは、変調度E=[{(Vd+(Vq1/2]/VHで求められる。例えば、予め設定されたPWM条件成立である、変調度Eが0.61まではPWM制御モードが行われ、変調度Eが0.61を超えると、過変調制御モードに切り替えられる。また、変調度Eが0.78となると、矩形波制御モードが用いられる。
ここで、正弦波PWM制御モードと過変調制御モードとは、電流フィードバック制御であり、電圧指令値と搬送波(キャリア)とを比較することでPWM信号をモータジェネレータMG2に出力する制御である。すなわち、制御部18は、予め設定されたPWM条件下でベクトル制御の電流フィードバック制御を用いる正弦波PWM制御方式でインバータ16を制御する。
なお、矩形波制御モードは、電気角に応じて1パルススイッチング波形をモータジェネレータMG2に出力する制御であり、電圧振幅は最大値に固定され、位相を制御することでトルクをフィードバック制御する。
図2を参照しつつ制御部18により、正弦波PWM制御モードでモータジェネレータMG2を制御する方法を説明する。図2で制御部18は、図示しない別の制御部からトルク指令値Tを取得する。トルク指令値Tは、図示しない車両のアクセルペダル操作量等の操作部の操作量に基づく運転者の加速指示に対応する要求トルクから算出される。
制御部18は、電流指令生成部34、減算器部36、PI制御部32、3相/2相変換部38、及び2相/3相変換部40を有する。
電流指令生成部34は、予め記憶部42(図1)で記憶されている電流指令マップに基づいて、トルク指令値Tに対応するd軸q軸変換を用いたベクトル制御における電流指令値である、d軸電流指令値Id及びq軸電流指令値Iqの組を算出する、すなわち生成する機能を有する。電流指令マップは、トルク指令値Tと各電流指令値Id,Iqとの関係を規定するマップである。また、電流指令マップは、図3に示すように、後述する永久磁石の減磁率α(%)に応じて異なる複数の減磁率基準電流指令マップM1,M2,M3,M4を含んでいる。例えば、後述する図5に示すように、マップM1は減磁率0%に対応し、マップM2は減磁率10%に対応し、マップM3は減磁率20%に対応し、図5での図示は省略するがマップM4は減磁率30%に対応する。なお、各減磁率基準電流指令マップは、異なる任意の減磁率に対応して設定されることができる。
なお、電流指令生成部34に、図示しない別の制御部からトルク指令値Tと回転角速度指令値ωとを入力し、電流指令生成部34は、モータジェネレータMG2の実際の回転角速度ωと回転角速度指令値ωとを比較し、予め記憶されている電流指令マップを用いて、トルク指令値Tからd軸電流指令値Id及びq軸電流指令値Iqの組を算出する機能を有するようにすることもできる。この場合、トルク指令値T及び回転角速度指令値ωは、図示しない車両のアクセルペダル操作量やブレーキペダル操作量等の操作部の操作量から運転者の要求トルクと要求車速とを推定して算出される。
減算器部36は、d軸電流指令値Idから実際のd軸電流値Idを減算してd軸電流偏差δIdを算出する機能を有するId減算器と、q軸電流指令値Iqから実際のq軸電流値Iqを減算してq軸電流偏差δIqを算出する機能を有するIq減算器とを含んで構成される。
モータジェネレータMG2における実際のd軸電流値Idと実際のq軸電流値Iqとは、3相/2相変換部38の機能によって、モータジェネレータMG2のロータの回転角度θと、モータジェネレータMG2の3相分の電流を検出する電流センサ28の検出値Iu、Iv、Iwとに基づいて算出される。ロータの電気角は、レゾルバ等の回転角度センサMRによって検出される。電流値Iu、Iv、Iwは、インバータ16の対応する相のアームAu、Av、Aw(図1)とモータジェネレータMG2の対応する相のステータコイル26u、26v、26w(図1)とを接続する電力線を流れる電流を検出することで得られる。モータジェネレータMG2の各相のステータコイル26u、26v、26wの一端が中性点で接続されるので、2相分の電流Iv、Iwを検出すると、残りの1相分の電流値Iuが算出可能である。図1では、V相電流値IvとW相電流値Iwとの2つを検出することが示されている。残るU相電流値Iuは、Iu=−(Iv+Iw)で求められる。なお、電流センサ28を3相分設けて、直接3相分の電流値Iu、Iv、Iwを検出することもできる。
PI制御部32は、d軸電流偏差δIdとq軸電流偏差δIqとについて、所定のフィードバックゲインGの下で比例積分制御を行ってこれらに対応する制御偏差を求め、その制御偏差に応じたd軸電圧指令値Vdとq軸電圧指令値Vqとを算出する機能を有する。
2相/3相変換部40は、PI制御部32から入力されたd軸電圧指令値Vdとq軸電圧指令値Vqとに基づいて、ロータの回転角度θから得られた、1.5制御周期後に位置すると予測される予測角から、U相電圧Vu、V相電圧Vv、W相電圧Vwを算出する機能を有する。
算出された各相電圧Vu、Vv、Vwは、図示しないPWM信号生成部でPWM信号に変換され、PWM信号は図示しないゲート回路に出力される。ゲート回路は、制御信号を印加するインバータ16のスイッチング素子Sw(図1)を選択することにより、スイッチング素子Swのオンオフを制御する。
インバータ16の各相アームとモータジェネレータMG2の各相ステータコイルとを接続する電力線を流れる電流は、上記のように、3相/2相変換部38を介して、減算器部36にフィードバックされる。このようにして、電流フィードバック制御が行われる。
上記がベクトル制御を用いた電流フィードバック制御の基本構成であるが、本実施形態では、制御部18はさらに、角速度算出部25と、減磁率取得部である減磁率算出部46とを有する。すなわち、上記のようにモータジェネレータMG2が永久磁石を有する場合、永久磁石は温度の上昇に応じて減磁するため、出力トルクである実トルクが低下する可能性がある。特に、本実施形態の回転電機制御システム10を搭載したハイブリッド車両等の電動車両で、低トルク領域で運転者の加速指示に対応する要求トルクに対して実トルクが大きく離れていると、運転者の意図した走行を行えず、車両の走行が不安定になる可能性がある。
本実施形態では、このような不都合をなくすために、減磁率算出部46で減磁率αを取得、すなわち算出し、算出された減磁率αの取得値を電流指令生成部34に入力して、電流指令生成部34が有するトルク電流指令変更部であるマップ変更部で、減磁率αの取得値に応じて、電流指令生成部34で使用される減磁率基準電流指令マップを変更するようにしている。
減磁率αは、次のような原理で算出できる。すなわち、永久磁石の磁束は、モータジェネレータMG2のロータの回転角速度に対応する回転数に比例して発生する逆起電力から求めることができる。ベクトル制御における電圧方程式は、永久磁石による電機子鎖交磁束をφとし、ロータの回転角速度をωとし、d軸電流をIdとし、q軸電流をIqとし、d軸インダクタンスをLdとし、q軸インダクタンスをLqとした場合に、Iq項を無視するとq軸電圧Vqが次式で表される。
Vq=ωLd・Id+ωφ ・・・(2)
このため、減磁が生じていない正常時の回転角速度ωと鎖交磁束φとの積ωφと、磁束の残存率を表す1以下の係数をKとして、永久磁石の減磁後の積Kωφとを用いて、正常時のq軸電圧Vqmpと減磁後のq軸電圧Vqdgとは、それぞれ図4(a)(b)で示すベクトル図で表される。
例えば図4(a)に示す正常時のq軸電圧Vqmpは次式となる。
Vqmp=ωLd・Id+ωφ ・・・(3)
また、図4(b)に示す減磁後のq軸電圧Vqdgは次式となる。
Vqdg=ωLd・Id+Kωφ ・・・(4)
また、(3)式から(4)式を減算すると、次式となる。
(1−K)=(Vqmp−Vqdg)/ωφ ・・・(5)
ここで、(1−K)は、0以上1以下の値である永久磁石の減磁率αと考えることができる。減磁前の正常時のq軸電圧Vqmpは、モータジェネレータMG2の回転角速度ω、d軸電流Id、及びq軸電流Iqを引数として一義的に定まる。また、積ωφは回転角速度ωと減磁前の逆起定数とから演算できる。このため、減磁率α(=(1−K)×100)(%)は、d軸q軸変換を用いたベクトル制御における実際のq軸電圧指令Vqdgを監視することで求めることができる。例えば、図4(b)において、減磁後のq軸電圧Vqdgがさらに小さくなる場合には、係数Kが小さくなり、減磁率に対応する(1−K)が大きくなることで、より大きく減磁していることが分かる。
より具体的には、記憶部42にq軸電圧マップとして、d軸電流指令Id、q軸電流指令Iqを関数とするq軸電圧であって、減磁が生じていない正常状態に対応するq軸電圧であるq軸電圧基準値Vqmpを表すマップを、複数の回転角速度ωごとに記憶させておく。例えば、代表的な複数の回転角速度ωに対応する複数の回転数、例えば低回転、中回転、及び高回転時におけるq軸電圧マップを記憶させておく。q軸電圧マップとして4つ以上の回転数に対応して4つ以上のマップを記憶させておくこともできる。
制御部18が有する減磁率算出部46は、このようなq軸電圧マップを参照して、取得されるd軸電流指令Idとq軸電流指令Iqと、モータジェネレータMG2の回転角速度ωの取得値とに基づいて、正常時の電圧であるq軸電圧基準値Vqmpを取得する。また、減磁率算出部46は、実際のq軸電圧指令Vq及びq軸電圧マップから得られたq軸電圧基準値Vqmpと、回転角速度ωの取得値とに基づいて、減磁率α((=1−K)×100))の取得値を算出し、すなわち取得し、電流指令生成部34に出力する。すなわち、減磁率算出部46は、永久磁石の減磁が生じていない正常状態に対する減磁率αを取得する。
また、電流指令生成部34は、トルク電流指令変更部であるマップ変更部44により、取得された減磁率αに応じて、モータジェネレータMG2のトルク指令Tと電流指令Id,Iqとの関係を変更する。より具体的には、マップ変更部44は、取得された減磁率αの取得値に応じて、電流指令生成部34で使用される減磁率基準電流指令マップを変更する。図5は、図3において、減磁率に応じた複数の電流指令マップにおける、トルク指令、d軸電流及びq軸電流の関係の例を示す図である。なお、図5では、減磁率0%、10%、20%の3つのマップM1,M2,M3を設けた場合を示しているが、別の減磁率に対応するマップM4(図3参照)を含んで4つのマップを設けることもでき、また、2つまたは5つ以上のマップを異なる減磁率に応じて設けることもできる。
図5に示すように、記憶部42(図1)には減磁率αに応じて異なる複数の電流指令マップである減磁率基準電流指令マップM1,M2,M3を記憶させておく。図5の減磁率0%のマップM1は、正常状態に対応する。各電流指令マップM1,M2,M3は、減磁率αの違いにかかわらず、少なくともある減磁後最大トルクまでの低トルク領域を含む領域において、トルク指令Tに対して実際にモータジェネレータMG2で出力されるトルクである実トルクを、減磁前の正常時のトルク指令Tに対する実トルクに一致または近づけるように設定されている。
例えば、図6は、本発明の実施形態で、電流指令生成部34で用いる正常時用(P1)、減磁率小用(P2)、及び減磁率大用(P3)のそれぞれのマップのトルク指令及び電流指令の関係を示す図である。図6では、P1が正常時であり、P2、P3の順で減磁率αが大きくなっている。図6から分かるように、減磁後でも正常時と同じトルク指令で正常時と近いまたは一致する実トルクが得られるようにするために、減磁率αが大きくなるほどトルク指令に対する電流指令を大きくしている。すなわち、図5の減磁率基準電流指令マップM1,M2,M3を参照して、減磁率αが大きいマップでは、減磁率αが小さいマップに比べて同じトルク指令を出力するためにd軸電流指令及びq軸電流指令を大きい値とする。ただし、正常時の電流指令の最大値がある値で規定されており、減磁率αが大きくなるほどその最大電流で規定されるトルク上限、すなわち減磁後最大トルクは小さくなる。ただし、低トルク領域では、最大トルクの低下の影響を受けないので、減磁率αの変化にかかわらず正常時、すなわち減磁率0%の場合と一致する、または近い、トルク指令に対する実トルクの関係を得ることができる。
本実施形態では、このような複数の減磁率基準電流指令マップM1,M2,M3を使用し、マップ変更部44は、取得された減磁率取得値αに応じて、電流指令生成部34で使用される減磁率基準電流指令マップM1,M2,M3を変更し、その減磁率基準電流指令マップM1,M2,M3に基づいて、取得されたトルク指令に対するd軸電流指令Id及びq軸電流指令Iqを取得して、すなわち生成して、減算器部36(図2)に出力する。減算器部36では、d軸電流偏差δIdまたはq軸電流偏差δIqを算出する。また、電流指令生成部34では、取得された減磁率αと一致する減磁率基準電流指令マップM1,M2,M3がない場合には、その減磁率αに対して小さい側と大きい側との両側の減磁率αに対応する減磁率基準電流指令マップM1,M2,M3や、減磁率αに対して小さいか、または大きい片側の減磁率αに対応する減磁率基準電流指令マップM1,M2,M3から補間して、対応するd軸電流指令Id及びq軸電流指令Iqを生成することができる。
このような回転電機制御システム10によれば、永久磁石の減磁率に応じてモータジェネレータMG2のトルク指令値Tと電流指令値Id,Iqとの関係を変更するマップ変更部44を含むので、永久磁石の減磁率を取得する構成である減磁率算出部46を使用して、永久磁石の減磁が生じた場合でも、低トルク領域でモータジェネレータMG2の運転者のアクセルペダル等の操作部の操作量に対応する要求トルクに対して、近いまたは一致する実トルクを有効に出力できる。このため、永久磁石に減磁が発生した場合でも、運転者の意図した走行を行うことができ、回転電機制御システム10を搭載した車両の走行を安定して行える。例えば永久磁石の減磁発生を表示部等で認識した運転者が車両を修理工場や路肩等の安全な場所に移動させる退避走行やフェールセーフ走行を行う場合でも、運転者の要求に応じた走行を安定して行える。また、この場合、低トルク領域だけでしかモータジェネレータMG2を駆動できなくても、退避走行やフェールセーフ走行でモータジェネレータMG2で高トルクを発生させる必要性はないか、少ないので問題が生じることはない。このように、永久磁石に減磁が生じた場合でも、低トルク領域で、要求トルクに対応するトルク指令に近いまたは一致する実トルクをモータジェネレータMG2が出力するように、電流指令生成部34が電流指令を増大させ、永久磁石の減磁分を補いやすくなる。
例えば、図7は、本発明の実施形態で、正常時(Q1)と減磁発生時(Q2)とでの、加速指示に対応する回転電機の要求トルクと実トルクとの関係の1例を示す図である。図7に示すように、永久磁石に減磁が発生した場合でも、減磁後最大トルク以下の領域では、減磁が生じていない正常時の場合に対して、回転電機の要求トルクと実トルクとの関係をほぼ一致させることができる。
これに対して、図8〜10は、従来例の場合を示している。図8は、従来例の回転電機制御システムを構成する制御部において、電流指令マップを用いてトルク指令に対する電流指令を出力する様子を模式的に示す図である。図9は、図8において、電流指令マップにおける、トルク指令、d軸電流及びq軸電流の関係の1例を示す図である。図10は、従来例において、正常時(Q1)と減磁発生時(Q3)とでの、加速指示に対応する回転電機の要求トルクと実トルクとの関係の1例を示す図である。
このような従来例の回転電機制御システムでは、図8に示す制御部の電流指令生成部34にトルク指令Tが入力される。電流指令生成部34では制御部の記憶部に記憶された電流指令マップであって、トルク指令Tとd軸電流指令Id及びq軸電流指令Iqとの関係を表す電流指令マップM(図9)に基づいて、入力されたトルク指令Tからd軸電流指令Id及びq軸電流指令Iqを取得し、減算器部36(図2参照)に出力する。この電流指令マップMは、永久磁石の減磁率に応じて異なるマップは含んでいない。このような従来例では、図10に示すように、加速指示に応じた要求トルクに対する実トルクの関係が、正常時の場合(Q1)と減磁発生時の場合(Q3)とで大きく異なる。すなわち、減磁発生時には、トルクの全域で、要求トルクに対して実トルクが正常時の場合よりも大きく低下してしまう。従来例を示す図10と、本実施形態を示す図7とを比較すれば明らかなように、本実施形態によればこのような不都合が生じることを防止でき、永久磁石に減磁が発生した場合でも、正常時と同様のモータジェネレータMG2の駆動特性を確保できる。
また、上記の実施形態において、マップ変更部44(図2)は、取得された減磁率αの取得値に応じて、電流指令生成部34で使用される減磁率基準電流指令マップを変更するので、予め電流指令のマップを用意しておくという単純な制御方法で、減磁率αに応じて要求トルクに対応する電流指令を生成できる。
また、永久磁石に希土類磁石を使用する場合には、永久磁石にフェライト等の他の磁石を使用する場合と異なり、永久磁石が減磁していても、耐久性を低下させることなく、ステータコイルに高い電流を流すことができる。しかも、希土類磁石を使用する場合には低温で減磁が発生する低温減磁は生じない。このため、永久磁石に減磁が生じた場合でも、より安定して、モータジェネレータMG2に要求トルクに対して、近いまたは一致する実トルクを出力させることができる。
なお、上記の実施形態では、図2に示すように、制御部18において、減磁率算出部46から取得された減磁率取得値αに応じて永久磁石に減磁が生じているか否かを判定する減磁判定部48を備えるようにすることもできる。減磁判定部48は、例えば減磁率取得値αが予め設定された所定値以上(例えば5%以上)である場合に、減磁が発生したと判定する。この場合、マップ変更部44は、減磁判定部48により減磁が生じていると判定された場合にのみ、電流指令生成部34で使用される電流指令マップとして、永久磁石の減磁が生じてない正常状態に対応する電流指令マップから、減磁率αに応じた別の減磁率基準電流指令マップに変更する。このような構成の場合、減磁の発生を判定した場合にのみ、マップ変更部44が電流指令マップを変更すればよい。
また、上記では、制御部18に減磁率αに応じた電流指令マップを記憶させておく場合を説明した。ただし、本発明はこれに限定するものではない。例えば、上記の実施形態において、電流指令生成部34は、永久磁石の減磁率に応じてモータジェネレータMG2のトルク指令値Tとd軸電流指令値Id及びq軸電流指令値Iqとの関係を規定し、予め記憶部に記憶された所定の関係式を変更するようにすることもできる。例えば、永久磁石の減磁率αに応じて、所定の関係式における係数を予め設定された関係で変更するようにし、低トルク領域で要求トルクと実トルクとの関係を、永久磁石の減磁が生じていない正常時の場合と一致または近づけるようにすることもできる。また、この場合も、上記のように、制御部が減磁判定部を有し、減磁判定部により減磁が発生したと判定した場合にのみ、関係式を変更するようにすることもできる。このような構成の場合も、永久磁石の減磁率を取得する構成を使用して、永久磁石の減磁が生じた場合でも、低トルク領域でモータジェネレータMG2の要求トルクに対して近いまたは一致する実トルクを有効に出力できる。その他の構成及び作用は、上記の実施形態と同様である。
10 回転電機制御システム、12 バッテリ、14 DC/DCコンバータ、16 インバータ、17 ステータ、18 制御部、20 リアクトル、22 低圧センサ、24 高圧センサ、25 角速度算出部、26u,26v,26w ステータコイル、28 電流センサ、30 ゲイン決定部、32 PI制御部、34 電流指令生成部、36 減算器部、38 3相/2相変換部、40 2相/3相変換部、42 記憶部、44 マップ変更部、46 減磁率算出部、48 減磁判定部。

Claims (6)

  1. 永久磁石型の回転電機の駆動を制御する回転電機制御システムであって、
    前記永久磁石の減磁が生じてない正常状態に対する前記永久磁石の減磁率を取得する減磁率取得部と、
    前記回転電機のトルク指令値に対応する電流指令値を生成する電流指令生成部とを備え、
    前記電流指令生成部は、前記永久磁石の減磁率に応じて前記回転電機のトルク指令と電流指令との関係を変更するトルク電流指令変更部を含むことを特徴とする回転電機制御システム。
  2. 請求項1に記載の回転電機制御システムにおいて、
    前記電流指令生成部は、前記トルク指令値と前記電流指令値との関係を規定する電流指令マップに基づいて、前記回転電機のトルク指令値に対応する電流指令値を生成し、
    前記電流指令マップは、前記減磁率に応じて異なる複数の減磁率基準電流指令マップを含んでおり、
    前記トルク電流指令変更部は、取得された減磁率取得値に応じて、前記電流指令生成部で使用される前記減磁率基準電流指令マップを変更することを特徴とする回転電機制御システム。
  3. 請求項2に記載の回転電機制御システムにおいて、
    取得された前記減磁率取得値に応じて前記永久磁石に減磁が生じているか否かを判定する減磁判定部を備え、
    前記トルク電流指令変更部は、前記減磁判定部により減磁が生じていると判定された場合に、前記電流指令生成部で使用される前記電流指令マップとして、前記永久磁石の減磁が生じてない正常状態に対応する前記電流指令マップから別の前記減磁率基準電流指令マップに変更することを特徴とする回転電機制御システム。
  4. 請求項1に記載の回転電機制御システムにおいて、
    前記トルク電流指令変更部は、前記永久磁石の減磁率に応じて前記回転電機のトルク指令と電流指令との関係を規定する関係式を変更することを特徴とする回転電機制御システム。
  5. 請求項1から請求項4のいずれか1に記載の回転電機制御システムにおいて、
    前記回転電機の角速度を取得する角速度取得部を備え、
    前記減磁率取得部は、前記回転電機のd軸q軸変換を用いた制御におけるq軸電圧指令及びq軸電圧基準値と、前記回転電機の角速度取得値とに基づいて、前記減磁率を取得することを特徴とする回転電機制御システム。
  6. 請求項5に記載の回転電機制御システムにおいて、
    前記減磁率取得部は、前記回転電機のd軸q軸変換を用いた制御におけるd軸電流指令及びq軸電流指令と、前記回転電機の角速度取得値とに基づいて、正常状態に対応する前記q軸電圧基準値を取得することを特徴とする回転電機制御システム。
JP2012015090A 2012-01-27 2012-01-27 回転電機制御システム Pending JP2013158091A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015090A JP2013158091A (ja) 2012-01-27 2012-01-27 回転電機制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015090A JP2013158091A (ja) 2012-01-27 2012-01-27 回転電機制御システム

Publications (1)

Publication Number Publication Date
JP2013158091A true JP2013158091A (ja) 2013-08-15

Family

ID=49052790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015090A Pending JP2013158091A (ja) 2012-01-27 2012-01-27 回転電機制御システム

Country Status (1)

Country Link
JP (1) JP2013158091A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211582A (ja) * 2014-04-28 2015-11-24 トヨタ自動車株式会社 車両
JP2016073012A (ja) * 2014-09-26 2016-05-09 アイシン精機株式会社 車両制御装置
JP2017011983A (ja) * 2015-06-18 2017-01-12 現代自動車株式会社Hyundai Motor Company 環境に優しい自動車のモーター減磁診断方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278314A (ja) * 2004-03-25 2005-10-06 Toyota Motor Corp モータ駆動装置およびその異常判定方法
JP2006262598A (ja) * 2005-03-16 2006-09-28 Meidensha Corp 電動機の可変速制御装置
JP2008029082A (ja) * 2006-07-19 2008-02-07 Toyota Motor Corp 回転電機制御装置、回転電機制御方法及び回転電機制御プログラム
JP2011125154A (ja) * 2009-12-11 2011-06-23 Aisin Aw Co Ltd 回転電機の減磁判定システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278314A (ja) * 2004-03-25 2005-10-06 Toyota Motor Corp モータ駆動装置およびその異常判定方法
JP2006262598A (ja) * 2005-03-16 2006-09-28 Meidensha Corp 電動機の可変速制御装置
JP2008029082A (ja) * 2006-07-19 2008-02-07 Toyota Motor Corp 回転電機制御装置、回転電機制御方法及び回転電機制御プログラム
JP2011125154A (ja) * 2009-12-11 2011-06-23 Aisin Aw Co Ltd 回転電機の減磁判定システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211582A (ja) * 2014-04-28 2015-11-24 トヨタ自動車株式会社 車両
US9358970B2 (en) 2014-04-28 2016-06-07 Toyota Jidosha Kabushiki Kaisha Vehicle
CN105034850B (zh) * 2014-04-28 2017-07-18 丰田自动车株式会社 车辆
JP2016073012A (ja) * 2014-09-26 2016-05-09 アイシン精機株式会社 車両制御装置
JP2017011983A (ja) * 2015-06-18 2017-01-12 現代自動車株式会社Hyundai Motor Company 環境に優しい自動車のモーター減磁診断方法

Similar Documents

Publication Publication Date Title
US9475403B2 (en) DC bus voltage control
JP5055246B2 (ja) 回転電機の制御装置
KR100986712B1 (ko) 모터구동시스템의 제어장치 및 방법
JP4604820B2 (ja) モータ駆動システムの制御装置
WO2010082368A1 (ja) 交流電動機の制御装置および電動車両
WO2011161811A1 (ja) モータ駆動装置およびそれを搭載する車両
US9590551B2 (en) Control apparatus for AC motor
JPWO2011108058A1 (ja) 電動車両およびその制御方法
JP2008141868A (ja) 電動機システム
JP2010119268A (ja) インバータの異常検出装置および異常検出方法
JP5720644B2 (ja) 車両
JP2013090401A (ja) 回転電機制御システム
US20220345060A1 (en) Motor control device, electromechanical integrated unit, and electric vehicle system
JP6193006B2 (ja) 電気車制御装置
JP6173516B1 (ja) 電動機制御装置および電動機制御方法
JP2014128051A (ja) 車両の制御装置
JP2011067010A (ja) 車両のモータ駆動装置
JP6407382B1 (ja) 電動機制御装置および電動機制御方法
JP2013158091A (ja) 回転電機制御システム
JPWO2019102539A1 (ja) 回転電機制御装置及び電動車両
JP2015080290A (ja) モータ制御システム
JP5899787B2 (ja) 回転電機制御システム
JP7413171B2 (ja) モータ制御装置、機電一体ユニット、発電機システム、昇圧コンバータシステム、および電動車両システム
US11942889B2 (en) Motor control device
JP2020178446A (ja) 変調方式切替装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324