JP2013155610A - 波力発電装置およびその制御方法 - Google Patents
波力発電装置およびその制御方法 Download PDFInfo
- Publication number
- JP2013155610A JP2013155610A JP2012014352A JP2012014352A JP2013155610A JP 2013155610 A JP2013155610 A JP 2013155610A JP 2012014352 A JP2012014352 A JP 2012014352A JP 2012014352 A JP2012014352 A JP 2012014352A JP 2013155610 A JP2013155610 A JP 2013155610A
- Authority
- JP
- Japan
- Prior art keywords
- floating body
- water
- wave power
- wave
- power generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
【課題】荒天時の高波のような海象条件であっても安全性および信頼性を維持することができる波力発電装置を提供する。
【解決手段】浮体2と、浮体2の内部にバネ4を介して取り付けられ、浮体2の変動に応じて振動するウェイト3と、浮体2の内部に設けられ、ウェイト3の振動により駆動されて発電する発電機8とを備えた波力発電装置1Aである。浮体2を水中まで沈下させるバラストタンク10と、バラストタンク10内のバラスト水量を調整しての浮力を制御する制御部とを備えている。
【選択図】図1
【解決手段】浮体2と、浮体2の内部にバネ4を介して取り付けられ、浮体2の変動に応じて振動するウェイト3と、浮体2の内部に設けられ、ウェイト3の振動により駆動されて発電する発電機8とを備えた波力発電装置1Aである。浮体2を水中まで沈下させるバラストタンク10と、バラストタンク10内のバラスト水量を調整しての浮力を制御する制御部とを備えている。
【選択図】図1
Description
本発明は、波力発電装置およびその制御方法に関するものである。
波力発電装置としては、二つの物体を上下方向に互いに相対運動させて発電機を駆動するものが知られている。例えば、特許文献1には、海上に浮かぶ密閉されたブイ内に、バネを介して振動子を上下方向に変位自在に支持した波力発電装置が開示されている。この波力発電装置は、波によって振動するブイとブイ内で振動する振動子との相対運動エネルギーから電気エネルギーを取り出すようになっている。
しかし、海域水面にブイ等の浮体を浮かべた場合、台風などの荒天時に発生する高波等により、浮体内で振動する振動子が想定以上の振幅で振動して浮体内部を損傷させるおそれがある。また、漂流物が接触することによって浮体に損傷を与えるおそれもある。
本発明は、このような事情に鑑みてなされたものであって、荒天時の高波のような海象条件であっても、あるいは、漂流物が接触するおそれがある場合であっても、安全性および信頼性を維持することができる波力発電装置およびその制御方法を提供することを目的とする。
上記課題を解決するために、本発明の波力発電装置およびその制御方法は以下の手段を採用する。
すなわち、本発明にかかる波力発電装置は、浮体本体と、該浮体本体の内部にバネを介して取り付けられ、該浮体本体の変動に応じて振動する振動体と、前記浮体本体の内部に設けられ、前記振動体の振動により駆動されて発電する発電機とを備えた波力発電装置において、前記浮体本体を水中まで沈下させる浮力調整手段と、該浮力調整手段の浮力を制御する制御部とを備えていることを特徴とする。
すなわち、本発明にかかる波力発電装置は、浮体本体と、該浮体本体の内部にバネを介して取り付けられ、該浮体本体の変動に応じて振動する振動体と、前記浮体本体の内部に設けられ、前記振動体の振動により駆動されて発電する発電機とを備えた波力発電装置において、前記浮体本体を水中まで沈下させる浮力調整手段と、該浮力調整手段の浮力を制御する制御部とを備えていることを特徴とする。
浮力調整手段によって浮体本体を水中まで沈下させることができるので、例えば荒天時のように波高が高い場合や、漂流物が近づいてきた場合に、波力発電装置を水中まで沈下させて安全性を保つことができる。
さらに、本発明の波力発電装置によれば、前記浮力調整手段は、前記浮体本体に取り付けられたバラストタンクと、該バラストタンク内のバラスト水量を調整するバラスト水量調整手段と、を備えていることを特徴とする。
バラストタンク内のバラスト水量をバラスト水量調整手段によって調整することで、浮力を調整することができる。波力発電装置を沈下させる場合にはバラスト水量を増大させ、波力発電装置を浮上させる場合にはバラスト水量を減少させる。
さらに、本発明の波力発電装置によれば、前記バラスト水量調整手段は、前記バラストタンク内のバラスト水を外部へ排出する排水ポンプと、外部から水を該バラストタンク内へと供給する取水ポンプとを備えていることを特徴とする。
排水ポンプおよび取水ポンプによってバラストタンク内のバラスト水量を調整することにより、簡便にバラスト水量を制御することができる。
さらに、本発明の波力発電装置によれば、前記水量調整手段は、前記バラストタンクに第1開閉弁を介して接続された負圧タンクと、該バラストタンクに第2開閉弁を介して接続された加圧タンクと、前記負圧タンクに接続された真空ポンプと、前記加圧タンクに接続された圧縮ポンプと、前記バラストタンク内のバラスト水を外部へ排出する排水部と、前記バラストタンク内に水を取り入れる取水部と、を備えていることを特徴とする。
真空ポンプを駆動することにより、吸込口から負圧タンク内の空気を吸い込み負圧タンク内の圧力を負圧にする。また、圧縮ポンプを駆動することにより外部から吸い込んだ空気を加圧タンク内に供給して加圧する。そして、波力発電装置を沈下させる場合には、第1開閉弁を開けてバラストタンク内の空気を負圧タンク内に吸い込み、バラストタンク内に外部から取水部を介して水を取り入れる。一方、波力発電装置を浮上させる場合には、第2開閉弁を開けてバラストタンク内に加圧タンクから空気を押し込み、バラストタンク内のバラスト水を排水部から外部へと排出する。
これにより、負圧タンク内を真空状態としておき、かつ、加圧タンク内を加圧状態としておくという簡便な構成で、波力発電装置を沈下させかつ浮上させることができる。
また、第1開閉弁及び第2開閉弁の開閉のみによる空気の流出入で波力発電装置の沈下または浮上を行うことができるので、取水ポンプや排水ポンプを用いる場合に比べて、素早く沈下および浮上を行うことができる。
これにより、負圧タンク内を真空状態としておき、かつ、加圧タンク内を加圧状態としておくという簡便な構成で、波力発電装置を沈下させかつ浮上させることができる。
また、第1開閉弁及び第2開閉弁の開閉のみによる空気の流出入で波力発電装置の沈下または浮上を行うことができるので、取水ポンプや排水ポンプを用いる場合に比べて、素早く沈下および浮上を行うことができる。
さらに、本発明の波力発電装置によれば、前記水量調整手段は、前記バラストタンクに第1開閉弁を介して接続された負圧タンクと、該バラストタンクに第2開閉弁を介して接続された加圧タンクと、前記負圧タンクに吸引口が接続されるとともに前記加圧タンクに排気口が接続された真空ポンプと、前記バラストタンク内のバラスト水を外部へ排出する排水部と、前記バラストタンク内に水を取り入れる取水部と、を備えていることを特徴とする。
真空ポンプを駆動することにより、吸込口から負圧タンク内の空気を吸い込み負圧タンク内の圧力を負圧にするとともに、負圧タンクから吸い込んだ空気を排気口から加圧タンク内に供給する。そして、波力発電装置を沈下させる場合には、第1開閉弁を開けてバラストタンク内の空気を負圧タンク内に吸い込み、バラストタンク内に外部から取水部を介して水を取り入れる。一方、波力発電装置を浮上させる場合には、第2開閉弁を開けてバラストタンク内に加圧タンクから空気を押し込み、バラストタンク内のバラスト水を排水部から外部へと排出する。
このように、真空ポンプを駆動して同時に負圧および加圧を作り出してバラスト水の調整に用いることができるので、少ない消費エネルギーでバラスト水の調整を行うことができる。
このように、真空ポンプを駆動して同時に負圧および加圧を作り出してバラスト水の調整に用いることができるので、少ない消費エネルギーでバラスト水の調整を行うことができる。
さらに、本発明の波力発電装置によれば、前記制御部は、周囲の波高を計測する波高計からの計測データを得て、又は、前記振動体の振動変位データを得て、又は、周囲の漂流物の検出データを得て、前記浮力調整手段を制御することを特徴とする。
波高データまたは振動変位データによって、波力発電装置の動揺の程度を把握し、浮力調整手段を制御することとした。これにより、損傷を未然に防ぎ、波力発電装置の安全性を確保することができる。
さらに、本発明の波力発電装置によれば、前記制御部は、周囲の波高を計測する波高計からの計測データを得て、前記発電機が所望の電力を出力する沈下位置となるように、前記浮力調整手段を制御することを特徴とする。
また、波高計からの計測データに基づいて、発電機が所望の電力を出力する沈下位置となるように浮力調整手段を制御することとしたので、例えば波高が大きい場合であっても水中にて発電させることができる。これにより、波力発電装置の利用率を向上させることができる。
さらに、本発明の波力発電装置によれば、沈下および浮上に伴う上下動をガイドするガイド手段を備えていることを特徴とする。
ガイド手段によって沈下および浮上に伴う上下動をガイドすることにより、波力発電装置の沈下および浮上を軌道に沿って円滑に上下動させることができる。
さらに、本発明の波力発電装置によれば、複数の前記浮体本体を固定した状態でガイドすることを特徴とする。
複数の浮体本体を固定した状態でガイドすることにより、浮体本体ごとにガイド手段を設ける必要がないので、構造の簡素化によりコスト低減を図ることができる。また、複数の浮体本体をユニット化してガイドするので、各浮体本体に設けられた発電機からの出力を総合して発電する波力発電装置とした場合に有効である。
さらに、本発明の波力発電装置によれば、前記ガイド手段の下端に接続されて水中に位置する底板と、該底板を海底から係留する係留手段と、を備えていることを特徴とする。
係留手段によって海底から係留した底板に対してガイド手段の下端を接続することとした。これにより、水深が深い海域であっても、海底まで到達する長いガイド手段を用いる必要がない。また、底板は水中に係留され、水中は波浪による影響が小さいので、安定した姿勢でガイド手段を支持することができる。
さらに、本発明の波力発電装置によれば、前記底板には、前記浮体本体が挿通可能とされた孔部が形成されていることを特徴とする。
底板に孔部を形成し、浮体本体が挿通できるようにした。これにより、底板と同等位置まで浮体本体を沈下させることができる。また、底板に孔部を形成することにより、孔部から水が出入りすることによるダンピング機能により、より底板の姿勢を安定させることができる。
さらに、本発明の波力発電装置によれば、前記浮体本体内に水が浸入したことを検出する漏水感知センサーと、前記振動体の振動を停止させるロック手段とを備え、前記制御部は、前記漏水感知センサーの検出結果に基づいて、前記ロック手段を制御することを特徴とする。
浮体本体内に漏水感知センサーを設けることにより、浮体本体内に水が浸入したことを検出することとした。そして、浮体本体内に水が浸入したことを検出すると、ロック手段を作動させて振動体の振動を停止させることとした。これにより、漏水時に、振動体の振動による発電を停止させることができる。
さらに、本発明の波力発電装置によれば、前記制御部は、前記漏水感知センサーの検出結果に基づいて、前記発電機の動作を停止することを特徴とする。
さらに、漏水感知センサーが漏水を検出すると、発電機の動作を停止することとした。これにより、漏水による発電機のスパーク等によって生じる機器の損傷を未然に防ぐことができる。発電機の動作を停止するには、例えば、発電機の電源を遮断することにより行う。また、波力発電装置を監視する監視側へ、漏水の情報、ロック手段の動作情報、発電機の停止情報等を報知するようにしてもよい。
また、本発明の波力発電装置は、浮体本体と、該浮体本体の内部にバネを介して取り付けられ、該浮体本体の変動に応じて振動する振動体と、前記浮体本体の内部に設けられ、前記振動体の振動により駆動されて発電する発電機とを備えた波力発電装置において、前記浮体本体内に水が浸入したことを検出する漏水感知センサーと、前記振動体の振動を停止させるロック手段とを備え、前記制御部は、前記漏水感知センサーの検出結果に基づいて、前記ロック手段を制御することを特徴とする。
浮体本体内に漏水感知センサーを設けることにより、浮体本体内に水が浸入したことを検出することとした。そして、浮体本体内に水が浸入したことを検出すると、ロック手段を作動させて振動体の振動を停止させることとした。これにより、漏水時に、振動体の振動による発電を停止させることができる。
また、本発明の波力発電装置の制御方法は、浮体本体と、該浮体本体の内部にバネを介して取り付けられ、該浮体本体の変動に応じて振動する振動体と、前記浮体本体の内部に設けられ、前記振動体の振動により駆動されて発電する発電機とを備えた波力発電装置の制御方法において、前記浮体本体を水中まで沈下させるように該浮体本体の浮力を制御することを特徴とする。
浮力調整手段によって浮体本体を水中まで沈下させることができるので、例えば荒天時のように波高が高い場合や、漂流物が近づいてきた場合に、波力発電装置を水中まで沈下させて安全性を保つことができる。
浮力調整手段によって浮体本体を水中まで沈下させることができるので、例えば荒天時のように波高が高い場合や、漂流物が近づいてきた場合に、波力発電装置を水中まで沈下させて安全性を保つことができ、信頼性を確保することができる。
以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
図1には、第1実施形態にかかる波力発電装置の概略構成が示されている。
波力発電装置1Aは、海洋の水面7上に上部が露出して浮かぶ箱形の浮体(浮体本体)2を備えている。浮体2内には、バネ4を介して浮体2内に取り付けられたウェイト(振動体)3と、ウェイト3に対して回転するボールネジ軸(回転体)5と、ボールネジ軸5に固定された付加質量体6と、ボールネジ軸5によって駆動されて発電する発電機8とを備えている。
[第1実施形態]
図1には、第1実施形態にかかる波力発電装置の概略構成が示されている。
波力発電装置1Aは、海洋の水面7上に上部が露出して浮かぶ箱形の浮体(浮体本体)2を備えている。浮体2内には、バネ4を介して浮体2内に取り付けられたウェイト(振動体)3と、ウェイト3に対して回転するボールネジ軸(回転体)5と、ボールネジ軸5に固定された付加質量体6と、ボールネジ軸5によって駆動されて発電する発電機8とを備えている。
ウェイト3は、波力による水面7の上下動によって生じる浮体2の上下振動を得て、所定の固有周波数にて上下方向に往復直線運動するようになっている。往復直線運動する際に、ウェイト3は、ガイド(図示せず)によって、回転せずに上下動するようになっている。ウェイト3は、バネ4によって、浮体2に対して相対運動可能なように支持されている。
ボールネジ軸5は、ウェイト3の往復直線運動によって、その軸線回りに回転するようになっている。ボールネジ軸5の下端には、付加質量体6がボールネジ軸5とともに回転するように固定されている。
付加質量体6は、円板形状とされており、ベースプレート9の下方の空気室内に設けられている。付加質量体6は、図示しないが、回転慣性質量を調整できる機構を有していることが好ましい。これにより、実海域の波周期に固有周期を対応させて効率的に発電できる。回転慣性質量を調整できる機構としては、例えば、ボールネジ軸5の回転中心から半径方向に移動可能とされた移動錘を設ける。
発電機8は、ボールネジ軸5の上端に設けられ、ボールネジ軸5の回転によって一方向またはその反対方向に回転させられることにより電力を発生するものである。
上述の構成とされた波力発電装置1は、波の振動が浮体2に入力されると、波周期に対応するように調整された付加質量体6の付加質量によって、ウェイト3が所定の固有振動数で上下方向に振動する。そして、この振動による往復直線運動に基づいて発電機8を駆動し発電させることによって電力を取り出すようになっている。
本実施形態の波力発電装置1Aは、浮体2の周囲に固定されたバラストタンク(浮力調整手段)10を備えている。バラストタンク10は、図1(a)に示すように、略円筒形状とされた浮体2の全周を囲繞するようなドーナツ形状を有する横断面を有している。また、バラストタンク10は、図1(b)に示すように、浮体2の中央部を含んで高さ方向にわたって延在している。
バラストタンク10には、バラストタンク10内のバラスト水量を調整して浮力を調整するための取水ポンプ12及び排水ポンプ13が設置されている。取水ポンプ12には、浮体2の外部から海水を取水してバラストタンク10内に海水を供給する取水管14に接続されている。排水ポンプ13には、バラストタンク10内のバラスト水を吸い上げて浮体2の外部へと排出する排水管15が接続されている。取水ポンプ12及び排水ポンプ13は、図示しない制御部からの指令によって起動および停止が行われるようになっている。
なお、正逆回転可能なポンプを用いることにより、取水ポンプと排水ポンプを1つのポンプにて構成することとしてもよい。
バラストタンク10には、バラストタンク10内のバラスト水量を調整して浮力を調整するための取水ポンプ12及び排水ポンプ13が設置されている。取水ポンプ12には、浮体2の外部から海水を取水してバラストタンク10内に海水を供給する取水管14に接続されている。排水ポンプ13には、バラストタンク10内のバラスト水を吸い上げて浮体2の外部へと排出する排水管15が接続されている。取水ポンプ12及び排水ポンプ13は、図示しない制御部からの指令によって起動および停止が行われるようになっている。
なお、正逆回転可能なポンプを用いることにより、取水ポンプと排水ポンプを1つのポンプにて構成することとしてもよい。
浮体2の側部すなわちバラストタンク10の側部には、水圧式波高計(波高計)18が設けられている。水圧式波高計18は、水面7の変位を圧力信号として測定するものである。なお、水圧式波高計に代えて、GPS(Global Positioning System)式やレーザー式といった他の方式の波高計を用いても良い。
水圧式波高計18にて得られた波高に関する計測データである波高信号は、図示しない制御部へと送信される。制御部では、波高信号に基づいて、取水ポンプ12及び排水ポンプ13の起動および停止を制御する。
具体的には、制御部は、図2に示すような関係が示されたマップまたは演算式を記憶領域に備えており、浮体2の変位(すなわち波高信号の変化)に対するウェイト3の変位(すなわちウェイト3の振幅)をデータとして予め得ておく。そして、図3(a)に示すように、各時刻における波高信号からウェイト3の変位を得て、ウェイト3が所定の最大変位である第1閾値を超えた場合に、浮体2を沈下させるように制御する。その後、図3(b)に示すように、各時刻における波高信号からウェイト3の変位を得て、ウェイト3が所定の復帰変位である第2閾値を下回った場合に、浮体2を浮上させるように制御する。図2に示しているように、第1閾値よりも第2閾値を小さく設定することで、浮体2の沈下後の再浮上を遅らせて安全性を向上させることが好ましい。ただし、制御の簡素化のために、第1閾値と第2閾値とを同じ値としてもよい。
具体的には、制御部は、図2に示すような関係が示されたマップまたは演算式を記憶領域に備えており、浮体2の変位(すなわち波高信号の変化)に対するウェイト3の変位(すなわちウェイト3の振幅)をデータとして予め得ておく。そして、図3(a)に示すように、各時刻における波高信号からウェイト3の変位を得て、ウェイト3が所定の最大変位である第1閾値を超えた場合に、浮体2を沈下させるように制御する。その後、図3(b)に示すように、各時刻における波高信号からウェイト3の変位を得て、ウェイト3が所定の復帰変位である第2閾値を下回った場合に、浮体2を浮上させるように制御する。図2に示しているように、第1閾値よりも第2閾値を小さく設定することで、浮体2の沈下後の再浮上を遅らせて安全性を向上させることが好ましい。ただし、制御の簡素化のために、第1閾値と第2閾値とを同じ値としてもよい。
上述した本実施形態の波力発電装置1Aは、以下のように動作する。
通常の海象条件では、水圧式波高計18によって計測された波高信号から得られるウェイト3の変位が第1閾値(図2参照)未満となり、波力発電装置1Aは、図1(a)に示したように水面7上に浮かんだ状態で、入射する波とともに浮体2が振動することによって発電を行う。すなわち、波の振動が浮体2に入力されると、波周期に対応するように調整された付加質量体6の付加質量によって、ウェイト3が所定の固有振動数で上下方向に振動し、この振動による往復直線運動に基づいて発電機8を駆動し発電する。発電した電力は、図示しない電力線を介して外部へと送電される。
通常の海象条件では、水圧式波高計18によって計測された波高信号から得られるウェイト3の変位が第1閾値(図2参照)未満となり、波力発電装置1Aは、図1(a)に示したように水面7上に浮かんだ状態で、入射する波とともに浮体2が振動することによって発電を行う。すなわち、波の振動が浮体2に入力されると、波周期に対応するように調整された付加質量体6の付加質量によって、ウェイト3が所定の固有振動数で上下方向に振動し、この振動による往復直線運動に基づいて発電機8を駆動し発電する。発電した電力は、図示しない電力線を介して外部へと送電される。
一方、例えば台風等の荒天時のように波高が高い海象条件では、水圧式波高計18によって計測された波高信号から得られるウェイト3の変位が第1閾値(図2参照)以上となる。そうすると、波力発電装置1Aは、制御部からの指令によって水中に沈下させられる。このとき、制御部からの指令により、発電機8による発電を停止させる。
波力発電装置1Aを沈下させる際には、制御部の指令によって取水ポンプ12を起動し、外部から取水管14を介して海水を取り込む。これにより、バラストタンク10内のバラスト水量が増加して浮力が減少し、波力発電装置1Aが沈下する。所定の水深まで沈下した後に、制御部からの指令によって取水ポンプ12が停止し、その水深にて波力発電装置1Aの位置が保持される。水中では波による影響が減衰しているので、波力発電装置1Aは水中内で大きな動揺が加えられることなく安定して保持される。
波力発電装置1Aを沈下させる際には、制御部の指令によって取水ポンプ12を起動し、外部から取水管14を介して海水を取り込む。これにより、バラストタンク10内のバラスト水量が増加して浮力が減少し、波力発電装置1Aが沈下する。所定の水深まで沈下した後に、制御部からの指令によって取水ポンプ12が停止し、その水深にて波力発電装置1Aの位置が保持される。水中では波による影響が減衰しているので、波力発電装置1Aは水中内で大きな動揺が加えられることなく安定して保持される。
そして、台風が去った後のように海象条件が通常に戻ると、水圧式波高計18によって計測された波高信号から得られるウェイト3の変位が第2閾値(図2参照)を下回る。すると、制御部からの指令によって、波力発電装置1Aは水中から浮上させられる。具体的には、制御部の指令によって排水ポンプ13が起動され、バラストタンク10内から排水管15を介してバラスト水を外部へ排出する。これにより、バラストタンク10内のバラスト水量が減少して浮力が増加し、波力発電装置1Aが浮上する。そして、水面7上まで浮上した後に、制御部からの指令によって排水ポンプ13が停止し、再び発電機8による発電が開始される。
以上の通り、本実施形態にかかる波力発電装置1Aによれば、以下の作用効果を奏する。
バラストタンク10内のバラスト水量の調整によって波力発電装置1Aを水中まで沈下させることができるので、例荒天時のように波高が高い場合に、波力発電装置1Aを水中まで沈下させて安全性を保つことができる。
また、水圧式波高計18からの波高信号によってウェイト3の変位を得ることで波力発電装置1Aの動揺の程度を把握し、波力発電装置1Aを沈下させ、また浮上させるようにしたので、ウェイト3の過剰変位による波力発電装置1A内部の損傷を未然に防ぎ、波力発電装置1Aの安全性および信頼性を確保することができる。
バラストタンク10内のバラスト水量の調整によって波力発電装置1Aを水中まで沈下させることができるので、例荒天時のように波高が高い場合に、波力発電装置1Aを水中まで沈下させて安全性を保つことができる。
また、水圧式波高計18からの波高信号によってウェイト3の変位を得ることで波力発電装置1Aの動揺の程度を把握し、波力発電装置1Aを沈下させ、また浮上させるようにしたので、ウェイト3の過剰変位による波力発電装置1A内部の損傷を未然に防ぎ、波力発電装置1Aの安全性および信頼性を確保することができる。
なお、上述した実施形態では、図2に示したように、波高信号から浮体2の変位を得てウェイト3の変位を把握することとしたが、これに代えて、波高計からの波高信号を直接用いて波力発電装置1Aを沈下または浮上させることとしてもよい。
また、波力発電装置1Aの周囲を捜索するレーダ等の監視手段を別途設け、波力発電装置1Aに接触するおそれのある漂流物を監視することとしてもよい。そして、監視手段によって漂流物が検出され、衝突の可能性が高いと判断されると、漂流物との衝突を回避するために波力発電装置1Aを沈下させる。これにより、波力発電装置1Aと漂流物との衝突を未然に防ぎ、波力発電装置1Aの安全性および信頼性を確保することができる。
また、波力発電装置1Aの周囲を捜索するレーダ等の監視手段を別途設け、波力発電装置1Aに接触するおそれのある漂流物を監視することとしてもよい。そして、監視手段によって漂流物が検出され、衝突の可能性が高いと判断されると、漂流物との衝突を回避するために波力発電装置1Aを沈下させる。これにより、波力発電装置1Aと漂流物との衝突を未然に防ぎ、波力発電装置1Aの安全性および信頼性を確保することができる。
[第2実施形態]
次に、本発明の第2実施形態について、図4〜図7を用いて説明する。
本実施形態は、第1実施形態に対して、バラストタンク10内のバラスト水量の調整の方法が異なる。それ以外については第1実施形態と同様なので、同一符号を付してその説明を省略する。
次に、本発明の第2実施形態について、図4〜図7を用いて説明する。
本実施形態は、第1実施形態に対して、バラストタンク10内のバラスト水量の調整の方法が異なる。それ以外については第1実施形態と同様なので、同一符号を付してその説明を省略する。
図4に示されているように、バラストタンク10の上方には、真空タンク(負圧タンク)21と、圧縮タンク(加圧タンク)23とが設けられている。
また、バラストタンク10には、バラストタンク10内のバラスト水を外部へと排出する排水部と外部から海水を導入する取水部とを兼ねたバラスト配管30が設けられている。バラスト配管30は、図4に示した実施形態では2つとされているが、その数は特に限定されるものではなく、1つあるいは3つ以上であってもよい。
また、バラストタンク10には、バラストタンク10内のバラスト水を外部へと排出する排水部と外部から海水を導入する取水部とを兼ねたバラスト配管30が設けられている。バラスト配管30は、図4に示した実施形態では2つとされているが、その数は特に限定されるものではなく、1つあるいは3つ以上であってもよい。
図5に示されているように、真空タンク21には、真空ポンプ22が接続されており、内部の空気が排気されて負圧となるように構成されている。真空タンク21とバラストタンク10との間には、第1開閉弁24を介して第1接続配管25が設けられている。第1接続配管25からバラストタンク10内の空気を吸い込むようになっている。第1開閉弁24は、図示しない制御部によって開閉動作が制御されるようになっている。
図6に示されているように、圧縮タンク23には、圧縮ポンプ27が接続されており、外部から空気が導入されて加圧されるようになっている。圧縮タンク23とバラストタンク10との間には、第2開閉弁28を介して第2接続配管29が設けられている。第2接続配管29からバラストタンク10内へと空気が導入されるようになっている。第2開閉弁28は、図示しない制御部によって開閉動作が制御されるようになっている。
本実施形態に係る波力発電装置1Bの沈下動作および浮上動作は、以下のようにして行われる。
先ず、第1開閉弁24を閉じた状態で真空ポンプ22を起動し、真空タンク21内を所定の真空度とする。また、第2開閉弁28を閉じた状態で圧縮ポンプ27を起動し、圧縮タンク23内を所定の圧力まで昇圧しておく。
そして、第1実施形態で説明したように制御部から沈下指令が送信されると、第2開閉弁28を閉じたままで第1開閉弁24を開とする。これにより、第1接続配管25を介してバラストタンク10内から空気が真空タンク21へと排出され、バラストタンク10内が負圧とされる。そして、バラスト配管30を介して外部から海水が取り込まれ(図5の矢印参照)、バラストタンク10内のバラスト水の水位が上がり、浮力が減少して、波力発電装置1Bが沈下する。
先ず、第1開閉弁24を閉じた状態で真空ポンプ22を起動し、真空タンク21内を所定の真空度とする。また、第2開閉弁28を閉じた状態で圧縮ポンプ27を起動し、圧縮タンク23内を所定の圧力まで昇圧しておく。
そして、第1実施形態で説明したように制御部から沈下指令が送信されると、第2開閉弁28を閉じたままで第1開閉弁24を開とする。これにより、第1接続配管25を介してバラストタンク10内から空気が真空タンク21へと排出され、バラストタンク10内が負圧とされる。そして、バラスト配管30を介して外部から海水が取り込まれ(図5の矢印参照)、バラストタンク10内のバラスト水の水位が上がり、浮力が減少して、波力発電装置1Bが沈下する。
一方、第1実施形態で説明したように制御部から浮上指令が送信されると、第1開閉弁24を閉じたままで第2開閉弁28を開とする。これにより、圧縮タンク23から第2接続配管29を介してバラストタンク10内へと圧縮空気が供給され、バラストタンク10内が加圧される。そして、バラストタンク10内のバラスト水の水位が押し下げられてバラスト配管30を介して外部へとバラスト水が排出され(図6の矢印参照)、浮力が増加して、波力発電装置1Bが浮上する。
このように、本実施形態によれば、真空タンク21内を真空状態としておき、かつ、圧縮タンク23内を加圧状態としておくという簡便な構成で、波力発電装置1Bを沈下させかつ浮上させることができる。
また、第1開閉弁24及び第2開閉弁28の開閉のみによる空気の流出入で波力発電装置1Bの沈下または浮上を行うことができるので、第1実施形態で説明したような取水ポンプや排水ポンプを用いる場合に比べて、素早く沈下および浮上を行うことができる。
また、第1開閉弁24及び第2開閉弁28の開閉のみによる空気の流出入で波力発電装置1Bの沈下または浮上を行うことができるので、第1実施形態で説明したような取水ポンプや排水ポンプを用いる場合に比べて、素早く沈下および浮上を行うことができる。
なお、本実施形態は、図7のように変形することもできる。
図7に示すように、真空ポンプ22の吸込口を真空タンク21に接続するとともに、真空ポンプ22の排気口を圧縮タンク23に接続する。このような構成とすることにより、1つの真空ポンプ22を駆動することにより、吸込口から真空タンク21内の空気を吸い込み真空タンク内の圧力を負圧にするとともに、真空タンク21から吸い込んだ空気を排気口から圧縮タンク23内に供給して加圧することができる。このように、真空ポンプ22を駆動して同時に負圧および加圧を作り出してバラスト水の調整に用いることができるので、少ない消費エネルギーでバラスト水の調整を行うことができる。
図7に示すように、真空ポンプ22の吸込口を真空タンク21に接続するとともに、真空ポンプ22の排気口を圧縮タンク23に接続する。このような構成とすることにより、1つの真空ポンプ22を駆動することにより、吸込口から真空タンク21内の空気を吸い込み真空タンク内の圧力を負圧にするとともに、真空タンク21から吸い込んだ空気を排気口から圧縮タンク23内に供給して加圧することができる。このように、真空ポンプ22を駆動して同時に負圧および加圧を作り出してバラスト水の調整に用いることができるので、少ない消費エネルギーでバラスト水の調整を行うことができる。
[第3実施形態]
次に、本発明の第3実施形態について、図8〜図11を用いて説明する。
本実施形態は、上述した第1実施形態および第2実施形態に対して、複数の浮体2を用いている点で相違する。以下の説明では、第1実施形態および第2実施形態と共通する構成については、同一符号を付してその説明を省略する。
次に、本発明の第3実施形態について、図8〜図11を用いて説明する。
本実施形態は、上述した第1実施形態および第2実施形態に対して、複数の浮体2を用いている点で相違する。以下の説明では、第1実施形態および第2実施形態と共通する構成については、同一符号を付してその説明を省略する。
図8に示されているように、本実施形態にかかる波力発電装置1Cは、4つの浮体2を平面視して2行2列として互いに固定した状態で用いている。それぞれの浮体2内には、図示していないが、図1(a)を用いて説明したように、ウェイト3、バネ4、発電機8等の波力発電を行う主要構成が設けられている。
各浮体2は、支持枠体32に対してワイヤロープ34によって固定されている。支持枠体32は、平面視して略正方形の外形を有する板状体であり、四角形状の4つの孔部32aが平面視して2行2列となるように形成されている。各孔部32aに浮体2が挿入された状態でワイヤロープ34によって固定されている。ワイヤロープ34は、各浮体2の対向する4箇所にワイヤロープ34が掛けられており、これにより安定的に浮体2が支持枠32に対して固定されている。
支持枠32外側の四隅のそれぞれには、2つずつローラ33が設けられている。各ローラ33は、ローラブラケット35を介して支持枠32の外側部に対して取り付けられている。
支持枠32外側の四隅のそれぞれには、2つずつローラ33が設けられている。各ローラ33は、ローラブラケット35を介して支持枠32の外側部に対して取り付けられている。
支持枠32の四隅をガイドするようにガイド手段36が設けられている。ガイド手段36は、図9に示されているように、水中から上方に向かって略鉛直方向に立設する支柱38と、支柱38の立設方向に沿って延在して支柱38の側面に固定された平板状のガイドブラケット39とを備えている。ガイドブラケット39は、図8に示されているように、四角形横断面とされた支柱38の隣接する2つの面に対してそれぞれ設けられており、支持枠32の四隅の各辺に対して平行な対向面を形成するように取り付けられている。
支持枠32に設けられたローラ33がガイドブラケット39に対して転動することによって、支持枠32が上下方向に円滑に移動させられるようになっている。
支持枠32に設けられたローラ33がガイドブラケット39に対して転動することによって、支持枠32が上下方向に円滑に移動させられるようになっている。
図9に示されているように、各支柱38の下端は、水中に位置する底板41の上面に固定されている。底板41は、板状体とされており、各浮体2が挿通可能とされた孔部41aが形成されている。
底板41は、アンカー(係留手段)42に取り付けられた係留ケーブル(係留手段)43によって、海底に対して固定されている。
底板41は、アンカー(係留手段)42に取り付けられた係留ケーブル(係留手段)43によって、海底に対して固定されている。
図10には、図9に示された浮体2の1つを平面視した状態が示されている。同図に示されているように、浮体2の外周には、平面視して四角形とされたバラストタンク10が設けられている。このバラストタンク10内のバラスト水量を調整することによって浮体2の浮力を調整する点は、上述した第1実施形態および第2実施形態と同様である。同図には、浮体2の四隅がワイヤロープ34によって支持枠32に固定されている状態が示されている。
次に、図11を用いて、上述した波力発電装置1Cの沈下動作について説明する。
図11(a)は、通常の海象条件にて発電を行っている状態を示す。
例えば台風等の荒天時のように波高が高い海象条件になると、図11(b)に示すように、バラストタンク10内のバラスト水量を調整することによって浮力を調整し、支持枠32とともに浮体2を水中へと沈下させる。このときに、支持枠32はガイド手段36によって水平方向の移動を規制されつつ上下方向にガイドされるので、円滑に沈下動作が行われる。
さらに、波高が大きい場合には、図11(c)に示すように、さらに下降させ、底板41に形成した孔部41a内に浮体2が挿入される状態まで位置させる。これにより、底板41と同等の深度まで浮体2を沈下させることができる。
図11(a)は、通常の海象条件にて発電を行っている状態を示す。
例えば台風等の荒天時のように波高が高い海象条件になると、図11(b)に示すように、バラストタンク10内のバラスト水量を調整することによって浮力を調整し、支持枠32とともに浮体2を水中へと沈下させる。このときに、支持枠32はガイド手段36によって水平方向の移動を規制されつつ上下方向にガイドされるので、円滑に沈下動作が行われる。
さらに、波高が大きい場合には、図11(c)に示すように、さらに下降させ、底板41に形成した孔部41a内に浮体2が挿入される状態まで位置させる。これにより、底板41と同等の深度まで浮体2を沈下させることができる。
以上の通り、本実施形態の波力発電装置1Cによれば、以下の作用効果を奏する。
ガイド手段36によって、波力発電装置1Cの沈下および浮上に伴う上下動をガイドすることにより、波力発電装置1Cの沈下および浮上を軌道に沿って円滑に上下動させることができる。
また、複数の浮体2を固定した状態でガイドすることにより、浮体2ごとにガイド手段を設ける必要がないので、構造の簡素化によりコスト低減を図ることができる。また、複数の浮体2をユニット化してガイドするので、各浮体2に設けられた発電機8(図1(a)参照)からの出力を総合して発電することができる。
また、アンカー42及び係留ケーブル43によって海底から係留した底板41に対してガイド手段36の支柱38の下端を固定することとした。これにより、水深が深い海域であっても、海底まで到達する長い支柱38を用いる必要がない。また、底板41は水中に係留され、水中は波浪による影響が小さいので、安定した姿勢でガイド手段36を支持することができる。
また、底板41に孔部41aを形成し、浮体2が挿通できるようにした。これにより、底板41と同等位置まで浮体2を沈下させることができる。また、底板41に孔部41aを形成することにより、孔部41aから水が出入りすることによるダンピング機能により、底板41の姿勢をより安定させることができる。
なお、本実施形態では、底板41を用いてガイド手段36を支持することとしたが、水深の浅い領域では、底板41を省略して、ガイド手段36の支柱38の下端を海底に直接固定することとしてもよい。
ガイド手段36によって、波力発電装置1Cの沈下および浮上に伴う上下動をガイドすることにより、波力発電装置1Cの沈下および浮上を軌道に沿って円滑に上下動させることができる。
また、複数の浮体2を固定した状態でガイドすることにより、浮体2ごとにガイド手段を設ける必要がないので、構造の簡素化によりコスト低減を図ることができる。また、複数の浮体2をユニット化してガイドするので、各浮体2に設けられた発電機8(図1(a)参照)からの出力を総合して発電することができる。
また、アンカー42及び係留ケーブル43によって海底から係留した底板41に対してガイド手段36の支柱38の下端を固定することとした。これにより、水深が深い海域であっても、海底まで到達する長い支柱38を用いる必要がない。また、底板41は水中に係留され、水中は波浪による影響が小さいので、安定した姿勢でガイド手段36を支持することができる。
また、底板41に孔部41aを形成し、浮体2が挿通できるようにした。これにより、底板41と同等位置まで浮体2を沈下させることができる。また、底板41に孔部41aを形成することにより、孔部41aから水が出入りすることによるダンピング機能により、底板41の姿勢をより安定させることができる。
なお、本実施形態では、底板41を用いてガイド手段36を支持することとしたが、水深の浅い領域では、底板41を省略して、ガイド手段36の支柱38の下端を海底に直接固定することとしてもよい。
[第4実施形態]
次に、本発明の第4実施形態について、図12〜図14を用いて説明する。
本実施形態は、上述した第1実施形態乃至第3実施形態に対して、浮体2内に漏水感知センサーを設けている点で相違する。以下の説明では、第1実施形態乃至第3実施形態と共通する事項については、同一符号を付してその説明を省略する。
次に、本発明の第4実施形態について、図12〜図14を用いて説明する。
本実施形態は、上述した第1実施形態乃至第3実施形態に対して、浮体2内に漏水感知センサーを設けている点で相違する。以下の説明では、第1実施形態乃至第3実施形態と共通する事項については、同一符号を付してその説明を省略する。
図12に示されているように、本実施形態にかかる波力発電装置1Dは、漏水感知センサー45を備えている。具体的には、浮体2内のベースプレート9上に1つと、浮体2の底部に1つとを備えている。ただし、漏水感知センサーの個数はこれに限定されるものではなく、浮体2内に外部から海水が浸入したことを検知できる位置に設置されていればよい。
図13には、漏水感知センサー45によって漏水が検知された場合の制御ブロック図が示されている。
漏水検知センサー45にて漏水が検知されると、制御部により、ロック機構(ロック手段)47に対して、ウェイト3の振動を停止する指令が送信される。また、これと同時に、制御部の発報部49から、波力発電装置1Dを監視する監視側へ漏水感知警報が送信される。
また、制御部は、ロック機構47に停止指令を送信した後に、発電機8の電源を遮断する電源遮断装置51へと遮断指令を送信する。これにより、発電機8の動作が停止される。
漏水検知センサー45にて漏水が検知されると、制御部により、ロック機構(ロック手段)47に対して、ウェイト3の振動を停止する指令が送信される。また、これと同時に、制御部の発報部49から、波力発電装置1Dを監視する監視側へ漏水感知警報が送信される。
また、制御部は、ロック機構47に停止指令を送信した後に、発電機8の電源を遮断する電源遮断装置51へと遮断指令を送信する。これにより、発電機8の動作が停止される。
図14には、ロック機構47の具体例が示されている。
ロック機構47は、ロック用ボールネジ軸53と、このロック用ボールネジ軸53を回転駆動する電動モータ55と、ロック用ボールネジ軸53の回転にともない上下動するロック用ナット57とを備えている。
ロック用ボールネジ軸53の下端は、ベースプレート9に対して回転自在に固定されている。また、ロック用ボールネジ軸53の上端には、電動モータ55が接続されている。ロック用ボールネジ軸53は、ウェイト3に形成された孔部を挿通するように配置されている。
電動モータ55は、制御部からの指令によって起動停止されるようになっている。
ロック用ナット57は、ロック用ボールネジ軸53に対して螺合されており、ロック用ボールネジ軸53の回転に伴い、送りネジ方式によって上下方向に移動できるようになっている。
通常時すなわち発電時には、ウェイト3を自由振動させる必要があるので、ロック用ナット57は電動モータ55近傍の上方に退避させられて、ウェイト3に接触しないようになっている。そして、漏水感知センサー45によって漏水が検知されると、制御部の指令によって電動モータ55が駆動されてロック用ボールネジ軸53が回転させられることによってロック用ナット57が下方へと移動し、図14(a)に示すように、ウェイト4に接触する。これにより、ウェイト4の振動が停止させられる。
より確実にウェイト4を停止させる場合には、図14(b)に示すように、ロック用ナット57を更に下方へと移動させ、バネ4が自然長よりも短くなるようにしてバネ4を圧縮する。これにより、ウェイト5を強制的にロックすることができる。
ロック機構47は、ロック用ボールネジ軸53と、このロック用ボールネジ軸53を回転駆動する電動モータ55と、ロック用ボールネジ軸53の回転にともない上下動するロック用ナット57とを備えている。
ロック用ボールネジ軸53の下端は、ベースプレート9に対して回転自在に固定されている。また、ロック用ボールネジ軸53の上端には、電動モータ55が接続されている。ロック用ボールネジ軸53は、ウェイト3に形成された孔部を挿通するように配置されている。
電動モータ55は、制御部からの指令によって起動停止されるようになっている。
ロック用ナット57は、ロック用ボールネジ軸53に対して螺合されており、ロック用ボールネジ軸53の回転に伴い、送りネジ方式によって上下方向に移動できるようになっている。
通常時すなわち発電時には、ウェイト3を自由振動させる必要があるので、ロック用ナット57は電動モータ55近傍の上方に退避させられて、ウェイト3に接触しないようになっている。そして、漏水感知センサー45によって漏水が検知されると、制御部の指令によって電動モータ55が駆動されてロック用ボールネジ軸53が回転させられることによってロック用ナット57が下方へと移動し、図14(a)に示すように、ウェイト4に接触する。これにより、ウェイト4の振動が停止させられる。
より確実にウェイト4を停止させる場合には、図14(b)に示すように、ロック用ナット57を更に下方へと移動させ、バネ4が自然長よりも短くなるようにしてバネ4を圧縮する。これにより、ウェイト5を強制的にロックすることができる。
このように、本実施形態の波力発電装置1Dによれば、漏水時に、ウェイト3の振動を停止させるとともに、発電機8の動作を停止することとした。これにより、漏水による発電機のスパーク等によって生じる機器の損傷を未然に防ぐことができる。また、波力発電装置1Dを監視する監視側へ漏水感知警報を発することとしたので、波力発電装置1Dが監視側から離れていても、波力発電装置1Dの状態を的確に把握することができる。
なお、波力発電装置1Dを監視する監視側へ、漏水の情報だけでなく、ロック機構47の動作情報や、発電機の停止情報等を報知するようにしてもよい。
また、本実施形態の漏水感知センサーによる安全動作は、上述した第1乃至第3実施形態ならびに後述の実施形態にも適用できるものである。
なお、波力発電装置1Dを監視する監視側へ、漏水の情報だけでなく、ロック機構47の動作情報や、発電機の停止情報等を報知するようにしてもよい。
また、本実施形態の漏水感知センサーによる安全動作は、上述した第1乃至第3実施形態ならびに後述の実施形態にも適用できるものである。
[第5実施形態]
次に、本発明の第5実施形態について、図15を用いて説明する。
本実施形態は、上述した第1実施形態乃至第4実施形態とともに利用できる波力発電装置の制御方法である。以下の説明では、上述した各実施形態と共通する事項については、同一符号を付してその説明を省略する。
次に、本発明の第5実施形態について、図15を用いて説明する。
本実施形態は、上述した第1実施形態乃至第4実施形態とともに利用できる波力発電装置の制御方法である。以下の説明では、上述した各実施形態と共通する事項については、同一符号を付してその説明を省略する。
図15には、一例として図9の波力発電装置1Cを用いた場合が示されている。
波力発電装置1Cは、ブイ式波高計60と、ブイ式波高計60からの波高信号を受信する受信器62とを備えている。
ブイ式波高計60は、水中に位置するセンサー部60aと、センサー部60aを吊り下げた状態で上方から支持するブイ60bと、センサー部60aで計測された波高データを送信する送信器60cとを備えている。これにより、ブイ式波高計60は、浮体2を備えた本体側から所定距離離間した位置に配置され、浮体2に入射する波を事前に予測することができる。センサー部60aには、例えば水圧式波高計が用いられる。
受信器62は、支柱38の上部に固定されている。なお、受信器62の位置は、本実施形態のように遠方まで見渡せる位置に設けることが好ましいが、その設置位置は本実施形態に限定されるものではない。
波力発電装置1Cは、ブイ式波高計60と、ブイ式波高計60からの波高信号を受信する受信器62とを備えている。
ブイ式波高計60は、水中に位置するセンサー部60aと、センサー部60aを吊り下げた状態で上方から支持するブイ60bと、センサー部60aで計測された波高データを送信する送信器60cとを備えている。これにより、ブイ式波高計60は、浮体2を備えた本体側から所定距離離間した位置に配置され、浮体2に入射する波を事前に予測することができる。センサー部60aには、例えば水圧式波高計が用いられる。
受信器62は、支柱38の上部に固定されている。なお、受信器62の位置は、本実施形態のように遠方まで見渡せる位置に設けることが好ましいが、その設置位置は本実施形態に限定されるものではない。
ブイ式波高計60によって検出させた波高信号は、ブイ式波高計60の送信器60cから受信器62へと送信される。受信器62にて受信した波高信号は、制御部へと送られ、所定の演算が行われる。そして、波高信号に基づいて演算された浮体2の予測振動が、通常の海象条件のように所定値以下の場合には、図15(a)に示すように、水面上に浮体2を浮かせた状態で発電する。
一方、波高信号に基づいて演算された浮体2の予測振動が、台風等のような荒天時の海象条件のように所定値以上となる場合には、図15(b)に示すように、バラスト水量を増加させることによって浮力を調整し、浮体2を沈下させる。波力発電装置1Cは、この水深位置にて発電を継続する。すなわち、荒天時のように波高が高い場合であっても、所定の水深では発電に適した振動が得られる場合があるからである。この水深位置は、制御部に予め格納された予備実験データ等に基づいて決定される。
さらに波高が高い場合には、図15(c)に示すように、バラスト水量をさらに増加させることによって浮力を調整し、発電に適した水深まで浮体2を沈下させる。
一方、波高信号に基づいて演算された浮体2の予測振動が、台風等のような荒天時の海象条件のように所定値以上となる場合には、図15(b)に示すように、バラスト水量を増加させることによって浮力を調整し、浮体2を沈下させる。波力発電装置1Cは、この水深位置にて発電を継続する。すなわち、荒天時のように波高が高い場合であっても、所定の水深では発電に適した振動が得られる場合があるからである。この水深位置は、制御部に予め格納された予備実験データ等に基づいて決定される。
さらに波高が高い場合には、図15(c)に示すように、バラスト水量をさらに増加させることによって浮力を調整し、発電に適した水深まで浮体2を沈下させる。
このように、本実施形態によれば、ブイ式波高計60からの波高信号に基づいて、波力発電装置1Cが所望の電力を出力する沈下位置となるようにバラスト水量を制御することとしたので、波高が大きい場合であっても水中にて発電させることができる。これにより、波力発電装置の利用率を向上させることができる。
なお、本実施形態では、波高計としてブイ式波高計60を用いることとしたが、浮体2に入射する波高データが得られるものであればよく、例えば超音波式やレーザー式の波高計を支柱38又は浮体2に設置することとしてもよい。
なお、本実施形態では、波高計としてブイ式波高計60を用いることとしたが、浮体2に入射する波高データが得られるものであればよく、例えば超音波式やレーザー式の波高計を支柱38又は浮体2に設置することとしてもよい。
1A,1B,1C,1D 波力発電装置
2 浮体(浮体本体)
3 ウェイト(振動体)
4 バネ
5 ボールネジ軸
6 付加質量体
8 発電機
10 バラストタンク
12 取水ポンプ
13 排水ポンプ
14 取水管
15 排水管
18 水圧式波高計
21 真空タンク(負圧タンク)
22 真空ポンプ
23 圧縮タンク(加圧タンク)
24 第1開閉弁
27 圧縮ポンプ
28 第2開閉弁
30 バラスト配管(取水部,排水部)
32 支持枠体
36 ガイド手段
38 支柱
39 ガイドブラケット
41 底板
41a 孔部
42 アンカー(係留手段)
43 係留ケーブル(係留手段)
45 漏水感知センサー
47 ロック機構(ロック手段)
60 ブイ式波高計
62 受信器
2 浮体(浮体本体)
3 ウェイト(振動体)
4 バネ
5 ボールネジ軸
6 付加質量体
8 発電機
10 バラストタンク
12 取水ポンプ
13 排水ポンプ
14 取水管
15 排水管
18 水圧式波高計
21 真空タンク(負圧タンク)
22 真空ポンプ
23 圧縮タンク(加圧タンク)
24 第1開閉弁
27 圧縮ポンプ
28 第2開閉弁
30 バラスト配管(取水部,排水部)
32 支持枠体
36 ガイド手段
38 支柱
39 ガイドブラケット
41 底板
41a 孔部
42 アンカー(係留手段)
43 係留ケーブル(係留手段)
45 漏水感知センサー
47 ロック機構(ロック手段)
60 ブイ式波高計
62 受信器
Claims (15)
- 浮体本体と、
該浮体本体の内部にバネを介して取り付けられ、該浮体本体の変動に応じて振動する振動体と、
前記浮体本体の内部に設けられ、前記振動体の振動により駆動されて発電する発電機と、
を備えた波力発電装置において、
前記浮体本体を水中まで沈下させる浮力調整手段と、
該浮力調整手段の浮力を制御する制御部と、
を備えていることを特徴とする波力発電装置。 - 前記浮力調整手段は、前記浮体本体に取り付けられたバラストタンクと、該バラストタンク内のバラスト水量を調整するバラスト水量調整手段と、を備えていることを特徴とする請求項1に記載の波力発電装置。
- 前記バラスト水量調整手段は、前記バラストタンク内のバラスト水を外部へ排出する排水ポンプと、外部から水を該バラストタンク内へと供給する取水ポンプとを備えていることを特徴とする請求項2に記載の波力発電装置。
- 前記水量調整手段は、前記バラストタンクに第1開閉弁を介して接続された負圧タンクと、該バラストタンクに第2開閉弁を介して接続された加圧タンクと、前記負圧タンクに接続された真空ポンプと、前記加圧タンクに接続された圧縮ポンプと、前記バラストタンク内のバラスト水を外部へ排出する排水部と、前記バラストタンク内に水を取り入れる取水部と、を備えていることを特徴とする請求項2に記載の波力発電装置。
- 前記水量調整手段は、前記バラストタンクに第1開閉弁を介して接続された負圧タンクと、該バラストタンクに第2開閉弁を介して接続された加圧タンクと、前記負圧タンクに吸引口が接続されるとともに前記加圧タンクに排気口が接続された真空ポンプと、前記バラストタンク内のバラスト水を外部へ排出する排水部と、前記バラストタンク内に水を取り入れる取水部と、を備えていることを特徴とする請求項2に記載の波力発電装置。
- 前記制御部は、周囲の波高を計測する波高計からの計測データを得て、又は、前記振動体の振動変位データを得て、又は、周囲の漂流物の検出データを得て、前記浮力調整手段を制御することを特徴とする請求項1から5のいずれかに記載の波力発電装置。
- 前記制御部は、周囲の波高を計測する波高計からの計測データを得て、前記発電機が所望の電力を出力する沈下位置となるように、前記浮力調整手段を制御することを特徴とする請求項1から5のいずれかに記載の波力発電装置。
- 沈下および浮上に伴う上下動をガイドするガイド手段を備えていることを特徴とする請求項1から7のいずれかに記載の波力発電装置。
- 複数の前記浮体本体を固定した状態でガイドすることを特徴とする請求項8に記載の波力発電装置。
- 前記ガイド手段の下端に接続されて水中に位置する底板と、
該底板を海底から係留する係留手段と、
を備えていることを特徴とする請求項8又は9に記載の波力発電装置。 - 前記底板には、前記浮体本体が挿通可能とされた孔部が形成されていることを特徴とする請求項10に記載の波力発電装置。
- 前記浮体本体内に水が浸入したことを検出する漏水感知センサーと、
前記振動体の振動を停止させるロック手段と、
を備え、
前記制御部は、前記漏水感知センサーの検出結果に基づいて、前記ロック手段を制御することを特徴とする請求項1から11のいずれかに記載の波力発電装置。 - 前記制御部は、前記漏水感知センサーの検出結果に基づいて、前記発電機の動作を停止することを特徴とする請求項12に記載の波力発電装置。
- 浮体本体と、
該浮体本体の内部にバネを介して取り付けられ、該浮体本体の変動に応じて振動する振動体と、
前記浮体本体の内部に設けられ、前記振動体の振動により駆動されて発電する発電機と、
を備えた波力発電装置において、
前記浮体本体内に水が浸入したことを検出する漏水感知センサーと、
前記振動体の振動を停止させるロック手段と、
を備え、
前記制御部は、前記漏水感知センサーの検出結果に基づいて、前記ロック手段を制御することを特徴とする波力発電装置。 - 浮体本体と、
該浮体本体の内部にバネを介して取り付けられ、該浮体本体の変動に応じて振動する振動体と、
前記浮体本体の内部に設けられ、前記振動体の振動により駆動されて発電する発電機と、
を備えた波力発電装置の制御方法において、
前記浮体本体を水中まで沈下させるように該浮体本体の浮力を制御することを特徴とする波力発電装置の制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012014352A JP2013155610A (ja) | 2012-01-26 | 2012-01-26 | 波力発電装置およびその制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012014352A JP2013155610A (ja) | 2012-01-26 | 2012-01-26 | 波力発電装置およびその制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013155610A true JP2013155610A (ja) | 2013-08-15 |
Family
ID=49051074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012014352A Pending JP2013155610A (ja) | 2012-01-26 | 2012-01-26 | 波力発電装置およびその制御方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013155610A (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016113986A (ja) * | 2014-12-16 | 2016-06-23 | 三井造船株式会社 | 波力発電装置用フロート |
JP2016113987A (ja) * | 2014-12-16 | 2016-06-23 | 三井造船株式会社 | 波力発電装置の非常時対応方法 |
JP2017522497A (ja) * | 2015-03-05 | 2017-08-10 | 翁文凱 | 1種の風力と補完することで発電を続ける波力給電システム |
CN111188722A (zh) * | 2020-03-11 | 2020-05-22 | 金华落日新能源科技有限公司 | 一种利用海洋潮汐能的小型便携发电机 |
CN113045009A (zh) * | 2021-03-10 | 2021-06-29 | 机械工业第九设计研究院有限公司 | 一种汽车涂装线油水分离系统 |
WO2021200551A1 (ja) * | 2020-04-01 | 2021-10-07 | 国立大学法人東京大学 | 波力発電制御方法、波力発電制御装置、波力発電装置、及びフロート |
CN114017245A (zh) * | 2021-11-03 | 2022-02-08 | 南方科技大学 | 一种浮式点吸收波浪能发电装置及其发电方法 |
CN114313125A (zh) * | 2022-01-05 | 2022-04-12 | 四川宏华石油设备有限公司 | 漂浮式基础及其主动压载系统 |
JP7162313B1 (ja) * | 2021-10-19 | 2022-10-28 | 株式会社グローバルエナジーハーベスト | 発電システム |
WO2023169169A1 (zh) * | 2022-03-07 | 2023-09-14 | 于光远 | 一种海浪发电装置 |
-
2012
- 2012-01-26 JP JP2012014352A patent/JP2013155610A/ja active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016113986A (ja) * | 2014-12-16 | 2016-06-23 | 三井造船株式会社 | 波力発電装置用フロート |
JP2016113987A (ja) * | 2014-12-16 | 2016-06-23 | 三井造船株式会社 | 波力発電装置の非常時対応方法 |
JP2017522497A (ja) * | 2015-03-05 | 2017-08-10 | 翁文凱 | 1種の風力と補完することで発電を続ける波力給電システム |
CN111188722A (zh) * | 2020-03-11 | 2020-05-22 | 金华落日新能源科技有限公司 | 一种利用海洋潮汐能的小型便携发电机 |
CN111188722B (zh) * | 2020-03-11 | 2021-01-01 | 浙江弄潮儿智慧科技有限公司 | 一种利用海洋潮汐能的小型便携发电机 |
WO2021200551A1 (ja) * | 2020-04-01 | 2021-10-07 | 国立大学法人東京大学 | 波力発電制御方法、波力発電制御装置、波力発電装置、及びフロート |
CN113045009A (zh) * | 2021-03-10 | 2021-06-29 | 机械工业第九设计研究院有限公司 | 一种汽车涂装线油水分离系统 |
JP7162313B1 (ja) * | 2021-10-19 | 2022-10-28 | 株式会社グローバルエナジーハーベスト | 発電システム |
WO2023067680A1 (ja) * | 2021-10-19 | 2023-04-27 | 株式会社音力発電 | 発電システム |
CN114017245A (zh) * | 2021-11-03 | 2022-02-08 | 南方科技大学 | 一种浮式点吸收波浪能发电装置及其发电方法 |
CN114313125A (zh) * | 2022-01-05 | 2022-04-12 | 四川宏华石油设备有限公司 | 漂浮式基础及其主动压载系统 |
WO2023169169A1 (zh) * | 2022-03-07 | 2023-09-14 | 于光远 | 一种海浪发电装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013155610A (ja) | 波力発電装置およびその制御方法 | |
KR101192659B1 (ko) | 풍력발전장치용 부유식 기초 | |
US6644027B1 (en) | Apparatus for protecting a wave energy converter | |
KR101044753B1 (ko) | 내부격실을 이용한 해상 풍력 발전 시설물 기울기 보정장치 | |
KR101328842B1 (ko) | 해양계측용 로봇 부이 | |
KR100378229B1 (ko) | 웨이브에너지변환기 | |
CN205653814U (zh) | 一种沉箱式海上测风雷达基础结构 | |
JP6476443B2 (ja) | 波力発電システムとこれに用いる伝達体および回転変換部 | |
WO2015045055A1 (ja) | 波力発電システムとこれに用いる伝達体および回転変換部 | |
US20110221209A1 (en) | Buoyancy Energy Cell | |
JP2021504630A (ja) | ブイおよびブイのための設置方法 | |
KR101644549B1 (ko) | 부유식 구조물 | |
JP5351067B2 (ja) | 浮上式防波堤 | |
KR101505713B1 (ko) | 해수면의 파고에 따른 부력과 풍력과 태양광을 이용한 전력발전장치 | |
KR101379025B1 (ko) | 풍력 발전기 설치용 선박 | |
KR101597705B1 (ko) | 해상풍력 석션기초용 수직도 제어 실험장치 | |
US20120213592A1 (en) | Submerging offshore support structure | |
KR20190037642A (ko) | 반잠수식 태양광 발전 시스템 및 그 제어 방법 | |
EP2553260A1 (en) | Wave energy recovery system | |
JP2017154571A (ja) | バキューム式アンカー、及び波力発電設備 | |
KR20090037649A (ko) | 수직기어 구동 일체형 유체흐름 발전장치 | |
JP6922721B2 (ja) | 水流発電装置及び水流発電装置の浮体の浮上方法 | |
KR20130094466A (ko) | 부유형 해양 침입 감지장치 | |
CN108252849B (zh) | 一种圆筒型直线发电机、波浪能发电装置及其监控方法 | |
KR101642613B1 (ko) | 부유식 해상 구조물 |