WO2023169169A1 - 一种海浪发电装置 - Google Patents

一种海浪发电装置 Download PDF

Info

Publication number
WO2023169169A1
WO2023169169A1 PCT/CN2023/076375 CN2023076375W WO2023169169A1 WO 2023169169 A1 WO2023169169 A1 WO 2023169169A1 CN 2023076375 W CN2023076375 W CN 2023076375W WO 2023169169 A1 WO2023169169 A1 WO 2023169169A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
power generation
tank
pipeline
reverse
Prior art date
Application number
PCT/CN2023/076375
Other languages
English (en)
French (fr)
Inventor
于光远
Original Assignee
于光远
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 于光远 filed Critical 于光远
Publication of WO2023169169A1 publication Critical patent/WO2023169169A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/24Buoys container type, i.e. having provision for the storage of material
    • B63B22/26Buoys container type, i.e. having provision for the storage of material having means to selectively release contents, e.g. swivel couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/16Pumping installations or systems with storage reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • This application belongs to the technical field of wave power generation, and specifically relates to a wave power generation device.
  • Utilizing the energy of wave fluctuations to generate electricity is a common way of generating electricity.
  • Wave power generation devices usually include a float and an energy conversion mechanism. The waves push the float to float and then convert it into mechanical energy of the generator through the energy conversion mechanism, thereby generating electricity.
  • the wave power generation device also has a water pumping device, that is, the float drives the water pumping device to extract seawater, and then uses the seawater to generate electricity.
  • a water pumping device that is, the float drives the water pumping device to extract seawater, and then uses the seawater to generate electricity.
  • Commonly used water pumping devices include wheel pumps, piston water pumps, etc. These water pumps can only achieve one-way operation, that is, when the ocean pushes the float up, the water pump works to pump water, and when the float sinks, the wheel pump reverses and the water pump stops. Pumping water, or even reverse pumping, and the reverse suction force of the water pump easily causes air to enter the inside of the water pump, thus affecting the work efficiency.
  • the existing wave power generation device has a low utilization rate of wave wave energy.
  • the water pump only pumps water in a single way when the float floats up, which makes the water pumping process uncontinuous, which in turn results in the inability to continuously and effectively generate electricity, affecting the power generation efficiency and power generation quality. .
  • This application provides a wave power generation device to solve at least one of the above technical problems.
  • a wave power generation device including at least one power generation unit, the power generation unit including a body; a floating box, the floating box can float up and down relative to the body under the buoyancy of seawater; a water tank, the water tank has a drainage pipe, The drainage pipe has a water inlet end and a drainage end, and the height of the water inlet end is higher than the height of the drainage end; a generator set, the generator set is arranged on the drainage pipe; and a water pump, the The water pump has a blade, and both sides of the blade in its own rotation direction are provided with inwardly concave force-bearing arc surfaces, so that the water pump has a forward rotation state and a reverse rotation state driven by the flotation tank; and Water flow pipeline, the water flow pipeline includes a forward water channel and a reverse water channel, and the forward water channel and the reverse water channel are connected in sequence The ocean, the water pump and the water tank. In the forward rotation state, seawater enters the water tank through the forward waterway. In the reverse rotation state, sea
  • the water pump has a forward-rotating water inlet end and a reverse-rotating water inlet end.
  • the forward-rotating water path includes a first pumping pipeline and a first water outlet pipeline.
  • the first pumping pipeline connects the ocean and the forward-rotating water inlet end. end, the first water outlet pipeline connects the reverse water inlet end and the water tank, the reverse water pipeline includes a second water pumping pipeline and a second water outlet pipeline, and the second water pumping pipeline connects the ocean and
  • the reverse water inlet end and the second water outlet pipeline connect the forward water inlet end and the water tank; the first water pumping pipeline, the first water outlet pipeline, and the second water pumping pipe Both the pipeline and the second water outlet pipeline are provided with check valves.
  • the check valve provided in the first water pumping pipeline and all the valves provided in the first water outlet pipeline The check valve is conductive, and in the reversed state, the check valve provided in the second water pumping pipe and the check valve provided in the second water outlet pipe are conductive.
  • the check valve provided in the first water pumping pipeline and the check valve provided in the second water pumping pipeline are structures for one-way communication from the ocean to the direction of the water pump, and are provided in the
  • the check valve of the first water outlet pipeline and the check valve provided in the second water outlet pipeline are structures that conduct one-way communication from the water pump to the water tank; the check valves are both Able to open and close automatically under water pressure.
  • the first water pumping pipeline, the first water outlet pipeline, the second water pumping pipeline and the second water outlet pipeline have an installation cavity, and the access valve is provided in the installation cavity.
  • the stop valve includes a fixed frame, an elastic member and a blocking member.
  • the blocking member is connected to the fixed frame through the elastic member.
  • the blocking member can move relative to the fixed frame so that the passage and stop valve can be moved.
  • the valve has a closed state in which the blocking member presses against the inner wall of the installation cavity, and a conductive state in which the blocking member is separated from the inner wall of the installation cavity.
  • the water pump also has a rotating shaft, and the blades are multiple and are spaced around the rotating shaft.
  • the blades have a proximal end close to the rotating shaft and a distal end far away from the rotating shaft.
  • the width of the proximal end is less than the width of the rotating shaft.
  • the width of the distal end is less than the width of the distal end.
  • One of the body and the flotation tank is provided with a rack extending in the vertical direction, and the other of the two is provided with a gear that cooperates with the rack, and the gear cooperates with the rack to
  • the movement of the flotation tank is limited in the vertical direction, and the gear drives the blade to rotate.
  • the body also includes a support column, an upper limit part and a lower limit part.
  • the upper limit part, the lower limit part and the support column together form a floating space for the movement of the flotation box.
  • the flotation box is placed In the floating space, the gear or the rack is arranged on the support column, and the support column has an accommodation channel inside.
  • the lower limiter is provided with a limiter opening.
  • the flotation box Partial area of the box is placed in the limiting opening.
  • the flotation tank has a cavity inside, and a water inlet valve and a drainage valve are provided at the bottom of the flotation tank.
  • the wave power generation device includes a plurality of power generation units, each of the power generation units is arranged in parallel, and the water tanks of each of the power generation units are connected to each other.
  • the structure of the blade of the water pump is improved, and the force-bearing arc surfaces are provided on both sides of the blade, so that the blade can bear force on both sides, and thus the blade can move on both sides.
  • the wave power generation device is provided with two waterways connecting the ocean, the water pump and the water tank. When the blades rotate forward, the forward water paths are conducted, and the water pump sucks seawater through the forward rotation.
  • the reverse water passage enters the water tank.
  • the reverse water passage is opened, and the water pump sucks seawater into the water tank through the reverse water passage.
  • the water pump can pump water from the ocean in one direction in both directions of the floating box movement, which greatly improves the working efficiency of the water pump, improves the utilization of wave energy, and thereby improves the sustainability of power generation. and power generation quality.
  • the water tank can collect seawater extracted by the water pump, and then use the seawater in the water tank to continuously and steadily discharge it from the drainage pipe, using the height difference to increase the kinetic energy of the seawater, thereby driving the power generation
  • the unit works to generate electricity, thereby achieving continuous and stable power generation, improving power generation efficiency and quality, and reducing the impact of environmental factors on power generation.
  • the water tank can store a certain amount of seawater, when the wind and waves are large, it can A large amount of seawater is stored in the tank, and as long as there is water in the water tank, it can generate electricity, thereby avoiding the problem of low power generation efficiency or failure of the power generation device in calm weather conditions.
  • the water pump has a forward-rotating water inlet end and a reverse-rotating water inlet end.
  • the forward-rotating water path includes a first water pumping pipeline and a first water outlet pipeline.
  • the water pipeline connects the ocean and the forward water inlet end, the first water outlet pipeline connects the reverse water inlet end and the water tank, and the reverse water pipeline includes a second pumping pipeline and a second water outlet pipeline.
  • the second water pumping pipeline connects the ocean and the reverse water inlet end, the second water outlet pipeline connects the forward water inlet end and the water tank;
  • the first water pumping pipeline, the third water pumping pipeline A water outlet pipeline, the second water pumping pipeline and the second water outlet pipeline are all provided with check valves.
  • the water pump When the flotation tank floats and drives the blades to rotate forward, the water pump generates suction force at the forward-rotating water inlet end to pump water, and seawater enters the water pump through the first pumping pipeline. Drainage at the reverse water inlet end, the The seawater in the water pump enters the water tank through the first water outlet pipe; when the floating tank sinks to drive the blades to reverse, the water pump generates suction force at the reverse water inlet end to pump water. Seawater enters the water pump through the second water pumping pipe, and the water pump drains water at the forward water inlet end. Seawater in the water pump enters the water tank through the second water outlet pipe.
  • the setting of the check valve ensures the corresponding working status of the water pump and the water flow pipeline, improves the reliability of the work, ensures the orderly flow of seawater in the water flow pipeline, and avoids certain problems. Pipes interfere with other pipes and avoid turbulence.
  • the first water pumping pipeline, the first water outlet pipeline, the second water pumping pipeline and the second water outlet pipeline have an installation cavity, and the passage and stop The valve is arranged in the installation cavity.
  • the check valve includes a fixed frame, an elastic member and a blocking member.
  • the blocking member is connected to the fixed frame through the elastic member.
  • the blocking member can be relative to the The fixed frame moves so that the check valve has a closed state in which the blocking member presses against the inner wall of the installation cavity, and a conductive state in which the blocking member is separated from the inner wall of the installation cavity.
  • the check valve When the check valve is pushed up by the water flow on one side of the blocking member, the elastic member is compressed, causing the blocking member to move toward the fixed frame, and then separate from the inner wall of the installation cavity so that the This pipeline is connected, and when the thrust of the water flow is less than the elastic force of the elastic member, the blocking member is pushed up by the elastic member and resets, restoring the blocking state.
  • the fixing bracket On the contrary, if the check valve is stressed on one side of the fixing bracket, the fixing bracket is fixed in position and cannot be conducted.
  • the one-way communication and automatic opening and closing of the check valve are realized, ensuring that the water flow in the water flow pipeline always flows along the preset pumping direction and preventing the seawater from flowing back. It also saves labor and eliminates the need to manually control the opening and closing of the check valve, which improves automation and user experience.
  • the body further includes a support column, an upper limit part and a lower limit part, and the upper limit part, the lower limit part and the support column together form a space for the floating
  • the floating space is a floating space for the movement of the tank.
  • the lower limiting part is provided with a limited opening. When the floating tank sinks to the bottom, a part of the floating tank is placed in the limited opening.
  • the setting of the limit opening facilitates the seawater to rise up from the limit opening into the floating space, push the flotation box from the bottom of the flotation box, and cause the flotation box to be vertically
  • the floating tank floats due to the upward thrust, preventing the floating tank from being subjected to a large horizontal thrust, causing the position of the floating tank to deviate or affecting the normal transmission of the transmission structure.
  • the limit opening can form a limit stop for the flotation tank, thereby making the position of the flotation tank more stable and preventing it from being damaged. It may fall off or be damaged due to the lateral impact of larger waves.
  • the floating tank has a cavity inside, and a water inlet valve and a drainage valve are provided at the bottom of the floating tank.
  • the water inlet valve can be opened to make the floating
  • the inside of the tank is filled with seawater and sinks below the sea level to prevent the floating tank from being damaged by typhoons.
  • the drainage valve is opened to drain the seawater inside the chamber to restore its floating function.
  • Figure 1 is a schematic structural diagram of a power generation device according to an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a power generation unit in an embodiment of the present application.
  • Figure 3 is a front view of a power generation unit in an embodiment of the present application.
  • Figure 4 is a right view of the originating unit in an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of the water flow pipeline of the power generation unit according to an embodiment of the present application, in which the forward water channel is in a conductive state;
  • Figure 6 is a schematic structural diagram of the water flow pipeline of the power generation unit according to an embodiment of the present application, in which the reverse water channel is in a conductive state;
  • Figure 7 is an enlarged view of area A in Figure 5;
  • Figure 8 is a schematic structural diagram of a power generation unit in another embodiment of the present application.
  • Figure 9 is an enlarged view of area B in Figure 8.
  • Figure 10 is a cross-sectional view of the flotation tank and the lower limiting portion according to an embodiment of the present application.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection, an electrical connection, or a communication; it can be a direct connection, or an indirect connection through an intermediate medium, or an internal connection between two elements or an interaction between two elements .
  • fixing and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection, an electrical connection, or a communication; it can be a direct connection, or an indirect connection through an intermediate medium, or an internal connection between two elements or an interaction between two elements .
  • the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • a first feature being "on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • reference to the terms “embodiment,” “example,” “an embodiment,” “example,” or “specific example” or the like means that specific features are described in connection with the embodiment or example, Structures, materials, or features are included in at least one embodiment or example of the present application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
  • a wave power generation device includes at least one power generation unit 1.
  • the power generation unit 1 includes a body 2; a flotation box 3.
  • the flotation box 3 can move relative to the target under the buoyancy of seawater.
  • the body 2 floats up and down;
  • the water tank 4 has a drainage pipe 41, the drainage pipe 41 has a water inlet end 411 and a drainage end 412, the water inlet end 411 is located at a height higher than the drainage end 412 The height of the position; the generator set 6, the generator set 6 is arranged on the drainage pipe 41;
  • the water pump 5, the water pump 5 has a blade 51, and both sides of the blade 51 in its own rotation direction are provided with inward
  • the concave force-bearing arc surface 511 allows the water pump 5 to have a forward rotation state and a reverse rotation state driven by the flotation tank 3; and a water flow pipeline, which includes a forward rotation water channel 7 and a reverse rotation state.
  • Waterway 8 the forward waterway 7 and the reverse waterway 8 are connected to the ocean, the water pump 5 and the water tank 4 in sequence.
  • seawater passes through the forward waterway. 7 enters the water tank 4.
  • seawater enters the water tank 4 through the reverse water channel 8.
  • the bottom of the power generation unit 1 When in use, the bottom of the power generation unit 1 is fixed to the seabed, so that part of the power generation unit 1 is located below the sea level and part of the area is above the sea level.
  • the power generation unit 1 has a structure for limiting all
  • the lower limiting portion 24 of the floating tank 3 is at its lowest position, and the lower limiting portion 24 is flush with the sea level.
  • the wave power generation device includes a plurality of the power generation units 1 (in Figure 1 It is shown that there are two power generation units 1 , but other numbers are also possible), each of the power generation units 1 is arranged in parallel, and the water tanks 4 of each of the power generation units 1 are connected to each other.
  • the water pumps 5 of each power generation unit 1 pump seawater into the water tank 4 , store water in the water tank 4 , and use the stable water flow in the water tank 4 to generate electricity continuously. To increase the water storage capacity and store more seawater, it is convenient to use the seawater stored in the water tank 4 to generate electricity in a calm environment.
  • This application does not specifically limit the installation method of the power generation units 1, which can be arbitrarily combined according to the environmental conditions of the water areas where they are installed.
  • the power generation units 1 can be arranged side by side and They are arranged at intervals to reduce wind resistance, relieve the lateral thrust on the power generation device, and prevent the power generation device from tipping over.
  • each of the power generation units 1 can be arranged side by side and closely adjacent to each other to improve structural integrity and facilitate assembly and disassembly.
  • the blades of the existing water pump 5 usually have a cambered surface on one side and a back cambered surface on the other side, so that the blades can only rotate on one side of the cambered surface when driven by the water flow.
  • the blades 51 of the water pump 5 are modified.
  • the structure is improved, and the force-bearing arc surfaces 511 are provided on both sides, so that the blade 51 can receive force on both sides, thereby allowing the blade 51 to rotate in two directions, corresponding to the floating tank respectively.
  • 3's floating process and sinking process for example, when the flotation tank 3 floats, the water pump 5 is in the forward rotation state, and when the flotation tank 3 sinks, the water pump 5 is in the reverse rotation state.
  • the wave power generation device is provided with two waterways connecting the ocean, the water pump 5 and the water tank 4.
  • the forward waterway 7 is turned on, and the water pump 5 suctions Seawater enters the water tank 4 through the forward water path 7.
  • the reverse water path 8 is turned on, and the water pump 5 draws seawater into the water tank through the reverse water path 8. 4.
  • the water pump 5 can pump water from the ocean in one direction in both directions of movement of the floating box 3, and one of the two waterways can be turned on.
  • the water tank 4 can collect the seawater extracted by the water pump 5, and then use the seawater in the water tank 4 to continuously and stably discharge it from the drainage pipe 41, using the height difference to increase the potential energy of the seawater, thereby driving all the seawater.
  • the generator set 6 works to generate electricity, thereby achieving continuous and stable power generation, improving power generation efficiency and quality, and reducing the impact of environmental factors on power generation. Since the water tank 4 can store a certain amount of seawater, when the wind and waves are large, it can A large amount of seawater is stored in the water tank 4, and as long as there is water in the water tank 4, power generation can be performed, thereby avoiding the problem of low power generation efficiency or failure of the power generation device in calm weather conditions.
  • the drainage pipe 41 includes a first drainage pipe and a second drainage pipe, and the first drainage pipe and the second drainage pipe are both provided with the generator set 6, and the first drainage pipe
  • the drainage pipe is arranged at the bottom of the water tank 4, and the second drainage pipe is arranged at one third of the height of the water tank 4.
  • a liquid level sensor is also provided in the water tank 4. When the water tank 4 When seawater triggers the liquid level sensor, it means that the liquid level reaches the limit height. At this time, the automatic control device can be used to control the conduction of the second drainage pipe.
  • the generator set 6 arranged in the first drainage pipe and the generator set 6 arranged in the second drainage pipe both work and generate electricity together.
  • the automatic control device controls the second drain pipe to be closed. At this time, only the first drain pipe is open, and the second drain pipe is used to
  • the generator set 6 is arranged in a drainage pipe to generate electricity.
  • the generator set 6 includes a primary generator 61 and a secondary generator 62 arranged in sequence from top to bottom, so that when water is discharged from the drain pipe 41, Through the first-level generator 61 and the second-level generator 62, power generation is performed twice to maximize the use of water energy, improve the conversion rate of electric energy, and further improve the stability of power generation.
  • the water pump 5 has a forward water inlet end 53 and a reverse water inlet end 54
  • the forward water path 7 includes a first pumping pipeline. 71 and the first water outlet pipe 72.
  • the first water pumping pipe 71 connects the ocean and the forward water inlet end 53.
  • the first water outlet pipe 72 connects the reverse water inlet end 54 and the water tank.
  • the reverse water channel 8 includes a second water pumping pipeline 81 and a second water outlet pipeline 82.
  • the second water pumping pipeline 81 is connected to the ocean and the reverse water inlet end 54.
  • the second water outlet pipeline 82 connects the forward-rotating water inlet end 53 and the water tank 4; the first water pumping pipeline 71, the first water outlet pipeline 72, the second water pumping pipeline 81 and the second water outlet pipeline 82 are all provided with a check valve 9.
  • the check valve 9 provided in the first water pumping pipe 71 and the check valve provided in the first water outlet pipe 72 9 is in conduction.
  • the access valve 9 provided in the second water pumping pipe 81 and the access valve 9 provided in the second water outlet pipe 82 are in conduction.
  • the left side is the forward-rotating water inlet end 53 of the water pump 5
  • the right side is the reverse-rotating water inlet end 54 of the water pump 5.
  • the blade 51 rotates counterclockwise to the forward-rotating state. Clockwise rotation is the reversal state.
  • the flotation tank 3 floats up and drives the blade 51 to rotate forward (counterclockwise rotation in Figure 5)
  • the check valve 9 on the water outlet pipe 72 is turned on, and the water pump 5 generates suction force at the forward-rotating water inlet end 53 (left side in Figure 5) to pump water, and seawater passes through the first pump.
  • water pipes 71 enters the water pump 5 from the forward water inlet end 53 (left side in Figure 5). At this time, the water pump 5 drains water at the reverse water inlet end 54 (right side in Figure 5). The seawater in 5 enters the water tank 4 through the first water outlet pipe 72;
  • the setting of the check valve 9 ensures the correspondence between the working status of the water pump 5 and the water flow pipeline, improves the reliability of the work, ensures the orderly flow of seawater in the water flow pipeline, and avoids One pipeline interferes with other pipelines and avoids turbulence.
  • the check valve 9 can be a solenoid valve, and its opening and closing is controlled electrically.
  • the access valve 9 provided in the first water pumping pipeline 71 and the access valve 9 provided in the second water pumping pipeline 81 The valves 9 are all in one-way communication structure from the ocean to the water pump 5.
  • the check valve 9 provided in the first water outlet pipe 72 and the passage valve 9 provided in the second water outlet pipe 82 The check valves 9 are all structures that conduct one-way communication from the water pump 5 to the water tank 4; the check valves 9 can automatically open and close under the action of water pressure.
  • the check valve 9 is configured as a one-way valve structure, so that the water flow in each pipeline always flows along the preset flow direction, which avoids the water pump 5 from pumping water from the water tank 4 in reverse on the one hand, and the water pump 5 on the other hand. On the one hand, it avoids the collision of bidirectional water flow in the pipeline, causing turbulence and affecting normal pumping operations.
  • one side of the check valve 9 has a force-bearing surface, so that when this side is subject to the pushing force of the water flow, it can be pushed up to make it conductive.
  • the pushing force of the water flow is small, the The check valve 9 is reset to close the corresponding pipeline.
  • the check valve 9 is stressed on the other side, no matter how hard the water flow pushes the check valve 9, it cannot conduct it, thereby realizing one-way communication, and the check valve 9 is in the flow direction.
  • the switch between the conductive and closed states is automatically completed under the action of pushing, without the need for manual control, which improves the automation of the power generation device, and the entire power generation process is automatically performed, improving the user experience.
  • the check valve 9 is provided in the installation cavity 73, the check valve 9 includes a fixed frame 91, an elastic member 92 and a blocking member 93, the blocking member 93 is connected through the elastic member 92
  • the blocking member 93 can move relative to the fixed frame 91 so that the check valve 9 has the sealing force of the blocking member 93 against the inner wall of the installation cavity 73 .
  • the installation cavity 73 is provided with an elastic fitting portion 731 that cooperates with the blocking member 93 at its water inlet.
  • the force-bearing surface of the blocking member 93 faces the preset water flow direction, so that the water flow can easily push up the blocking member 93 and move.
  • the blocking member 93 may be made of elastic material, so that after it contacts the inner wall of the installation cavity 73, it will undergo elastic deformation to block the corresponding pipeline and improve the sealing effect.
  • the blocking member 93 can also be made of hard material, and a layer of elastic sealing member is provided on its stress-bearing surface to achieve abutment sealing.
  • the one-way communication and automatic opening and closing of the check valve 9 are realized, ensuring that the water flow in the water flow pipeline always flows along the preset pumping direction and preventing the seawater from flowing back. In addition, labor is saved, and there is no need to manually control the opening and closing of the check valve 9, which improves automation and user experience.
  • the water pump 5 also has a rotating shaft 52, and the blades 51 are multiple and are spaced around the rotating shaft 52.
  • the blades 51 have a rotating shaft close to the rotating shaft 52.
  • the proximal end of the rotating shaft 52 and the distal end away from the rotating shaft 52 have a width smaller than the width of the distal end.
  • the blade 51 is fan-shaped.
  • the width of the proximal end is smaller, which on the one hand increases the gap between the two adjacent blades 51, thereby increasing the water pumping capacity of the water pump 5, so that the gap between the two adjacent blades 51 can be increased. Store more seawater, thereby increasing pumping efficiency.
  • the gap between two adjacent blades 51 gradually increases from the distal end to the proximal end, so that the water flow flows toward the center of the rotating shaft 52 through the guidance of the force-bearing arc surface 511 , so that the water pump 5 has a certain water storage capacity.
  • the water pump 5 Since the flotation tank 3 will Driven by the waves, the water pump 5 frequently floats up and down, causing the water pump 5 to frequently switch between the forward rotation state and the reverse rotation state. When the water pump 5 rotates, some water will remain in the two adjacent pieces. between the blades 51, thereby ensuring that there is always water in the water pump 5 when the water pump 5 switches the rotation direction, so that the water pump 5 maintains good working performance and avoids air entering the water pump 5, affecting the The water pump 5 works normally.
  • This application does not specifically limit the number of blades 51 , which can be four as shown in Figures 5 to 6 , or can be set to other numbers according to actual usage requirements.
  • the body 2 and the flotation pump 5 are One of the two boxes 3 is provided with a rack 31 extending in the vertical direction, and the other of the two boxes 3 is provided with a gear 22 that cooperates with the rack 31.
  • the gear 22 cooperates with the rack 31 so as to The movement of the flotation tank 3 is limited in the vertical direction, and the gear 22 drives the blade 51 to rotate.
  • the gear 22 and The transmission of the rack 31 has a large transmission force and ensures transmission efficiency.
  • each flotation tank 3 is provided with four sets of gears 22 and racks 31 that cooperate with each other.
  • Each set of gears 22 and racks 31 is provided with one of the water pumps 5 corresponding thereto.
  • This embodiment does not specifically limit the placement positions of the gear 22 and the rack 31, which may be one of the following embodiments:
  • Embodiment 1 In this embodiment, as shown in Figures 8 to 9, the rack 31 is provided on the body 2, and the gear 22 is provided on the flotation tank 3.
  • the gear 22 can drive the water pump 5 to rotate through a telescopic shaft.
  • the body 2 includes a plurality of support columns 21, the support columns 21 surround the flotation tank 3 at intervals, and each of the support columns 21 is provided with the rack. 31.
  • the flotation tank 3 is provided with a plurality of gears 22 corresponding to each other, thereby forming a rack-and-pinion matching structure in each circumferential area of the flotation tank 3 to improve the guidance of the movement of the flotation tank 3, and This makes the movement of the floating box 3 more stable and prevents tilting.
  • Embodiment 2 In this embodiment, as shown in Figures 2 to 3, the rack 31 is provided on the flotation tank 3, and the gear 22 is provided on the body 2.
  • the gear 22 is fixed to the body 2, so that the gear 2 only rotates around the axis without moving relative to the body 2, which improves the relative relationship between the gear 22 and the body 2.
  • Position stability allows the gear 22 and the water pump 5 to be arranged in a coaxial structure, and the rotation of the gear 22 is used to drive the water pump 5 to rotate.
  • the body 2 is provided with a fixed gear 221 and a driving gear 222.
  • the rack 31 is a double-sided rack.
  • the fixed gear 221 and the driving gear 222 are respectively located at Both sides of the rack 31 cooperate with the rack 31 , and the fixed gear 221 and the driving gear 222 are fixed in position relative to the body 2 and can only rotate.
  • the fixed gear 221 is used to guide the movement of the rack 31 and the flotation box 3, and plays a limiting role, so that the two move along the extending direction of the meshing teeth.
  • the driving gear 222 is used to drive the water pump. 5 turns.
  • the body 2 also includes a support column 21, an upper limit portion 23 and a lower limit portion 24.
  • the upper limit portion 23, the lower limit portion 24 and the support column 21 together form a floating space for the movement of the floating box 3.
  • the floating box 3 is placed in the floating space.
  • the gear 22 or the rack 31 is provided on the supporting column 21.
  • the supporting column 21 has an accommodation channel inside.
  • the support column 21, the upper limit portion 23, and the lower limit portion 24 together form the floating space, limiting the movement range of the flotation box 3 within the floating space.
  • the support column 21 It also plays a role in supporting and guiding the movement of the floating tank 3.
  • the water tank 4 is arranged on the top of the body 2 to raise the water tank 4 and use the height difference to drive the water downward.
  • the generator set 6 operates to generate electricity, and the support column 21 supports the water tank 4 to keep it stable.
  • the support column 21 has the accommodation channel inside, which facilitates the installation of various pipelines in the accommodation channel 21, so that the support column 21 protects each pipeline and avoids damage caused by exposure of the pipeline. water leakage. At the same time, the arrangement of pipelines is optimized and the compactness of the structure is improved.
  • the lower limiting portion 24 is provided with a limiting opening 25.
  • a partial area of the flotation tank 3 is placed at the desired position. inside the limiting opening 25.
  • the setting of the limit opening 25 facilitates the seawater to flow up from the limit opening 25 into the floating space, and pushes the flotation box 3 from the bottom of the flotation box 3, so that the flotation box 3 floats.
  • the tank 3 floats up due to the vertical upward thrust, which prevents the floating tank 3 from being subjected to a large horizontal thrust, causing the position of the floating tank 3 to deviate or affecting the normal transmission of the transmission structure.
  • the limit opening 25 can form a limit stop for the flotation tank 3, thereby making the position of the flotation tank 3 more stable. , to prevent it from falling off or being damaged by the lateral impact of large waves.
  • the bottom surface of the floating tank 3 has a floating plane 32 and a water-dividing slope 33.
  • the water-dividing slope 33 is located on both sides of the floating plane 32, so that the floating tank 3 can float.
  • the bottom surface of the tank 3 is similar to the shape of the hull, which is more conducive to the floating movement and the stability of the movement of the floating tank 3.
  • the water-dividing slope 33 guides part of the seawater to the outside, and part of the seawater contacts the floating plane 32 and vertically
  • the floating box 3 is pushed straight upward, and at the same time, the seawater in contact with the water-dividing slope 33 also forms an inward pushing force on both sides of the floating box 3, thereby clamping the floating box 3 to stabilize it.
  • the posture floats up and down to avoid tipping. At the same time, it can also reduce the resistance of the floating box 3 to the waves and improve the efficiency of the floating box 3 to float up and down.
  • the opening area of the limiting opening 25 is larger than that of the floating plane 32 . area, and is smaller than the area projected on the horizontal plane by the floating plane 32 and the water-dividing slope 33 , that is, the projection of the limiting opening 25 toward the floating tank 3 covers the floating plane 32 and part of the water-dividing slope 32 . Water Slope 33. Therefore, when the flotation tank 3 sinks to the bottom, the flotation tank 3 will not completely pass through the limit opening 25 , and only a part of the area will pass through the limit opening 25 , so that the limit opening 25
  • the inner circumference of the float box 3 is a stop to limit it.
  • the flotation tank 3 has a cavity 34 inside, and a water inlet valve and a drainage valve are provided at the bottom of the flotation tank 3.
  • the water inlet valve When there is a typhoon, the water inlet valve can be opened so that the inside of the flotation tank 3 is filled with seawater and sinks below the sea level to prevent the flotation tank 3 from being damaged by the typhoon. When the weather conditions are good, the water inlet valve can be opened.
  • the drainage valve drains the seawater inside the cavity 34 to restore its floating function, which improves the service life of the flotation box 3 and the power generation device's ability to cope with complex weather environments and improves applicability.

Abstract

一种海浪发电装置,包括至少一个发电单元(1),发电单元(1)包括机体(2);漂浮箱(3);水箱(4),水箱(4)具有排水管(41);发电机组(6),发电机组(6)设置于排水管(41);水泵(5),水泵(5)具有叶片(51),叶片(51)两侧设有受力弧面,水泵(5)具有正转状态以及反转状态;水流管路,水流管路包括正转水路(7)和反转水路(8),在正转状态,海水经由正转水路(7)进入水箱(4),在反转状态,海水经由反转水路(8)进入水箱(4)。叶片(51)在两个方向进行转动分别对应漂浮箱(3)的上浮过程和下沉过程,海浪发电装置设置有两条连通海洋、水泵(5)以及水箱(4)的水路,以此实现水泵(5)在漂浮箱(3)运动的双程均能够单向从海洋中抽水,提高了水泵的工作效率和对波浪能的利用率,进而提高了发电的持续性和发电质量。

Description

一种海浪发电装置
本申请要求于2022年03月07日提交中国专利局、申请号为202210225351.7、发明名称为"一种海浪发电装置"的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于海浪发电技术领域,具体涉及一种海浪发电装置。
背景技术
利用海浪波动的能量进行发电,是一种常见的发电方式。
海浪发电装置通常包括浮子和能量转换机构,海浪推动浮子浮动进而通过能量转换机构转换成发电机的机械能,进而实现发电。
一般情况下,海浪发电装置还具有抽水装置,即浮子带动抽水装置抽取海水,再利用这些海水进行发电。常用的抽水装置有轮式水泵、活塞水泵等,这些水泵均只能够实现单程工作,即当海洋推动浮子上浮时,水泵工作抽水,而当浮子下沉时,轮式水泵反转,水泵则停止抽水,甚至出现反向抽水的情况,并且水泵反向的抽吸力容易时水泵内部进入空气,进而影响工作效率。
由此可见,现有海浪发电装置对海浪波动能量的利用率较低,水泵仅在浮子上浮的单程工作抽水,从而使得抽水过程无法连续,进而导致无法持续有效的发电,影响发电效率和发电质量。
发明内容
本申请提供了一种海浪发电装置,以解决上述技术问题中的至少一个。
本申请所采用的技术方案为:
一种海浪发电装置,包括至少一个发电单元,所述发电单元包括机体;漂浮箱,所述漂浮箱能够在海水的浮力作用下相对于所述机体上下浮动;水箱,所述水箱具有排水管,所述排水管具有进水端和排水端,所述进水端所在的位置高度高于所述排水端所在的位置高度;发电机组,所述发电机组设置于所述排水管;水泵,所述水泵具有叶片,所述叶片在自身转动方向上的两侧均设置有向内凹陷的受力弧面,以使所述水泵在所述漂浮箱的带动下具有正转状态以及反转状态;以及水流管路,所述水流管路包括正转水路和反转水路,所述正转水路和所述反转水路均依次连通 海洋、所述水泵以及所述水箱,在所述正转状态,海水经由所述正转水路进入所述水箱,在所述反转状态,海水经由所述反转水路进入所述水箱。
所述水泵具有正转进水端以及反转进水端,所述正转水路包括第一抽水管路和第一出水管路,所述第一抽水管路连通海洋和所述正转进水端,所述第一出水管路连通所述反转进水端和所述水箱,所述反转水路包括第二抽水管路和第二出水管路,所述第二抽水管路连通海洋和所述反转进水端,所述第二出水管路连通所述正转进水端和所述水箱;所述第一抽水管路、所述第一出水管路、所述第二抽水管路以及所述第二出水管路均设置有通止阀,在所述正转状态,设置于所述第一抽水管路的所述通止阀和设置于所述第一出水管路的所述通止阀导通,在所述反转状态,设置于所述第二抽水管路的所述通止阀和设置于所述第二出水管路的所述通止阀导通。
设置于所述第一抽水管路的所述通止阀和设置于所述第二抽水管路的所述通止阀均为自海洋向所述水泵方向单向导通的结构,设置于所述第一出水管路的所述通止阀和设置于所述第二出水管路的所述通止阀均为自所述水泵向所述水箱方向单向导通的结构;所述通止阀均能够在水压作用下自动启闭。
所述第一抽水管路、所述第一出水管路、所述第二抽水管路以及所述第二出水管路具有安装腔,所述通止阀设置于所述安装腔,所述通止阀包括固定架、弹性件以及封堵件,所述封堵件通过所述弹性件连接于所述固定架,所述封堵件能够相对于所述固定架移动,以使所述通止阀具有所述封堵件抵顶所述安装腔的内壁的封闭状态,以及所述封堵件与所述安装腔的内壁脱离的导通状态。
所述水泵还具有转轴,所述叶片为多个且围绕所述转轴间隔设置,所述叶片具有靠近所述转轴的近端,以及远离所述转轴的远端,所述近端的宽度小于所述远端的宽度。
所述机体和所述漂浮箱二者之一设置有沿竖直方向延伸的齿条,二者之另一设置有与所述齿条配合的齿轮,所述齿轮和所述齿条配合,以将所述漂浮箱的运动限制在竖直方向,所述齿轮带动所述叶片转动。
所述机体还包括支撑柱、上限位部以及下限位部,所述上限位部、所述下限位部以及所述支撑柱共同围成供所述漂浮箱运动的漂浮空间,所述漂浮箱置于所述漂浮空间内,所述齿轮或所述齿条设置于所述支撑柱,所述支撑柱内部具有容置通道。
所述下限位部设置有限位开口,所述漂浮箱与所述下限位部接触时,所述漂浮 箱的部分区域置于所述限位开口内。
所述漂浮箱内部具有容腔,所述漂浮箱的底部设置有进水阀门和排水阀门。
所述海浪发电装置包括多个所述发电单元,各个所述发电单元并列排布,且各个所述发电单元的所述水箱互相连通。
由于采用了上述技术方案,本申请所取得的有益效果为:
1.本申请通过对所述水泵的所述叶片进行结构改进,在其两侧均设置所述受力弧面,从而使得所述叶片能够在两侧受力,进而使得所述叶片能够在两个方向进行转动,分别对应所述漂浮箱的上浮过程和下沉过程,例如当所述漂浮箱上浮时所述叶片处于所述正转状态,当所述漂浮箱下沉时所述叶片处于所述反转状态。并且,所述海浪发电装置设置有两条连通海洋、所述水泵以及所述水箱的水路,当所述叶片正转时,所述正转水路导通,所述水泵抽吸海水经由所述正转水路进入所述水箱,当所述叶片反转时,所述反转水路导通,所述水泵抽吸海水经由所述反转水路进入所述水箱。以此实现所述水泵在所述漂浮箱运动的双程均能够单向从海洋中抽水,大大提高了所述水泵的工作效率,提高了对波浪能的利用率,进而提高了发电的持续性和发电质量。
此外,所述水箱能够对所述水泵抽取的海水做收集,然后利用所述水箱内的海水,持续稳定地从所述排水管中排出,利用高度差增大海水的动能,进而带动所述发电机组工作发电,以此实现持续、稳定地发电,提高发电效率和发电质量,减小环境因素对发电的影响,由于所述水箱能够储存一定的海水,当风浪较大时,能够在所述水箱内储存大量的海水,并且只要水箱内有水,即可进行发电,避免风平浪静的天气环境中所述发电装置发电效率低下或无法发电的问题。
2.作为本申请的一种实施方式,所述水泵具有正转进水端以及反转进水端,所述正转水路包括第一抽水管路和第一出水管路,所述第一抽水管路连通海洋和所述正转进水端,所述第一出水管路连通所述反转进水端和所述水箱,所述反转水路包括第二抽水管路和第二出水管路,所述第二抽水管路连通海洋和所述反转进水端,所述第二出水管路连通所述正转进水端和所述水箱;所述第一抽水管路、所述第一出水管路、所述第二抽水管路以及所述第二出水管路均设置有通止阀。当所述漂浮箱上浮带动所述叶片正转时,所述水泵在所述正转进水端产生抽吸力,进行抽水,海水经由所述第一抽水管路进入所述水泵,所述水泵在所述反转进水端排水,所述 水泵内的海水经由所述第一出水管路进入所述水箱;当所述漂浮箱下沉带动所述叶片反转时,所述水泵在所述反转进水端产生抽吸力进行抽水,海水经由所述第二抽水管路进入所述水泵,所述水泵在所述正转进水端排水,所述水泵内的海水经由所述第二出水管路进入所述水箱。所述通止阀的设置,保证了所述水泵与所述水流管路工作状态的对应,提高了工作的可靠性,保证了海水在所述水流管路内有序地流动,避免了某一管路对其他管路造成干扰,以及避免紊流。
3.作为本申请的一种实施方式,所述第一抽水管路、所述第一出水管路、所述第二抽水管路以及所述第二出水管路具有安装腔,所述通止阀设置于所述安装腔,所述通止阀包括固定架、弹性件以及封堵件,所述封堵件通过所述弹性件连接于所述固定架,所述封堵件能够相对于所述固定架移动,以使所述通止阀具有所述封堵件抵顶所述安装腔的内壁的封闭状态,以及所述封堵件与所述安装腔的内壁脱离的导通状态。所述通止阀在所述封堵件一侧受到水流推顶时,所述弹性件被压缩,使得所述封堵件朝向所述固定架移动,进而与所述安装腔的内壁脱离而使该条管路导通,水流推力小于所述弹性件的弹力时,所述封堵件被所述弹性件推顶而复位,恢复封堵状态。相反,若所述通止阀在所述固定架一侧受力,则由于所述固定架的位置固定,无法导通。实现了所述通止阀的单向导通,以及自动启闭,保证了水流在所述水流管路内始终沿预设的抽水方向流动,防止海水倒流。并且节省了劳动力,无需人工控制通止阀的启闭,提高了自动化,提高了使用体验。
4.作为本申请的一种实施方式,所述机体还包括支撑柱、上限位部以及下限位部,所述上限位部、所述下限位部以及所述支撑柱共同围成供所述漂浮箱运动的漂浮空间,所述下限位部设置有限位开口,所述漂浮箱下沉至最底处时,所述漂浮箱的部分区域置于所述限位开口内。所述限位开口的设置,一方面方便海水从所述限位开口处上涌至所述漂浮空间内,从所述漂浮箱的底部推顶所述漂浮箱,使所述漂浮箱受到竖直向上的推力而上浮,防止所述漂浮箱受到较大的水平推力而使所述漂浮箱的位置发生偏移或者影响传动结构的正常传动。另一方面,当因天气原因使所述漂浮箱下沉至底部时,所述限位开口能够对所述漂浮箱形成限位止挡,进而使所述漂浮箱的位置更加稳定,防止其受到较大的海浪横向冲击力而发生脱落或损坏。
5.作为本申请的一种实施方式,所述漂浮箱内部具有容腔,所述漂浮箱的底部设置有进水阀门和排水阀门。当台风天气时,可将所述进水阀门打开,使所述漂浮 箱内部充满海水而下沉至海平面以下,防止所述漂浮箱受到台风袭扰而损坏,当天气条件好时,打开所述排水阀门将所述容腔内部海水排出,使其恢复漂浮功能。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请一实施方式下的发电装置的结构示意图;
图2为本申请一实施方式中的发电单元的结构示意图;
图3为本申请一实施方式中的发电单元的正视图;
图4为本申请一实施方式中的发点单元的右视图;
图5为本申请一种实施方式下的发电单元的所述水流管路的结构示意图,其中正转水路处于导通状态;
图6为本申请一种实施方式下的发电单元的所述水流管路的结构示意图,其中反转水路处于导通状态;
图7为图5中A区域的放大视图;
图8为本申请另一种实施方式下的发电单元的结构示意图;
图9为图8中B区域的放大视图;
图10为本申请一种实施方式下的漂浮箱和所述下限位部的剖视图。
其中:
1发电单元;
2机体;21支撑柱;22齿轮;221固定齿轮;222驱动齿轮;23上限位部;24
下限位部;25限位开口;
3漂浮箱;31齿条;32漂浮平面;33分水斜面;34容腔;
4水箱;41排水管;411进水端;412排水端;
5水泵;51叶片;511受力弧面;52转轴;53正转进水端;54反转进水端;
6发电机组;61一级发电机;62二级发电机;
7正转水路;71第一抽水管路;72第一出水管路;73安装腔;731弹性配合部;
8反转水路;81第二抽水管路;82第二出水管路;
9通止阀;91固定架;92弹性件;93封堵件。
具体实施方式
为了更清楚的阐释本申请的整体构思,下面结合说明书附图以示例的方式进行详细说明。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
另外,在本申请的描述中,需要理解的是,术语“顶”、“底”、“内”、“外”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。在本说明书的描述中,参考术语“实施方式”、“实施例”、“一种实施例”、“示例”或“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。
如图1至图10所示,一种海浪发电装置,包括至少一个发电单元1,所述发电单元1包括机体2;漂浮箱3,所述漂浮箱3能够在海水的浮力作用下相对于所述机体2上下浮动;水箱4,所述水箱4具有排水管41,所述排水管41具有进水端411和排水端412,所述进水端411所在的位置高度高于所述排水端412所在的位置高度;发电机组6,所述发电机组6设置于所述排水管41;水泵5,所述水泵5具有叶片51,所述叶片51在自身转动方向上的两侧均设置有向内凹陷的受力弧面511,以使所述水泵5在所述漂浮箱3的带动下具有正转状态以及反转状态;以及水流管路,所述水流管路包括正转水路7和反转水路8,所述正转水路7和所述反转水路8均依次连通海洋、所述水泵5以及所述水箱4,在所述正转状态,海水经由所述正转水路 7进入所述水箱4,在所述反转状态,海水经由所述反转水路8进入所述水箱4。
在使用时将所述发电单元1的底部固定至海底,使所述发电单元1的部分区域位于海平面以下,部分区域位于海平面以上,可选的,所述发电单元1具有用于限制所述漂浮箱3最低位置的下限位部24,所述下限位部24与海平面齐平。
需要说明的是,本申请对于所述发电单元1的数量不做具体限定,在一种实施方式中,如图1所示,所述海浪发电装置包括多个所述发电单元1(图1中示出所述发电单元1为两个,也可以为其他数量),各个所述发电单元1并列排布,且各个所述发电单元1的所述水箱4互相连通。
各个所述发电单元1的所述水泵5各自抽取海水至所述水箱4中,在所述水箱4内集中蓄水,利用所述水箱4内稳定的水流进行持续不间断的发电。以提高蓄水量,以储存更多的海水,以方便在风平浪静的环境中利用所述水箱4内储存的海水进行发电。
本申请对于所述发电单元1的设置方式不做具体限定,其可以根据所安装水域的环境情况任意组合,例如,在风力较大、环境较恶劣的水域,将各个所述发电单元1并列且间隔设置,以减小风阻,缓解所述发电装置受到的横向推力,防止所述发电装置倾翻。在风力较小的水域,可将各个所述发电单元1并列且紧邻设置,以提高结构整体性,方便装拆。
现有水泵5的叶片通常一侧为弧面另一侧为背弧面,使得叶片只能够在弧面一侧受水流推动而发生转动,本申请通过对所述水泵5的所述叶片51进行结构改进,在其两侧均设置所述受力弧面511,从而使得所述叶片51能够在两侧受力,进而使得所述叶片51能够在两个方向进行转动,分别对应所述漂浮箱3的上浮过程和下沉过程,例如当所述漂浮箱3上浮时所述水泵5处于所述正转状态,当所述漂浮箱3下沉时所述水泵5处于所述反转状态。并且,所述海浪发电装置设置有两条连通海洋、所述水泵5以及所述水箱4的水路,当所述水泵5正转时,所述正转水路7导通,所述水泵5抽吸海水经由所述正转水路7进入所述水箱4,当所述水泵5反转时,所述反转水路8导通,所述水泵5抽吸海水经由所述反转水路8进入所述水箱4。以此实现所述水泵5在所述漂浮箱3运动的双程均能够单向从海洋中抽水,且两条水路择一导通,其中一条水路导通时,另一条水路封闭,从而工作时互不干扰,保证了水流路径有序可靠,避免紊流,大大提高了所述水泵5的工作效率,提高了对波浪能的利用率,进而提高了发电的持续性和发电质量。
所述水箱4能够对所述水泵5抽取的海水做收集,然后利用所述水箱4内的海水,持续稳定地从所述排水管41中排出,利用高度差增大海水的势能,进而带动所 述发电机组6工作发电,以此实现持续、稳定地发电,提高发电效率和发电质量,减小环境因素对发电的影响,由于所述水箱4能够储存一定的海水,当风浪较大时,能够在所述水箱4内储存大量的海水,并且只要水箱4内有水,即可进行发电,避免风平浪静的天气环境中所述发电装置发电效率低下或无法发电的问题。
在一种实施例中,所述排水管41包括第一排水管和第二排水管,且所述第一排水管和所述第二排水管均设置有所述发电机组6,所述第一排水管设置于所述水箱4的底部,所述第二排水管设置于所述水箱4高度的三分之一处,所述水箱4内还设置有液位传感器,当所述水箱4内的海水触发所述液位传感器时,表示液面高度达到限位高度,此时可利用自动控制装置控制所述第二排水管导通,此时所述第一排水管和所述第二排水管共同排水,设置于所述第一排水管的所述发电机组6和设置于所述第二排水管的所述发电机组6均工作,共同发电。当所述水箱4内的液面下降至所述第二排水管以下时,所述自动控制装置控制所述第二排水管封闭,此时仅所述第一排水管导通,利用所述第一排水管设置的所述发电机组6发电。
作为优选,如图1至图4所示,所述发电机组6包括自上而下依次设置的一级发电机61和二级发电机62,以使水流从所述排水管41排出时,依次经过所述一级发电机61和所述二级发电机62,经过两次发电,以最大化利用水的能量,提高电能的转化率,并且进一步提高发电的稳定性。
在本申请的一种实施方式中,如图5至图6所示,所述水泵5具有正转进水端53以及反转进水端54,所述正转水路7包括第一抽水管路71和第一出水管路72,所述第一抽水管路71连通海洋和所述正转进水端53,所述第一出水管路72连通所述反转进水端54和所述水箱4,所述反转水路8包括第二抽水管路81和第二出水管路82,所述第二抽水管路81连通海洋和所述反转进水端54,所述第二出水管路82连通所述正转进水端53和所述水箱4;所述第一抽水管路71、所述第一出水管路72、所述第二抽水管路81以及所述第二出水管路82均设置有通止阀9,在所述正转状态,设置于所述第一抽水管路71的所述通止阀9和设置于所述第一出水管路72的所述通止阀9导通,在所述反转状态,设置于所述第二抽水管路81的所述通止阀9和设置于所述第二出水管路82的所述通止阀9导通。
例如图5所示,左侧为所述水泵5的正转进水端53,右侧为所述水泵5的反转进水端54,所述叶片51逆时针旋转为所述正转状态,顺时针旋转为所述反转状态,当所述漂浮箱3上浮带动所述叶片51正转(图5中逆时针旋转)时,此时,所述第一抽水管路71和所述第一出水管路72上的所述通止阀9导通,所述水泵5在所述正转进水端53(图5中左侧)产生抽吸力,进行抽水,海水经由所述第一抽水管路 71从所述正转进水端53(图5中左侧)进入所述水泵5,此时所述水泵5在所述反转进水端54(图5中右侧)排水,所述水泵5内的海水经由所述第一出水管路72进入所述水箱4;
同理,如图6所示,当所述漂浮箱3下沉带动所述叶片51反转(图6中顺时针旋转)时,所述第二抽水管路81和所述第二出水管路82的所述通止阀9导通,所述水泵5在所述反转进水端54(图6中右侧)产生抽吸力进行抽水,海水经由所述第二抽水管路81进入所述水泵5,所述水泵5在所述正转进水端53(图6中左侧)排水,所述水泵5内的海水经由所述第二出水管路82进入所述水箱4。所述通止阀9的设置,保证了所述水泵5与所述水流管路工作状态的对应,提高了工作的可靠性,保证了海水在所述水流管路内有序地流动,避免了某一管路对其他管路造成干扰,以及避免紊流。
本实施方式对于所述通止阀9的类型不做具体限定,只要能够实现其对应水路的通断即可,例如,所述通止阀9可以为电磁阀,通过电控制其通断。而在一种实施例中,如图5至图6所示,设置于所述第一抽水管路71的所述通止阀9和设置于所述第二抽水管路81的所述通止阀9均为自海洋向所述水泵5方向单向导通的结构,设置于所述第一出水管路72的所述通止阀9和设置于所述第二出水管路82的所述通止阀9均为自所述水泵5向所述水箱4方向单向导通的结构;所述通止阀9均能够在水压作用下自动启闭。
所述通止阀9设置为单向阀结构,使各个管路内的水流始终沿预设的流动方向流动,避免一方面避免了所述水泵5反向从所述水箱4内抽水,另一方面避免了双向流动的水流在管路内发生碰撞,导致紊流,影响正常的抽水操作。
此外,所述通止阀9的一侧具有受力面,进而使得该侧受到水流的推顶力时,能够将其推顶以使其导通,当水流推顶力较小时,则所述通止阀9复位以封闭相应的管路。而所述通止阀9在另一侧受力时,无论水流如何推顶所述通止阀9,都不能使其导通,由此实现单向导通,且所述通止阀9在水流推顶作用下自动完成导通和封闭状态的切换,无需人工控制,提高了所述发电装置的自动化,整个发电过程自动进行,提高了使用体验。
具体而言,如图5至图7所示,所述第一抽水管路71、所述第一出水管路72、所述第二抽水管路81以及所述第二出水管路82具有安装腔73,所述通止阀9设置于所述安装腔73,所述通止阀9包括固定架91、弹性件92以及封堵件93,所述封堵件93通过所述弹性件92连接于所述固定架91,所述封堵件93能够相对于所述固定架91移动,以使所述通止阀9具有所述封堵件93抵顶所述安装腔73的内壁的封 闭状态,以及所述封堵件93与所述安装腔73的内壁脱离的导通状态。
作为一种实施方式,如图7所示,所述安装腔73在其进水口处设置有与所述封堵件93配合的弹性配合部731,所述弹性配合部731与所述封堵件93抵顶以将所述安装腔73的进水口完全密封。
作为一种实施方式,如图7所示,所述封堵件93的受力面朝向预设的水流方向,从而使得水流能够轻松推顶所述封堵件93移动。当所述封堵件93与所述安装腔73的内壁抵顶接触后,则将相应的管路封堵。所述封堵件93可以是由弹性材料制成的结构,以使其与所述安装腔73的内壁抵接后,发生弹性形变以封堵相应管路,提高密封效果。当然,所述封堵件93也可以由硬质材料制成,并在其受力面设置一层弹性密封件,以实现抵接密封。
所述通止阀9在所述封堵件93一侧受到水流推顶时,所述弹性件92被压缩,使得所述封堵件93朝向所述固定架91移动,进而与所述安装腔73的内壁脱离而使该条管路导通,水流推力小于所述弹性件92的弹力时,所述封堵件93被所述弹性件92推顶而复位,恢复封堵状态。相反,若所述通止阀9在所述固定架91一侧受力,则由于所述固定架91的位置固定,无法导通。实现了所述通止阀9的单向导通,以及自动启闭,保证了水流在所述水流管路内始终沿预设的抽水方向流动,防止海水倒流。并且节省了劳动力,无需人工控制通止阀9的启闭,提高了自动化,提高了使用体验。
作为本申请的一种实施方式,如图5至图6所示,所述水泵5还具有转轴52,所述叶片51为多个且围绕所述转轴52间隔设置,所述叶片51具有靠近所述转轴52的近端,以及远离所述转轴52的远端,所述近端的宽度小于所述远端的宽度。
具体的,如图5至图6所示,所述叶片51形状为扇形。
所述近端的宽度较小,一方面增大了相邻两个所述叶片51之间的间隙,从而增大所述水泵5的抽水量,使相邻两个所述叶片51之间能够储存更多的海水,进而提高抽水效率。另一方面,相邻两个所述叶片51之间的间隙自所述远端至所述近端逐渐增大,从而水流经由所述受力弧面511的引导向所述转轴52中心处流动,进而使得所述水泵5具有一定的蓄水能力,在水泵5正常工作时,需要保证其内部始终有水,否则水泵5会抽吸空气进入其内部,影响抽水效率,由于漂浮箱3会在海浪推动下频繁地上下浮动,进而带动所述水泵5频繁地在所述正转状态和所述反转状态之间切换,所述水泵5转动时,会有部分的水留存在相邻两片所述叶片51之间,从而在所述水泵5切换转动方向时,会保证所述水泵5内始终有水,使所述水泵5保持良好的工作性能,避免空气进入所述水泵5中,影响所述水泵5正常工作。
本申请对于所述叶片51的数量不做具体限定,其可以为图5至图6中所示的4片,也可以根据实际使用要求设置为其他数量。
本申请对于所述漂浮箱3和所述水泵5之间的传动方式不做具体限定,在一种实施方式中,如图2、图3、图8所示,所述机体2和所述漂浮箱3二者之一设置有沿竖直方向延伸的齿条31,二者之另一设置有与所述齿条31配合的齿轮22,所述齿轮22和所述齿条31配合,以将所述漂浮箱3的运动限制在竖直方向,所述齿轮22带动所述叶片51转动。
所述齿条31和所述齿轮22的配合对所述漂浮箱3起到引导作用,使所述漂浮箱3始终沿上下方向运动,提高运动可靠性和发电效率,同时,所述齿轮22和所述齿条31的传动,具有较大的传动力,保证了传动效率。
作为一种实施方式,如图1至图2所示,每个所述漂浮箱3对应设置有四组互相配合的齿轮22和所述齿条31,每组所述齿轮22和所述齿条31对应设置有一个所述水泵5。
本实施方式对于所述齿轮22和所述齿条31的设置位置不做具体限定,其可以为以下实施例中的一种:
实施例1:在本实施例中,如图8至图9所示,所述齿条31设置于所述机体2,所述齿轮22设置于所述漂浮箱3。
本实施例中,所述齿轮22可通过能够伸缩的轴杆带动所述水泵5转动。
可选的,如图8至图9所示,所述机体2包括多个支撑柱21,所述支撑柱21间隔环绕所述漂浮箱3,各个所述支撑柱21均设置有所述齿条31,所述漂浮箱3对应设置多个所述齿轮22,从而在所述漂浮箱3周向的各个区域均形成齿轮齿条的配合结构,提高对所述漂浮箱3运动的引导作用,并且使所述漂浮箱3运动更加平稳,防止倾斜。
实施例2:在本实施例中,如图2至图3所示,所述齿条31设置于所述漂浮箱3,所述齿轮22设置于所述机体2。
本实施例中,所述齿轮22固定于所述机体2,从而使得所述齿轮2仅绕轴线转动,而不会相对于所述机体2移动,提高了所述齿轮22和所述机体2相对位置稳定性,从而可将所述齿轮22和所述水泵5设置为同轴的结构,利用所述齿轮22的转动带动所述水泵5转动。
作为一种实施方式,如图3所示,所述机体2设置有固定齿轮221和驱动齿轮222,所述齿条31为双面齿条,所述固定齿轮221和所述驱动齿轮222分别位于所述齿条31的两侧,且均与所述齿条31配合,且所述固定齿轮221和所述驱动齿轮 222均相对于所述机体2位置固定,仅能够转动。
所述固定齿轮221用于引导所述齿条31以及所述漂浮箱3的运动,并起到限位作用,使二者沿啮合齿延伸方向运动,所述驱动齿轮222用于驱动所述水泵5转动。
进一步地,如图2至图3所示,所述机体2还包括支撑柱21、上限位部23以及下限位部24,所述上限位部23、所述下限位部24以及所述支撑柱21共同围成供所述漂浮箱3运动的漂浮空间,所述漂浮箱3置于所述漂浮空间内,所述齿轮22或所述齿条31设置于所述支撑柱21,所述支撑柱21内部具有容置通道。
所述支撑柱21和所述上限位部23、所述下限位部24共同围成所述漂浮空间,将所述漂浮箱3的运动范围限制在所述漂浮空间内,同时所述支撑柱21还起到支撑和引导所述漂浮箱3运动作用,如图2所示,所述水箱4设置于所述机体2的顶部,以将所述水箱4抬高,利用高度差使水流下带动所述发电机组6运转发电,所述支撑柱21支撑所述水箱4使其保持稳定。
所述支撑柱21内部具有所述容置通道,方便将各种管路设置于所述容置通道21内,从而使所述支撑柱21对各个管路形成保护,避免管路外露造成损坏而漏水。同时优化了管路的排布,提高了结构紧凑性。
进一步地,如图2、图10所示,所述下限位部24设置有限位开口25,所述漂浮箱3与所述下限位部24接触时,所述漂浮箱3的部分区域置于所述限位开口25内。
所述限位开口25的设置,一方面方便海水从所述限位开口25处上涌至所述漂浮空间内,从所述漂浮箱3的底部推顶所述漂浮箱3,使所述漂浮箱3受到竖直向上的推力而上浮,防止所述漂浮箱3受到较大的水平推力而使所述漂浮箱3的位置发生偏移或者影响传动结构的正常传动。另一方面,当因天气原因使所述漂浮箱3下沉至底部时,所述限位开口25能够对所述漂浮箱3形成限位止挡,进而使所述漂浮箱3的位置更加稳定,防止其受到较大的海浪横向冲击力而发生脱落或损坏。
作为一种实施方式,如图10所示,所述漂浮箱3的底面具有漂浮平面32和分水斜面33,所述分水斜面33位于所述漂浮平面32的两侧,以使所述漂浮箱3的底面类似于船体形状,更加有利于漂浮运动以及所述漂浮箱3运动的平稳性,所述分水斜面33将部分海水引导至外侧,部分海水与所述漂浮平面32接触,并竖直向上推顶所述漂浮箱3,同时与所述分水斜面33接触的海水还对所述漂浮箱3形成两侧向内的推顶力,从而夹持所述漂浮箱3使其以稳定的姿态上下漂浮,避免倾翻。同时还能够减小所述漂浮箱3对海浪的阻力,提高所述漂浮箱3上下漂浮的效能。
进一步地,如图10所示,所述限位开口25的开口面积大于所述漂浮平面32的 面积,且小于所述漂浮平面32和所述分水斜面33在水平面上投影的面积,即所述限位开口25朝向所述漂浮箱3的投影覆盖所述漂浮平面32,以及部分所述分水斜面33。从而使得所述漂浮箱3沉至最底部时,所述漂浮箱3不会完全穿过所述限位开口25,仅有部分区域穿过所述限位开口25,从而所述限位开口25的内周对所述漂浮箱3止挡将其限位。
作为本申请的一种实施方式,如图10所示,所述漂浮箱3内部具有容腔34,所述漂浮箱3的底部设置有进水阀门和排水阀门。
当台风天气时,可将所述进水阀门打开,使所述漂浮箱3内部充满海水而下沉至海平面以下,防止所述漂浮箱3受到台风袭扰而损坏,当天气条件好时,打开所述排水阀门将所述容腔34内部海水排出,使其恢复漂浮功能,提高了所述漂浮箱3的使用寿命,以及所述发电装置应对复杂的天气环境的能力,提高适用性。
本申请中未述及的地方采用或借鉴已有技术即可实现。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种海浪发电装置,包括至少一个发电单元,其特征在于,所述发电单元包括:
    机体;
    漂浮箱,所述漂浮箱能够在海水的浮力作用下相对于所述机体上下浮动;
    水箱,所述水箱具有排水管,所述排水管具有进水端和排水端,所述进水端所在的位置高度高于所述排水端所在的位置高度;
    发电机组,所述发电机组设置于所述排水管;
    水泵,所述水泵具有叶片,所述叶片在自身转动方向上的两侧均设置有向内凹陷的受力弧面,以使所述水泵在所述漂浮箱的带动下具有正转状态以及反转状态;以及
    水流管路,所述水流管路包括正转水路和反转水路,所述正转水路和所述反转水路均依次连通海洋、所述水泵以及所述水箱,在所述正转状态,海水经由所述正转水路进入所述水箱,在所述反转状态,海水经由所述反转水路进入所述水箱。
  2. 根据权利要求1所述的海浪发电装置,其特征在于,
    所述水泵具有正转进水端以及反转进水端,所述正转水路包括第一抽水管路和第一出水管路,所述第一抽水管路连通海洋和所述正转进水端,所述第一出水管路连通所述反转进水端和所述水箱,所述反转水路包括第二抽水管路和第二出水管路,所述第二抽水管路连通海洋和所述反转进水端,所述第二出水管路连通所述正转进水端和所述水箱;
    所述第一抽水管路、所述第一出水管路、所述第二抽水管路以及所述第二出水管路均设置有通止阀,在所述正转状态,设置于所述第一抽水管路的所述通止阀和设置于所述第一出水管路的所述通止阀导通,在所述反转状态,设置于所述第二抽水管路的所述通止阀和设置于所述第二出水管路的所述通止阀导通。
  3. 根据权利要求2所述的海浪发电装置,其特征在于,
    设置于所述第一抽水管路的所述通止阀和设置于所述第二抽水管路的所述通止阀均为自海洋向所述水泵方向单向导通的结构,设置于所述第一出水管路的所述通止阀和设置于所述第二出水管路的所述通止阀均为自所述水泵向所述水箱方向单向导通的结构;所述通止阀均能够在水压作用下自动启闭。
  4. 根据权利要求3所述的海浪发电装置,其特征在于,
    所述第一抽水管路、所述第一出水管路、所述第二抽水管路以及所述第二出水管路具有安装腔,所述通止阀设置于所述安装腔,所述通止阀包括固定架、弹性件以及封堵件,所述封堵件通过所述弹性件连接于所述固定架,所述封堵件能够相对于所述固定架移动,以使所述通止阀具有所述封堵件抵顶所述安装腔的内壁的封闭状态,以及所述封堵件与所述安装腔的内壁脱离的导通状态。
  5. 根据权利要求1所述的海浪发电装置,其特征在于,
    所述水泵还具有转轴,所述叶片为多个且围绕所述转轴间隔设置,所述叶片具有靠近所述转轴的近端,以及远离所述转轴的远端,所述近端的宽度小于所述远端的宽度。
  6. 根据权利要求1所述的海浪发电装置,其特征在于,
    所述机体和所述漂浮箱二者之一设置有沿竖直方向延伸的齿条,二者之另一设置有与所述齿条配合的齿轮,所述齿轮和所述齿条配合,以将所述漂浮箱的运动限制在竖直方向,所述齿轮带动所述叶片转动。
  7. 根据权利要求6所述的海浪发电装置,其特征在于,
    所述机体还包括支撑柱、上限位部以及下限位部,所述上限位部、所述下限位部以及所述支撑柱共同围成供所述漂浮箱运动的漂浮空间,所述漂浮箱置于所述漂浮空间内,所述齿轮或所述齿条设置于所述支撑柱,所述支撑柱内部具有容置通道。
  8. 根据权利要求7所述的海浪发电装置,其特征在于,
    所述下限位部设置有限位开口,所述漂浮箱与所述下限位部接触时,所述漂浮箱的部分区域置于所述限位开口内。
  9. 根据权利要求1所述的海浪发电装置,其特征在于,
    所述漂浮箱内部具有容腔,所述漂浮箱的底部设置有进水阀门和排水阀门。
  10. 根据权利要求1所述的海浪发电装置,其特征在于,
    所述海浪发电装置包括多个所述发电单元,各个所述发电单元并列排布,且各个所述发电单元的所述水箱互相连通。
PCT/CN2023/076375 2022-03-07 2023-02-16 一种海浪发电装置 WO2023169169A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210225351.7 2022-03-07
CN202210225351.7A CN115045792A (zh) 2022-03-07 2022-03-07 一种海浪发电装置

Publications (1)

Publication Number Publication Date
WO2023169169A1 true WO2023169169A1 (zh) 2023-09-14

Family

ID=83157705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076375 WO2023169169A1 (zh) 2022-03-07 2023-02-16 一种海浪发电装置

Country Status (2)

Country Link
CN (1) CN115045792A (zh)
WO (1) WO2023169169A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115045792A (zh) * 2022-03-07 2022-09-13 于光远 一种海浪发电装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312519A (ja) * 1995-05-22 1996-11-26 Hisao Sato 波力揚水装置用ブイおよび波力揚水装置
US20120285544A1 (en) * 2009-11-24 2012-11-15 Tov Westby Method for operating a buoyant body of a wave power plant and a wave power plant
CN202756169U (zh) * 2012-07-18 2013-02-27 伍海光 双向泵潮汐势能发电装置
JP2013155610A (ja) * 2012-01-26 2013-08-15 Mitsubishi Heavy Ind Ltd 波力発電装置およびその制御方法
CN103410652A (zh) * 2013-07-29 2013-11-27 陈家山 水压式波浪能转换器
JP2014214652A (ja) * 2013-04-24 2014-11-17 三菱重工業株式会社 波力発電装置
JP2017141799A (ja) * 2016-02-12 2017-08-17 清水建設株式会社 発電システム
CN108603483A (zh) * 2016-01-12 2018-09-28 郑裁熹 浮力发电装置
KR102194840B1 (ko) * 2020-03-02 2020-12-23 조창휘 파력 발전 장치
CN217002129U (zh) * 2022-03-07 2022-07-19 于光远 一种海浪发电装置
CN115045792A (zh) * 2022-03-07 2022-09-13 于光远 一种海浪发电装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312519A (ja) * 1995-05-22 1996-11-26 Hisao Sato 波力揚水装置用ブイおよび波力揚水装置
US20120285544A1 (en) * 2009-11-24 2012-11-15 Tov Westby Method for operating a buoyant body of a wave power plant and a wave power plant
JP2013155610A (ja) * 2012-01-26 2013-08-15 Mitsubishi Heavy Ind Ltd 波力発電装置およびその制御方法
CN202756169U (zh) * 2012-07-18 2013-02-27 伍海光 双向泵潮汐势能发电装置
JP2014214652A (ja) * 2013-04-24 2014-11-17 三菱重工業株式会社 波力発電装置
CN103410652A (zh) * 2013-07-29 2013-11-27 陈家山 水压式波浪能转换器
CN108603483A (zh) * 2016-01-12 2018-09-28 郑裁熹 浮力发电装置
JP2017141799A (ja) * 2016-02-12 2017-08-17 清水建設株式会社 発電システム
KR102194840B1 (ko) * 2020-03-02 2020-12-23 조창휘 파력 발전 장치
CN217002129U (zh) * 2022-03-07 2022-07-19 于光远 一种海浪发电装置
CN115045792A (zh) * 2022-03-07 2022-09-13 于光远 一种海浪发电装置

Also Published As

Publication number Publication date
CN115045792A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2023169169A1 (zh) 一种海浪发电装置
CN103912469A (zh) 一种海洋潮汐能伸缩缸水泵
CN109574137B (zh) 一种厨房用油水分离装置
CN217002129U (zh) 一种海浪发电装置
CN103452794A (zh) 一种潮汐能的自动泵水装置
KR101492036B1 (ko) 파력 수집 장치 및 연안 파력 수집 설비
WO2022222334A1 (zh) 一种杠杆重力自加压式发电设备
CN201621343U (zh) 自动排水阀
CN212514535U (zh) 一种水环境现状监测装置
CN111622917A (zh) 一种安装在楼顶的风力抽水装置
CN111119322A (zh) 溢流装置及蓄水池
CN101788069B (zh) 一种背压式水力水位控制阀
CN211875655U (zh) 一种可调节浮球式蒸汽疏水阀
RU2198317C2 (ru) Морская энергетическая установка
JP2021042718A (ja) エネルギー伝送装置
CN218482149U (zh) 接触发生装置及其空调排水泵
CN216479598U (zh) 一种差动式出水机构
US20180163692A1 (en) Negative-pressure wave generator
CN210799366U (zh) 水环真空泵自动供水装置
CN215669855U (zh) 一种取水浮船
CN212801901U (zh) 一种污水提升器的进出水端结构
CN109811716B (zh) 一种防浪单元及防浪墙
CN212480245U (zh) 一种防堵塞的排污阀
CN113279899B (zh) 一种多功能波浪能发电装置
CN203604084U (zh) 活塞控制式船舶油舱吸油器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23765747

Country of ref document: EP

Kind code of ref document: A1