JP2013152456A - Laser beam irradiation device, manufacturing device of optical member laminate, laser beam irradiation method, and manufacturing method of optical member laminate - Google Patents

Laser beam irradiation device, manufacturing device of optical member laminate, laser beam irradiation method, and manufacturing method of optical member laminate Download PDF

Info

Publication number
JP2013152456A
JP2013152456A JP2012282888A JP2012282888A JP2013152456A JP 2013152456 A JP2013152456 A JP 2013152456A JP 2012282888 A JP2012282888 A JP 2012282888A JP 2012282888 A JP2012282888 A JP 2012282888A JP 2013152456 A JP2013152456 A JP 2013152456A
Authority
JP
Japan
Prior art keywords
optical member
bonding
laser beam
sheet
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012282888A
Other languages
Japanese (ja)
Other versions
JP2013152456A5 (en
JP5495278B2 (en
Inventor
Rikiya Matsumoto
力也 松本
Kanji Fujii
幹士 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2012282888A priority Critical patent/JP5495278B2/en
Publication of JP2013152456A publication Critical patent/JP2013152456A/en
Publication of JP2013152456A5 publication Critical patent/JP2013152456A5/ja
Application granted granted Critical
Publication of JP5495278B2 publication Critical patent/JP5495278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0838Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt
    • B23K26/0846Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt for moving elongated workpieces longitudinally, e.g. wire or strip material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane

Abstract

PROBLEM TO BE SOLVED: To provide a laser beam irradiation device capable of cutting and processing an object to be cut appropriately in a desired size.SOLUTION: A laser beam irradiation device of the present invention irradiates an irradiation object with a laser beam, and includes a table having a holding surface for holding the irradiation object, a scanner capable of two-axis scanning of a laser beam on a plain surface parallel with the holding surface, and a mobile device capable of moving the table relatively with respect to the scanner.

Description

本発明は、レーザー光照射装置、光学部材貼合体の製造装置、レーザー光照射方法及び光学部材貼合体の製造方法に関する。   The present invention relates to a laser beam irradiation apparatus, an optical member bonding body manufacturing apparatus, a laser beam irradiation method, and an optical member bonding body manufacturing method.

従来、照射対象物にレーザー光を照射して所定の加工を行うレーザー光照射装置が知られている。レーザー光照射装置はフィルムの切断加工などに利用することが検討されており、例えば、特許文献1に記載されるような偏光フィルムの製造方法などにも応用が期待されている。   2. Description of the Related Art Conventionally, a laser light irradiation apparatus that performs predetermined processing by irradiating an irradiation object with laser light is known. Utilization of the laser beam irradiation apparatus for film cutting and the like has been studied. For example, application to a method for producing a polarizing film as described in Patent Document 1 is expected.

特開2003−255132号公報JP 2003-255132 A

レーザー光を用いて任意の領域に加工を行うためには、レーザー光の照射位置を高精度に制御するだけでなくその加工領域も広げることが必要となる。レーザー光を用いて加工を行う方式としては、ノズル方式とスキャナー方式が知られているが、それぞれ一長一短がある。   In order to perform processing in an arbitrary region using laser light, it is necessary not only to control the irradiation position of the laser light with high accuracy but also to expand the processing region. As a method of processing using laser light, a nozzle method and a scanner method are known, but each has advantages and disadvantages.

例えば、ノズル方式は、レーザー光源を固定して照射対象物をXYテーブルで移動させたり、照射対象物を固定してレーザー光源を移動させたりするものである。ノズル方式において、矩形状にレーザー光を走査しようとすると、矩形の角部で走査速度が遅くなってしまい、角部が熱変形により膨れたり波打ったりすることがある。スキャナー方式は、ガルバノミラー等でレーザー光を2軸走査するものであるが、ガルバノミラー等で走査できる範囲は非常に狭いため、広い範囲に精度のよい加工を行うことはできない。   For example, in the nozzle method, the laser light source is fixed and the irradiation target is moved on an XY table, or the irradiation target is fixed and the laser light source is moved. In the nozzle method, when laser light is scanned in a rectangular shape, the scanning speed becomes slow at the corners of the rectangle, and the corners may swell or wave due to thermal deformation. In the scanner method, laser light is scanned biaxially with a galvanometer mirror or the like, but since the range that can be scanned with a galvanometer mirror or the like is very narrow, it is not possible to perform high-precision processing over a wide range.

本発明の目的は、広い範囲に精度よくレーザー光を照射することが可能なレーザー光照射装置およびレーザー光照射方法、並びに、このようなレーザー光照射装置およびレーザー光照射方法を用いた光学部材貼合体の製造装置および光学部材貼合体の製造方法を提供することにある。   An object of the present invention is to provide a laser light irradiation apparatus and a laser light irradiation method capable of accurately irradiating laser light over a wide range, and an optical member pasting using such a laser light irradiation apparatus and laser light irradiation method. It is providing the manufacturing method of a united manufacturing apparatus and an optical member bonding body.

上記の目的を達成するために、本発明のレーザー光照射装置は、照射対象物にレーザー光を照射するレーザー光照射装置であって、前記照射対象物を保持する保持面を有するテーブルと、前記保持面と平行な平面内でレーザー光を2軸走査可能なスキャナーと、前記テーブルと前記スキャナーとを相対移動可能な移動装置と、を含むことを特徴とする。   In order to achieve the above object, a laser beam irradiation apparatus of the present invention is a laser beam irradiation apparatus that irradiates an irradiation object with laser light, the table having a holding surface that holds the irradiation object, It includes a scanner capable of biaxial scanning with laser light in a plane parallel to the holding surface, and a moving device capable of relatively moving the table and the scanner.

本発明においては、前記スキャナーは、前記レーザー光を発振するレーザー光発振機と、前記レーザー光発振機から発振されたレーザー光を前記保持面と平行な平面内で2軸走査可能な走査素子と、前記走査素子から射出された前記レーザー光を前記照射対象物に向けて集光する集光レンズと、を含むことを特徴とする。   In the present invention, the scanner includes: a laser beam oscillator that oscillates the laser beam; and a scanning element that can scan the laser beam oscillated from the laser beam oscillator in a plane parallel to the holding surface. And a condensing lens that condenses the laser light emitted from the scanning element toward the irradiation object.

本発明の光学部材貼合体の製造装置は、光学表示部品に光学部材を貼合してなる光学部材貼合体の製造装置であって、前記光学表示部品に前記光学表示部品の表示領域よりも大きい光学部材シートを貼り合わせて貼合シートとする貼合装置と、前記光学部材シートの前記表示領域との対向部分と前記対向部分の外側の余剰部分とを切り離し、前記光学部材シートから前記表示領域に対応する大きさの前記光学部材を切り出すことで、前記貼合シートから前記光学表示部品及び前記光学表示部品に重なる前記光学部材を含む前記光学部材貼合体を切り出す切断装置と、を含み、前記切断装置は、請求項1または2に記載のレーザー光照射装置によって構成され、前記レーザー光照射装置から照射されたレーザー光によって照射対象物である前記光学部材シートが切断されることを特徴とする。   The manufacturing apparatus of the optical member bonding body of this invention is a manufacturing apparatus of the optical member bonding body formed by bonding an optical member to an optical display component, Comprising: It is larger than the display area of the said optical display component in the said optical display component. A bonding device that bonds the optical member sheet to form a bonding sheet, and separates the facing portion of the optical member sheet from the display region and the surplus portion outside the facing portion, from the optical member sheet to the display region A cutting device that cuts out the optical member having a size corresponding to the optical member, and cuts out the optical member bonded body including the optical member that overlaps the optical display component and the optical display component from the bonding sheet, and The cutting device is configured by the laser light irradiation device according to claim 1 or 2, and is an object to be irradiated by the laser light irradiated from the laser light irradiation device. Wherein the Faculty sheet is cut.

本発明のレーザー光照射方法は、照射対象物にレーザー光を照射するレーザー光照射方法であって、前記照射対象物をテーブルの保持面に保持する第1のステップと、前記テーブルとスキャナーを相対移動させつつ前記スキャナーから前記保持面と平行な平面内で2軸走査されたレーザー光を前記照射対象物に照射する第2のステップと、を含むことを特徴とする。   The laser light irradiation method of the present invention is a laser light irradiation method for irradiating an irradiation object with laser light, the first step of holding the irradiation object on a holding surface of a table, and the table and the scanner relative to each other. And a second step of irradiating the object to be irradiated with laser light that is biaxially scanned in a plane parallel to the holding surface while moving the scanner.

本発明の光学部材貼合体の製造方法は、光学表示部品に光学部材を貼合してなる光学部材貼合体の製造方法であって、前記光学表示部品に前記光学表示部品の表示領域よりも大きい光学部材シートを貼り合わせて貼合シートとする第1の工程と、前記光学部材シートの前記表示領域との対向部分と前記対向部分の外側の余剰部分とを切り離し、前記光学部材シートから前記表示領域に対応する大きさの前記光学部材を切り出すことで、前記貼合シートから前記光学表示部品及び前記光学表示部品に重なる前記光学部材を含む前記光学部材貼合体を切り出す第2の工程と、を含み、前記第2の工程として、請求項4に記載のレーザー光照射方法を用い、レーザー光によって照射対象物である前記光学部材シートが切断されることを特徴とする。   The manufacturing method of the optical member bonding body of this invention is a manufacturing method of the optical member bonding body formed by bonding an optical member to an optical display component, Comprising: It is larger than the display area of the said optical display component in the said optical display component. A first step of laminating the optical member sheet to form a bonded sheet, and a portion of the optical member sheet facing the display region and a surplus portion outside the facing portion are separated, and the display from the optical member sheet A second step of cutting out the optical member bonded body including the optical display component and the optical member overlapping the optical display component from the bonding sheet by cutting out the optical member having a size corresponding to a region; In addition, as the second step, the optical member sheet as an irradiation object is cut by the laser beam using the laser beam irradiation method according to claim 4.

すなわち、本発明は、以下の態様を有する。
本発明の第一態様のレーザー光照射装置は、照射対象物にレーザー光を照射するレーザー光照射装置であって、前記照射対象物を保持する保持面を有するテーブルと、前記保持面と平行な平面内でレーザー光を2軸走査可能なスキャナーと、前記テーブルと前記スキャナーとを相対移動可能な移動装置と、を含む。
That is, this invention has the following aspects.
The laser light irradiation apparatus according to the first aspect of the present invention is a laser light irradiation apparatus that irradiates an irradiation object with laser light, a table having a holding surface that holds the irradiation object, and a parallel to the holding surface. A scanner capable of two-axis scanning with laser light in a plane; and a moving device capable of relatively moving the table and the scanner.

本発明の第一態様のレーザー光照射装置においては、前記スキャナーは、前記レーザー光を発振するレーザー光発振機と、前記レーザー光発振機によって発振された前記レーザー光を前記保持面と平行な平面内で2軸走査可能な走査素子と、前記走査素子から射出された前記レーザー光を前記照射対象物に向けて集光する集光レンズと、を含むことが好ましい。   In the laser beam irradiation apparatus according to the first aspect of the present invention, the scanner includes a laser beam oscillator that oscillates the laser beam, and a plane parallel to the holding surface that emits the laser beam oscillated by the laser beam oscillator. It is preferable that a scanning element capable of two-axis scanning and a condensing lens that condenses the laser light emitted from the scanning element toward the irradiation target.

本発明の第二態様の光学部材貼合体の製造装置は、光学表示部品に光学部材を貼合してなる光学部材貼合体の製造装置であって、前記光学表示部品に前記光学表示部品の表示領域よりも大きい光学部材シートを貼り合わせて貼合シートを形成する貼合装置と、前記表示領域に対向する前記光学部材シートの対向部分と前記対向部分の外側に位置する余剰部分とを切り離し、前記光学部材シートから前記表示領域に対応する大きさを有する前記光学部材を切り出すことで、前記貼合シートから前記光学表示部品及び前記光学表示部品に重なる前記光学部材を含む前記光学部材貼合体を切り出し、上述した第一態様のレーザー光照射装置によって構成され、前記レーザー光照射装置から照射されたレーザー光によって照射対象物である前記光学部材シートを切断する切断装置と、を含む。   The manufacturing apparatus of the optical member bonding body of the 2nd aspect of this invention is a manufacturing apparatus of the optical member bonding body formed by bonding an optical member to an optical display component, Comprising: Display of the said optical display component on the said optical display component A bonding apparatus that forms a bonding sheet by laminating an optical member sheet that is larger than the area, and a facing part of the optical member sheet that faces the display area and a surplus part that is located outside the facing part are separated. The optical member bonding body including the optical member overlapping the optical display component and the optical display component from the bonding sheet by cutting out the optical member having a size corresponding to the display area from the optical member sheet. The optical unit which is cut out and configured by the laser light irradiation device of the first aspect described above, and is an object to be irradiated by the laser light irradiated from the laser light irradiation device Including a cutting device for cutting the sheet.

本発明の第三態様のレーザー光照射方法は、照射対象物にレーザー光を照射するレーザー光照射方法であって、前記照射対象物をテーブルの保持面に保持し(第1のステップ)と、前記テーブルとスキャナーとを相対移動させつつ前記スキャナーから前記保持面と平行な平面内で2軸走査されたレーザー光を前記照射対象物に照射する(第2のステップ)。   The laser beam irradiation method of the third aspect of the present invention is a laser beam irradiation method for irradiating an irradiation object with laser light, holding the irradiation object on a holding surface of a table (first step), While the table and the scanner are relatively moved, the irradiation object is irradiated with laser light that has been biaxially scanned in a plane parallel to the holding surface from the scanner (second step).

本発明の第四態様の光学部材貼合体の製造方法は、光学表示部品に光学部材を貼合してなる光学部材貼合体の製造方法であって、前記光学表示部品に前記光学表示部品の表示領域よりも大きい光学部材シートを貼り合わせて貼合シートを形成し(第1の工程)と、前記表示領域に対向する前記光学部材シートの対向部分と前記対向部分の外側に位置する余剰部分とを切り離し、前記光学部材シートから前記表示領域に対応する大きさを有する前記光学部材を切り出すことで、前記貼合シートから前記光学表示部品及び前記光学表示部品に重なる前記光学部材を含む前記光学部材貼合体を切り出し、上述した第三態様のレーザー光照射方法を用いてレーザー光によって照射対象物である前記光学部材シートを切断する(第2の工程)。   The manufacturing method of the optical member bonding body of the 4th aspect of this invention is a manufacturing method of the optical member bonding body formed by bonding an optical member to an optical display component, Comprising: Display of the said optical display component on the said optical display component An optical member sheet that is larger than the region is bonded to form a bonding sheet (first step), an opposing portion of the optical member sheet that faces the display region, and a surplus portion that is positioned outside the opposing portion; The optical member including the optical member overlapping the optical display component and the optical display component from the bonding sheet by cutting out the optical member having a size corresponding to the display area from the optical member sheet The bonded body is cut out, and the optical member sheet that is the irradiation object is cut with laser light using the laser light irradiation method of the third aspect described above (second step).

本発明によれば、広い範囲に精度よくレーザー光を照射することが可能なレーザー光照射装置、光学部材貼合体の製造装置、レーザー光照射方法及び光学部材貼合体の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, providing the laser beam irradiation apparatus which can irradiate a laser beam accurately over a wide range, the manufacturing apparatus of an optical member bonding body, the laser beam irradiation method, and the manufacturing method of an optical member bonding body. it can.

本発明の光学部材貼合体の製造装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the manufacturing apparatus of the optical member bonding body of this invention. 本発明の光学部材貼合体の製造装置の一実施形態におけるレーザー光照射装置の斜視図である。It is a perspective view of the laser beam irradiation apparatus in one Embodiment of the manufacturing apparatus of the optical member bonding body of this invention. 本発明の光学部材貼合体の製造装置の一実施形態における第2切断装置の内部構成を示す斜視図である。It is a perspective view which shows the internal structure of the 2nd cutting device in one Embodiment of the manufacturing apparatus of the optical member bonding body of this invention. 本発明の光学部材貼合体の製造装置の一実施形態における第2貼合装置周辺を示す斜視図である。It is a perspective view which shows the 2nd bonding apparatus periphery in one Embodiment of the manufacturing apparatus of the optical member bonding body of this invention. 本発明の光学部材貼合体の製造装置の一実施形態における第1貼合シートを示す断面図である。It is sectional drawing which shows the 1st bonding sheet | seat in one Embodiment of the manufacturing apparatus of the optical member bonding body of this invention. 本発明の光学部材貼合体の製造装置の一実施形態における第2切断装置中の第2貼合シートを示す断面図である。It is sectional drawing which shows the 2nd bonding sheet | seat in the 2nd cutting device in one Embodiment of the manufacturing apparatus of the optical member bonding body of this invention. 本発明の光学部材貼合体の製造装置の一実施形態における第3切断装置中の第3貼合シートを示す平面図である。It is a top view which shows the 3rd bonding sheet | seat in the 3rd cutting device in one Embodiment of the manufacturing apparatus of the optical member bonding body of this invention. 図7のA−A断面図である。It is AA sectional drawing of FIG. 本発明の光学部材貼合体の製造装置を経た両面貼合パネルを示す断面図である。It is sectional drawing which shows the double-sided bonding panel which passed through the manufacturing apparatus of the optical member bonding body of this invention. 液晶パネルに貼合した光学部材シートのレーザーによって形成された切断端を示す断面図である。It is sectional drawing which shows the cut end formed with the laser of the optical member sheet | seat bonded to the liquid crystal panel. 光学部材シート単体のレーザーによって形成された切断端を示す断面図である。It is sectional drawing which shows the cutting end formed with the laser of the optical member sheet single-piece | unit. 本発明のレーザー光照射方法の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the laser beam irradiation method of this invention. 本発明のレーザー光照射方法の一実施形態において、レーザー光が所望の軌跡を描くための制御方法を示す図である。In one Embodiment of the laser beam irradiation method of this invention, it is a figure which shows the control method for a laser beam to draw a desired locus | trajectory.

以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.

尚、以下の全ての図面においては、各構成要素を図面上で認識し得る程度の大きさとするため、各構成要素の寸法及び比率を実際のものとは適宜に異ならせてある。また、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。   In all the following drawings, the dimensions and ratios of the respective components are appropriately changed from the actual ones in order to make the respective components large enough to be recognized on the drawings. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.

以下の説明においては、必要に応じてXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。本実施形態においては、光学表示部品(液晶パネル)の幅方向をX方向としており、液晶パネルの面内においてX方向に直交する方向(液晶パネルの搬送方向)をY方向、X方向及びY方向に直交する方向をZ方向としている。   In the following description, an XYZ orthogonal coordinate system is set as necessary, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system. In the present embodiment, the width direction of the optical display component (liquid crystal panel) is the X direction, and the direction orthogonal to the X direction (the transport direction of the liquid crystal panel) in the plane of the liquid crystal panel is the Y direction, the X direction, and the Y direction. The direction orthogonal to the Z direction is taken as the Z direction.

以下、本発明の実施形態について図面を参照して説明する。本実施形態では、光学部材貼合体の製造装置として光学表示デバイスの生産システムを例示し、生産システムの一部を構成するフィルム貼合システムについて説明する。   Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, the production system of an optical display device is illustrated as a manufacturing apparatus of an optical member bonding body, and the film bonding system which comprises a part of production system is demonstrated.

図1は、本実施形態のフィルム貼合システム1(光学部材貼合体の製造装置)の概略構成を示す。フィルム貼合システム1は、例えば液晶パネルや有機ELパネルといったパネル状の光学表示部品に、偏光フィルムや位相差フィルム、輝度上昇フィルムといったフィルム状の光学部材を貼合する。フィルム貼合システム1は、前記光学表示部品及び光学部材を含んだ光学部材貼合体を製造する。フィルム貼合システム1では、前記光学表示部品として液晶パネルPを用いる。フィルム貼合システム1の各部は、電子制御装置としての制御装置20により統括制御される。   FIG. 1: shows schematic structure of the film bonding system 1 (manufacturing apparatus of an optical member bonding body) of this embodiment. The film bonding system 1 bonds a film-shaped optical member such as a polarizing film, a retardation film, and a brightness enhancement film to a panel-shaped optical display component such as a liquid crystal panel or an organic EL panel. The film bonding system 1 manufactures an optical member bonding body including the optical display component and the optical member. In the film bonding system 1, a liquid crystal panel P is used as the optical display component. Each part of the film bonding system 1 is comprehensively controlled by a control device 20 as an electronic control device.

フィルム貼合システム1は、貼合工程の始発位置から終着位置まで、例えば駆動式のローラコンベヤ5を用いて液晶パネルPを搬送しつつ、液晶パネルPに順次所定の処理を施す。液晶パネルPは、その表面及び裏面を水平にした状態でローラコンベヤ5上を搬送される。
なお、図中左側(−Y方向側)は液晶パネルPの搬送方向上流側(以下、パネル搬送上流側という)を、図中右側(+Y方向側)は液晶パネルPの搬送方向下流側(以下、パネル搬送下流側という)をそれぞれ示す。
The film bonding system 1 sequentially performs a predetermined process on the liquid crystal panel P while transporting the liquid crystal panel P from the start position to the end position of the bonding process using, for example, a driving roller conveyor 5. The liquid crystal panel P is conveyed on the roller conveyor 5 with its front and back surfaces being horizontal.
In the drawing, the left side (−Y direction side) is the upstream side in the transport direction of the liquid crystal panel P (hereinafter referred to as the panel transport upstream side), and the right side in the diagram (+ Y direction side) is the downstream side in the transport direction of the liquid crystal panel P (hereinafter referred to as “the transport side”). , Referred to as the panel conveyance downstream side).

図7に示すように、液晶パネルPは平面視で長方形状をなし、その外周縁よりも所定幅だけ内側に、前記外周縁に沿う外形状を有する表示領域P4を形成する。液晶パネルPは、後述する第2アライメント装置14よりもパネル搬送上流側では、表示領域P4の短辺を概ね搬送方向に沿わせた向きで搬送され、前記第2アライメント装置14よりもパネル搬送下流側では、表示領域P4の長辺を概ね搬送方向に沿わせた向きで搬送される。   As shown in FIG. 7, the liquid crystal panel P has a rectangular shape in a plan view, and a display region P <b> 4 having an outer shape along the outer peripheral edge is formed inside the outer peripheral edge by a predetermined width. The liquid crystal panel P is transported in a direction in which the short side of the display area P4 is substantially along the transport direction on the upstream side of the panel transport with respect to the second alignment device 14 to be described later, and the panel transport downstream of the second alignment device 14. On the side, the display area P4 is transported in a direction substantially along the transport direction.

この液晶パネルPの表裏面に対して、長尺帯状の第1光学部材シートF1(光学部材シート)、第2光学部材シートF2(光学部材シート)、及び第3光学部材シートF3(光学部材シート)からそれぞれ切り出した第1光学部材F11(光学部材)、第2光学部材F12(光学部材)、及び第3光学部材F13(光学部材)が適宜貼合される。図9に示すように、本実施形態において、液晶パネルPのバックライト側及び表示面側に位置する両面には、偏光フィルムとしての第1光学部材F11及び第3光学部材F13がそれぞれ貼合される。液晶パネルPのバックライト側に位置する面には、第1光学部材F11に重ねて輝度向上フィルムとしての第2光学部材F12がさらに貼合される。   The first optical member sheet F1 (optical member sheet), the second optical member sheet F2 (optical member sheet), and the third optical member sheet F3 (optical member sheet) having a long strip shape with respect to the front and back surfaces of the liquid crystal panel P. ), The first optical member F11 (optical member), the second optical member F12 (optical member), and the third optical member F13 (optical member) cut out from each other are appropriately bonded. As shown in FIG. 9, in the present embodiment, the first optical member F <b> 11 and the third optical member F <b> 13 as polarizing films are bonded to both surfaces located on the backlight side and the display surface side of the liquid crystal panel P, respectively. The On the surface of the liquid crystal panel P located on the backlight side, a second optical member F12 as a brightness enhancement film is further bonded to the first optical member F11.

図1に示すように、フィルム貼合システム1は、上流工程からローラコンベヤ5のパネル搬送上流側上に液晶パネルPを搬送する。フィルム貼合システム1は、第1アライメント装置11と、第1貼合装置12(貼合装置)と、第1切断装置13と、第2アライメント装置14と、第2貼合装置15と、第2切断装置16(スキャナー)と、第3アライメント装置17と、第3貼合装置18と、第3切断装置19(スキャナー)と、を備えている。   As shown in FIG. 1, the film bonding system 1 conveys liquid crystal panel P on the panel conveyance upstream side of the roller conveyor 5 from an upstream process. The film bonding system 1 includes a first alignment device 11, a first bonding device 12 (bonding device), a first cutting device 13, a second alignment device 14, a second bonding device 15, and a first bonding device 15. 2 is provided with a cutting device 16 (scanner), a third alignment device 17, a third bonding device 18, and a third cutting device 19 (scanner).

第1アライメント装置11は、液晶パネルPを保持して垂直方向(Z方向)及び水平方向(XY方向)で自在に搬送する。第1アライメント装置11は、例えば液晶パネルPのパネル搬送上流側及び下流側の端部を撮像する一対のカメラを有する。カメラの撮像データは制御装置20に送られる。制御装置20は、前記撮像データと予め記憶した光学軸方向の検査データとに基づき、第1アライメント装置11を作動させる。なお、第2アライメント装置14及び第3アライメント装置17も同様に前記カメラを有し、このカメラの撮像データをアライメントに用いる。   The first alignment device 11 holds the liquid crystal panel P and freely conveys it in the vertical direction (Z direction) and the horizontal direction (XY direction). The first alignment apparatus 11 has a pair of cameras that image the upstream and downstream ends of the liquid crystal panel P, for example. The imaging data of the camera is sent to the control device 20. The control device 20 operates the first alignment device 11 based on the imaging data and the inspection data in the optical axis direction stored in advance. Similarly, the second alignment device 14 and the third alignment device 17 have the camera, and use image data of the camera for alignment.

第1アライメント装置11は、制御装置20の制御により、第1貼合装置12に対する液晶パネルPのアライメントを行う。このとき、液晶パネルPは、搬送方向(Y方向)と直交する水平方向(X方向)(以下、部品幅方向という)での位置決めと、垂直軸回り(Z軸周り)の旋回方向(以下、単に旋回方向という)での位置決めとがなされる。この状態で、液晶パネルPが第1貼合装置12の貼合位置に導入される。   The first alignment device 11 performs alignment of the liquid crystal panel P with respect to the first bonding device 12 under the control of the control device 20. At this time, the liquid crystal panel P is positioned in a horizontal direction (X direction) (hereinafter referred to as a component width direction) orthogonal to the transport direction (Y direction), and a turning direction (hereinafter referred to as Z axis). Positioning in the swivel direction). In this state, the liquid crystal panel P is introduced into the bonding position of the first bonding apparatus 12.

第1貼合装置12は、第1アライメント装置11よりもパネル搬送下流側に設けられている。第1貼合装置12は、貼合位置に導入された長尺の第1光学部材シートF1の下面に対して、その下方を搬送される液晶パネルPの上面(バックライト側)を貼合する。   The 1st bonding apparatus 12 is provided in the panel conveyance downstream rather than the 1st alignment apparatus 11. FIG. The 1st bonding apparatus 12 bonds the upper surface (backlight side) of liquid crystal panel P conveyed below the lower surface of the elongate 1st optical member sheet | seat F1 introduced into the bonding position. .

第1貼合装置12は、搬送装置12aと、挟圧ロール12bとを備える。搬送装置12aは、第1光学部材シートF1を巻回した第1原反ロールR1から第1光学部材シートF1を巻き出しつつ第1光学部材シートF1をその長手方向に沿って搬送する。挟圧ロール12bは、搬送装置12aが搬送する第1光学部材シートF1の下面にローラコンベヤ5が搬送する液晶パネルPの上面を貼合する。   The 1st bonding apparatus 12 is provided with the conveying apparatus 12a and the pinching roll 12b. The conveying device 12a conveys the first optical member sheet F1 along the longitudinal direction while unwinding the first optical member sheet F1 from the first raw roll R1 around which the first optical member sheet F1 is wound. The pinching roll 12b bonds the upper surface of the liquid crystal panel P conveyed by the roller conveyor 5 to the lower surface of the first optical member sheet F1 conveyed by the conveying device 12a.

搬送装置12aは、保持部12cと、回収部12dとを有する。保持部12cは、第1光学部材シートF1を巻回した第1原反ロールR1を保持すると共に第1光学部材シートF1をその長手方向に沿って繰り出す。回収部12dは、第1光学部材シートF1の上面に重なって第1光学部材シートF1と共に繰り出されたプロテクションフィルムpfを第1貼合装置12のパネル搬送下流側で回収する。搬送装置12aは、第1貼合装置12における貼合位置で、第1光学部材シートF1と液晶パネルPとが貼合される第1光学部材シートF1の貼合面が下方を向くように、第1光学部材シートF1の搬送経路を設定する。   The transport device 12a includes a holding unit 12c and a collection unit 12d. The holding portion 12c holds the first original fabric roll R1 around which the first optical member sheet F1 is wound, and feeds the first optical member sheet F1 along its longitudinal direction. The collection unit 12d collects the protection film pf which is overlapped on the upper surface of the first optical member sheet F1 and is fed out together with the first optical member sheet F1, on the downstream side of the panel transfer of the first bonding apparatus 12. The conveying device 12a is a bonding position in the first bonding device 12, so that the bonding surface of the first optical member sheet F1 on which the first optical member sheet F1 and the liquid crystal panel P are bonded faces downward. A conveyance path for the first optical member sheet F1 is set.

挟圧ロール12bは、互いに軸方向を平行にして配置された一対の貼合ローラを有する。一対の貼合ローラ間には所定の間隙が形成され、この間隙内が第1貼合装置12の貼合位置となる。前記間隙内には、液晶パネルP及び第1光学部材シートF1が重なり合って導入される。これら液晶パネルP及び第1光学部材シートF1が、前記貼合ローラ間で挟圧されつつパネル搬送下流側に送り出される。これにより、複数の液晶パネルPを所定の間隔を空けつつ長尺の第1光学部材シートF1の下面に連続的に貼合した第1貼合シートF21(貼合シート)が形成される。   The pinching roll 12b has a pair of laminating rollers arranged with their axial directions parallel to each other. A predetermined gap is formed between the pair of bonding rollers, and the gap is the bonding position of the first bonding device 12. The liquid crystal panel P and the first optical member sheet F1 are overlapped and introduced into the gap. The liquid crystal panel P and the first optical member sheet F1 are sent out to the downstream side of the panel conveyance while being pressed between the bonding rollers. Thereby, the 1st bonding sheet | seat F21 (bonding sheet | seat) which bonded several liquid crystal panels P continuously to the lower surface of the elongate 1st optical member sheet | seat F1 at predetermined intervals is formed.

第1切断装置13は回収部12dよりもパネル搬送下流側に位置する。第1切断装置13は、第1貼合シートF21の第1光学部材シートF1を切断して表示領域P4よりも大きい(本実施形態では液晶パネルPよりも大きい)シート片F1S(図6参照)とするべく、第1光学部材シートF1の所定箇所(搬送方向で並ぶ液晶パネルPの間)を前記部品幅方向の全幅にわたって切断する。なお、第1切断装置13として切断刃を用いるかレーザーカッターを用いるかは問わない。前記切断により、液晶パネルPの上面に表示領域P4よりも大きい前記シート片F1Sが貼合された第1片面貼合パネルP11(第1光学部材貼合体)が形成される。   The 1st cutting device 13 is located in the panel conveyance downstream rather than the collection | recovery part 12d. The 1st cutting device 13 cut | disconnects the 1st optical member sheet | seat F1 of the 1st bonding sheet | seat F21, and is larger than the display area P4 (this embodiment is larger than liquid crystal panel P) sheet piece F1S (refer FIG. 6). Therefore, a predetermined portion (between the liquid crystal panels P arranged in the transport direction) of the first optical member sheet F1 is cut over the entire width in the component width direction. It does not matter whether a cutting blade or a laser cutter is used as the first cutting device 13. By the said cutting | disconnection, the 1st single-sided bonding panel P11 (1st optical member bonding body) by which the said sheet piece F1S larger than the display area P4 was bonded on the upper surface of liquid crystal panel P is formed.

第2アライメント装置14は、第1貼合装置12及び第1切断装置13よりもパネル搬送下流側に設けられている。第2アライメント装置14は、例えばローラコンベヤ5上の第1片面貼合パネルP11を保持して垂直軸回りに90°旋回させる。これにより、表示領域P4の短辺と略平行に搬送されていた第1片面貼合パネルP11が、表示領域P4の長辺と略平行に搬送されるように方向転換する。なお、前記旋回は、第1光学部材シートF1の光軸方向に対して、液晶パネルPに貼合する他の光学部材シートの光学軸方向が直角に配置される場合になされる。   The 2nd alignment apparatus 14 is provided in the panel conveyance downstream rather than the 1st bonding apparatus 12 and the 1st cutting device 13. FIG. The second alignment device 14 holds, for example, the first single-sided bonding panel P11 on the roller conveyor 5 and turns 90 ° around the vertical axis. Thereby, the 1st single-sided bonding panel P11 currently conveyed substantially parallel to the short side of the display area P4 changes direction so that it may be conveyed substantially parallel to the long side of the display area P4. In addition, the said turning is made | formed when the optical axis direction of the other optical member sheet | seat bonded to liquid crystal panel P is arrange | positioned at right angle with respect to the optical axis direction of the 1st optical member sheet | seat F1.

第2アライメント装置14は、前記第1アライメント装置11と同様のアライメントを行う。すなわち、第2アライメント装置14は、制御装置20に記憶された光学軸方向の検査データ及び前記カメラCの撮像データに基づき、第2貼合装置15に対する第1片面貼合パネルP11の部品幅方向での位置決め及び旋回方向での位置決めを行う。この状態で、第1片面貼合パネルP11が第2貼合装置15の貼合位置に導入される。   The second alignment device 14 performs the same alignment as the first alignment device 11. That is, the second alignment device 14 is based on the inspection data in the optical axis direction stored in the control device 20 and the imaging data of the camera C, and the component width direction of the first single-sided bonding panel P11 with respect to the second bonding device 15. And positioning in the turning direction. In this state, the first single-sided bonding panel P <b> 11 is introduced into the bonding position of the second bonding device 15.

第2貼合装置15は、第2アライメント装置14よりもパネル搬送下流側に設けられている。第2貼合装置15は、貼合位置に導入された長尺の第2光学部材シートF2の下面に対して、その下方を搬送される第1片面貼合パネルP11の上面(液晶パネルPのバックライト側)を貼合する。   The 2nd bonding apparatus 15 is provided in the panel conveyance downstream rather than the 2nd alignment apparatus 14. FIG. The 2nd bonding apparatus 15 is the upper surface (of liquid crystal panel P of the 1st single-sided bonding panel P11 conveyed below that with respect to the lower surface of the elongate 2nd optical member sheet | seat F2 introduced into the bonding position. Paste the backlight side.

第2貼合装置15は、搬送装置15aと、挟圧ロール15bとを備える。搬送装置15aは、第2光学部材シートF2を巻回した第2原反ロールR2から第2光学部材シートF2を巻き出しつつ第2光学部材シートF2をその長手方向に沿って搬送する。挟圧ロール15bは、搬送装置15aが搬送する第2光学部材シートF2の下面にローラコンベヤ5が搬送する第1片面貼合パネルP11の上面を貼合する。   The 2nd bonding apparatus 15 is provided with the conveying apparatus 15a and the pinching roll 15b. The conveying device 15a conveys the second optical member sheet F2 along the longitudinal direction while unwinding the second optical member sheet F2 from the second original roll R2 around which the second optical member sheet F2 is wound. The pinching roll 15b bonds the upper surface of the 1st single-sided bonding panel P11 which the roller conveyor 5 conveys to the lower surface of the 2nd optical member sheet | seat F2 which the conveying apparatus 15a conveys.

搬送装置15aは、保持部15cと、回収部15dとを有する。保持部15cは、第2光学部材シートF2を巻回した第2原反ロールR2を保持すると共に第2光学部材シートF2をその長手方向に沿って繰り出す。回収部15dは、第2切断装置16を経た第2光学部材シートF2の余剰部分を回収する。搬送装置15aは、第2貼合装置15における貼合位置で、第2光学部材シートF2と第1片面貼合パネルP11とが貼合される第2光学部材シートF2の貼合面が下方を向くように、第2光学部材シートF2の搬送経路を設定する。   The transport device 15a includes a holding unit 15c and a collection unit 15d. The holding portion 15c holds the second original roll R2 around which the second optical member sheet F2 is wound, and feeds the second optical member sheet F2 along its longitudinal direction. The collection unit 15d collects an excess portion of the second optical member sheet F2 that has passed through the second cutting device 16. The conveying apparatus 15a is the bonding position in the 2nd bonding apparatus 15, and the bonding surface of the 2nd optical member sheet | seat F2 with which the 2nd optical member sheet | seat F2 and 1st single-sided bonding panel P11 are bonded is downward. The conveyance path of the second optical member sheet F2 is set so as to face.

挟圧ロール15bは、互いに軸方向を平行にして配置された一対の貼合ローラを有する。一対の貼合ローラ間には所定の間隙が形成され、この間隙内が第2貼合装置15の貼合位置となる。前記間隙内には、第1片面貼合パネルP11及び第2光学部材シートF2が重なり合って導入される。これら第1片面貼合パネルP11及び第2光学部材シートF2が、前記貼合ローラ間で挟圧されつつパネル搬送下流側に送り出される。これにより、複数の第1片面貼合パネルP11を所定の間隔を空けつつ長尺の第2光学部材シートF2の下面に連続的に貼合した第2貼合シートF22(貼合シート)が形成される。   The pinching roll 15b has a pair of bonding rollers arranged with the axial directions parallel to each other. A predetermined gap is formed between the pair of bonding rollers, and the gap is the bonding position of the second bonding device 15. The first single-sided bonding panel P11 and the second optical member sheet F2 are overlapped and introduced into the gap. These 1st single-sided bonding panels P11 and the 2nd optical member sheet | seat F2 are sent out to a panel conveyance downstream, being pinched between the said bonding rollers. Thereby, the 2nd bonding sheet | seat F22 (bonding sheet | seat) which continuously bonded the some 1st single-sided bonding panel P11 on the lower surface of the elongate 2nd optical member sheet | seat F2 at predetermined intervals formed. Is done.

第2切断装置16は挟圧ロール15bよりもパネル搬送下流側に位置する。第2切断装置16は、第2光学部材シートF2とその下面に貼合した第1片面貼合パネルP11の第1光学部材シートF1のシート片F1Sとを当時に切断する(図4参照)。第2切断装置16は、第2光学部材シートF2と第1光学部材シートF1のシート片F1Sとを表示領域P4の外周縁に沿って(本実施形態では液晶パネルPの外周縁に沿って)無端状に切断する。各光学部材シートF1,F2を液晶パネルPに貼合した後にまとめてカットすることで、各光学部材シートF1,F2の光学軸方向の精度が高まると共に、各光学部材シートF1,F2間の光学軸方向のズレが無くなり、かつ第1切断装置13での切断が簡素化される。   The 2nd cutting device 16 is located in the panel conveyance downstream rather than the pinching roll 15b. The 2nd cutting device 16 cut | disconnects the 2nd optical member sheet | seat F2 and the sheet piece F1S of the 1st optical member sheet | seat F1 of the 1st single-sided bonding panel P11 bonded to the lower surface at that time (refer FIG. 4). The second cutting device 16 moves the second optical member sheet F2 and the sheet piece F1S of the first optical member sheet F1 along the outer peripheral edge of the display region P4 (in this embodiment, along the outer peripheral edge of the liquid crystal panel P). Cut endlessly. By cutting the optical member sheets F1 and F2 together after being bonded to the liquid crystal panel P, the accuracy in the optical axis direction of the optical member sheets F1 and F2 is increased, and the opticalness between the optical member sheets F1 and F2 is increased. The axial displacement is eliminated, and the cutting with the first cutting device 13 is simplified.

なお、本実施形態においては、第2光学部材シートF2とシート片F1Sとを当時に切断する場合を挙げているが、本発明は上述した実施形態に限らない。例えば、第2光学部材シートF2のみを切断する場合においても本発明を適用可能である。具体的には、第2光学部材シートF2を第1片面貼合パネルP11に対して大きめに貼合した後に、第2光学部材シートF2のみを切断することもできる。この方法によれば、第2光学部材シートF2を第1片面貼合パネルP11に貼合する際の貼り付け精度は不要となり、額縁を切断することも可能となる。   In addition, in this embodiment, although the case where the 2nd optical member sheet | seat F2 and the sheet piece F1S are cut | disconnected at that time is mentioned, this invention is not limited to embodiment mentioned above. For example, the present invention can be applied even when only the second optical member sheet F2 is cut. Specifically, only the second optical member sheet F2 can be cut after the second optical member sheet F2 is bonded to the first single-sided bonding panel P11 in a larger size. According to this method, the pasting accuracy at the time of pasting the 2nd optical member sheet F2 on the 1st single side pasting panel P11 becomes unnecessary, and it also becomes possible to cut a picture frame.

図8に示すように、第2切断装置16の切断により、液晶パネルPの上面に第1光学部材F11及び第2光学部材F12が重ねて貼合された第2片面貼合パネルP12(光学部材貼合体、第2光学部材貼合体)が形成される。   As shown in FIG. 8, by cutting the second cutting device 16, a second single-sided bonding panel P12 (optical member) in which the first optical member F11 and the second optical member F12 are overlapped and bonded to the upper surface of the liquid crystal panel P. A bonding body and a 2nd optical member bonding body) are formed.

またこのとき、図4に示すように、第2片面貼合パネルP12と、表示領域P4との対向部分(各光学部材F11,F12)が切り取られて枠状に残る各光学部材シートF1,F2の余剰部分とが分離される。第2光学部材シートF2の余剰部分は複数連なって梯子状をなし、この余剰部分が第1光学部材シートF1の余剰部分と共に回収部15dに巻き取られる。
ここで、「表示領域P4との対向部分」とは、表示領域P4の大きさ以上、液晶パネルPの外形状の大きさ以下の大きさを有する領域で、かつ、電気部品取り付け部等の機能部分を避けた領域を示す。本実施形態では、平面視矩形状の液晶パネルPにおける前記機能部分を除いた三辺では、液晶パネルPの外周縁に沿って余剰部分がレーザーカットされている。また、前記機能部分に相当する一辺では、液晶パネルPの外周縁から表示領域P4側に適宜入り込んだ位置で余剰部分がレーザーカットされている。
Moreover, at this time, as shown in FIG. 4, each optical member sheet | seat F1, F2 which the opposing part (each optical member F11, F12) of 2nd single-sided bonding panel P12 and the display area P4 is cut off, and remains in frame shape. Are separated from the surplus part. A plurality of surplus portions of the second optical member sheet F2 are connected in a ladder shape, and the surplus portions are wound around the recovery portion 15d together with the surplus portions of the first optical member sheet F1.
Here, the “part facing the display region P4” is a region having a size not less than the size of the display region P4 and not more than the size of the outer shape of the liquid crystal panel P, and functions such as an electrical component mounting portion. Indicates the area that avoids the part. In the present embodiment, the surplus portions are laser-cut along the outer peripheral edge of the liquid crystal panel P on the three sides excluding the functional portion in the rectangular liquid crystal panel P in plan view. In addition, on one side corresponding to the functional portion, the surplus portion is laser-cut at a position where it appropriately enters the display region P4 side from the outer peripheral edge of the liquid crystal panel P.

図1に戻り、第3アライメント装置17は、第2貼合装置15及び第2切断装置16よりもパネル搬送下流側に設けられている。第3アライメント装置17は、液晶パネルPのバックライト側を上面にした第2片面貼合パネルP12の表面と裏面とを反転させて液晶パネルPの表示面側を上面にすると共に、前記第1アライメント装置11及び第2アライメント装置14と同様のアライメントを行う。すなわち、第3アライメント装置17は、制御装置20に記憶された光学軸方向の検査データ及び前記カメラの撮像データに基づき、第3貼合装置18に対する第2片面貼合パネルP12の部品幅方向での位置決め及び旋回方向での位置決めを行う。この状態で、第2片面貼合パネルP12が第3貼合装置18の貼合位置に導入される。   Returning to FIG. 1, the third alignment device 17 is provided on the panel transport downstream side of the second bonding device 15 and the second cutting device 16. The third alignment device 17 inverts the front and back surfaces of the second single-sided bonding panel P12 with the backlight side of the liquid crystal panel P as the upper surface so that the display surface side of the liquid crystal panel P is the upper surface, and the first Alignment similar to the alignment device 11 and the second alignment device 14 is performed. That is, the 3rd alignment apparatus 17 is based on the inspection data of the optical axis direction memorize | stored in the control apparatus 20, and the imaging data of the said camera in the component width direction of the 2nd single-sided bonding panel P12 with respect to the 3rd bonding apparatus 18. FIG. And positioning in the turning direction. In this state, the second single-sided bonding panel P <b> 12 is introduced into the bonding position of the third bonding device 18.

第3貼合装置18は、第3アライメント装置17よりもパネル搬送下流側に設けられている。第3貼合装置18は、貼合位置に導入された長尺の第3光学部材シートF3の下面に対して、その下方を搬送される第2片面貼合パネルP12の上面(液晶パネルPの表示面側)を貼合する。   The 3rd bonding apparatus 18 is provided in the panel conveyance downstream rather than the 3rd alignment apparatus 17. FIG. The 3rd bonding apparatus 18 is the upper surface of 2nd single-sided bonding panel P12 conveyed below with respect to the lower surface of the elongate 3rd optical member sheet | seat F3 introduced into the bonding position (of liquid crystal panel P). Adhere the display surface side).

第3貼合装置18は、搬送装置18aと、挟圧ロール18bと、を備える。搬送装置18aは、第3光学部材シートF3を巻回した第3原反ロールR3から第3光学部材シートF3を巻き出しつつ第3光学部材シートF3をその長手方向に沿って搬送する。挟圧ロール18bは、搬送装置18aが搬送する第3光学部材シートF3の下面にローラコンベヤ5が搬送する第2片面貼合パネルP12の上面を貼合する。   The 3rd bonding apparatus 18 is provided with the conveying apparatus 18a and the pinching roll 18b. The conveyance device 18a conveys the third optical member sheet F3 along the longitudinal direction while unwinding the third optical member sheet F3 from the third original roll R3 around which the third optical member sheet F3 is wound. The pinching roll 18b bonds the upper surface of the 2nd single-sided bonding panel P12 which the roller conveyor 5 conveys to the lower surface of the 3rd optical member sheet | seat F3 which the conveying apparatus 18a conveys.

搬送装置18aは、保持部18cと、回収部18dと、を備える。保持部18cは、第3光学部材シートF3を巻回した第3原反ロールR3を保持すると共に第3光学部材シートF3をその長手方向に沿って繰り出す。回収部18dは、挟圧ロール18bよりもパネル搬送下流側に位置する第3切断装置19を経た第3光学部材シートF3の余剰部分を回収する。   The transport device 18a includes a holding unit 18c and a collection unit 18d. The holding portion 18c holds the third original fabric roll R3 around which the third optical member sheet F3 is wound, and feeds the third optical member sheet F3 along its longitudinal direction. The collection unit 18d collects an excess portion of the third optical member sheet F3 that has passed through the third cutting device 19 positioned on the downstream side of the panel conveyance with respect to the pinching roll 18b.

搬送装置18aは、第3貼合装置18における貼合位置で、第3光学部材シートF3と第2片面貼合パネルP12とが貼合される第3光学部材シートF3の貼合面が下方を向くように、第3光学部材シートF3の搬送経路を設定する。   The conveying apparatus 18a is the bonding position in the 3rd bonding apparatus 18, and the bonding surface of the 3rd optical member sheet | seat F3 on which the 3rd optical member sheet | seat F3 and the 2nd single-sided bonding panel P12 are bonded is downward. A conveyance path of the third optical member sheet F3 is set so as to face.

挟圧ロール18bは、互いに軸方向を平行にして配置された一対の貼合ローラを有する。一対の貼合ローラ間には所定の間隙が形成され、この間隙内が第3貼合装置18の貼合位置となる。前記間隙内には、第2片面貼合パネルP12及び第3光学部材シートF3が重なり合って導入される。これら第2片面貼合パネルP12及び第3光学部材シートF3が、前記貼合ローラ間で挟圧されつつパネル搬送下流側に送り出される。これにより、複数の第2片面貼合パネルP12を所定の間隔を空けつつ長尺の第3光学部材シートF3の下面に連続的に貼合した第3貼合シートF23(貼合シート)が形成される。   The pinching roll 18b has a pair of pasting rollers arranged with their axial directions parallel to each other. A predetermined gap is formed between the pair of bonding rollers, and the gap is the bonding position of the third bonding device 18. In the gap, the second single-sided bonding panel P12 and the third optical member sheet F3 are overlapped and introduced. These 2nd single-sided bonding panels P12 and the 3rd optical member sheet | seat F3 are sent out to a panel conveyance downstream, being pinched between the said bonding rollers. Thereby, the 3rd bonding sheet | seat F23 (bonding sheet | seat) which continuously bonded several 2nd single-sided bonding panel P12 on the lower surface of the elongate 3rd optical member sheet | seat F3 forming predetermined space | interval is formed. Is done.

第3切断装置19は挟圧ロール18bよりもパネル搬送下流側に位置し、第3光学部材シートF3を切断する。第3切断装置19は第2切断装置16と同様のレーザー光照射装置(図2、図3参照)である。第3切断装置19は、第3光学部材シートF3を表示領域P4の外周縁に沿って(例えば液晶パネルPの外周縁に沿って)無端状に切断する。   The 3rd cutting device 19 is located in a panel conveyance downstream rather than the pinching roll 18b, and cut | disconnects the 3rd optical member sheet | seat F3. The third cutting device 19 is a laser beam irradiation device similar to the second cutting device 16 (see FIGS. 2 and 3). The third cutting device 19 cuts the third optical member sheet F3 endlessly along the outer peripheral edge of the display region P4 (for example, along the outer peripheral edge of the liquid crystal panel P).

図9に示すように、第3切断装置19の切断により、第2片面貼合パネルP12の上面に第3光学部材F13が貼合された両面貼合パネルP13(光学部材貼合体、第2光学部材貼合体)が形成される。   As shown in FIG. 9, the double-sided bonding panel P13 (the optical member bonding body, the second optical material) in which the third optical member F13 is bonded to the upper surface of the second single-sided bonding panel P12 by cutting the third cutting device 19 is used. Member bonding body) is formed.

またこのとき、図2に示すように、両面貼合パネルP13と、表示領域P4との対向部分(第3光学部材F13)が切り取られて枠状に残る第3光学部材シートF3の余剰部分とが分離される。第3光学部材シートF3の余剰部分は第2光学部材シートF2の余剰部分と同様に複数連なって梯子状をなし、この余剰部分が回収部18dに巻き取られる。   Moreover, at this time, as shown in FIG. 2, the surplus part of the 3rd optical member sheet | seat F3 which a double-sided bonding panel P13 and the opposing part (3rd optical member F13) of display area P4 are cut off, and remain in frame shape, Are separated. Similar to the surplus portion of the second optical member sheet F2, a plurality of surplus portions of the third optical member sheet F3 are connected in a ladder shape, and the surplus portions are wound around the collection unit 18d.

両面貼合パネルP13は、不図示の欠陥検査装置を経て欠陥(貼合不良等)の有無が検査された後、下流工程に搬送されて他の処理がなされる。   After the double-sided bonding panel P13 is inspected for defects (such as poor bonding) through a defect inspection device (not shown), it is transported to the downstream process and subjected to other processes.

図5に示すように、液晶パネルPは、例えばTFT基板からなる長方形状の第1基板P1と、第1基板P1に対向して配置される同じく長方形状の第2基板P2と、第1基板P1と第2基板P2との間に封入される液晶層P3とを有する。なお、図示都合上、断面図の各層のハッチングを略すことがある。   As shown in FIG. 5, the liquid crystal panel P includes, for example, a rectangular first substrate P1 made of, for example, a TFT substrate, a second substrate P2 having the same rectangular shape disposed opposite to the first substrate P1, and a first substrate. A liquid crystal layer P3 sealed between P1 and the second substrate P2 is included. For convenience of illustration, hatching of each layer in the cross-sectional view may be omitted.

図7,8に示すように、第1基板P1は、その外周縁の三辺を第2基板P2の対応する三辺に沿わせると共に、外周縁の残りの一辺を第2基板P2の対応する一辺よりも外側に張り出させる。これにより、第1基板P1の前記一辺側に第2基板P2よりも外側に張り出す電気部品取り付け部P5が設けられる。   As shown in FIGS. 7 and 8, the first substrate P1 has three outer peripheral edges along the corresponding three sides of the second substrate P2, and the remaining one of the outer peripheral edges corresponds to the second substrate P2. Project outside of one side. As a result, an electrical component mounting portion P5 that projects outward from the second substrate P2 is provided on the one side of the first substrate P1.

図6,8に示すように、第2切断装置16は、表示領域P4の外周縁をカメラ16a等の検出手段で検出しつつ、表示領域P4の外周縁等に沿って第1及び第2光学部材シートF1,F2を切断する。また、第3切断装置19は、同じく表示領域P4の外周縁をカメラ19a等の検出手段で検出しつつ、表示領域P4の外周縁等に沿って第3光学部材シートF3を切断する。表示領域P4の外側には、第1基板P1及び第2基板P2を接合するシール剤等を配置する所定幅の額縁部Gが設けられ、この額縁部Gの幅内で各切断装置16,19によるレーザーカットがなされる。   As shown in FIGS. 6 and 8, the second cutting device 16 detects the outer peripheral edge of the display area P4 with a detecting means such as a camera 16a, and the first and second optical elements along the outer peripheral edge of the display area P4. The member sheets F1 and F2 are cut. Further, the third cutting device 19 similarly cuts the third optical member sheet F3 along the outer peripheral edge and the like of the display area P4 while detecting the outer peripheral edge of the display area P4 by a detecting means such as a camera 19a. Outside the display area P4, a frame portion G having a predetermined width for arranging a sealant or the like for bonding the first substrate P1 and the second substrate P2 is provided, and each cutting device 16, 19 is within the width of the frame portion G. Laser cutting is done.

図11に示すように、樹脂製の光学部材シートFXを単独でレーザーカットすると、その切断端tが熱変形により膨れたり波打ったりすることがある。このため、レーザーカット後の光学部材シートFXを光学表示部品PXに貼合する場合には、光学部材シートFXにエア混入や歪み等の貼合不良が生じ易い。   As shown in FIG. 11, when the resin-made optical member sheet FX is laser-cut alone, the cut end t may swell or wave due to thermal deformation. For this reason, when the optical member sheet FX after laser cutting is bonded to the optical display component PX, poor bonding such as air mixing and distortion is likely to occur in the optical member sheet FX.

一方、図10に示すように、光学部材シートFXを液晶パネルPに貼合した後に光学部材シートFXをレーザーカットする本実施形態では、光学部材シートFXの切断端tが液晶パネルPのガラス面にバックアップされるため、光学部材シートFXの切断端tの膨れや波打ち等が生じず、かつ液晶パネルPへの貼合後であることから前記貼合不良も生じ得ない。   On the other hand, as shown in FIG. 10, in this embodiment in which the optical member sheet FX is laser-cut after the optical member sheet FX is bonded to the liquid crystal panel P, the cut end t of the optical member sheet FX is the glass surface of the liquid crystal panel P. Therefore, the cut end t of the optical member sheet FX is not swollen or undulated, and the bonding failure cannot occur because it is after bonding to the liquid crystal panel P.

レーザー加工機によって形成された切断線の振れ幅(公差)は切断刃によって形成された切断線の振れ幅よりも小さく、したがって本実施形態では、切断刃を用いて光学部材シートFXを切断する場合と比べて、前記額縁部Gの幅を狭めることが可能であり、液晶パネルPの小型化及び(又は)表示領域P4の大型化が可能である。このような光学部材シートは、近年のスマートフォンやタブレット端末のように、筐体のサイズが制限される中で表示画面の拡大が要求される高機能モバイルへの適用に有効である。   The runout width (tolerance) of the cutting line formed by the laser processing machine is smaller than the runout width of the cutting line formed by the cutting blade. Therefore, in this embodiment, the optical member sheet FX is cut using the cutting blade. As compared with the above, the width of the frame portion G can be reduced, and the liquid crystal panel P can be downsized and / or the display area P4 can be enlarged. Such an optical member sheet is effective for application to a high-function mobile device that requires an enlargement of the display screen while the size of the housing is limited, such as a recent smartphone or tablet terminal.

また、光学部材シートFXを液晶パネルPの表示領域P4に整合するシート片にカットした後に液晶パネルPに貼合する場合、前記シート片及び液晶パネルPそれぞれの寸法公差、並びにこれらの相対貼合位置の寸法公差が重なるため、液晶パネルPの額縁部Gの幅を狭めることが困難になる(表示エリアの拡大が困難になる)。   In addition, when the optical member sheet FX is cut into a sheet piece aligned with the display region P4 of the liquid crystal panel P and then bonded to the liquid crystal panel P, the dimensional tolerances of the sheet piece and the liquid crystal panel P, and their relative bonding Since the positional dimensional tolerances overlap, it is difficult to reduce the width of the frame portion G of the liquid crystal panel P (it is difficult to enlarge the display area).

一方、光学部材シートFXを液晶パネルPに貼合した後に表示領域P4に合わせてカットする場合、切断線の振れ公差のみを考慮すればよく、額縁部Gの幅の公差を小さくすることができる(±0.1mm以下)。この点においても、液晶パネルPの額縁部Gの幅を狭めることができる(表示エリアの拡大が可能となる)。   On the other hand, when the optical member sheet FX is bonded to the liquid crystal panel P and then cut in accordance with the display region P4, only the runout tolerance of the cutting line needs to be considered, and the width tolerance of the frame portion G can be reduced. (± 0.1 mm or less). Also in this respect, the width of the frame part G of the liquid crystal panel P can be reduced (the display area can be enlarged).

さらに、光学部材シートFXを刃物ではなくレーザーでカットすることで、切断時の力が液晶パネルPに入力されず、液晶パネルPの基板の端縁にクラックや欠けが生じ難くなり、ヒートサイクル等に対する耐久性が向上する。同様に、液晶パネルPに非接触であるため、電気部品取り付け部P5に対するダメージも少ない。
なお、光学部材シートFXをレーザーでカットする場合において、レーザー照射の単位長さ当たりのエネルギーは、液晶パネルPや光学部材シートFXの厚みや構成を考慮して決定することが好ましい。
本実施形態では、光学部材シートFXをレーザーでカットする場合において、単位長さ当たりのエネルギーが、0.01〜0.11(J/mm)の範囲内でレーザー照射を行うことが好ましい。レーザー照射において、単位長さ当たりのエネルギーが大きすぎると、光学部材シートFXをレーザーでカットする場合に、光学部材シートFXがダメージを受けるおそれがある。しかし、単位長さ当たりのエネルギーが、0.01〜0.11(J/mm)の範囲内でレーザー照射を行うことにより、光学部材シートFXがダメージを受けることを防ぐことができる。
Further, by cutting the optical member sheet FX with a laser instead of a blade, the cutting force is not input to the liquid crystal panel P, and it becomes difficult for cracks and chips to occur at the edge of the substrate of the liquid crystal panel P, such as a heat cycle. The durability against is improved. Similarly, since there is no contact with the liquid crystal panel P, there is little damage to the electrical component mounting portion P5.
In the case where the optical member sheet FX is cut with a laser, the energy per unit length of laser irradiation is preferably determined in consideration of the thickness and configuration of the liquid crystal panel P and the optical member sheet FX.
In the present embodiment, when the optical member sheet FX is cut with a laser, it is preferable to perform laser irradiation within an energy range of 0.01 to 0.11 (J / mm) per unit length. If the energy per unit length is too large in laser irradiation, the optical member sheet FX may be damaged when the optical member sheet FX is cut with a laser. However, it is possible to prevent the optical member sheet FX from being damaged by performing laser irradiation within an energy range of 0.01 to 0.11 (J / mm) per unit length.

図7に示すように、光学部材シートFX(図7では第3光学部材シートF3)をレーザーカットする場合、例えば表示領域P4の一長辺の延長上にレーザーカットの始点pt1を設定し、この始点pt1からまず前記一長辺の切断を開始する。レーザーカットの終点pt2は、レーザーが表示領域P4を一周して表示領域P4の始点側の短辺の延長上に至る位置に設定する。始点pt1及び終点pt2は、光学部材シートFXの余剰部分に所定の接続代を残し、光学部材シートFXを巻き取る際の張力に耐え得るように設定される。   As shown in FIG. 7, when laser cutting the optical member sheet FX (the third optical member sheet F3 in FIG. 7), for example, a laser cut start point pt1 is set on the extension of one long side of the display area P4, and this First, the cutting of the one long side is started from the starting point pt1. The end point pt2 of the laser cut is set at a position where the laser goes around the display area P4 and reaches the extension of the short side on the start point side of the display area P4. The start point pt1 and the end point pt2 are set so as to be able to withstand the tension when the optical member sheet FX is wound, leaving a predetermined connection allowance in the surplus portion of the optical member sheet FX.

図1に戻り、本実施形態の制御装置20は、コンピュータシステムを含んで構成されている。このコンピュータシステムは、CPU等の演算処理部20aと、メモリーやハードディスク等の記憶部20bとを備える。本実施形態の制御装置20は、コンピュータシステムの外部の装置との通信を実行可能なインターフェースを含む。制御装置20には、入力信号を入力可能な入力装置が接続されていてもよい。上記の入力装置は、キーボード、マウス等の入力機器、あるいはコンピュータシステムの外部の装置からのデータを入力可能な通信装置等を含む。制御装置20は、フィルム貼合システム1の各部の動作状況を示す液晶表示ディスプレイ等の表示装置を含んでいてもよいし、表示装置と接続されていてもよい。   Returning to FIG. 1, the control device 20 of the present embodiment includes a computer system. This computer system includes an arithmetic processing unit 20a such as a CPU and a storage unit 20b such as a memory or a hard disk. The control device 20 of the present embodiment includes an interface capable of executing communication with a device external to the computer system. An input device that can input an input signal may be connected to the control device 20. The input device includes an input device such as a keyboard and a mouse, or a communication device that can input data from a device external to the computer system. The control device 20 may include a display device such as a liquid crystal display that indicates the operation status of each part of the film bonding system 1, or may be connected to the display device.

制御装置20の記憶部20bには、コンピュータシステムを制御するオペレーティングシステム(OS)がインストールされている。制御装置20の記憶部20bには、演算処理部20aにフィルム貼合システム1の各部を制御させることによって、フィルム貼合システム1の各部に偏光フィルムFを精度よく搬送させるための処理を実行させるプログラムが記録されている。記憶部20bに記録されているプログラムを含む各種情報は、制御装置20の演算処理部20aが読み取り可能である。制御装置20は、フィルム貼合システム1の各部の制御に要する各種処理を実行するASIC等の論理回路を含んでいてもよい。   An operating system (OS) that controls the computer system is installed in the storage unit 20b of the control device 20. The storage unit 20b of the control device 20 causes the arithmetic processing unit 20a to control each unit of the film bonding system 1, thereby causing the respective units of the film bonding system 1 to perform processing for accurately conveying the polarizing film F. The program is recorded. Various types of information including programs recorded in the storage unit 20b can be read by the arithmetic processing unit 20a of the control device 20. The control device 20 may include a logic circuit such as an ASIC that executes various processes required for controlling each part of the film bonding system 1.

記憶部20bは、RAM(Random Access Memory)、ROM(Read Only Memory)などといった半導体メモリや、ハードディスク、CD−ROM読取り装置、ディスク型記憶媒体などといった外部記憶装置などを含む概念である。記憶部20bは、機能的には、移動装置32の動作や第1照射位置調整装置161、第2照射位置調整装置162(走査素子)の動作の制御手順が記述されたプログラムソフトを記憶する記憶領域、図3に示す所望の軌跡を実現するための光学部材シートFX内における照射位置を座標データとして記憶するための記憶領域、図2におけるXYZの各方向への第2切断装置16の移動量を記憶するための記憶領域、その他各種の記憶領域が設定される。   The storage unit 20b is a concept including a semiconductor memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory), an external storage device such as a hard disk, a CD-ROM reader, and a disk-type storage medium. Functionally, the storage unit 20b stores program software describing a control procedure for the operation of the moving device 32 and the operations of the first irradiation position adjusting device 161 and the second irradiation position adjusting device 162 (scanning element). Area, a storage area for storing the irradiation position in the optical member sheet FX for realizing the desired locus shown in FIG. 3 as coordinate data, and an amount of movement of the second cutting device 16 in each direction of XYZ in FIG. Is set, and other various storage areas are set.

(レーザー光照射装置)
図2は、光学部材シートの切断部(切断装置)として用いられるレーザー光照射装置30の一例を示す斜視図である。
(Laser beam irradiation device)
FIG. 2 is a perspective view showing an example of a laser beam irradiation device 30 used as a cutting portion (cutting device) of the optical member sheet.

図2に示すように、レーザー光照射装置30は、テーブル31と、第2切断装置16としてのスキャナーと、移動装置32と、制御装置33と、を備えている。レーザー光照射装置30は、光学部材シートFXにレーザー光を照射して光学部材シートFXを所定サイズの光学部材FSに切断するための装置である。なお、図2では第2切断装置16としてのスキャナーを挙げて説明するが、第3切断装置19としてのスキャナーとしても適用可能である。   As shown in FIG. 2, the laser light irradiation device 30 includes a table 31, a scanner as the second cutting device 16, a moving device 32, and a control device 33. The laser beam irradiation device 30 is a device for irradiating the optical member sheet FX with laser light and cutting the optical member sheet FX into optical members FS having a predetermined size. In FIG. 2, a scanner as the second cutting device 16 will be described. However, the scanner can be applied as the third cutting device 19.

テーブル31は、光学部材シートFX(照射対象物)を保持する保持面31aを有する。第2切断装置16は、テーブル31に保持された光学部材シートFXを切断するために光学部材シートFXにレーザー光を射出する。   The table 31 has a holding surface 31a that holds the optical member sheet FX (irradiation target). The second cutting device 16 emits laser light to the optical member sheet FX in order to cut the optical member sheet FX held on the table 31.

第2切断装置16は、テーブル31の保持面31aと平行な平面内(XY平面内)でレーザー光を2軸走査可能である。すなわち、第2切断装置16は、テーブル31に対してX方向とY方向に独立に相対移動可能となっており、これにより、テーブル31上の任意の位置に第2切断装置16を移動させ、テーブル31に保持された光学部材シートFXの任意の位置に精度よくレーザー光を照射することが可能となっている。   The second cutting device 16 is capable of biaxial scanning with laser light in a plane parallel to the holding surface 31a of the table 31 (in the XY plane). That is, the second cutting device 16 can be moved relative to the table 31 independently in the X direction and the Y direction, thereby moving the second cutting device 16 to an arbitrary position on the table 31, It is possible to irradiate the laser beam with high accuracy to an arbitrary position of the optical member sheet FX held on the table 31.

移動装置32は、テーブル31と第2切断装置16とを相対移動可能である。移動装置32は、テーブル31と第2切断装置16とを、保持面31aに平行な第1の方向V1(X方向)、保持面31aに平行かつ第1の方向V1に直交する第2の方向V2(Y方向)、保持面31aの法線方向である第3の方向V3(Z方向)に相対移動させる。本実施形態において、移動装置32は、テーブル31を移動させずに、第2切断装置16のみを移動させる。   The moving device 32 can relatively move the table 31 and the second cutting device 16. The moving device 32 moves the table 31 and the second cutting device 16 in a first direction V1 (X direction) parallel to the holding surface 31a, and a second direction parallel to the holding surface 31a and orthogonal to the first direction V1. V2 (Y direction) is relatively moved in the third direction V3 (Z direction) which is the normal direction of the holding surface 31a. In the present embodiment, the moving device 32 moves only the second cutting device 16 without moving the table 31.

例えば、第2切断装置16には、前記第2切断装置16をXYZの各方向へ移動可能にするスライダ機構(図示略)が設けられている。移動装置32は、スライダ機構が内蔵するリニアモータを作動させて第2切断装置16を、XYZの各方向へ移動させる。スライダ機構内においてパルス駆動されるリニアモータは、前記リニアモータに供給されるパルス信号によって出力軸の回転角度制御を精細に行うことができる。従って、スライダ機構に支持された第2切断装置16のXYZの各方向上の位置を高精度に制御できる。なお、第2切断装置16の位置制御はパルスモータを用いた位置制御に限られず、サーボモータを用いたフィードバック制御や、その他任意の制御方法によって実現することもできる。   For example, the second cutting device 16 is provided with a slider mechanism (not shown) that allows the second cutting device 16 to move in each direction of XYZ. The moving device 32 operates the linear motor built in the slider mechanism to move the second cutting device 16 in each direction of XYZ. The linear motor that is pulse-driven in the slider mechanism can finely control the rotation angle of the output shaft by the pulse signal supplied to the linear motor. Therefore, the position in each direction of XYZ of the 2nd cutting device 16 supported by the slider mechanism can be controlled with high precision. Note that the position control of the second cutting device 16 is not limited to position control using a pulse motor, and can be realized by feedback control using a servo motor or any other control method.

なお、移動装置による相対移動の方法は、本発明は上述した実施形態に限らない。例えば、第2切断装置16を移動させずにテーブル31のみを移動させたり、テーブル31及び第2切断装置16の双方を移動させたりすることにより、テーブル31と第2切断装置16とを相対移動させる場合であっても、本発明を適用することができる。   The relative movement method by the moving device is not limited to the above-described embodiment. For example, the table 31 and the second cutting device 16 are moved relative to each other by moving only the table 31 without moving the second cutting device 16 or by moving both the table 31 and the second cutting device 16. Even in this case, the present invention can be applied.

図3は、レーザー光照射装置30における第2切断装置(スキャナー)16の内部構成を示す斜視図である。なお、図3においては、便宜上、移動装置32、制御装置33の図示を省略している。   FIG. 3 is a perspective view showing an internal configuration of the second cutting device (scanner) 16 in the laser light irradiation device 30. In FIG. 3, illustration of the moving device 32 and the control device 33 is omitted for the sake of convenience.

図3に示すように、第2切断装置16は、レーザー光発振機160、第1照射位置調整装置161、第2照射位置調整装置162、集光レンズ163を備えている。   As shown in FIG. 3, the second cutting device 16 includes a laser beam oscillator 160, a first irradiation position adjustment device 161, a second irradiation position adjustment device 162, and a condenser lens 163.

レーザー光発振機160は、レーザー光Lを発振する部材である。例えば、レーザー光発振機160としては、COレーザー光発振機(二酸化炭素レーザー光発振機)、UVレーザー光発振機、半導体レーザー光発振機、YAGレーザー光発振機、エキシマレーザー光発振機等の発振機を用いることができるが、具体的な構成は特に限定されない。前記例示の発振機の中でもCOレーザー光発振機は、例えば偏光フィルムの切断加工に好適な高出力でレーザー光を発振することができるので、より好ましい。 The laser beam oscillator 160 is a member that oscillates the laser beam L. For example, the laser oscillator 160 may be a CO 2 laser oscillator (carbon dioxide laser oscillator), a UV laser oscillator, a semiconductor laser oscillator, a YAG laser oscillator, an excimer laser oscillator, or the like. Although an oscillator can be used, a specific configuration is not particularly limited. Among the above-described examples, the CO 2 laser light oscillator is more preferable because it can oscillate laser light at a high output suitable for, for example, cutting of a polarizing film.

第1照射位置調整装置161および第2照射位置調整装置162は、レーザー光発振機160から発振されたレーザー光を保持面31aと平行な平面内で2軸走査可能な走査素子を構成している。第1照射位置調整装置161および第2照射位置調整装置162としては、例えば、ガルバノスキャナーを用いる。第1照射位置調整装置161、第2照射位置調整装置162は、レーザー光発振機160と集光レンズ163との間におけるレーザー光の光路上にこの順に配置されている。なお、走査素子としては、ガルバノスキャナーに限らず、ジンバルを用いることもできる。   The first irradiation position adjusting device 161 and the second irradiation position adjusting device 162 constitute a scanning element capable of biaxially scanning the laser beam oscillated from the laser beam oscillator 160 in a plane parallel to the holding surface 31a. . As the first irradiation position adjustment device 161 and the second irradiation position adjustment device 162, for example, a galvano scanner is used. The first irradiation position adjusting device 161 and the second irradiation position adjusting device 162 are arranged in this order on the optical path of the laser light between the laser light oscillator 160 and the condenser lens 163. The scanning element is not limited to a galvano scanner, and a gimbal can be used.

第1照射位置調整装置161は、ミラー161aと、ミラー161aの設置角度を調整するアクチュエータ161bと、を備えている。アクチュエータ161bは、Z方向に平行な回転軸161cを有している。回転軸161cは、ミラー161aに連結されている。アクチュエータ161bは、制御装置33の制御に基づいて、ミラー161aをZ軸回りに回転させる。   The first irradiation position adjusting device 161 includes a mirror 161a and an actuator 161b that adjusts the installation angle of the mirror 161a. The actuator 161b has a rotation shaft 161c parallel to the Z direction. The rotating shaft 161c is connected to the mirror 161a. The actuator 161b rotates the mirror 161a around the Z axis based on the control of the control device 33.

第2照射位置調整装置162は、ミラー162aと、ミラー162aの設置角度を調整するアクチュエータ162bと、を備えている。アクチュエータ162bは、Y方向に平行な回転軸162cを有している。回転軸162cは、ミラー162aに連結されている。アクチュエータ162bは、制御装置33の制御に基づいて、ミラー162aをY軸回りに回転させる。   The 2nd irradiation position adjustment apparatus 162 is provided with the mirror 162a and the actuator 162b which adjusts the installation angle of the mirror 162a. The actuator 162b has a rotation shaft 162c parallel to the Y direction. The rotating shaft 162c is connected to the mirror 162a. The actuator 162b rotates the mirror 162a around the Y axis based on the control of the control device 33.

レーザー光発振機160から発振されたレーザー光Lは、ミラー161a、ミラー162a、集光レンズ163を経由してテーブル31に保持された光学部材シートFXに照射される。第1照射位置調整装置161、第2照射位置調整装置162は、制御装置33の制御に基づいて、レーザー光発振機160からテーブル31に保持された光学部材シートFXに向けて照射されるレーザー光の照射位置を調整する。   The laser beam L oscillated from the laser beam oscillator 160 is applied to the optical member sheet FX held on the table 31 via the mirror 161a, the mirror 162a, and the condenser lens 163. The first irradiation position adjusting device 161 and the second irradiation position adjusting device 162 are laser beams irradiated toward the optical member sheet FX held on the table 31 from the laser beam oscillator 160 based on the control of the control device 33. Adjust the irradiation position.

アクチュエータ161b,162bは、制御装置33の制御に基づいて、ミラー161a,162aを回転させ、光学部材シートFXに向けて照射されるレーザー光Lの光路を調整する。例えば、レーザー光Lの光路を、図3において実線で示す状態から1点鎖線で示す状態または2点差線で示す状態に変更する。   Based on the control of the control device 33, the actuators 161b and 162b rotate the mirrors 161a and 162a to adjust the optical path of the laser light L emitted toward the optical member sheet FX. For example, the optical path of the laser beam L is changed from the state indicated by the solid line in FIG. 3 to the state indicated by the one-dot chain line or the state indicated by the two-dot difference line.

ミラー161a及びミラー162aの回転により、レーザー光Lの光路が実線で示す状態に位置付けられている場合には、レーザー光発振機160から発振されたレーザー光Lは集光点Qaに集光される。   When the optical path of the laser beam L is positioned in a state indicated by a solid line by the rotation of the mirror 161a and the mirror 162a, the laser beam L oscillated from the laser beam oscillator 160 is collected at the condensing point Qa. .

ミラー161a及びミラー162aの回転により、レーザー光Lの光路が一点鎖線で示す状態に位置付けられている場合には、レーザー光発振機160から発振されたレーザー光Lは集光点Qaから所定量変位した集光点Qbに集光される。   When the optical path of the laser beam L is positioned in the state indicated by the alternate long and short dash line by the rotation of the mirror 161a and the mirror 162a, the laser beam L oscillated from the laser beam oscillator 160 is displaced by a predetermined amount from the condensing point Qa. The light is condensed on the condensing point Qb.

ミラー161a及びミラー162aの回転により、レーザー光Lの光路が二点鎖線で示す状態に位置付けられている場合には、レーザー光発振機160から発振されたレーザー光Lは集光点Qaから所定量変位した集光点Qcに集光される。   When the optical path of the laser light L is positioned in a state indicated by a two-dot chain line by the rotation of the mirror 161a and the mirror 162a, the laser light L oscillated from the laser light oscillator 160 is a predetermined amount from the condensing point Qa. It is condensed on the displaced condensing point Qc.

このような構成により、第1照射位置調整装置161、第2照射位置調整装置162は、制御装置33の制御に基づいて、集光レンズ163によってテーブル31に保持された光学部材シートFXに集光されるレーザー光Lの集光点位置(Qa,Qb,Qc)を調整する。   With such a configuration, the first irradiation position adjusting device 161 and the second irradiation position adjusting device 162 are focused on the optical member sheet FX held on the table 31 by the focusing lens 163 based on the control of the control device 33. The condensing point position (Qa, Qb, Qc) of the laser beam L to be adjusted is adjusted.

集光レンズ163は、第2切断装置16の先端部(光学部材シートFXと対向する部分)に配置されている。集光レンズ163は、レーザー光発振機160から発振され、第1照射位置調整装置161、第2照射位置調整装置162により光路が調整されたレーザー光Lを光学部材シートFXの所定位置に集光する。   The condensing lens 163 is disposed at the tip of the second cutting device 16 (the portion facing the optical member sheet FX). The condensing lens 163 condenses the laser light L, which is oscillated from the laser light oscillator 160 and whose optical path is adjusted by the first irradiation position adjusting device 161 and the second irradiation position adjusting device 162, at a predetermined position of the optical member sheet FX. To do.

例えば、集光レンズ163としては、fθレンズを用いる。これにより、ミラー162aから集光レンズ163に平行に入力された実線と1点鎖線および2点鎖線で示すレーザー光Lを光学部材シートFXに平行に集光させることができる。   For example, as the condenser lens 163, an fθ lens is used. Accordingly, the laser beam L indicated by the solid line, the one-dot chain line, and the two-dot chain line input in parallel to the condenser lens 163 from the mirror 162a can be condensed in parallel to the optical member sheet FX.

制御装置33は、第2切断装置16から射出されるレーザー光Lがテーブル31に保持された光学部材シートFXにおいて所望の軌跡を描くように、移動装置32、第1照射位置調整装置161、第2照射位置調整装置162を制御する。   The control device 33 moves the moving device 32, the first irradiation position adjusting device 161, the first irradiation position so that the laser beam L emitted from the second cutting device 16 draws a desired locus on the optical member sheet FX held on the table 31. 2 The irradiation position adjusting device 162 is controlled.

(レーザー光照射方法)
図12は、本発明のレーザー光照射方法の一実施形態を示すフローチャートである。
本実施形態のレーザー光照射方法は、図2に示すレーザー光照射装置30を用いた、光学部材シートFXを所定サイズの光学部材FSに切断するための切断方法である。本実施形態のレーザー光照射方法は、光学部材シートFXをテーブル31の保持面31aで保持する第1のステップと、テーブル31と第2切断装置16を相対移動させつつ第2切断装置16から保持面31aと平行な平面内で2軸走査されたレーザー光を光学部材シートFXに照射する第2のステップと、を有する。第2のステップにおいては、第2切断装置16から照射されるレーザー光がテーブル31に保持された光学部材シートFXにおいて所望の軌跡を描くように、テーブル31と第2切断装置16とを、保持面31aに平行な第1の方向V1と保持面31aに平行かつ第1の方向V1に直交する第2の方向V2とに相対移動させ、かつ、テーブル31に保持された光学部材シートFXに照射されるレーザー光の照射位置を調整させる。
以下、レーザー光照射装置30を用いて光学部材シートFXを所定サイズの光学部材FSに切断するまでの動作を説明する。
(Laser light irradiation method)
FIG. 12 is a flowchart showing an embodiment of the laser beam irradiation method of the present invention.
The laser light irradiation method of this embodiment is a cutting method for cutting the optical member sheet FX into optical members FS of a predetermined size using the laser light irradiation device 30 shown in FIG. In the laser beam irradiation method of the present embodiment, the first step of holding the optical member sheet FX on the holding surface 31a of the table 31, and the table 31 and the second cutting device 16 are held from the second cutting device 16 while being relatively moved. And a second step of irradiating the optical member sheet FX with laser light that has been biaxially scanned in a plane parallel to the surface 31a. In the second step, the table 31 and the second cutting device 16 are held so that the laser beam emitted from the second cutting device 16 draws a desired locus on the optical member sheet FX held on the table 31. Irradiate the optical member sheet FX held relative to the first direction V1 parallel to the surface 31a and the second direction V2 parallel to the holding surface 31a and perpendicular to the first direction V1 and held on the table 31 The irradiation position of the laser beam to be adjusted is adjusted.
Hereinafter, an operation until the optical member sheet FX is cut into an optical member FS having a predetermined size using the laser beam irradiation device 30 will be described.

先ず、使用する光学部材シート(例えば第1光学部材シートF1)の原反ロール(例えば第1原反ロールR1)を保持部12cに装填する。この装填が完了した後、オペレータは、操作パネルなどを利用して初期設定を行う(図12に示すステップS1)。例えば、前記初期設定により、光学部材シートの切断サイズ、厚み、供給速度、レーザー光の出力および焦点深度、保持部12cの繰り出し速度、ローラコンベヤ5の搬送速度などが設定される。   First, an original fabric roll (for example, first original fabric roll R1) of an optical member sheet (for example, first optical member sheet F1) to be used is loaded into the holding portion 12c. After this loading is completed, the operator makes initial settings using the operation panel or the like (step S1 shown in FIG. 12). For example, the cutting size, thickness, supply speed, laser light output and depth of focus, feeding speed of the holding unit 12c, transport speed of the roller conveyor 5, and the like are set by the initial setting.

初期設定が完了すると、ローラコンベヤ5は、制御装置20の制御に基づいて、液晶パネルPの搬送を開始する(図12に示すステップS2)。   When the initial setting is completed, the roller conveyor 5 starts conveying the liquid crystal panel P based on the control of the control device 20 (step S2 shown in FIG. 12).

液晶パネルPにおいては、制御装置20の制御に基づいて、第1アライメント装置11によるアライメントが行われ、第1貼合装置12による第1貼合シートF21の形成が行われ、第1切断装置13による第1片面貼合パネルP11の形成が行われ、第2アライメント装置14によるアライメントが行われ、第2貼合装置15による第2貼合シートF22の形成が行われる。   In the liquid crystal panel P, the alignment by the first alignment device 11 is performed based on the control of the control device 20, the first bonding sheet F <b> 21 is formed by the first bonding device 12, and the first cutting device 13. The 1st single-sided bonding panel P11 by is formed, alignment by the 2nd alignment apparatus 14 is performed, and formation of the 2nd bonding sheet | seat F22 by the 2nd bonding apparatus 15 is performed.

その後、液晶パネルPは、所定の位置で停止される(図12に示すステップS3)。例えば、液晶パネルPは、制御装置20の制御に基づいて、テーブル31の保持面31aに保持される。   Thereafter, the liquid crystal panel P is stopped at a predetermined position (step S3 shown in FIG. 12). For example, the liquid crystal panel P is held on the holding surface 31 a of the table 31 based on the control of the control device 20.

次に、テーブル31に保持された光学部材シートFXにレーザー光を照射して光学部材シートから所定のサイズの光学部材を切り出す(図12に示すステップS4)。本実施形態において、制御装置33は、制御装置20の制御に基づいて、第2切断装置16から照射されるレーザー光がテーブル31に保持された光学部材シートFXにおいて所望の軌跡を描くように、移動装置32と第1照射位置調整装置161、第2照射位置調整装置162との制御を行う。   Next, the optical member sheet FX held on the table 31 is irradiated with laser light to cut out an optical member of a predetermined size from the optical member sheet (step S4 shown in FIG. 12). In the present embodiment, the control device 33 draws a desired locus on the optical member sheet FX held by the table 31 based on the control of the control device 20 so that the laser light emitted from the second cutting device 16 is drawn on the table 31. The moving device 32, the first irradiation position adjusting device 161, and the second irradiation position adjusting device 162 are controlled.

図13は、レーザー光を光学部材シートFX上で矩形状に走査するための制御方法を示す図である。なお、図13において、符号Trは目的とするレーザー光の移動軌跡(所望の軌跡。以下、レーザー光移動軌跡ということがある)である。符号Tr1は、テーブル31と第2切断装置16との相対移動による移動軌跡を光学部材シートFXに投影した軌跡(以下、光源移動軌跡ということがある)を示す。光源移動軌跡Tr1は矩形形状を有するレーザー移動軌跡Trの4つの角部を湾曲させた形状であり、符号SA1は角部以外の直線区間であり、符号SA2は角部の屈曲区間である。符号Tr2は第2切断装置16が光源移動軌跡Tr1上を相対移動しているときにレーザー光の照射位置が第1照射位置調整装置161および第2照射位置調整装置162により光源移動軌跡Tr1と直交する方向にどの程度ずらされるか(調整されているか)を示す曲線(以下、調整曲線ということがある)を示す。レーザー照射位置のずれ量(調整量)は、光源移動軌跡Tr1と直交する方向における調整曲線Tr2とレーザー光移動軌跡Trとの間の距離で示されている。   FIG. 13 is a diagram illustrating a control method for scanning laser light in a rectangular shape on the optical member sheet FX. In FIG. 13, symbol Tr is a target laser beam movement locus (desired locus; hereinafter, referred to as laser beam movement locus). Reference numeral Tr <b> 1 indicates a trajectory (hereinafter sometimes referred to as a light source movement trajectory) obtained by projecting a movement trajectory due to relative movement between the table 31 and the second cutting device 16 onto the optical member sheet FX. The light source movement trajectory Tr1 has a shape in which four corners of the laser movement trajectory Tr having a rectangular shape are curved, the symbol SA1 is a straight section other than the corner, and the symbol SA2 is a bent section of the corner. Reference numeral Tr2 indicates that the irradiation position of the laser beam is orthogonal to the light source movement locus Tr1 by the first irradiation position adjustment device 161 and the second irradiation position adjustment device 162 when the second cutting device 16 is relatively moving on the light source movement locus Tr1. It shows a curve (hereinafter sometimes referred to as an adjustment curve) that indicates how much the direction is shifted (adjusted). The deviation amount (adjustment amount) of the laser irradiation position is indicated by the distance between the adjustment curve Tr2 and the laser beam movement locus Tr in the direction orthogonal to the light source movement locus Tr1.

図13に示すように、光源移動軌跡Tr1は、角部が湾曲した略矩形の移動軌跡を描いている。光源移動軌跡Tr1とレーザー光移動軌跡Trとは概ね一致しており、角部の狭い領域でのみ両者の形状が異なっている。光源移動軌跡Tr1が矩形形状をしていると、矩形の角部で第2切断装置16の移動速度が遅くなり、角部がレーザー光の熱によって膨れたり波打ったりすることがある。そのため、図13では、光源移動軌跡Tr1の角部を湾曲させて第2切断装置16の移動速度が光源移動軌跡Tr1全体で概ね一定となるようにしている。   As shown in FIG. 13, the light source movement trajectory Tr1 depicts a substantially rectangular movement trajectory with curved corners. The light source movement trajectory Tr1 and the laser beam movement trajectory Tr are substantially the same, and the shapes of both are different only in a narrow corner area. When the light source movement trajectory Tr1 has a rectangular shape, the moving speed of the second cutting device 16 becomes slow at the corners of the rectangle, and the corners may swell or wave due to the heat of the laser beam. Therefore, in FIG. 13, the corner of the light source movement locus Tr1 is curved so that the moving speed of the second cutting device 16 is substantially constant over the entire light source movement locus Tr1.

仮に、従来のノズル方式を用いた場合、レーザー光を湾曲形状に走行させると切断形状も湾曲形状になってしまう。また、レーザー光を矩形状に走行させると切断形状は矩形形状になるが、角部が熱変形により膨れたり波打ったりしてしまう。   If the conventional nozzle method is used, if the laser beam is caused to travel in a curved shape, the cut shape also becomes a curved shape. In addition, when the laser beam travels in a rectangular shape, the cut shape becomes a rectangular shape, but the corner portion is swollen or waved due to thermal deformation.

制御装置33は、第2切断装置16が直線区間SA1を移動しているときは、光源移動軌跡Tr1とレーザー光移動軌跡Trとが一致しているので、レーザー光の照射位置を第1照射位置調整装置161および第2照射位置調整装置162により調整せずに、そのまま第2切断装置16から光学部材シートにレーザー光を照射させる。一方、第2切断装置16が屈曲区間SA2を移動しているときは、光源移動軌跡Tr1とレーザー光移動軌跡Trとが一致しないので、第1照射位置調整装置161および第2照射位置調整装置162によりレーザー光の照射位置を制御し、レーザー光の照射位置がレーザー光移動軌跡Tr上に配置されるようにする。例えば、第2切断装置16が符号M1で示す位置を移動しているときには、第1照射位置調整装置161および第2照射位置調整装置162によりレーザー光の照射位置が光源移動軌跡Tr1と直交する方向N1に距離W1だけずらされる。距離W1は、光源移動軌跡Tr1と直交する方向N1における調整曲線Tr2とレーザー光移動軌跡Trとの距離W2と同じである。光源移動軌跡Tr1はレーザー光移動軌跡Trよりも内側に配置されているが、レーザー光の照射位置が第1照射位置調整装置161および第2照射位置調整装置162によってレーザー光移動軌跡Trよりも外側にずらされるので、それらのずれが相殺してレーザー光の照射位置がレーザー光照射軌跡Tr上に配置されるようになる。   When the second cutting device 16 is moving in the straight section SA1, the control device 33 sets the laser light irradiation position to the first irradiation position because the light source movement locus Tr1 and the laser light movement locus Tr coincide with each other. Without adjusting by the adjusting device 161 and the second irradiation position adjusting device 162, the optical member sheet is irradiated with laser light as it is from the second cutting device 16. On the other hand, when the second cutting device 16 is moving in the bending section SA2, the light source movement trajectory Tr1 and the laser light movement trajectory Tr do not coincide with each other, so the first irradiation position adjustment device 161 and the second irradiation position adjustment device 162. Thus, the irradiation position of the laser beam is controlled so that the irradiation position of the laser beam is arranged on the laser beam movement locus Tr. For example, when the second cutting device 16 is moving at the position indicated by the symbol M1, the first irradiation position adjusting device 161 and the second irradiation position adjusting device 162 make the irradiation position of the laser beam orthogonal to the light source movement locus Tr1. The distance W1 is shifted to N1. The distance W1 is the same as the distance W2 between the adjustment curve Tr2 and the laser beam movement locus Tr in the direction N1 orthogonal to the light source movement locus Tr1. The light source movement trajectory Tr1 is arranged inside the laser light movement trajectory Tr, but the irradiation position of the laser light is outside the laser light movement trajectory Tr by the first irradiation position adjusting device 161 and the second irradiation position adjusting device 162. Therefore, these deviations cancel each other, and the irradiation position of the laser beam is arranged on the laser beam irradiation locus Tr.

以上説明したように、本実施形態におけるレーザー光照射装置30、レーザー光照射方法によれば、制御装置33の制御により、テーブル31に保持された光学部材シートFXにおいて所望の軌跡Trを描くように、移動装置32と照射位置調整装置161,162とが制御される。この構成においては、第1照射位置調整装置161および第2照射位置調整装置162により調整すべきレーザー光の照射区間は狭い屈曲区間SA2のみである。それ以外の広い直線区間SA1は、移動装置32による第2切断装置16の移動によってレーザー光が光学部材シートFX上を走査される。本実施形態では、レーザー光の走査を主として移動装置32によって行い、移動装置32で精度よくレーザー光の照射位置を制御できない領域のみ第1照射位置調整装置161および第2照射位置調整装置162で調整している。そのため、移動装置32のみ又は第2切断装置16(スキャナー)のみでレーザー光を走査する場合に比べてレーザー光の照射位置を広い範囲で精度よく制御することができる。   As described above, according to the laser light irradiation device 30 and the laser light irradiation method in the present embodiment, a desired locus Tr is drawn on the optical member sheet FX held on the table 31 by the control of the control device 33. The moving device 32 and the irradiation position adjusting devices 161 and 162 are controlled. In this configuration, the laser light irradiation section to be adjusted by the first irradiation position adjusting device 161 and the second irradiation position adjusting device 162 is only the narrow bending section SA2. In the other wide linear section SA1, the laser beam is scanned on the optical member sheet FX by the movement of the second cutting device 16 by the moving device 32. In the present embodiment, laser beam scanning is mainly performed by the moving device 32, and only the region where the laser beam irradiation position cannot be accurately controlled by the moving device 32 is adjusted by the first irradiation position adjusting device 161 and the second irradiation position adjusting device 162. doing. Therefore, the irradiation position of the laser beam can be accurately controlled in a wide range as compared with the case where the laser beam is scanned only by the moving device 32 or only the second cutting device 16 (scanner).

また、表示領域P4よりも幅の広い光学部材シートF1,F2,F3に液晶パネルPを貼合することで、光学部材シートF1,F2,F3の位置に応じてその光学軸方向が変化する場合でも、この光学軸方向に合わせて液晶パネルPをアライメントして貼合することができる。これにより、液晶パネルPに対する光学部材F11,F12,F13の光学軸方向の精度を向上させることができ、光学表示デバイスの精彩及びコントラストを高めることができる。   Moreover, when the liquid crystal panel P is bonded to the optical member sheets F1, F2, and F3 wider than the display region P4, the optical axis direction changes according to the positions of the optical member sheets F1, F2, and F3. However, the liquid crystal panel P can be aligned and bonded in accordance with this optical axis direction. Thereby, the precision of the optical axis direction of the optical members F11, F12, and F13 with respect to the liquid crystal panel P can be improved, and the color and contrast of the optical display device can be increased.

また、表示領域P4よりも大きい光学部材シートF1,F2,F3に液晶パネルPを貼合した後に、光学部材シートF1,F2,F3の余剰部分を切り離すことで、表示領域P4に対応するサイズの光学部材F11,F12,F13を液晶パネルPの面上で形成することができる。これにより、光学部材F11,F12,F13を表示領域P4の際まで精度よく設けることができ、表示領域P4外側に位置する額縁部Gを狭めて表示エリアの拡大及び機器の小型化を図ることができる。   Moreover, after bonding liquid crystal panel P to optical member sheet | seat F1, F2, F3 larger than the display area P4, by separating the excess part of the optical member sheet | seat F1, F2, F3, the size corresponding to the display area P4 is obtained. The optical members F11, F12, and F13 can be formed on the surface of the liquid crystal panel P. As a result, the optical members F11, F12, and F13 can be accurately provided up to the display region P4, and the frame portion G positioned outside the display region P4 can be narrowed to enlarge the display area and downsize the device. it can.

そして、各光学部材シートF1,F2,F3が、光学表示部品PXとの貼合位置で粘着層側の貼合面を下方に向けるように搬送されることで、各光学部材シートF1,F2,F3の貼合面の傷付きや異物の付着等が抑えられ、貼合不良の発生を抑制することができる。   And each optical member sheet | seat F1, F2, F3 is conveyed so that the bonding surface by the side of the adhesion layer may face downward at the bonding position with optical display component PX. Scratches on the bonding surface of F3, adhesion of foreign matters, and the like can be suppressed, and occurrence of bonding failure can be suppressed.

また、上記光学表示デバイスの生産システムは、ローラコンベヤ5上を搬送される前記第2片面貼合パネルP12の表面と裏面とを反転させる第3アライメント装置17を備えることで、光学表示部品PXの表面及び裏面の両面に対して光学部材シートFXを上方から容易に貼合することができる。   Moreover, the production system of the optical display device includes the third alignment device 17 that reverses the front surface and the back surface of the second single-sided bonding panel P12 conveyed on the roller conveyor 5, so that the optical display component PX The optical member sheet FX can be easily bonded from above to both the front and back surfaces.

尚、本実施形態においては、照射対象物にレーザー光を照射して所定の加工を行う構成として、光学部材シートを切断する構成を例に挙げて説明したが、本発明は上述した実施形態に限らない。例えば、光学部材シートを少なくとも二つに分割することの他に、光学部材シートに貫通する切れ目を入れることや光学部材シートに所定の深さの溝(切れ込み)を形成すること等も、本発明に包含されている。より具体的には、例えば、光学部材シートの端部の切断(切り落とし)、ハーフカット、マーキング加工等も含まれることとする。   In the present embodiment, the configuration in which the optical member sheet is cut is described as an example of the configuration for performing the predetermined processing by irradiating the irradiation target with the laser beam. However, the present invention is applied to the above-described embodiment. Not exclusively. For example, in addition to dividing the optical member sheet into at least two parts, it is also possible to make a cut through the optical member sheet and to form a groove (cut) with a predetermined depth in the optical member sheet. Is included. More specifically, for example, cutting (cutting off) an end of the optical member sheet, half cutting, marking processing, and the like are included.

また、本実施形態においては、レーザー光照射装置から照射されるレーザー光の描画軌跡が平面視矩形形状(正方形形状)である場合を例に挙げて説明したが、これに限らない。例えば、レーザー光照射装置から照射されるレーザー光の描画軌跡が平面視三角形形状であってもよいし、平面視五角形以上の多角形形状であってもよい。また、本発明はこのような形状に限らず、平面視星型形状、平面視幾何学的形状であってもよい。このような描画軌跡においても本発明を適用することが可能である。   Further, in the present embodiment, the case where the drawing locus of the laser light emitted from the laser light irradiation device has a rectangular shape (square shape) in plan view has been described as an example, but the present invention is not limited thereto. For example, the drawing trajectory of the laser light emitted from the laser light irradiation device may be a triangular shape in plan view, or may be a polygonal shape that is a pentagon or more in plan view. In addition, the present invention is not limited to such a shape, and may be a star shape in plan view or a geometric shape in plan view. The present invention can also be applied to such a drawing trajectory.

また、本実施形態においては、ロール状のシート(光学部材シートを巻回した原反ロール)をインラインで複数台並べた方式を例に挙げて説明したが、本発明は上述した実施形態に限らない。例えば、枚葉貼合の方式においても本発明を適用することが可能である。また、チップ状のシートを貼合する場合においても本発明を適用することが可能である。例えば、偏光フィルム等の光学部材を液晶パネル等の光学表示部品に対して大きめに貼合した後に、光学部材のみを切断することもできる。この方法によれば、光学部材を光学表示部品に貼合する際の貼り付け精度は不要となり、額縁を切断することも可能となる。   Further, in the present embodiment, a method in which a plurality of roll-shaped sheets (raw rolls wound with optical member sheets) are arranged in-line has been described as an example, but the present invention is limited to the above-described embodiments. Absent. For example, the present invention can be applied to a single wafer bonding method. Further, the present invention can be applied even when a chip-shaped sheet is bonded. For example, it is possible to cut only the optical member after an optical member such as a polarizing film is bonded to an optical display component such as a liquid crystal panel. According to this method, the bonding accuracy when the optical member is bonded to the optical display component becomes unnecessary, and the frame can be cut.

本発明の好ましい実施形態を説明し、上記で説明してきたが、これらは本発明の例示的なものであり、限定するものとして考慮されるべきではないことを理解すべきである。追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。従って、本発明は、前述の説明によって限定されていると見なされるべきではなく、特許請求の範囲によって制限されている。   While preferred embodiments of the present invention have been described and described above, it should be understood that these are exemplary of the invention and are not to be considered as limiting. Additions, omissions, substitutions, and other changes can be made without departing from the scope of the invention. Accordingly, the invention is not to be seen as limited by the foregoing description, but is limited by the scope of the claims.

1…フィルム貼合システム(光学部材貼合体の製造装置)、12…第1貼合装置(貼合装置)、15…第2貼合装置(貼合装置)、16…第2切断装置(スキャナー)、18…第3貼合装置(貼合装置)、19…第3切断装置(スキャナー)、30…レーザー光照射装置、31…テーブル、32…移動装置、33…制御装置、160…レーザー光発振機、161…第1照射位置調整装置(走査素子)、162…第2照射位置調整装置(走査素子)、163…集光レンズ、P…液晶パネル(光学表示部品)、P4…表示領域、F1…第1光学部材シート(光学部材シート)、F2…第2光学部材シート(光学部材シート)、F3…第3光学部材シート(光学部材シート)、F11…第1光学部材(光学部材)、F12…第2光学部材(光学部材)、F13…第3光学部材(光学部材)、F21…第1貼合シート(貼合シート)、F22…第2貼合シート(貼合シート)、F23…第3貼合シート(貼合シート)、P11…第1片面貼合パネル(第1光学部材貼合体)、P12…第2片面貼合パネル(光学部材貼合体、第2光学部材貼合体)、P13…両面貼合パネル(光学部材貼合体、第2光学部材貼合体) DESCRIPTION OF SYMBOLS 1 ... Film bonding system (manufacturing apparatus of an optical member bonding body), 12 ... 1st bonding apparatus (bonding apparatus), 15 ... 2nd bonding apparatus (bonding apparatus), 16 ... 2nd cutting apparatus (scanner) ), 18 ... third bonding device (bonding device), 19 ... third cutting device (scanner), 30 ... laser light irradiation device, 31 ... table, 32 ... moving device, 33 ... control device, 160 ... laser light Oscillator 161 ... First irradiation position adjusting device (scanning element) 162 ... Second irradiation position adjusting device (scanning element), 163 ... Condensing lens, P ... Liquid crystal panel (optical display component), P4 ... Display area, F1 ... 1st optical member sheet (optical member sheet), F2 ... 2nd optical member sheet (optical member sheet), F3 ... 3rd optical member sheet (optical member sheet), F11 ... 1st optical member (optical member), F12 ... second optical member (optical member) F13 ... 3rd optical member (optical member), F21 ... 1st bonding sheet (bonding sheet), F22 ... 2nd bonding sheet (bonding sheet), F23 ... 3rd bonding sheet (bonding sheet) , P11 ... 1st single-sided bonding panel (1st optical member bonding body), P12 ... 2nd single-sided bonding panel (optical member bonding body, 2nd optical member bonding body), P13 ... Double-sided bonding panel (optical member bonding) Combined, second optical member bonded)

Claims (5)

照射対象物にレーザー光を照射するレーザー光照射装置であって、
前記照射対象物を保持する保持面を有するテーブルと、
前記保持面と平行な平面内でレーザー光を2軸走査可能なスキャナーと、
前記テーブルと前記スキャナーとを相対移動可能な移動装置と、
を含むことを特徴とするレーザー光照射装置。
A laser light irradiation apparatus for irradiating an irradiation object with laser light,
A table having a holding surface for holding the irradiation object;
A scanner capable of biaxial scanning with laser light in a plane parallel to the holding surface;
A moving device capable of relatively moving the table and the scanner;
A laser beam irradiation apparatus comprising:
前記スキャナーは、
前記レーザー光を発振するレーザー光発振機と、
前記レーザー光発振機によって発振された前記レーザー光を前記保持面と平行な平面内で2軸走査可能な走査素子と、
前記走査素子から射出された前記レーザー光を前記照射対象物に向けて集光する集光レンズと、
を含むことを特徴とする請求項1に記載のレーザー光照射装置。
The scanner
A laser beam oscillator for oscillating the laser beam;
A scanning element capable of two-axis scanning the laser beam oscillated by the laser beam oscillator in a plane parallel to the holding surface;
A condensing lens that condenses the laser light emitted from the scanning element toward the irradiation object;
The laser beam irradiation apparatus according to claim 1, comprising:
光学表示部品に光学部材を貼合してなる光学部材貼合体の製造装置であって、
前記光学表示部品に、前記光学表示部品の表示領域よりも大きい光学部材シートを貼り合わせて貼合シートを形成する貼合装置と、
前記表示領域に対向する前記光学部材シートの対向部分と前記対向部分の外側に位置する余剰部分とを切り離し、前記光学部材シートから前記表示領域に対応する大きさを有する前記光学部材を切り出すことで、前記貼合シートから前記光学表示部品及び前記光学表示部品に重なる前記光学部材を含む前記光学部材貼合体を切り出し、請求項1または2に記載のレーザー光照射装置によって構成され、前記レーザー光照射装置から照射されたレーザー光によって照射対象物である前記光学部材シートを切断する切断装置と、
を含むことを特徴とする光学部材貼合体の製造装置。
It is a manufacturing apparatus of an optical member bonding body formed by bonding an optical member to an optical display component,
A bonding apparatus that forms a bonding sheet by bonding an optical member sheet larger than the display area of the optical display component to the optical display component;
By separating the facing portion of the optical member sheet facing the display region and the surplus portion located outside the facing portion, and cutting out the optical member having a size corresponding to the display region from the optical member sheet. The optical member bonded body including the optical display component and the optical member overlapping the optical display component is cut out from the bonding sheet, configured by the laser beam irradiation device according to claim 1, and the laser beam irradiation. A cutting device for cutting the optical member sheet which is an irradiation object by laser light irradiated from the device;
The manufacturing apparatus of the optical member bonding body characterized by including.
照射対象物にレーザー光を照射するレーザー光照射方法であって、
前記照射対象物をテーブルの保持面に保持し、
前記テーブルとスキャナーとを相対移動させつつ前記スキャナーから前記保持面と平行な平面内で2軸走査されたレーザー光を前記照射対象物に照射する
ことを特徴とするレーザー光照射方法。
A laser light irradiation method for irradiating an irradiation object with laser light,
Holding the irradiation object on a holding surface of a table;
A laser light irradiation method comprising: irradiating the irradiation object with laser light that is biaxially scanned in a plane parallel to the holding surface from the scanner while relatively moving the table and the scanner.
光学表示部品に光学部材を貼合してなる光学部材貼合体の製造方法であって、
前記光学表示部品に前記光学表示部品の表示領域よりも大きい光学部材シートを貼り合わせて貼合シートを形成し、
前記表示領域に対向する前記光学部材シートの対向部分と前記対向部分の外側に位置する余剰部分とを切り離し、前記光学部材シートから前記表示領域に対応する大きさを有する前記光学部材を切り出すことで、前記貼合シートから前記光学表示部品及び前記光学表示部品に重なる前記光学部材を含む前記光学部材貼合体を切り出し、請求項4に記載のレーザー光照射方法を用いてレーザー光によって照射対象物である前記光学部材シートを切断する
ことを特徴とする光学部材貼合体の製造方法。
It is a manufacturing method of an optical member bonding body formed by bonding an optical member to an optical display component,
Bonding an optical member sheet larger than the display area of the optical display component to the optical display component to form a bonding sheet,
By separating the facing portion of the optical member sheet facing the display region and the surplus portion located outside the facing portion, and cutting out the optical member having a size corresponding to the display region from the optical member sheet. The said optical member bonding body containing the said optical member which overlaps with the said optical display component and the said optical display component is cut out from the said bonding sheet | seat, It is an irradiation target object with a laser beam using the laser beam irradiation method of Claim 4. The said optical member sheet | seat is cut | disconnected. The manufacturing method of the optical member bonding body characterized by the above-mentioned.
JP2012282888A 2011-12-27 2012-12-26 Laser light irradiation device, optical member bonded body manufacturing apparatus, laser light irradiation method, and optical member bonded body manufacturing method Active JP5495278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012282888A JP5495278B2 (en) 2011-12-27 2012-12-26 Laser light irradiation device, optical member bonded body manufacturing apparatus, laser light irradiation method, and optical member bonded body manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011284650 2011-12-27
JP2011284650 2011-12-27
JP2012282888A JP5495278B2 (en) 2011-12-27 2012-12-26 Laser light irradiation device, optical member bonded body manufacturing apparatus, laser light irradiation method, and optical member bonded body manufacturing method

Publications (3)

Publication Number Publication Date
JP2013152456A true JP2013152456A (en) 2013-08-08
JP2013152456A5 JP2013152456A5 (en) 2014-02-20
JP5495278B2 JP5495278B2 (en) 2014-05-21

Family

ID=48697406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012282888A Active JP5495278B2 (en) 2011-12-27 2012-12-26 Laser light irradiation device, optical member bonded body manufacturing apparatus, laser light irradiation method, and optical member bonded body manufacturing method

Country Status (5)

Country Link
JP (1) JP5495278B2 (en)
KR (1) KR101572402B1 (en)
CN (1) CN104023898B (en)
TW (1) TWI523721B (en)
WO (1) WO2013099922A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024872A1 (en) * 2012-08-08 2014-02-13 住友化学株式会社 Optical display device production method and optical display device production system
WO2014167875A1 (en) * 2013-04-08 2014-10-16 住友化学株式会社 Laser machining device and system for producing optical display device
WO2015030066A1 (en) * 2013-08-30 2015-03-05 住友化学株式会社 Production method for laminated optical member
WO2015030062A1 (en) * 2013-08-30 2015-03-05 住友化学株式会社 Production method for laminated optical member
WO2015170206A1 (en) * 2014-05-09 2015-11-12 Guidolin Girotto S.R.L. A cutting apparatus for cutting flexible material with a first cutting unit and a second cutting unit comprising at least one laser emitter
JP2015223608A (en) * 2014-05-28 2015-12-14 村田機械株式会社 Plate material processing system and plate material processing method
JP2016107288A (en) * 2014-12-04 2016-06-20 大阪シーリング印刷株式会社 Laser processing device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5943354B2 (en) * 2013-07-23 2016-07-05 住友化学株式会社 Optical display device production system
WO2016144290A1 (en) * 2015-03-06 2016-09-15 Intel Corporation Acousto-optics deflector and mirror for laser beam steering
CN106808086A (en) * 2015-11-27 2017-06-09 南京魔迪多维数码科技有限公司 Three-dimensional crisp and hard material localization method and system of processing in multiaxial motion laser system
KR102192711B1 (en) * 2019-07-12 2020-12-18 석종대 A hitting device
CN113500052B (en) * 2021-07-28 2022-07-01 深圳市汇泽激光科技有限公司 Laser cleaning method, device, computer readable medium and laser cleaning equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319885A (en) * 2006-05-31 2007-12-13 Miyachi Technos Corp Method and apparatus for laser marking
JP2011178636A (en) * 2010-03-03 2011-09-15 Mitsuboshi Diamond Industrial Co Ltd Method for dividing brittle material substrate, and brittle material member

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6991695B2 (en) * 2002-05-21 2006-01-31 3M Innovative Properties Company Method for subdividing multilayer optical film cleanly and rapidly
KR101266880B1 (en) * 2006-06-08 2013-05-24 삼성디스플레이 주식회사 Method for manufacturing polarizer and laser processing system
JP2008175856A (en) * 2007-01-16 2008-07-31 Seiko Epson Corp Substrate structure, method for dividing substrate, and method for manufacturing electrooptical device
US8524536B2 (en) * 2008-08-19 2013-09-03 Nitto Denko Corporation Optical film cutting method and apparatus using the same
JP4547641B2 (en) * 2008-09-22 2010-09-22 ソニー株式会社 Production method of retardation plate
KR101040353B1 (en) * 2008-09-29 2011-06-10 (주)와이티에스 Polaroid film suction apparatus of polaroid film cutting system
JP2010149176A (en) * 2008-12-26 2010-07-08 Seiko Epson Corp Method for dividing base material
KR101605037B1 (en) * 2010-01-15 2016-04-01 동우 화인켐 주식회사 The cutting method of the polarizing plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319885A (en) * 2006-05-31 2007-12-13 Miyachi Technos Corp Method and apparatus for laser marking
JP2011178636A (en) * 2010-03-03 2011-09-15 Mitsuboshi Diamond Industrial Co Ltd Method for dividing brittle material substrate, and brittle material member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024872A1 (en) * 2012-08-08 2014-02-13 住友化学株式会社 Optical display device production method and optical display device production system
WO2014167875A1 (en) * 2013-04-08 2014-10-16 住友化学株式会社 Laser machining device and system for producing optical display device
WO2015030066A1 (en) * 2013-08-30 2015-03-05 住友化学株式会社 Production method for laminated optical member
WO2015030062A1 (en) * 2013-08-30 2015-03-05 住友化学株式会社 Production method for laminated optical member
WO2015170206A1 (en) * 2014-05-09 2015-11-12 Guidolin Girotto S.R.L. A cutting apparatus for cutting flexible material with a first cutting unit and a second cutting unit comprising at least one laser emitter
US10675706B2 (en) 2014-05-09 2020-06-09 Guidolin Girotto S.R.L. Cutting apparatus for cutting flexible material with a first cutting unit and a second cutting unit comprising at least one laser emitter
JP2015223608A (en) * 2014-05-28 2015-12-14 村田機械株式会社 Plate material processing system and plate material processing method
JP2016107288A (en) * 2014-12-04 2016-06-20 大阪シーリング印刷株式会社 Laser processing device

Also Published As

Publication number Publication date
KR20140109888A (en) 2014-09-16
TWI523721B (en) 2016-03-01
WO2013099922A1 (en) 2013-07-04
KR101572402B1 (en) 2015-11-26
CN104023898A (en) 2014-09-03
CN104023898B (en) 2016-11-09
JP5495278B2 (en) 2014-05-21
TW201338901A (en) 2013-10-01

Similar Documents

Publication Publication Date Title
JP5495278B2 (en) Laser light irradiation device, optical member bonded body manufacturing apparatus, laser light irradiation method, and optical member bonded body manufacturing method
JP5821155B2 (en) Optical display device production method and optical display device production system
JP5791018B2 (en) Optical display device production system and production method
JP6037564B2 (en) Optical display device production system
JP2016013557A (en) Manufacturing apparatus for laser beam irradiation device and optical member adhered body
JP5840322B2 (en) Laser light irradiation apparatus and optical member bonding body manufacturing apparatus
KR102045103B1 (en) System for producing optical display device and method for producing optical display device
JP5828961B2 (en) Optical display device production method and optical display device production system
JP6184165B2 (en) Manufacturing apparatus of optical member bonding body and manufacturing method of optical member bonding body
JP5804399B2 (en) Optical display device production method and optical display device production system
WO2014125993A1 (en) Cutting device, cutting method, and method of manufacturing laminate optical member
JP6199585B2 (en) Laser light irradiation apparatus and optical member bonding body manufacturing apparatus
JP5724146B2 (en) Manufacturing system, manufacturing method and recording medium for optical member bonded body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140107

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140107

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140226

R150 Certificate of patent or registration of utility model

Ref document number: 5495278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350