WO2014167875A1 - Laser machining device and system for producing optical display device - Google Patents

Laser machining device and system for producing optical display device Download PDF

Info

Publication number
WO2014167875A1
WO2014167875A1 PCT/JP2014/051682 JP2014051682W WO2014167875A1 WO 2014167875 A1 WO2014167875 A1 WO 2014167875A1 JP 2014051682 W JP2014051682 W JP 2014051682W WO 2014167875 A1 WO2014167875 A1 WO 2014167875A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical member
cutting
bonding
member sheet
optical
Prior art date
Application number
PCT/JP2014/051682
Other languages
French (fr)
Japanese (ja)
Inventor
達也 土岡
和範 岸▲崎▼
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201480018797.6A priority Critical patent/CN105102175A/en
Priority to KR1020157027044A priority patent/KR20150140664A/en
Publication of WO2014167875A1 publication Critical patent/WO2014167875A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs

Definitions

  • the present invention relates to a laser processing apparatus and an optical display device production system.
  • This application claims priority based on Japanese Patent Application No. 2013-80846 filed on April 8, 2013 and Japanese Patent Application No. 2013-104400 filed on May 16, 2013, The contents are incorporated herein.
  • Patent Document 1 a decomposition product (fume) generated from a laser irradiation portion at the time of laser processing of a product is sucked and removed by a suction device in which a suction port is disposed in the vicinity of the laser irradiation portion.
  • a suction device in which a suction port is disposed in the vicinity of the laser irradiation portion.
  • Techniques for reducing adhesion are disclosed.
  • Patent Document 2 in a method of cutting an optical film with a separator into a predetermined length and pasting it to a product panel, the laser optical axis is tilted from the front to the rear in the laser traveling direction and cut when the film is laser cut.
  • An air nozzle that blows hot air toward the part and a smoke collection duct that removes gas generated from the cutting part conveyed by the hot air are integrated with the laser irradiation device, so that the fume on the film surface Techniques for reducing adhesion are disclosed.
  • An aspect of the present invention has been made in view of the above circumstances, and provides a laser processing apparatus and an optical display device production system capable of effectively suppressing fume adhesion to a product surface without affecting product processing accuracy.
  • the purpose is to do.
  • a laser processing apparatus and an optical display device production system employ the following configurations.
  • (1) One embodiment of the present invention is a laser processing apparatus that irradiates a processing position of a workpiece with laser light to perform processing, and opens a suction port over the entire length of the processing position in the vicinity of the processing position. A suction device is provided.
  • the processing position is provided endlessly on the outer periphery of the specific area of the workpiece, and the suction device is provided so as to surround the entire periphery of the specific area. Also good. In this case, the fumes can be removed by suction without leakage over the entire circumference of the specific region.
  • the suction device may be capable of moving forward and backward with respect to the processing position. In this case, laser processing of workpieces having different processing positions can be easily handled.
  • the suction device includes a blowout port that blows air toward a product surface between the processing position and the suction port. Also good. In this case, fume adhesion to the product surface between the processing position and the suction port can be suppressed.
  • the suction device may blow out warm air from the outlet. In this case, fume adhesion to the product surface between the cutting line and the suction port can be more effectively suppressed.
  • Another aspect of the present invention is an optical display device production system configured by bonding an optical member to an optical display component, and the optical display component is larger than a display area of the optical display component.
  • a bonding device that bonds the optical member sheet to form a bonded body, and separates the facing portion of the bonding member from the display area of the optical member sheet and the surplus portion outside the facing portion.
  • a cutting device for forming the optical member having a size corresponding to the display area, and the cutting device is directed to a cutting portion between the facing portion and the surplus portion of the optical member sheet in the bonded body.
  • a laser beam irradiation device that irradiates a laser beam for cutting processing, and a suction device that opens a suction port over the entire length of the cutting portion in the vicinity of the cutting portion.
  • the optical member of the size corresponding to a display area is cut
  • cutting using laser light is more accurate than cutting using a cutting blade, and the frame portion around the display area can be narrower than when using a cutting blade.
  • the effective area of the optical member sheet (optical member) to be left on the optical display component without causing a taper angle (an angle with respect to the direction orthogonal to the bonding surface) due to the inclination of the laser beam at the cut end of the optical member sheet. Can contribute to further narrowing the frame of the device. Further, the fumes generated by the laser processing can be sucked without leakage over the entire length of the processing position, so that the fume can be prevented from adhering to the product surface, and line contamination due to the fumes adhering to the product can be prevented.
  • the “part facing the display area” in the above configuration is an area that is not less than the size of the display area and not more than the size of the outer shape (contour shape in plan view) of the optical display component, and the electrical component mounting portion.
  • the area where functional parts such as are avoided is shown. That is, the said structure includes the case where the surplus part is laser-cut along the outer periphery of an optical display component.
  • the “size corresponding to the display area” in the above configuration is a size not less than the size of the display area and not more than the size of the outer shape (contour shape in plan view) of the optical display component, and It refers to a size that avoids a functional part such as an electric part mounting part in an optical display part.
  • the bonded body includes a detection unit that detects an outer peripheral edge of a bonding surface between the optical member sheet and the optical display component, and the cutting portion is connected to the outer peripheral edge. You may set along.
  • the “bonding surface between the optical member sheet and the optical display component” in the above configuration refers to a surface facing the optical member sheet of the optical display component, and specifically, “the outer peripheral edge of the bonding surface” In the optical display component, the outer peripheral edge of the substrate on which the optical member sheet is bonded is indicated.
  • FIG. 6 is a cross-sectional view taken along line AA in FIG. 5. It is sectional drawing of the double-sided bonding panel which passed through the film bonding system.
  • This embodiment demonstrates the film bonding system which comprises the one part as a production system of an optical display device.
  • an XYZ orthogonal coordinate system is set.
  • the X direction indicates the width direction of the optical display component (liquid crystal panel).
  • the Y direction indicates the conveyance direction of the optical display component.
  • the Z direction indicates a direction orthogonal to the X direction and the Y direction.
  • FIG. 1 shows a schematic configuration of a film bonding system (an optical display device production system) 1 according to the present embodiment.
  • the film bonding system 1 bonds a film-shaped optical member such as a polarizing film, a retardation film, and a brightness enhancement film to a panel-shaped optical display component such as a liquid crystal panel or an organic EL panel.
  • the film bonding system 1 manufactures an optical member bonding body including an optical display component and an optical member.
  • the liquid crystal panel P is used as an optical display component.
  • Each part of the film bonding system 1 is comprehensively controlled by a control device 20 as an electronic control device.
  • the film bonding system 1 sequentially performs a predetermined process on the liquid crystal panel P while transporting the liquid crystal panel P from the start position to the end position of the bonding process using, for example, a driving roller conveyor 5.
  • the liquid crystal panel P is conveyed on the roller conveyor 5 with its front and back surfaces being horizontal.
  • the left side shows the upstream side in the transport direction of the liquid crystal panel P (hereinafter referred to as the panel transport upstream side).
  • the right side in the figure shows the downstream side of the liquid crystal panel P in the transport direction (hereinafter referred to as the panel transport downstream side).
  • the liquid crystal panel P has a rectangular shape in plan view.
  • a display region P4 having an outer shape along the outer peripheral edge is formed on the inner side of the outer peripheral edge of the liquid crystal panel P by a predetermined width.
  • the liquid crystal panel P is transported in a direction in which the short side of the display region P4 is substantially aligned with the transport direction on the upstream side of the panel transport from the second alignment device 14 described later.
  • the liquid crystal panel P is transported in a direction in which the long side of the display region P4 is substantially aligned with the transport direction on the panel transport downstream side of the second alignment device 14.
  • a first optical member F11 cut out from the long strip-shaped first optical member sheet F1 and a second optical member F12 cut out from the long strip-shaped second optical member sheet F2.
  • seat F3 is bonded.
  • polarizing films are bonded to both the backlight side and the display surface side of the liquid crystal panel P, respectively.
  • a first optical member (optical member, specific region, facing portion) F11 is bonded as a polarizing film.
  • a third optical member (an optical member, a specific region, a facing portion) F13 is bonded to the surface on the display surface side of the liquid crystal panel P as a polarizing film.
  • a second optical member (an optical member, a specific region, a facing portion) F12 as a brightness enhancement film is further bonded to the first optical member F11.
  • the film bonding system 1 includes a first alignment device 11 that transports the liquid crystal panel P from the upstream process to the panel transport upstream side of the roller conveyor 5 and aligns the liquid crystal panel P.
  • the 1st bonding apparatus (bonding apparatus) 12 provided in the panel conveyance downstream rather than the alignment apparatus 11, the 1st cutting apparatus 13 provided in proximity to the 1st bonding apparatus 12, and the 1st bonding apparatus 12 And a second alignment device 14 provided on the downstream side of the panel conveyance with respect to the first cutting device 13.
  • the film bonding system 1 is the 2nd bonding apparatus (bonding apparatus) 15 provided in the panel conveyance downstream rather than the 2nd alignment apparatus 14, and the 2nd provided in proximity to the 2nd bonding apparatus 15.
  • a cutting device (cutting device) 16 a third alignment device 17 provided on the downstream side of the panel transport relative to the second bonding device 15 and the second cutting device 16, and a downstream side of the panel transport relative to the third alignment device 17
  • the 3rd bonding apparatus (bonding apparatus) 18 and the 3rd cutting apparatus (cutting apparatus) 19 provided in proximity to the 3rd bonding apparatus 18 are provided.
  • the first alignment device 11 holds the liquid crystal panel P and conveys it freely in the vertical and horizontal directions, and, for example, a camera (not shown) that images the upstream and downstream ends of the liquid crystal panel P. Have.
  • the imaging data of this camera is sent to the control device 20.
  • the control device 20 operates the first alignment device 11 based on the imaging data and the inspection data in the optical axis direction stored in advance.
  • a second alignment device 14 and a third alignment device 17 to be described later also have a camera, and use image data of this camera for alignment.
  • the first alignment device 11 is controlled by the control device 20 to perform alignment of the liquid crystal panel P with respect to the first bonding device 12.
  • the liquid crystal panel P is positioned in a horizontal direction (hereinafter referred to as a component width direction) orthogonal to the transport direction and in a rotation direction around the vertical axis (hereinafter simply referred to as a rotation direction).
  • the liquid crystal panel P is introduced into the bonding position of the first bonding apparatus 12.
  • the 1st bonding apparatus 12 is the upper surface of liquid crystal panel P conveyed below the lower surface of the elongate 1st optical member sheet
  • the 1st bonding apparatus 12 unwinds the 1st optical member sheet
  • a conveying device 12a that conveys along the longitudinal direction, and a pressure roll 12b that bonds the upper surface of the liquid crystal panel P conveyed by the roller conveyor 5 to the lower surface of the first optical member sheet F1 conveyed by the conveying device 12a.
  • the transport device 12a holds the first original roll R1 around which the first optical member sheet F1 is wound, and rolls out the first optical member sheet F1 along the longitudinal direction of the first optical member sheet F1.
  • recovery part 12d which collect
  • the pinching roll 12b has a pair of laminating rollers that are arranged with their axial directions parallel to each other. A predetermined gap is formed between the pair of bonding rollers, and the inside of this gap is the bonding position of the first bonding apparatus 12. In this gap, the liquid crystal panel P and the first optical member sheet F1 are overlapped and introduced. The liquid crystal panel P and the first optical member sheet F1 are sent to the downstream side of the panel conveyance while being pressed between the bonding rollers. Thereby, the 1st bonding sheet
  • the 1st cutting device 13 is located in a panel conveyance downstream rather than the pf collection
  • a predetermined portion (between the liquid crystal panels P arranged in the transport direction) of the first optical member sheet F1 is cut over the entire width in the component width direction.
  • the first cutting device 13 can use a cutting blade. Alternatively, the first cutting device 13 can use a laser cutter.
  • the 1st single-sided bonding panel (optical display component, bonding body) P11 by which the sheet piece F1S larger than the display area P4 was bonded on the upper surface of liquid crystal panel P is formed (refer FIG. 4).
  • the size of the portion that protrudes outside the liquid crystal panel P (the size of the surplus portion of the sheet piece F1S) is appropriately set according to the size of the liquid crystal panel P.
  • the distance between one side of the sheet piece F1S and one side of the liquid crystal panel P is 2 mm at each side of the sheet piece F1S. Set to a length in the range of ⁇ 5 mm.
  • the second alignment device 14 is arranged so that the first single-sided bonding panel P11 that has been transported substantially parallel to the short side of the display region P4 is transported substantially parallel to the long side of the display region P4. Convert. In addition, this direction change is performed when the optical axis direction of the other optical member sheet
  • the second alignment device 14 performs the same alignment as the first alignment device 11. That is, the second alignment device 14 is based on the inspection data in the optical axis direction stored in the control device 20 and the imaging data of the camera in the component width direction of the first single-sided bonding panel P11 with respect to the second bonding device 15. Positioning and positioning in the rotation direction are performed. In this state, the first single-sided bonding panel P ⁇ b> 11 is introduced into the bonding position of the second bonding device 15.
  • the 2nd bonding apparatus 15 is conveyed below the 2nd optical member sheet
  • the upper surface of the first single-sided bonding panel P11 (the backlight side of the liquid crystal panel P) is bonded (see FIG. 4).
  • the 2nd bonding apparatus 15 unwinds the 2nd optical member sheet
  • a conveying device 15a that conveys along the longitudinal direction, and a pinching roll that bonds the upper surface of the first single-sided bonding panel P11 conveyed by the roller conveyor 5 to the lower surface of the second optical member sheet F2 conveyed by the conveying device 15a. 15b.
  • the transport device 15a holds the second original roll R2 around which the second optical member sheet F2 is wound, and rolls out the second optical member sheet F2 along the longitudinal direction of the second optical member sheet F2. And a second collection portion 15d that is located on the downstream side of the panel conveyance with respect to the pinching roll 15b and collects an excess portion of the second optical member sheet F2 that has passed through the second cutting device 16.
  • the pinching roll 15b has a pair of laminating rollers arranged with their axial directions parallel to each other. A predetermined gap is formed between the pair of bonding rollers, and the inside of this gap is the bonding position of the second bonding apparatus 15. In this gap, the first single-sided bonding panel P11 and the second optical member sheet F2 are overlapped and introduced. The 1st single-sided bonding panel P11 and the 2nd optical member sheet
  • the 2nd cutting device 16 is located in the panel conveyance downstream rather than the pinching roll 15b, and the 1st optical of the 1st single-sided bonding panel P11 bonded to the lower surface of the 2nd optical member sheet
  • the sheet piece F1S (see FIG. 4) of the member sheet F1 is simultaneously cut.
  • the second cutting device 16 is, for example, a CO2 laser cutter, and ends the second optical member sheet F2 and the sheet piece F1S along the outer peripheral edge of the display region P4 (in the present embodiment, along the outer peripheral edge of the liquid crystal panel P). (See FIG. 5).
  • the accuracy in the optical axis direction of the first optical member sheet F1 and the second optical member sheet F2 is increased.
  • there is no deviation in the optical axis direction between the first optical member sheet F1 and the second optical member sheet F2 is simplified.
  • the 2nd single-sided bonding panel (optical display component, bonding body) P12 by which the 1st optical member F11 and the 2nd optical member F12 overlapped and bonded on the upper surface of liquid crystal panel P formed. (See FIG. 6).
  • the surplus portion Y of the member sheet F1 and the surplus portion Y ′ of the second optical member sheet F2 are separated.
  • a plurality of surplus portions Y ′ of the second optical member sheet F2 are connected in a ladder shape (see FIG. 2), and the surplus portions Y ′ of the second optical member sheet F2 are surplus portions Y of the first optical member sheet F1. At the same time, it is wound around the second recovery portion 15d.
  • the “part facing the display area P4” is an area that is not less than the size of the display area P4 and not more than the size of the outer shape of the liquid crystal panel P, and avoids a functional part such as an electrical component mounting portion. Indicates the area.
  • the surplus portion is laser-cut along the outer peripheral edge of the liquid crystal panel P at three sides excluding the functional portion in the liquid crystal panel P having a rectangular shape in plan view, and the liquid crystal panel P at one side corresponding to the functional portion.
  • the surplus portion is laser-cut at a position that appropriately enters the display area P4 side from the outer peripheral edge of.
  • the third alignment device 17 inverts the second single-sided bonding panel P12 with the backlight side of the liquid crystal panel P as the upper surface so that the display surface side of the liquid crystal panel P is the upper surface.
  • the same alignment as that of the first alignment device 11 and the second alignment device 14 is performed. That is, the third alignment device 17 is based on the inspection data in the optical axis direction stored in the control device 20 and the imaging data of the camera in the component width direction of the second single-sided bonding panel P12 with respect to the third bonding device 18. Positioning and positioning in the rotation direction are performed. In this state, the second single-sided bonding panel P ⁇ b> 12 is introduced into the bonding position of the third bonding device 18.
  • the 3rd bonding apparatus 18 is conveyed below the 3rd optical member sheet
  • the upper surface of the second single-sided bonding panel P12 (the display surface side of the liquid crystal panel P) is bonded.
  • the 3rd bonding apparatus 18 unwinds the 3rd optical member sheet
  • a conveying device 18a that conveys along the longitudinal direction, and a pinching roll that bonds the upper surface of the second single-sided bonding panel P12 conveyed by the roller conveyor 5 to the lower surface of the third optical member sheet F3 conveyed by the conveying device 18a. 18b.
  • the transport device 18a holds the third original roll R3 around which the third optical member sheet F3 is wound, and rolls out the third optical member sheet F3 along the longitudinal direction of the third optical member sheet F3. And a third collection portion 18d that is located on the panel transport downstream side of the pinching roll 18b and collects the surplus portion of the third optical member sheet F3 that has passed through the third cutting device 19.
  • the pinching roll 18b has a pair of laminating rollers arranged in parallel with each other in the axial direction. A predetermined gap is formed between the pair of bonding rollers, and the gap is the bonding position of the third bonding device 18. In this gap, the second single-sided bonding panel P12 and the third optical member sheet F3 are overlapped and introduced. 2nd single-sided bonding panel P12 and the 3rd optical member sheet
  • seat F3 are sent out to a panel conveyance downstream, being pinched between bonding rollers.
  • 3rd cutting device 19 is located in the panel conveyance downstream rather than pinching roll 18b, and cuts 3rd optical member sheet
  • the third cutting device 19 is a laser processing machine similar to the second cutting device 16, and the third optical member sheet F3 is endless along the outer peripheral edge of the display region P4 (for example, along the outer peripheral edge of the liquid crystal panel P). Disconnect.
  • the double-sided bonding panel (optical display device) P13 by which the 3rd optical member F13 was bonded to the upper surface of the 2nd single-sided bonding panel P12 is formed (refer FIG. 7).
  • the double-sided bonding panel P13 and the surplus portion (not shown) of the third optical member sheet F3 remaining in a frame shape are separated by cutting off the facing portion (third optical member F13) of the display region P4. .
  • the surplus portion of the third optical member sheet F3 has a ladder-like shape, like the surplus portion Y ′ of the second optical member sheet F2, and has a ladder shape.
  • the surplus portion is wound around the third recovery portion 18d.
  • the double-sided bonding panel P13 is inspected for defects (bonding failure, etc.) through a defect inspection device (not shown), and then conveyed to a downstream process to be subjected to other processing.
  • the optical member sheets F1, F2, and F3 are optical member sheets FX
  • the liquid crystal panels P that are bonded to the optical member sheets F1, F2, and F3 and the single-side bonded panels P11 and P12 are optical display components PX.
  • the optical members F11, F12, and F13 may be collectively referred to as an optical member FS.
  • the polarizer film constituting the optical member sheet FX is formed, for example, by uniaxially stretching a PVA film dyed with a dichroic dye.
  • the difference in the optical axis direction tends to occur between the inner side in the width direction and the outer side in the width direction of the optical member sheet FX due to unevenness in the thickness of the PVA film during stretching, uneven coloring in the dichroic dye, and the like. It is in.
  • alignment of the optical display component PX to be bonded to the optical member sheet FX is performed based on the inspection data of the in-plane distribution of the optical axis in each part of the optical member sheet FX stored in advance in the control device 20.
  • the optical display component PX is bonded to the optical member sheet FX. Note that the optical axis direction may be detected while the optical member sheet FX is unwound, and the optical display component PX may be aligned based on the detection data.
  • the liquid crystal panel P includes, for example, a rectangular first substrate P1 made of a TFT substrate, a rectangular second substrate P2 disposed to face the first substrate P1, and a first substrate P1. And a liquid crystal layer P3 sealed between the second substrate P2. For convenience of illustration, hatching of each layer is omitted.
  • the first substrate P1 has the three outer peripheral edges of the first substrate P1 along the corresponding three sides of the second substrate P2, and the remaining outer peripheral edges of the first substrate P1.
  • One side is projected outside the corresponding one side of the second substrate P2.
  • an electrical component mounting portion P5 that projects outward from the second substrate P2 is provided on the one side of the first substrate P1.
  • the second cutting device 16 detects the outer periphery of the display area P4 with a detecting means (detection unit) such as a camera 16a, and the first cutting device 16 along the outer periphery of the display area P4.
  • the optical member sheet F1 and the second optical member sheet F2 are cut.
  • the third cutting device 19 detects the outer peripheral edge of the display area P4 with a detection means (detection unit) such as a camera 19a, and the third cutting device 19 moves the third optical member sheet F3 along the outer peripheral edge of the display area P4.
  • a frame portion G having a predetermined width for arranging a sealant or the like for joining the first substrate P1 and the second substrate P2 is provided. Laser cutting by the second cutting device 16 and the third cutting device 19 is performed within the width of the frame portion G.
  • the cut end of the optical member sheet FX may be swollen or wavy due to thermal deformation. For this reason, when the optical member sheet FX after laser cutting is bonded to the optical display component PX, poor bonding such as air mixing and distortion is likely to occur in the optical member sheet FX.
  • the cut end of the optical member sheet FX is backed up on the glass surface of the liquid crystal panel P, and the optical member sheet FX It is difficult for the cut ends to bulge, corrugate, and the like, and since it is after bonding to the liquid crystal panel P, the above-mentioned bonding failure is also unlikely to occur.
  • the run-out width (tolerance) of the cutting line of the laser processing machine is smaller than that of a cutting blade such as a cutter. Therefore, in this embodiment, compared with the case where the optical member sheet FX is cut using a cutting blade, the width of the frame portion G can be reduced, and the liquid crystal panel P can be reduced in size and / or the display area P4. Larger size is possible. This is effective for application to high-function mobile devices that require expansion of the display screen while the size of the housing is limited, such as smartphones and tablet terminals in recent years.
  • the optical member sheet FX is cut into a sheet piece aligned with the display area P4 of the liquid crystal panel P and then bonded to the liquid crystal panel P, the dimensional tolerance of the sheet piece, the dimensional tolerance of the liquid crystal panel P, and the sheet piece and the liquid crystal Since the dimensional tolerance of the relative bonding position with the panel P overlaps, it becomes difficult to narrow the width of the frame part G of the liquid crystal panel P (it becomes difficult to enlarge the display area).
  • the optical member sheet FX is bonded to the liquid crystal panel P and then cut in accordance with the display region P4, only the runout tolerance of the cutting line needs to be considered, and the width tolerance of the frame portion G can be reduced. ( ⁇ 0.1 mm or less). Also in this respect, the width of the frame part G of the liquid crystal panel P can be reduced (the display area can be enlarged).
  • the cutting force is not input to the liquid crystal panel P, and it becomes difficult for cracks and chips to occur at the edge of the substrate of the liquid crystal panel P, such as a heat cycle.
  • the durability against is improved.
  • there is no contact with the liquid crystal panel P there is little damage to the electrical component mounting portion P5.
  • a laser cut start point pt1 is set on the extension of one long side of the display area P4.
  • cutting of this one long side is started from the starting point pt1.
  • the end point pt2 of the laser cut is set at a position where the laser goes around the display area P4 and reaches the extension of the short side on the start point side of the display area P4.
  • the start point pt1 and the end point pt2 are set so as to be able to withstand the tension when the optical member sheet FX is wound up, leaving a predetermined connection portion in the surplus portion of the optical member sheet FX.
  • FIG. 8 is a plan view showing the suction device 30 provided in the second cutting device 16.
  • the second cutting device 16 irradiates the optical member sheet FX with laser light L from the upper side in the orthogonal direction of the optical member sheet FX as shown in FIGS. 12 and 13.
  • a laser beam irradiation device 21 for cutting is provided.
  • the third cutting device 19 has the same configuration.
  • the suction device 30 is disposed on the outer sides of the outer peripheral four sides of an opposing portion (corresponding to the optical member FS, hereinafter referred to as a cutting region (specific region) K) in a rectangular shape in plan view in the optical member sheet FX to be cut.
  • the first connection bracket 32a connects the first dust collection box 31a to the side surface of the second dust collection box 31b.
  • the second connection bracket 32b connects the second dust collection box 31b to the side surface of the third dust collection box 31c.
  • the third connection bracket 32c connects the third dust collection box 31c to the side surface of the fourth dust collection box 31d.
  • the fourth connection bracket 32d connects the fourth dust collection box 31d to the side surface of the first dust collection box 31a.
  • first to fourth cutting lines processing positions and cutting portions
  • the dust collection boxes 31a to 31d, the connecting brackets 32a to 32d, and the cutting lines S1 to S4 may be collectively indicated by reference numerals 31, 32, and SX, respectively.
  • the first dust collection box 31a and the third dust collection box 31c are arranged outside the long side portion of the outer periphery of the cutting region K.
  • the second dust collection box 31b and the fourth dust collection box 31d are disposed outside the short side portion of the outer periphery of the cutting region K.
  • Reference numeral CN in the figure denotes a duct connection pipe projecting from the rear or side of each dust collection box 31.
  • each dust collection box 31 has a hollow rectangular parallelepiped shape, and corresponds to a cutting line (processing position, cutting portion) SX side in plan view (hereinafter, the front side of the dust collection box 31). And the front wall 33 located at the cutting line SX.
  • Each dust collection box 31 inclines the lower part of the front wall 33 obliquely forward and downward, and forms an extension part 35 having a triangular shape in cross section in the front edge part of the lower wall 34.
  • a suction nozzle 36 having a channel 36 a inclined rearwardly upward is formed at the front lower edge part of each dust collection box 31.
  • the suction nozzle 36 opens a suction port 37 over the entire width of the dust collection box 31 in the length direction of the corresponding cutting line SX (scanning direction of the laser light L).
  • the suction port 37 is disposed close to the corresponding cutting line SX from the outside of the cutting region K.
  • the front wall 33 is fixed to the upper wall 38 so that the vertical position can be adjusted.
  • the vertical width of the suction port 37 can be adjusted by the vertical movement of the front wall 33.
  • the inclination angle (the inclination angle of the inclined surface of the extending portion 35, which is the lower surface of the flow path 36a in FIG. 13) ⁇ 1 in a cross-sectional view of the flow path 36a, is about 45 ° with respect to the upper surface of the optical member sheet FX. .
  • the downstream opening angle (opening angle of the upper and lower surfaces of the flow path 36a) ⁇ 2 in the cross-sectional view of the flow path 36a is set to about 15 °.
  • Each dust collection box 31 is arranged outside the cutting area K with respect to the corresponding cutting line SX in plan view with a distance d that does not interfere with the laser light L.
  • the suction device 30 does not move during laser cutting, and the distance d is smaller than when the suction device 30 moves during laser cutting, which contributes to downsizing of the suction device 30.
  • a support air flow path 41 is formed in the lower wall 34 of each dust collection box 31 inside the lower wall 34.
  • the flow path 41 feeds support air introduced from, for example, an introduction port 42 that opens to the lower end portion of the rear wall 39 to the outlet port 43 that opens to the lower surface of the extension portion 35.
  • a thin plate-shaped guide plate 44 is fixed to the lower surface of the front portion of the lower wall 34.
  • a blowing nozzle 51 that opens in front of the lower wall 34 is formed between the guide plate 44 and the lower wall 34.
  • the blowout nozzle 51 forms a blowout port 52 that extends across the entire width of the dust collection box 31 just like the suction port 37 just below the suction port 37 of the dust collection box 31.
  • each dust collection box 31 is lowered.
  • the lower surface of the guide plate 44 is brought into contact with the upper surface of the optical display component PX (the uppermost surface of the optical member sheet FX to be cut), and the suction port 37 is located outside and in the vicinity of the corresponding cutting line SX.
  • the blowout port 52 is arrange
  • the wind pressure at the tip of the suction nozzle 36 is set to 0.1 kPa or more at static pressure, and the wind speed is set to 7 m / s or more.
  • the wind pressure and wind speed at the tip of the blowing nozzle 51 are set smaller than the wind pressure and wind speed of the suction nozzle 36. Therefore, the support air blown out by the blowout nozzle 51 flows from the blowout port 52 so as to return to the suction port 37 side immediately above the blowout port 52 and is sucked into the suction nozzle 36.
  • fume attachment to the upper surface of the optical member sheet FX is effectively suppressed in the range of the distance d between the suction port 37 and the cutting line SX.
  • the support air blown out by the blow-out nozzle 51 is warm air, and gives heat energy to the fumes that are sublimated materials, making it difficult to adhere to the optical member sheet FX.
  • the plurality of cutting lines SX and the plurality of dust collection boxes 31 surround the entire circumference of the rectangular cutting region K in plan view. That is, in the cutting process by the second cutting device 16, the laser beam L scans and cuts the outer periphery of the cutting region K of the optical member sheet FX in an endless manner.
  • the cutting in this cutting step is not limited to a rectangular shape, and may be an arbitrary shape. When this shape includes a curve, the suction port 37 and the blowout port 52 can be similarly curved. Moreover, it is not limited to an endless cut, but may be a cut of three sides, two sides, and one side. In this case, the dust collection box 31 may be provided corresponding to only the cutting position.
  • each connection bracket 32 includes a side plate 46 fixed to the side surface in the clockwise direction of the corresponding dust collection box 31 and a connection plate 47 fixed to the side surface of the adjacent dust collection box 31. And is formed in an L shape in plan view.
  • the connecting plate 47 is formed with a plurality of elongated holes 48 extending in the horizontal direction (the direction along the upper surface of the optical member sheet FX).
  • the bolts 49 inserted through the long holes 48 are screwed onto the side surfaces of the adjacent dust collection boxes 31 and tightened. Thereby, adjacent dust collection boxes 31 are connected to each other at a right angle. When the bolts 49 are loosened, the adjacent dust collection boxes 31 can be slid along the long holes 48.
  • Each dust collection box 31 moves in a direction along the corresponding cutting line SX by movement along the long hole 48. By this movement, the amount of overlap of the suction port 37 of each dust collection box 31 with respect to the side surface of the adjacent dust collection box 31 is increased or decreased, and thereby the length of the suction port 37 facing the cutting region K is increased or decreased.
  • the suction device 30 is formed in a rectangular shape surrounded by the plurality of suction ports 37 by increasing or decreasing the length of the suction ports 37 facing the cutting region K as described above while keeping the plurality of dust collection boxes 31 connected at right angles. Enlarge or reduce the area. Thereby, when performing laser cutting on the optical display component PX having a different size in the cutting region K of the optical member sheet FX, the suction port 37 of each dust collection box 31 is appropriately connected to the cutting line SX of the optical member sheet FX. It becomes possible to make it close to a distance.
  • Each dust collection box 31 moves forward and backward in a direction perpendicular to the cutting line SX with respect to the corresponding cutting line SX.
  • fumes near the seam between the cutting lines SX can be collected without leakage.
  • a plurality of dust collection boxes can be obtained by increasing or decreasing the overlap amount of the suction port 37 with respect to the adjacent dust collection boxes 31 while moving each dust collection box 31 in the direction along the corresponding cutting line SX. 31 is advanced and retracted with respect to the corresponding cutting line SX at the same time. For this reason, the suction port 37 always opens to the corner of the rectangular area, and it becomes possible to collect the fumes without leakage.
  • FIG. 14 and FIG. 15 show a modification of the configuration for moving each dust collection box 31 forward and backward.
  • the dust collection boxes 31a to 31d are first to fourth connection brackets 32a ′ to 32d ′ (hereinafter, may be collectively referred to as reference numeral 32 ′) on the side surfaces of the dust collection boxes 31a to 31d that are adjacent in the clockwise direction in the plan view. Connected.
  • the first connection bracket 32a ′ connects the first dust collection box 31a to the side surface of the second dust collection box 31b.
  • the second connection bracket 32b ′ connects the second dust collection box 31b to the side surface of the third dust collection box 31c.
  • connection bracket 32c ′ connects the third dust collection box 31c to the side surface of the fourth dust collection box 31d.
  • the fourth connection bracket 32d ′ connects the fourth dust collection box 31d to the side surface of the first dust collection box 31a.
  • Each connection bracket 32 ′ connects, for example, a pair of connection plates 47 ′ fixed to the side surface of the corresponding dust collection box 31 in the clockwise direction and the side surface of the adjacent dust collection box 31 in an L shape in plan view. Configured.
  • a plurality of long holes 48 are formed in each connecting plate 47 ′, and the bolts 49 inserted through the long holes 48 are screwed into the side surfaces of the corresponding dust collection boxes 31 to be tightened, so that adjacent dust collection boxes 31 are connected to each other. Are concatenated. Further, the dust collection box 31 can be moved forward and backward by sliding the dust collection box 31 with the bolts 49 loosened along the long holes 48. Accordingly, as described above, the plurality of dust collection boxes 31 can be advanced and retracted while being simultaneously moved in the direction along the corresponding cutting line SX. Further, the dust collection box 31 can be advanced and retracted only in the short side direction or the long side direction of the cutting region K.
  • the plurality of dust collection boxes 31 are manually moved.
  • the plurality of dust collection boxes 31 may be automatically moved by a separate driving device.
  • the laser processing apparatus in the embodiment includes the suction device 30 that opens the suction port 37 over the entire length of the cutting line SX in the vicinity of the cutting line SX of the optical member sheet FX in the optical display component PX.
  • the suction device 30 that opens the suction port 37 over the entire length of the cutting line SX in the vicinity of the cutting line SX of the optical member sheet FX in the optical display component PX.
  • the cutting line SX is provided endlessly on the outer periphery of the cutting region K of the optical member sheet FX, and the suction device 30 is provided so as to surround the entire periphery of the cutting region K. Fume can be sucked and removed without leakage over the entire circumference of the cutting region K. Further, since the suction device 30 can be moved back and forth with respect to the cutting line SX, it can easily cope with laser processing of workpieces having different processing positions.
  • the laser processing apparatus includes the blowout port 52 that blows out air toward the product surface between the cutting line SX and the suction port 37, so that the suction device 30 is located between the cutting line SX and the suction port 37. Can prevent fume from adhering to the product surface. Further, the suction device 30 blows warm air from the blowout port, so that fume can be more effectively suppressed from adhering to the product surface between the cutting line SX and the suction port 37.
  • the optical member FS having a size corresponding to the display region P4 can be accurately formed on the surface of the liquid crystal panel P, and the frame portion G outside the display region P4 is narrowed to enlarge the display area and downsize the device. Can be achieved.
  • disconnection using the laser beam L has a higher precision than the cutting
  • the optical member sheet FX (optical member) that remains on the optical display component PX without causing a taper angle (an angle with respect to the direction orthogonal to the bonding surface) due to the inclination of the laser light L to the cut end of the optical member sheet FX.
  • the effective area of FS) can be expanded, contributing to further narrowing of the frame. Further, the fumes generated by the laser processing can be sucked without leakage over the entire length of the cutting line SX, and the fume can be prevented from adhering to the product surface, and line contamination due to the fumes adhering to the product can be prevented.
  • the present invention is not limited to the above embodiment.
  • a configuration in which an optical member sheet is cut into a frame shape is described.
  • the present invention is not limited thereto, and for example, at least two optical member sheets are provided.
  • the optical member sheet may be divided into slits, cuts penetrating the optical member sheet, or grooves (cuts) having a predetermined depth may be formed in the optical member sheet. Specifically, for example, there are cutting (cutting off), half-cutting, marking processing and the like of the end of the optical member sheet.
  • the 2nd cutting device 16 detects the outer periphery of the display area P4 with detection means, such as the camera 16a, and the 1st optical member sheet
  • the third cutting device 19 cuts the second optical member sheet F2, and the third cutting device 19 detects the outer peripheral edge of the display area P4 with a detecting means such as a camera 19a, and the third optical device along the outer peripheral edge of the display area P4.
  • the member sheet F3 is cut, the configuration of the detection means is not limited to this.
  • the film bonding system 1 detects the outer periphery of the bonding surface of the first optical member sheet F1, the second optical member sheet F2, and the liquid crystal panel P in the second bonding sheet F22. It is good also as cutting the cutting line SX set along the outer periphery of the bonding surface.
  • the film bonding system 1 has a detection means to detect the outer periphery of the bonding surface of the 3rd optical member sheet
  • FIG. 16 is a schematic diagram of first detection means 61 (detection unit) that detects the outer periphery of the bonding surface.
  • the 1st detection means 61 with which the film bonding system 1 of this embodiment is provided is the bonding surface (henceforth 1st bonding surface SA1) of liquid crystal panel P and the sheet piece F1S in the 2nd bonding sheet
  • Imaging device 63 that captures an image of outer peripheral edge ED
  • illumination light source 64 that illuminates outer peripheral edge ED
  • a control unit 65 that performs an operation for the purpose.
  • Such first detection means 61 is provided on the panel conveyance upstream side of the second cutting device 16 in FIG. 1 and is provided between the pinching roll 15 b and the second cutting device 16.
  • the imaging device 63 is fixed and arranged inside the first bonding surface SA1 with respect to the outer peripheral edge ED, and the normal line of the first bonding surface SA1 and the normal line of the imaging surface 63a of the imaging device 63 are arranged.
  • the posture is inclined so as to form an angle ⁇ (hereinafter referred to as an inclination angle ⁇ of the imaging device 63).
  • the imaging device 63 directs the imaging surface 63a to the outer peripheral edge ED, and captures an image of the outer peripheral edge ED from the side where the sheet piece F1S is bonded in the second bonding sheet F22.
  • the inclination angle ⁇ of the imaging device 63 can be set so that the outer peripheral edge of the first substrate P1 constituting the first bonding surface SA1 can be reliably imaged.
  • the liquid crystal panel P is formed by so-called multiple chamfering, in which the mother panel is divided into a plurality of liquid crystal panels, the liquid crystal panel P is shifted to the outer peripheral edge of the first substrate P1 and the second substrate P2 constituting the liquid crystal panel P. May occur, and the end surface of the second substrate P2 may be displaced outward from the end surface of the first substrate P1.
  • the inclination angle ⁇ of the imaging device 63 can be set so that the outer peripheral edge of the second substrate P2 does not enter the imaging field of view of the imaging device 63.
  • the inclination angle ⁇ of the imaging device 63 is a distance H between the first bonding surface SA1 and the center of the imaging surface 63a of the imaging device 63 (hereinafter referred to as the height H of the imaging device 63).
  • the height H of the imaging device 63 can be set to fit.
  • the inclination angle ⁇ of the imaging device 63 can be set to an angle in the range of 5 ° or more and 20 ° or less.
  • the height H of the imaging device 63 and the inclination angle ⁇ of the imaging device 63 can be obtained based on the deviation amount.
  • the height H of the imaging device 63 is set to 78 mm
  • the inclination angle ⁇ of the imaging device 63 is set to 10 °.
  • the inclination angle ⁇ of the imaging device 63 may be 0 °.
  • FIG. 17 is a schematic diagram showing a modification of the first detection means 61, and is an example in the case where the inclination angle ⁇ of the imaging device 63 is 0 °.
  • each of the imaging device 63 and the illumination light source 64 may be disposed at a position overlapping the outer peripheral edge ED along the normal direction of the first bonding surface SA1.
  • a distance H1 between the first bonding surface SA1 and the center of the imaging surface 63a of the imaging device 63 detects the outer peripheral edge ED of the first bonding surface SA1. It can be set at an easy position.
  • the height H1 of the imaging device 63 can be set in the range of 50 mm to 150 mm.
  • the illumination light source 64 is fixed and arranged on the opposite side to the side where the sheet piece F1S in the second bonding sheet F22 is bonded.
  • the illumination light source 64 is arrange
  • the optical axis of the illumination light source 64 and the normal line of the imaging surface 63a of the imaging device 63 are parallel.
  • the illumination light source 64 may be arrange
  • the optical axis of the illumination light source 64 and the normal line of the imaging surface 63a of the imaging device 63 intersect. It may be.
  • FIG. 18 is a plan view showing a position where the outer peripheral edge of the bonding surface is detected.
  • An inspection area CA is set on the conveyance path of the second bonding sheet F22 shown in the drawing.
  • region CA is set in the position corresponding to the outer periphery ED of 1st bonding surface SA1 in liquid crystal panel P conveyed.
  • the inspection area CA is set at four locations corresponding to the four corners of the first bonding surface SA1 that is rectangular in plan view, and the corners of the first bonding surface SA1 are detected as the outer peripheral edge ED. It has a configuration.
  • the hook-shaped part corresponding to the corner is shown as the outer peripheral edge ED.
  • the first detection means 61 in FIG. 16 detects the outer peripheral edge ED in the four inspection areas CA. Specifically, the imaging device 63 and the illumination light source 64 are arranged in each inspection area CA, and the first detection means 61 is provided at each corner of the first bonding surface SA1 for each liquid crystal panel P to be transported. And the outer peripheral edge ED is detected based on the imaging data. Data of the detected outer peripheral edge ED is stored in the control unit 65 shown in FIG.
  • region CA may be arrange
  • each side (four sides) of the first bonding surface SA1 is detected as an outer peripheral edge.
  • the imaging device 63 and the illumination light source 64 are not limited to the configuration arranged in each inspection area CA, but are configured to be able to move along a movement path that is set along the outer peripheral edge ED of the first bonding surface SA1. It may be.
  • the imaging device 63 and the illumination light source 64 are configured to detect the outer peripheral edge ED when the imaging device 63 and the illumination light source 64 are positioned in each inspection area CA, so that one imaging device 63 and one illumination light source 64 are provided. In this case, the outer periphery ED can be detected.
  • the cutting line for the sheet piece F1S and the second optical member sheet F2 by the second cutting device 16 is set based on the detection result of the outer peripheral edge ED of the first bonding surface SA1.
  • the control unit 65 of the first detection means 61 determines that the first optical member F11 is outside the liquid crystal panel P (first bonding surface SA1.
  • the cutting line of the sheet piece F1S and the second optical member sheet F2 can be set so as not to protrude outside.
  • the setting of the cutting line is not necessarily performed by the control unit 65 of the first detection unit 61, and the data of the outer peripheral edge ED detected by the first detection unit 61 is used, and the calculation of the bonding surface is performed separately.
  • a cutting line may be set along the outer peripheral edge.
  • the second cutting device 16 cuts the sheet piece F1S and the second optical member sheet F2 at a cutting line set along the outer peripheral edge ED of the bonding surface.
  • the second cutting device 16 is provided on the downstream side of the panel conveyance with respect to the first detection means 61.
  • the second cutting device 16 includes a portion facing the display region P4 (see FIG. 4) of the sheet piece F1S and the second optical member sheet F2 bonded to the liquid crystal panel P, and a surplus portion outside the facing portion.
  • the 2nd single-sided bonding panel P12 in which the 1st optical member F11 and the 2nd optical member F12 were piled up and bonded on the upper surface of liquid crystal panel P is formed.
  • the surplus portion is laser-cut along the outer peripheral edge of the liquid crystal panel P at three sides excluding the functional portion in the liquid crystal panel P having a rectangular shape in plan view, and the liquid crystal panel P at one side corresponding to the functional portion. It is possible to adopt a configuration in which the surplus portion is laser-cut at a position that appropriately enters the display region P4 side from the outer peripheral edge.
  • the first substrate P1 is a TFT substrate
  • FIG. 19 is a schematic diagram of the second detection means 62 (detection unit) that detects the outer peripheral edge of the bonding surface.
  • the 2nd detection means 62 with which the film bonding system 1 of this embodiment is provided is the bonding surface (henceforth, 2nd bonding surface SA2) of liquid crystal panel P and the 3rd optical member sheet
  • the imaging device 63 that captures an image of the outer peripheral edge ED, the illumination light source 64 that illuminates the outer peripheral edge ED, and the image captured by the imaging device 63 are stored, and the outer peripheral edge ED is based on the image.
  • a control unit 65 that performs a calculation for detecting.
  • the second detection means 62 has the same configuration as the first detection means 61 described above.
  • Such second detection means 62 is provided on the panel conveyance upstream side of the third cutting device 19 in FIG. 1 and is provided between the pinching roll 18b and the third cutting device 19.
  • the 2nd detection means 62 detects outer periphery ED of 2nd bonding surface SA2 similarly to the above-mentioned 1st detection means 61 in the test
  • the cutting line for the third optical member sheet F3 by the third cutting device 19 is set based on the detection result of the outer peripheral edge ED of the second bonding surface SA2.
  • the control unit 65 of the second detection means 62 causes the third optical member F13 to be outside the liquid crystal panel P (second bonding surface SA2).
  • the cutting line of the third optical member sheet F3 can be set so that the size does not protrude outside.
  • the setting of the cutting line is not necessarily performed by the control unit 65 of the second detection unit 62, and the data of the outer peripheral edge ED detected by the second detection unit 62 is used, and the bonding surface is separately calculated using a calculation unit.
  • a cutting line may be set along the outer peripheral edge.
  • the third cutting device 19 cuts the third optical member sheet F3 at the cutting line set along the outer peripheral edge ED of the bonding surface.
  • the third cutting device 19 detects a portion facing the display region P4 (see FIG. 6) of the third optical member sheet F3 bonded to the liquid crystal panel P and a surplus portion outside the facing portion.
  • the third optical member F13 (see FIG. 7) having a size corresponding to the display area P4 is cut out along the cutting line set based on the outer peripheral edge ED.
  • the double-sided bonding panel P13 by which the 3rd optical member F13 was bonded by the upper surface of the 2nd single-sided bonding panel P12 is formed.
  • fume adhesion to the product surface can be effectively suppressed without affecting the product processing accuracy, which can contribute to narrowing the frame.
  • the outer periphery of the bonding surface is detected for every some liquid crystal panel P using a detection means (detection part), and each liquid crystal panel P based on the detected outer periphery.
  • the cutting position of the sheet piece F1S, the second optical member sheet F2, and the third optical member sheet F3 bonded to each other is set.

Abstract

The present invention provides a laser machining device, which is capable of effectively limiting the adhesion of fumes on the product surface without affecting product machining precision, and a system for producing optical display devices. The laser machining device is provided with a suction unit (30) that has a suction opening (37) along the entire length of the cutting line (SX) of an optical member sheet (FX) in an optical display component (PX) near the cutting line.

Description

レーザー加工装置及び光学表示デバイスの生産システムLaser processing apparatus and optical display device production system
 本発明は、レーザー加工装置及び光学表示デバイスの生産システムに関する。
 本願は、2013年4月8日に出願された日本国特許出願2013-80846号、及び2013年5月16日に出願された日本国特許出願2013-104400号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a laser processing apparatus and an optical display device production system.
This application claims priority based on Japanese Patent Application No. 2013-80846 filed on April 8, 2013 and Japanese Patent Application No. 2013-104400 filed on May 16, 2013, The contents are incorporated herein.
 特許文献1には、製品のレーザー加工時にレーザー照射部分から発生する分解物(ヒューム)を、レーザー照射部分の近傍に吸引口を配置した吸引装置によって吸引除去することで、製品表面へのヒュームの付着を軽減する技術が開示される。
 特許文献2には、セパレータ付き光学フィルムを所定長さに切り出して製品パネルに貼合する方法において、そのフィルムをレーザーカットする際にレーザー光軸をレーザー走行方向の前方から後方にかけて傾けると共に、切断部位に向けて温風を吹き付けるエアーノズルと、温風により搬送される切断部位から発生したガスを除去する集煙ダクトとを、レーザー照射装置と一体的に備えることで、フィルム表面へのヒュームの付着を軽減する技術が開示される。
In Patent Document 1, a decomposition product (fume) generated from a laser irradiation portion at the time of laser processing of a product is sucked and removed by a suction device in which a suction port is disposed in the vicinity of the laser irradiation portion. Techniques for reducing adhesion are disclosed.
In Patent Document 2, in a method of cutting an optical film with a separator into a predetermined length and pasting it to a product panel, the laser optical axis is tilted from the front to the rear in the laser traveling direction and cut when the film is laser cut. An air nozzle that blows hot air toward the part and a smoke collection duct that removes gas generated from the cutting part conveyed by the hot air are integrated with the laser irradiation device, so that the fume on the film surface Techniques for reducing adhesion are disclosed.
日本国特開2008-284572号公報Japanese Unexamined Patent Publication No. 2008-284572 日本国特許第4361103号公報Japanese Patent No. 4361103
 上記前者の構成においては、製品へのヒュームの付着を抑えることができるが、完全に除去することは難しく、製品規格が厳しくなっている中で、製品表面への付着異物が問題となっている。また、製品表面に付着した微小な異物によるライン汚染による収率の低下の可能性もある。
 上記後者の構成においては、レーザー照射方向を傾けることで光学フィルムへのヒュームの付着が抑えられるものの、光軸の傾斜によりフィルムの切断面がテーパー状になり易く、製品加工精度への影響の可能性がある。また、製品規格上NGとなる場合もある。
In the former configuration, fume adherence to the product can be suppressed, but it is difficult to completely remove it, and foreign matter adhering to the product surface becomes a problem as product standards become strict. . In addition, there is a possibility of a decrease in yield due to line contamination due to minute foreign substances adhering to the product surface.
In the latter configuration, it is possible to prevent fume from adhering to the optical film by tilting the laser irradiation direction, but the cut surface of the film is likely to be tapered due to the tilt of the optical axis, which may affect product processing accuracy. There is sex. Moreover, it may become NG on a product specification.
 本発明の態様は上記事情に鑑みてなされたもので、製品加工精度に影響することなく製品表面へのヒュームの付着を効果的に抑えることができるレーザー加工装置及び光学表示デバイスの生産システムを提供することを目的とする。 An aspect of the present invention has been made in view of the above circumstances, and provides a laser processing apparatus and an optical display device production system capable of effectively suppressing fume adhesion to a product surface without affecting product processing accuracy. The purpose is to do.
 上記課題の解決手段として、本発明の態様に係るレーザー加工装置及び光学表示デバイスの生産システムは、以下の構成を採用する。
 (1)本発明の一態様は、被加工物の加工位置にレーザー光を照射して加工するレーザー加工装置であって、前記加工位置の近傍で前記加工位置の全長に亘る吸引口を開口させる吸引装置を備える。
As a means for solving the above problems, a laser processing apparatus and an optical display device production system according to an aspect of the present invention employ the following configurations.
(1) One embodiment of the present invention is a laser processing apparatus that irradiates a processing position of a workpiece with laser light to perform processing, and opens a suction port over the entire length of the processing position in the vicinity of the processing position. A suction device is provided.
 上記構成によれば、レーザー光の傾斜等を不要にして製品加工精度を確保した上で、レーザー加工により生じるヒュームを加工位置の全長に亘って漏れなく吸引することができる。これにより、製品表面へのヒュームの付着を抑えると共に、製品に付着したヒュームによるライン汚染を防ぐことができる。 According to the above configuration, it is possible to suck the fumes generated by laser processing without omission over the entire length of the processing position, while ensuring the product processing accuracy by eliminating the inclination of the laser beam and the like. As a result, it is possible to prevent fume from adhering to the product surface and to prevent line contamination due to fume adhering to the product.
 (2)上記(1)の態様では、前記加工位置が、前記被加工物の特定領域の外周に無端状に設けられ、前記吸引装置が、前記特定領域の全周を囲むように設けられてもよい。
 この場合、特定領域の全周に亘って漏れなくヒュームを吸引除去できる。
 (3)上記(1)又は(2)の態様では、前記吸引装置が、前記加工位置に対して進退動可能とされてもよい。
 この場合、加工位置の異なる被加工物のレーザー加工にも容易に対応できる。
(2) In the aspect of (1), the processing position is provided endlessly on the outer periphery of the specific area of the workpiece, and the suction device is provided so as to surround the entire periphery of the specific area. Also good.
In this case, the fumes can be removed by suction without leakage over the entire circumference of the specific region.
(3) In the above aspect (1) or (2), the suction device may be capable of moving forward and backward with respect to the processing position.
In this case, laser processing of workpieces having different processing positions can be easily handled.
 (4)上記(1)から(3)のいずれか一項の態様では、前記吸引装置が、前記加工位置と前記吸引口との間の製品表面に向けてエアを吹き出す吹き出し口を有してもよい。
 この場合、加工位置と吸引口との間の製品表面へのヒュームの付着を抑制できる。
 (5)上記(4)の態様では、前記吸引装置が、前記吹き出し口から温風を吹き出してもよい。
 この場合、切断線と吸引口との間の製品表面へのヒュームの付着をより効果的に抑制できる。
(4) In the aspect according to any one of (1) to (3), the suction device includes a blowout port that blows air toward a product surface between the processing position and the suction port. Also good.
In this case, fume adhesion to the product surface between the processing position and the suction port can be suppressed.
(5) In the above aspect (4), the suction device may blow out warm air from the outlet.
In this case, fume adhesion to the product surface between the cutting line and the suction port can be more effectively suppressed.
 (6)本発明の他の態様は、光学表示部品に光学部材を貼合して構成される光学表示デバイスの生産システムであって、前記光学表示部品に前記光学表示部品の表示領域よりも大きい光学部材シートを貼り合わせて貼合体とする貼合装置と、前記貼合体における前記光学部材シートの前記表示領域との対向部分と前記対向部分の外側の余剰部分とを切り離し、前記光学部材シートから前記表示領域に対応する大きさの前記光学部材を形成する切断装置とを備え、前記切断装置が、前記貼合体における前記光学部材シートの前記対向部分と前記余剰部分との間の切断部に向けて切断加工用のレーザー光を照射するレーザー光照射装置と、前記切断部の近傍で前記切断部の全長に亘る吸引口を開口させる吸引装置とを有する。 (6) Another aspect of the present invention is an optical display device production system configured by bonding an optical member to an optical display component, and the optical display component is larger than a display area of the optical display component. From the optical member sheet, a bonding device that bonds the optical member sheet to form a bonded body, and separates the facing portion of the bonding member from the display area of the optical member sheet and the surplus portion outside the facing portion. A cutting device for forming the optical member having a size corresponding to the display area, and the cutting device is directed to a cutting portion between the facing portion and the surplus portion of the optical member sheet in the bonded body. A laser beam irradiation device that irradiates a laser beam for cutting processing, and a suction device that opens a suction port over the entire length of the cutting portion in the vicinity of the cutting portion.
 上記構成によれば、前記表示領域よりも大きい光学部材シートを光学表示部品に貼合した後に前記光学部材シートの余剰部分を切り離すことで、表示領域に対応するサイズの光学部材を光学表示部品の面上で精度よく形成することができ、表示領域外側の額縁部を狭めて表示エリアの拡大及び機器の小型化を図ることができる。
 また、レーザー光を用いた切断は切断刃を用いた切断よりも精度が高く、切断刃を用いる場合と比べて表示領域周辺の額縁部を狭めることができる。
 また、光学部材シートの切断端にレーザー光の傾斜によるテーパー角度(貼合面と直交する方向に対する角度)を生じさせることもなく、光学表示部品に貼り残す光学部材シート(光学部材)の有効面積を広げてデバイスのさらなる狭額縁化に寄与することができる。
 そして、レーザー加工により生じるヒュームを加工位置の全長に亘って漏れなく吸引でき、製品表面へのヒュームの付着を抑えることができると共に、製品に付着したヒュームによるライン汚染を防ぐことができる。
According to the said structure, after bonding the optical member sheet | seat larger than the said display area to an optical display component, the optical member of the size corresponding to a display area is cut | disconnected of an optical display component by cutting off the excess part of the said optical member sheet | seat. It can be formed with high accuracy on the surface, and the frame portion outside the display area can be narrowed to enlarge the display area and downsize the device.
In addition, cutting using laser light is more accurate than cutting using a cutting blade, and the frame portion around the display area can be narrower than when using a cutting blade.
In addition, the effective area of the optical member sheet (optical member) to be left on the optical display component without causing a taper angle (an angle with respect to the direction orthogonal to the bonding surface) due to the inclination of the laser beam at the cut end of the optical member sheet. Can contribute to further narrowing the frame of the device.
Further, the fumes generated by the laser processing can be sucked without leakage over the entire length of the processing position, so that the fume can be prevented from adhering to the product surface, and line contamination due to the fumes adhering to the product can be prevented.
 なお、上記構成中の「表示領域との対向部分」とは、表示領域の大きさ以上、光学表示部品の外形状(平面視における輪郭形状)の大きさ以下の領域で、かつ電気部品取り付け部等の機能部分を避けた領域を示す。すなわち、上記構成は、光学表示部品の外周縁に沿って余剰部分をレーザーカットする場合を含む。
 また、上記構成中の「表示領域に対応する大きさ」とは、表示領域の大きさ以上、光学表示部品の外形状(平面視における輪郭形状)の大きさ以下の大きさであって、かつ光学表示部品における電気部品取付部等の機能部分を避けた大きさを指す。
In addition, the “part facing the display area” in the above configuration is an area that is not less than the size of the display area and not more than the size of the outer shape (contour shape in plan view) of the optical display component, and the electrical component mounting portion. The area where functional parts such as are avoided is shown. That is, the said structure includes the case where the surplus part is laser-cut along the outer periphery of an optical display component.
In addition, the “size corresponding to the display area” in the above configuration is a size not less than the size of the display area and not more than the size of the outer shape (contour shape in plan view) of the optical display component, and It refers to a size that avoids a functional part such as an electric part mounting part in an optical display part.
 (7)上記(6)の態様では、前記貼合体において、前記光学部材シートと前記光学表示部品との貼合面の外周縁を検出する検出部を有し、前記切断部を、前記外周縁に沿って設定してもよい。 (7) In the aspect of the above (6), the bonded body includes a detection unit that detects an outer peripheral edge of a bonding surface between the optical member sheet and the optical display component, and the cutting portion is connected to the outer peripheral edge. You may set along.
 上記構成中の「光学部材シートと光学表示部品との貼合面」とは、光学表示部品の光学部材シートと対向する面を指し、「貼合面の外周縁」とは、具体的には、光学表示部品において光学部材シートが貼合された側の基板の外周縁を指す。 The “bonding surface between the optical member sheet and the optical display component” in the above configuration refers to a surface facing the optical member sheet of the optical display component, and specifically, “the outer peripheral edge of the bonding surface” In the optical display component, the outer peripheral edge of the substrate on which the optical member sheet is bonded is indicated.
 上記構成によれば、光学表示部品の形状に基づいて確実に切断部を設定することができ、種々の大きさの光学表示部品について効果的に狭額縁化することが可能な光学表示デバイスの生産システムとすることができる。 According to the above-described configuration, it is possible to reliably set the cutting portion based on the shape of the optical display component, and to produce an optical display device that can effectively narrow the frame for various sizes of optical display components. It can be a system.
 本発明の態様によれば、製品加工精度に影響することなく製品表面へのヒュームの付着を効果的に抑えることができるレーザー加工装置及び光学表示デバイスの生産システムを提供することができる。 According to the aspect of the present invention, it is possible to provide a laser processing apparatus and an optical display device production system that can effectively suppress fume adhesion to the product surface without affecting the product processing accuracy.
本発明の実施形態における光学表示デバイスのフィルム貼合システムの概略構成図である。It is a schematic block diagram of the film bonding system of the optical display device in embodiment of this invention. フィルム貼合システムの第二貼合装置周辺の斜視図である。It is a perspective view of the 2nd bonding apparatus periphery of a film bonding system. フィルム貼合システム中の第一貼合シートの断面図である。It is sectional drawing of the 1st bonding sheet | seat in a film bonding system. フィルム貼合システム中の第二切断装置周辺にある第二貼合シートの断面図である。It is sectional drawing of the 2nd bonding sheet | seat in the 2nd cutting device periphery in a film bonding system. フィルム貼合システム中の第三切断装置周辺にある第三貼合シートの平面図である。It is a top view of the 3rd bonding sheet | seat in the periphery of the 3rd cutting device in a film bonding system. 図5のA-A断面図である。FIG. 6 is a cross-sectional view taken along line AA in FIG. 5. フィルム貼合システムを経た両面貼合パネルの断面図である。It is sectional drawing of the double-sided bonding panel which passed through the film bonding system. 第二切断装置が備える吸引装置の平面図である。It is a top view of the suction device with which a 2nd cutting device is provided. 図8のB矢視図である。It is a B arrow view of FIG. 吸引装置が囲む範囲を縮小させた状態の平面図である。It is a top view of the state which reduced the range which a suction device encloses. 図10のD矢視図である。It is D arrow line view of FIG. 吸引装置の集塵ダクト及び光学表示部品の断面図である。It is sectional drawing of the dust collection duct and optical display component of a suction device. 図12の要部拡大図である。It is a principal part enlarged view of FIG. 吸引装置の変形例の平面図である。It is a top view of the modification of a suction device. 変形例の連結ブラケットの斜視図である。It is a perspective view of the connection bracket of a modification. 貼合面の外周縁を検出する第一検出手段の模式図である。It is a schematic diagram of the 1st detection means which detects the outer periphery of the bonding surface. 貼合面の外周縁を検出する第一検出手段の変形例を示す模式図である。It is a schematic diagram which shows the modification of the 1st detection means which detects the outer periphery of the bonding surface. 貼合面の外周縁を検出する位置を示す平面図である。It is a top view which shows the position which detects the outer periphery of the bonding surface. 貼合面の外周縁を検出する第二検出手段の模式図である。It is a schematic diagram of the 2nd detection means which detects the outer periphery of the bonding surface.
 以下、本発明の実施形態について図面を参照して説明する。本実施形態では、光学表示デバイスの生産システムとして、その一部を構成するフィルム貼合システムについて説明する。各図ではXYZ直交座標系を設定する。X方向は光学表示部品(液晶パネル)の幅方向を示す。Y方向は光学表示部品の搬送方向を示す。Z方向はX方向及びY方向と直交する方向を示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. This embodiment demonstrates the film bonding system which comprises the one part as a production system of an optical display device. In each figure, an XYZ orthogonal coordinate system is set. The X direction indicates the width direction of the optical display component (liquid crystal panel). The Y direction indicates the conveyance direction of the optical display component. The Z direction indicates a direction orthogonal to the X direction and the Y direction.
 図1は、本実施形態のフィルム貼合システム(光学表示デバイスの生産システム)1の概略構成を示す。フィルム貼合システム1は、例えば液晶パネルや有機ELパネルといったパネル状の光学表示部品に、偏光フィルムや位相差フィルム、輝度上昇フィルムといったフィルム状の光学部材を貼合する。フィルム貼合システム1は、光学表示部品及び光学部材を含んだ光学部材貼合体を製造する。フィルム貼合システム1では、光学表示部品として液晶パネルPを用いる。フィルム貼合システム1の各部は、電子制御装置としての制御装置20により統括制御される。 FIG. 1 shows a schematic configuration of a film bonding system (an optical display device production system) 1 according to the present embodiment. The film bonding system 1 bonds a film-shaped optical member such as a polarizing film, a retardation film, and a brightness enhancement film to a panel-shaped optical display component such as a liquid crystal panel or an organic EL panel. The film bonding system 1 manufactures an optical member bonding body including an optical display component and an optical member. In the film bonding system 1, the liquid crystal panel P is used as an optical display component. Each part of the film bonding system 1 is comprehensively controlled by a control device 20 as an electronic control device.
 フィルム貼合システム1は、貼合工程の始発位置から終着位置まで、例えば駆動式のローラコンベヤ5を用いて液晶パネルPを搬送しつつ、液晶パネルPに順次所定の処理を施す。液晶パネルPは、その表裏面を水平にした状態でローラコンベヤ5上を搬送される。
 なお、図中左側は液晶パネルPの搬送方向上流側(以下、パネル搬送上流側という)を示す。図中右側は液晶パネルPの搬送方向下流側(以下、パネル搬送下流側という)を示す。
The film bonding system 1 sequentially performs a predetermined process on the liquid crystal panel P while transporting the liquid crystal panel P from the start position to the end position of the bonding process using, for example, a driving roller conveyor 5. The liquid crystal panel P is conveyed on the roller conveyor 5 with its front and back surfaces being horizontal.
In the drawing, the left side shows the upstream side in the transport direction of the liquid crystal panel P (hereinafter referred to as the panel transport upstream side). The right side in the figure shows the downstream side of the liquid crystal panel P in the transport direction (hereinafter referred to as the panel transport downstream side).
 図5、図7を併せて参照し、液晶パネルPは平面視で長方形状を有する。液晶パネルPには、液晶パネルPの外周縁よりも所定幅だけ内側に、外周縁に沿う外形状を有する表示領域P4が形成される。液晶パネルPは、後述する第二アライメント装置14よりもパネル搬送上流側では、表示領域P4の短辺を実質的に搬送方向に沿わせた向きで搬送される。液晶パネルPは、第二アライメント装置14よりもパネル搬送下流側では、表示領域P4の長辺を実質的に搬送方向に沿わせた向きで搬送される。 5 and 7 together, the liquid crystal panel P has a rectangular shape in plan view. In the liquid crystal panel P, a display region P4 having an outer shape along the outer peripheral edge is formed on the inner side of the outer peripheral edge of the liquid crystal panel P by a predetermined width. The liquid crystal panel P is transported in a direction in which the short side of the display region P4 is substantially aligned with the transport direction on the upstream side of the panel transport from the second alignment device 14 described later. The liquid crystal panel P is transported in a direction in which the long side of the display region P4 is substantially aligned with the transport direction on the panel transport downstream side of the second alignment device 14.
 この液晶パネルPの表裏面に対して、長尺帯状の第一光学部材シートF1から切り出された第一光学部材F11、長尺帯状の第二光学部材シートF2から切り出された第二光学部材F12、及び長尺帯状の第三光学部材シートF3から切り出された第三光学部材F13が貼合される。
 本実施形態において、液晶パネルPのバックライト側及び表示面側の両面には、偏光フィルムがそれぞれ貼合される。液晶パネルPのバックライト側の面には、偏光フィルムとして第一光学部材(光学部材、特定領域、対向部分)F11が貼合される。液晶パネルPの表示面側の面には、偏光フィルムとして第三光学部材(光学部材、特定領域、対向部分)F13が貼合される。液晶パネルPのバックライト側の面には、第一光学部材F11に重ねて輝度向上フィルムとしての第二光学部材(光学部材、特定領域、対向部分)F12がさらに貼合される。
With respect to the front and back surfaces of the liquid crystal panel P, a first optical member F11 cut out from the long strip-shaped first optical member sheet F1, and a second optical member F12 cut out from the long strip-shaped second optical member sheet F2. And the 3rd optical member F13 cut out from the elongate strip-shaped 3rd optical member sheet | seat F3 is bonded.
In the present embodiment, polarizing films are bonded to both the backlight side and the display surface side of the liquid crystal panel P, respectively. On the surface of the liquid crystal panel P on the backlight side, a first optical member (optical member, specific region, facing portion) F11 is bonded as a polarizing film. A third optical member (an optical member, a specific region, a facing portion) F13 is bonded to the surface on the display surface side of the liquid crystal panel P as a polarizing film. On the surface of the liquid crystal panel P on the backlight side, a second optical member (an optical member, a specific region, a facing portion) F12 as a brightness enhancement film is further bonded to the first optical member F11.
 図1に示すように、フィルム貼合システム1は、上流工程からローラコンベヤ5のパネル搬送上流側上に液晶パネルPを搬送すると共に液晶パネルPのアライメントを行う第一アライメント装置11と、第一アライメント装置11よりもパネル搬送下流側に設けられる第一貼合装置(貼合装置)12と、第一貼合装置12に近接して設けられる第一切断装置13と、第一貼合装置12及び第一切断装置13よりもパネル搬送下流側に設けられる第二アライメント装置14とを備える。 As shown in FIG. 1, the film bonding system 1 includes a first alignment device 11 that transports the liquid crystal panel P from the upstream process to the panel transport upstream side of the roller conveyor 5 and aligns the liquid crystal panel P. The 1st bonding apparatus (bonding apparatus) 12 provided in the panel conveyance downstream rather than the alignment apparatus 11, the 1st cutting apparatus 13 provided in proximity to the 1st bonding apparatus 12, and the 1st bonding apparatus 12 And a second alignment device 14 provided on the downstream side of the panel conveyance with respect to the first cutting device 13.
 また、フィルム貼合システム1は、第二アライメント装置14よりもパネル搬送下流側に設けられる第二貼合装置(貼合装置)15と、第二貼合装置15に近接して設けられる第二切断装置(切断装置)16と、第二貼合装置15及び第二切断装置16よりもパネル搬送下流側に設けられる第三アライメント装置17と、第三アライメント装置17よりもパネル搬送下流側に設けられる第三貼合装置(貼合装置)18と、第三貼合装置18に近接して設けられる第三切断装置(切断装置)19とを備える。 Moreover, the film bonding system 1 is the 2nd bonding apparatus (bonding apparatus) 15 provided in the panel conveyance downstream rather than the 2nd alignment apparatus 14, and the 2nd provided in proximity to the 2nd bonding apparatus 15. A cutting device (cutting device) 16, a third alignment device 17 provided on the downstream side of the panel transport relative to the second bonding device 15 and the second cutting device 16, and a downstream side of the panel transport relative to the third alignment device 17 The 3rd bonding apparatus (bonding apparatus) 18 and the 3rd cutting apparatus (cutting apparatus) 19 provided in proximity to the 3rd bonding apparatus 18 are provided.
 第一アライメント装置11は、液晶パネルPを保持して垂直方向及び水平方向で自在に搬送すると共に、例えば液晶パネルPのパネル搬送上流側及び下流側の端部を撮像するカメラ(不図示)を有する。このカメラの撮像データは制御装置20に送られる。制御装置20は、その撮像データと予め記憶した光学軸方向の検査データとに基づき、第一アライメント装置11を作動させる。なお、後述する第二アライメント装置14及び第三アライメント装置17も同様にカメラを有し、このカメラの撮像データをアライメントに用いる。 The first alignment device 11 holds the liquid crystal panel P and conveys it freely in the vertical and horizontal directions, and, for example, a camera (not shown) that images the upstream and downstream ends of the liquid crystal panel P. Have. The imaging data of this camera is sent to the control device 20. The control device 20 operates the first alignment device 11 based on the imaging data and the inspection data in the optical axis direction stored in advance. Note that a second alignment device 14 and a third alignment device 17 to be described later also have a camera, and use image data of this camera for alignment.
 第一アライメント装置11は、制御装置20に作動制御され、第一貼合装置12に対する液晶パネルPのアライメントを行う。このとき、液晶パネルPは、搬送方向と直交する水平方向(以下、部品幅方向という)での位置決めと、垂直軸回りの回転方向(以下、単に回転方向という)での位置決めとが行われる。この状態で、液晶パネルPが第一貼合装置12の貼合位置に導入される。 The first alignment device 11 is controlled by the control device 20 to perform alignment of the liquid crystal panel P with respect to the first bonding device 12. At this time, the liquid crystal panel P is positioned in a horizontal direction (hereinafter referred to as a component width direction) orthogonal to the transport direction and in a rotation direction around the vertical axis (hereinafter simply referred to as a rotation direction). In this state, the liquid crystal panel P is introduced into the bonding position of the first bonding apparatus 12.
 第一貼合装置12は、貼合位置に導入された長尺の第一光学部材シート(被加工物、光学部材シート)F1の下面に対し、その下方を搬送される液晶パネルPの上面(バックライト側)を貼合する(図3参照)。第一貼合装置12は、第一光学部材シートF1を巻回した第一原反ロールR1から第一光学部材シートF1を巻き出しつつ、第一光学部材シートF1を第一光学部材シートF1の長手方向に沿って搬送する搬送装置12aと、搬送装置12aが搬送する第一光学部材シートF1の下面に、ローラコンベヤ5が搬送する液晶パネルPの上面を貼合する挟圧ロール12bとを備える。 The 1st bonding apparatus 12 is the upper surface of liquid crystal panel P conveyed below the lower surface of the elongate 1st optical member sheet | seat (to-be-processed object, optical member sheet | seat) F1 introduced into the bonding position ( (Backlight side) is bonded (see FIG. 3). The 1st bonding apparatus 12 unwinds the 1st optical member sheet | seat F1 from the 1st original fabric roll R1 which wound the 1st optical member sheet | seat F1, and 1st optical member sheet | seat F1 of the 1st optical member sheet | seat F1. A conveying device 12a that conveys along the longitudinal direction, and a pressure roll 12b that bonds the upper surface of the liquid crystal panel P conveyed by the roller conveyor 5 to the lower surface of the first optical member sheet F1 conveyed by the conveying device 12a. .
 搬送装置12aは、第一光学部材シートF1を巻回した第一原反ロールR1を保持すると共に、第一光学部材シートF1を第一光学部材シートF1の長手方向に沿って繰り出すロール保持部12cと、第一光学部材シートF1の上面に重なって第一光学部材シートF1と共に繰り出されたプロテクションフィルムpfを、第一貼合装置12のパネル搬送下流側で回収するpf回収部12dとを有する。 The transport device 12a holds the first original roll R1 around which the first optical member sheet F1 is wound, and rolls out the first optical member sheet F1 along the longitudinal direction of the first optical member sheet F1. And the pf collection | recovery part 12d which collect | recovers the protection film pf unrolled with the 1st optical member sheet | seat F1 on the upper surface of the 1st optical member sheet | seat F1 in the panel conveyance downstream of the 1st bonding apparatus 12.
 挟圧ロール12bは、互いに軸方向を平行にして配置された一対の貼合ローラを有する。一対の貼合ローラ間には所定の間隙が形成され、この間隙内が第一貼合装置12の貼合位置となる。この間隙内には、液晶パネルP及び第一光学部材シートF1が重なり合って導入される。液晶パネルP及び第一光学部材シートF1が、貼合ローラ間で挟圧されつつパネル搬送下流側に送り出される。これにより、複数の液晶パネルPが所定の間隔を空けつつ長尺の第一光学部材シートF1の下面に連続的に貼合された第一貼合シートF21が形成される。 The pinching roll 12b has a pair of laminating rollers that are arranged with their axial directions parallel to each other. A predetermined gap is formed between the pair of bonding rollers, and the inside of this gap is the bonding position of the first bonding apparatus 12. In this gap, the liquid crystal panel P and the first optical member sheet F1 are overlapped and introduced. The liquid crystal panel P and the first optical member sheet F1 are sent to the downstream side of the panel conveyance while being pressed between the bonding rollers. Thereby, the 1st bonding sheet | seat F21 by which the some liquid crystal panel P was continuously bonded on the lower surface of the elongate 1st optical member sheet | seat F1 at predetermined intervals is formed.
 第一切断装置13はpf回収部12dよりもパネル搬送下流側に位置し、第一貼合シートF21の第一光学部材シートF1を切断して表示領域P4よりも大きい(本実施形態では液晶パネルPよりも大きい)シート片F1S(図4参照)とするために、第一光学部材シートF1の所定箇所(搬送方向で並ぶ液晶パネルPの間)を部品幅方向の全幅にわたって切断する。なお、第一切断装置13は、切断刃を用いることができる。あるいは、第一切断装置13は、レーザーカッターを用いることができる。この切断により、液晶パネルPの上面に表示領域P4よりも大きいシート片F1Sが貼合された第一片面貼合パネル(光学表示部品、貼合体)P11が形成される(図4参照)。 The 1st cutting device 13 is located in a panel conveyance downstream rather than the pf collection | recovery part 12d, cut | disconnects the 1st optical member sheet | seat F1 of the 1st bonding sheet | seat F21, and is larger than the display area P4 (this embodiment liquid crystal panel) In order to obtain a sheet piece F1S (see FIG. 4) larger than P, a predetermined portion (between the liquid crystal panels P arranged in the transport direction) of the first optical member sheet F1 is cut over the entire width in the component width direction. The first cutting device 13 can use a cutting blade. Alternatively, the first cutting device 13 can use a laser cutter. By this cutting | disconnection, the 1st single-sided bonding panel (optical display component, bonding body) P11 by which the sheet piece F1S larger than the display area P4 was bonded on the upper surface of liquid crystal panel P is formed (refer FIG. 4).
 なお、シート片F1Sにおいて、液晶パネルPの外側にはみ出る部分の大きさ(シート片F1Sの余剰部分の大きさ)は、液晶パネルPのサイズに応じて適宜設定される。例えば、シート片F1Sを5インチ~10インチの中小型サイズの液晶パネルPに適用する場合は、シート片F1Sの各辺においてシート片F1Sの一辺と液晶パネルPの一辺との間の間隔を2mm~5mmの範囲の長さに設定する。 In the sheet piece F1S, the size of the portion that protrudes outside the liquid crystal panel P (the size of the surplus portion of the sheet piece F1S) is appropriately set according to the size of the liquid crystal panel P. For example, when the sheet piece F1S is applied to a medium-sized liquid crystal panel P of 5 to 10 inches, the distance between one side of the sheet piece F1S and one side of the liquid crystal panel P is 2 mm at each side of the sheet piece F1S. Set to a length in the range of ~ 5 mm.
 第二アライメント装置14は、表示領域P4の短辺と実質的に平行に搬送されていた第一片面貼合パネルP11を、表示領域P4の長辺と実質的に平行に搬送されるように方向転換する。なお、この方向転換は、第一光学部材シートF1の光軸方向に対して、液晶パネルPに貼合する他の光学部材シートの光学軸方向が直角に配置される場合に行われる。 The second alignment device 14 is arranged so that the first single-sided bonding panel P11 that has been transported substantially parallel to the short side of the display region P4 is transported substantially parallel to the long side of the display region P4. Convert. In addition, this direction change is performed when the optical axis direction of the other optical member sheet | seat bonded to liquid crystal panel P is arrange | positioned at right angle with respect to the optical axis direction of the 1st optical member sheet | seat F1.
 第二アライメント装置14は、第一アライメント装置11と同様のアライメントを行う。すなわち、第二アライメント装置14は、制御装置20に記憶された光学軸方向の検査データ及びカメラの撮像データに基づき、第二貼合装置15に対する第一片面貼合パネルP11の部品幅方向での位置決め及び回転方向での位置決めを行う。この状態で、第一片面貼合パネルP11が第二貼合装置15の貼合位置に導入される。 The second alignment device 14 performs the same alignment as the first alignment device 11. That is, the second alignment device 14 is based on the inspection data in the optical axis direction stored in the control device 20 and the imaging data of the camera in the component width direction of the first single-sided bonding panel P11 with respect to the second bonding device 15. Positioning and positioning in the rotation direction are performed. In this state, the first single-sided bonding panel P <b> 11 is introduced into the bonding position of the second bonding device 15.
 第二貼合装置15は、貼合位置に導入された長尺の第二光学部材シート(被加工物、光学部材シート)F2の下面に対して、第二光学部材シートF2の下方を搬送される第一片面貼合パネルP11の上面(液晶パネルPのバックライト側)を貼合する(図4参照)。第二貼合装置15は、第二光学部材シートF2を巻回した第二原反ロールR2から第二光学部材シートF2を巻き出しつつ、第二光学部材シートF2を第二光学部材シートF2の長手方向に沿って搬送する搬送装置15aと、搬送装置15aが搬送する第二光学部材シートF2の下面に、ローラコンベヤ5が搬送する第一片面貼合パネルP11の上面を貼合する挟圧ロール15bとを備える。 The 2nd bonding apparatus 15 is conveyed below the 2nd optical member sheet | seat F2 with respect to the lower surface of the elongate 2nd optical member sheet | seat (processed object, optical member sheet | seat) F2 introduced into the bonding position. The upper surface of the first single-sided bonding panel P11 (the backlight side of the liquid crystal panel P) is bonded (see FIG. 4). The 2nd bonding apparatus 15 unwinds the 2nd optical member sheet | seat F2 from the 2nd original fabric roll R2 which wound the 2nd optical member sheet | seat F2, and the 2nd optical member sheet | seat F2 of the 2nd optical member sheet | seat F2. A conveying device 15a that conveys along the longitudinal direction, and a pinching roll that bonds the upper surface of the first single-sided bonding panel P11 conveyed by the roller conveyor 5 to the lower surface of the second optical member sheet F2 conveyed by the conveying device 15a. 15b.
 搬送装置15aは、第二光学部材シートF2を巻回した第二原反ロールR2を保持すると共に、第二光学部材シートF2を第二光学部材シートF2の長手方向に沿って繰り出すロール保持部15cと、挟圧ロール15bよりもパネル搬送下流側に位置し、第二切断装置16を経た第二光学部材シートF2の余剰部分を回収する第二回収部15dとを有する。 The transport device 15a holds the second original roll R2 around which the second optical member sheet F2 is wound, and rolls out the second optical member sheet F2 along the longitudinal direction of the second optical member sheet F2. And a second collection portion 15d that is located on the downstream side of the panel conveyance with respect to the pinching roll 15b and collects an excess portion of the second optical member sheet F2 that has passed through the second cutting device 16.
 挟圧ロール15bは、互いに軸方向を平行にして配置された一対の貼合ローラを有する。一対の貼合ローラ間には所定の間隙が形成され、この間隙内が第二貼合装置15の貼合位置となる。この間隙内には、第一片面貼合パネルP11及び第二光学部材シートF2が重なり合って導入される。第一片面貼合パネルP11及び第二光学部材シートF2が、貼合ローラ間で挟圧されつつパネル搬送下流側に送り出される。これにより、複数の第一片面貼合パネルP11が所定の間隔を空けつつ長尺の第二光学部材シートF2の下面に連続的に貼合された第二貼合シート(貼合体)F22が形成される。 The pinching roll 15b has a pair of laminating rollers arranged with their axial directions parallel to each other. A predetermined gap is formed between the pair of bonding rollers, and the inside of this gap is the bonding position of the second bonding apparatus 15. In this gap, the first single-sided bonding panel P11 and the second optical member sheet F2 are overlapped and introduced. The 1st single-sided bonding panel P11 and the 2nd optical member sheet | seat F2 are sent out to a panel conveyance downstream, being pinched between bonding rollers. Thereby, the 2nd bonding sheet | seat (bonding body) F22 by which the several 1st single-sided bonding panel P11 was continuously bonded by the lower surface of the elongate 2nd optical member sheet | seat F2 forming predetermined intervals formed. Is done.
 第二切断装置16は挟圧ロール15bよりもパネル搬送下流側に位置し、第二光学部材シートF2と第二光学部材シートF2の下面に貼合した第一片面貼合パネルP11の第一光学部材シートF1のシート片F1S(図4参照)とを同時に切断する。第二切断装置16は例えばCO2レーザーカッターであり、第二光学部材シートF2とシート片F1Sとを表示領域P4の外周縁に沿って(本実施形態では液晶パネルPの外周縁に沿って)無端状に切断する(図5参照)。第一光学部材シートF1及び第二光学部材シートF2を液晶パネルPに貼合した後にまとめてカットすることで、第一光学部材シートF1及び第二光学部材シートF2の光学軸方向の精度が高まると共に、第一光学部材シートF1と第二光学部材シートF2との間の光学軸方向のズレが無くなり、かつ第一切断装置13での切断が簡素化される。 The 2nd cutting device 16 is located in the panel conveyance downstream rather than the pinching roll 15b, and the 1st optical of the 1st single-sided bonding panel P11 bonded to the lower surface of the 2nd optical member sheet | seat F2 and the 2nd optical member sheet | seat F2. The sheet piece F1S (see FIG. 4) of the member sheet F1 is simultaneously cut. The second cutting device 16 is, for example, a CO2 laser cutter, and ends the second optical member sheet F2 and the sheet piece F1S along the outer peripheral edge of the display region P4 (in the present embodiment, along the outer peripheral edge of the liquid crystal panel P). (See FIG. 5). By bonding the first optical member sheet F1 and the second optical member sheet F2 to the liquid crystal panel P and cutting them together, the accuracy in the optical axis direction of the first optical member sheet F1 and the second optical member sheet F2 is increased. At the same time, there is no deviation in the optical axis direction between the first optical member sheet F1 and the second optical member sheet F2, and the cutting with the first cutting device 13 is simplified.
 第二切断装置16の切断により、液晶パネルPの上面に第一光学部材F11及び第二光学部材F12が重ねて貼合された第二片面貼合パネル(光学表示部品、貼合体)P12が形成される(図6参照)。このとき、図2に示すように、第二片面貼合パネルP12と、表示領域P4との対向部分(第一光学部材F11,第二光学部材F12)が切り取られて枠状に残る第一光学部材シートF1の余剰部分Y及び第二光学部材シートF2の余剰部分Y’とが分離される。第二光学部材シートF2の余剰部分Y’は複数連なって梯子状の形状を有し(図2参照)、第二光学部材シートF2の余剰部分Y’が第一光学部材シートF1の余剰部分Yと共に第二回収部15dに巻き取られる。 By the cutting | disconnection of the 2nd cutting device 16, the 2nd single-sided bonding panel (optical display component, bonding body) P12 by which the 1st optical member F11 and the 2nd optical member F12 overlapped and bonded on the upper surface of liquid crystal panel P formed. (See FIG. 6). At this time, as shown in FIG. 2, the first optical element remaining in the frame shape by cutting off the facing portion (first optical member F11, second optical member F12) between the second single-sided bonding panel P12 and the display region P4. The surplus portion Y of the member sheet F1 and the surplus portion Y ′ of the second optical member sheet F2 are separated. A plurality of surplus portions Y ′ of the second optical member sheet F2 are connected in a ladder shape (see FIG. 2), and the surplus portions Y ′ of the second optical member sheet F2 are surplus portions Y of the first optical member sheet F1. At the same time, it is wound around the second recovery portion 15d.
 ここで、上記の「表示領域P4との対向部分」とは、表示領域P4の大きさ以上、液晶パネルPの外形状の大きさ以下の領域で、かつ電気部品取り付け部等の機能部分を避けた領域を示す。本実施形態では、平面視矩形状の液晶パネルPにおける機能部分を除いた三辺では、液晶パネルPの外周縁に沿って余剰部分をレーザーカットし、機能部分に相当する一辺では、液晶パネルPの外周縁から表示領域P4側に適宜入り込んだ位置で余剰部分をレーザーカットしている。
 なお、本実施形態では、第二光学部材シートF2と第一光学部材シートF1のシート片F1Sとを同時に切断する構成を挙げているが、これに限らず、第一光学部材シートF1のシート片F1Sのみ、あるいは第二光学部材シートF2のみを切断する構成とすることができる。
Here, the “part facing the display area P4” is an area that is not less than the size of the display area P4 and not more than the size of the outer shape of the liquid crystal panel P, and avoids a functional part such as an electrical component mounting portion. Indicates the area. In the present embodiment, the surplus portion is laser-cut along the outer peripheral edge of the liquid crystal panel P at three sides excluding the functional portion in the liquid crystal panel P having a rectangular shape in plan view, and the liquid crystal panel P at one side corresponding to the functional portion. The surplus portion is laser-cut at a position that appropriately enters the display area P4 side from the outer peripheral edge of.
In addition, in this embodiment, although the structure which cut | disconnects the 2nd optical member sheet | seat F2 and the sheet piece F1S of the 1st optical member sheet | seat F1 simultaneously is mentioned, it is not restricted to this, The sheet piece of the 1st optical member sheet | seat F1 Only F1S or only the second optical member sheet F2 can be cut.
 図1を参照し、第三アライメント装置17は、液晶パネルPのバックライト側を上面にした第二片面貼合パネルP12を表裏反転させて液晶パネルPの表示面側を上面にすると共に、第一アライメント装置11及び第二アライメント装置14と同様のアライメントを行う。すなわち、第三アライメント装置17は、制御装置20に記憶された光学軸方向の検査データ及びカメラの撮像データに基づき、第三貼合装置18に対する第二片面貼合パネルP12の部品幅方向での位置決め及び回転方向での位置決めを行う。この状態で、第二片面貼合パネルP12が第三貼合装置18の貼合位置に導入される。 Referring to FIG. 1, the third alignment device 17 inverts the second single-sided bonding panel P12 with the backlight side of the liquid crystal panel P as the upper surface so that the display surface side of the liquid crystal panel P is the upper surface. The same alignment as that of the first alignment device 11 and the second alignment device 14 is performed. That is, the third alignment device 17 is based on the inspection data in the optical axis direction stored in the control device 20 and the imaging data of the camera in the component width direction of the second single-sided bonding panel P12 with respect to the third bonding device 18. Positioning and positioning in the rotation direction are performed. In this state, the second single-sided bonding panel P <b> 12 is introduced into the bonding position of the third bonding device 18.
 第三貼合装置18は、貼合位置に導入された長尺の第三光学部材シート(被加工物、光学部材シート)F3の下面に対して、第三光学部材シートF3の下方を搬送される第二片面貼合パネルP12の上面(液晶パネルPの表示面側)を貼合する。第三貼合装置18は、第三光学部材シートF3を巻回した第三原反ロールR3から第三光学部材シートF3を巻き出しつつ、第三光学部材シートF3を第三光学部材シートF3の長手方向に沿って搬送する搬送装置18aと、搬送装置18aが搬送する第三光学部材シートF3の下面に、ローラコンベヤ5が搬送する第二片面貼合パネルP12の上面を貼合する挟圧ロール18bとを備える。 The 3rd bonding apparatus 18 is conveyed below the 3rd optical member sheet | seat F3 with respect to the lower surface of the elongate 3rd optical member sheet | seat (processed object, optical member sheet | seat) F3 introduced into the bonding position. The upper surface of the second single-sided bonding panel P12 (the display surface side of the liquid crystal panel P) is bonded. The 3rd bonding apparatus 18 unwinds the 3rd optical member sheet | seat F3 from the 3rd original fabric roll R3 which wound the 3rd optical member sheet | seat F3, the 3rd optical member sheet | seat F3 of the 3rd optical member sheet | seat F3. A conveying device 18a that conveys along the longitudinal direction, and a pinching roll that bonds the upper surface of the second single-sided bonding panel P12 conveyed by the roller conveyor 5 to the lower surface of the third optical member sheet F3 conveyed by the conveying device 18a. 18b.
 搬送装置18aは、第三光学部材シートF3を巻回した第三原反ロールR3を保持すると共に、第三光学部材シートF3を第三光学部材シートF3の長手方向に沿って繰り出すロール保持部18cと、挟圧ロール18bよりもパネル搬送下流側に位置し、第三切断装置19を経た第三光学部材シートF3の余剰部分を回収する第三回収部18dとを有する。 The transport device 18a holds the third original roll R3 around which the third optical member sheet F3 is wound, and rolls out the third optical member sheet F3 along the longitudinal direction of the third optical member sheet F3. And a third collection portion 18d that is located on the panel transport downstream side of the pinching roll 18b and collects the surplus portion of the third optical member sheet F3 that has passed through the third cutting device 19.
 挟圧ロール18bは、互いに軸方向を平行にして配置された一対の貼合ローラを有する。一対の貼合ローラ間には所定の間隙が形成され、この間隙内が第三貼合装置18の貼合位置となる。この間隙内には、第二片面貼合パネルP12及び第三光学部材シートF3が重なり合って導入される。第二片面貼合パネルP12及び第三光学部材シートF3が、貼合ローラ間で挟圧されつつパネル搬送下流側に送り出される。これにより、複数の第二片面貼合パネルP12が所定の間隔を空けつつ長尺の第三光学部材シートF3の下面に連続的に貼合された第三貼合シート(貼合体)F23が形成される。 The pinching roll 18b has a pair of laminating rollers arranged in parallel with each other in the axial direction. A predetermined gap is formed between the pair of bonding rollers, and the gap is the bonding position of the third bonding device 18. In this gap, the second single-sided bonding panel P12 and the third optical member sheet F3 are overlapped and introduced. 2nd single-sided bonding panel P12 and the 3rd optical member sheet | seat F3 are sent out to a panel conveyance downstream, being pinched between bonding rollers. Thereby, the 3rd bonding sheet | seat (bonding body) F23 by which the several 2nd single-sided bonding panel P12 was continuously bonded by the lower surface of the elongate 3rd optical member sheet | seat F3 forming predetermined intervals formed. Is done.
 第三切断装置19は挟圧ロール18bよりもパネル搬送下流側に位置し、第三光学部材シートF3を切断する。第三切断装置19は第二切断装置16と同様のレーザー加工機であり、第三光学部材シートF3を表示領域P4の外周縁に沿って(例えば液晶パネルPの外周縁に沿って)無端状に切断する。 3rd cutting device 19 is located in the panel conveyance downstream rather than pinching roll 18b, and cuts 3rd optical member sheet | seat F3. The third cutting device 19 is a laser processing machine similar to the second cutting device 16, and the third optical member sheet F3 is endless along the outer peripheral edge of the display region P4 (for example, along the outer peripheral edge of the liquid crystal panel P). Disconnect.
 第三切断装置19の切断により、第二片面貼合パネルP12の上面に第三光学部材F13が貼合された両面貼合パネル(光学表示デバイス)P13が形成される(図7参照)。
 このとき、両面貼合パネルP13と、表示領域P4との対向部分(第三光学部材F13)が切り取られて枠状に残る第三光学部材シートF3の余剰部分(不図示)とが分離される。第三光学部材シートF3の余剰部分は第二光学部材シートF2の余剰部分Y’と同様に複数連なって梯子状の形状を有し、この余剰部分が第三回収部18dに巻き取られる。
By the cutting | disconnection of the 3rd cutting device 19, the double-sided bonding panel (optical display device) P13 by which the 3rd optical member F13 was bonded to the upper surface of the 2nd single-sided bonding panel P12 is formed (refer FIG. 7).
At this time, the double-sided bonding panel P13 and the surplus portion (not shown) of the third optical member sheet F3 remaining in a frame shape are separated by cutting off the facing portion (third optical member F13) of the display region P4. . The surplus portion of the third optical member sheet F3 has a ladder-like shape, like the surplus portion Y ′ of the second optical member sheet F2, and has a ladder shape. The surplus portion is wound around the third recovery portion 18d.
 両面貼合パネルP13は、不図示の欠陥検査装置を経て欠陥(貼合不良等)の有無が検査された後、下流工程に搬送されて他の処理が行われる。 The double-sided bonding panel P13 is inspected for defects (bonding failure, etc.) through a defect inspection device (not shown), and then conveyed to a downstream process to be subjected to other processing.
 以下、各光学部材シートF1,F2,F3を光学部材シートFX、各光学部材シートF1,F2,F3に貼合される液晶パネルP及び各片面貼合パネルP11,P12を光学表示部品PX、各光学部材F11,F12,F13を光学部材FSと総称することがある。 Hereinafter, the optical member sheets F1, F2, and F3 are optical member sheets FX, the liquid crystal panels P that are bonded to the optical member sheets F1, F2, and F3, and the single-side bonded panels P11 and P12 are optical display components PX. The optical members F11, F12, and F13 may be collectively referred to as an optical member FS.
 光学部材シートFXを構成する偏光子フィルムは、例えば二色性色素で染色したPVAフィルムを一軸延伸して形成される。この場合、延伸する際のPVAフィルムの厚さのムラや二色性色素の染色ムラ等に起因して、光学部材シートFXの幅方向内側と幅方向外側とで光学軸方向の相違が生じる傾向にある。 The polarizer film constituting the optical member sheet FX is formed, for example, by uniaxially stretching a PVA film dyed with a dichroic dye. In this case, the difference in the optical axis direction tends to occur between the inner side in the width direction and the outer side in the width direction of the optical member sheet FX due to unevenness in the thickness of the PVA film during stretching, uneven coloring in the dichroic dye, and the like. It is in.
 そこで、本実施形態では、制御装置20に予め記憶した光学部材シートFXの各部における光学軸の面内分布の検査データに基づき、光学部材シートFXに貼合する光学表示部品PXのアライメントを行った上で、光学部材シートFXに光学表示部品PXを貼合している。なお、光学部材シートFXを巻き出しつつ光学軸方向を検出し、この検出データに基づき光学表示部品PXのアライメントを行うようにしてもよい。 Therefore, in the present embodiment, alignment of the optical display component PX to be bonded to the optical member sheet FX is performed based on the inspection data of the in-plane distribution of the optical axis in each part of the optical member sheet FX stored in advance in the control device 20. Above, the optical display component PX is bonded to the optical member sheet FX. Note that the optical axis direction may be detected while the optical member sheet FX is unwound, and the optical display component PX may be aligned based on the detection data.
 図3に示すように、液晶パネルPは、例えばTFT基板からなる長方形状の第一基板P1と、第一基板P1に対向して配置される長方形状の第二基板P2と、第一基板P1と第二基板P2との間に封入される液晶層P3とを有する。なお、図示都合上、各層のハッチングは省略する。 As shown in FIG. 3, the liquid crystal panel P includes, for example, a rectangular first substrate P1 made of a TFT substrate, a rectangular second substrate P2 disposed to face the first substrate P1, and a first substrate P1. And a liquid crystal layer P3 sealed between the second substrate P2. For convenience of illustration, hatching of each layer is omitted.
 図5、図6を参照し、第一基板P1は、第一基板P1の外周縁の三辺を第二基板P2の対応する三辺に沿わせると共に、第一基板P1の外周縁の残りの一辺を第二基板P2の対応する一辺よりも外側に張り出させる。これにより、第一基板P1のこの一辺側に第二基板P2よりも外側に張り出す電気部品取り付け部P5が設けられる。 Referring to FIGS. 5 and 6, the first substrate P1 has the three outer peripheral edges of the first substrate P1 along the corresponding three sides of the second substrate P2, and the remaining outer peripheral edges of the first substrate P1. One side is projected outside the corresponding one side of the second substrate P2. As a result, an electrical component mounting portion P5 that projects outward from the second substrate P2 is provided on the one side of the first substrate P1.
 図4、図6を参照し、第二切断装置16は、表示領域P4の外周縁をカメラ16a等の検出手段(検出部)で検出しつつ、表示領域P4の外周縁等に沿って第一光学部材シートF1及び第二光学部材シートF2を切断する。また、第三切断装置19は、同様に表示領域P4の外周縁をカメラ19a等の検出手段(検出部)で検出しつつ、表示領域P4の外周縁等に沿って第三光学部材シートF3を切断する。表示領域P4の外側には、第一基板P1及び第二基板P2を接合するシール剤等を配置する所定幅の額縁部Gが設けられる。この額縁部Gの幅内で第二切断装置16及び第三切断装置19によるレーザーカットが行われる。 4 and 6, the second cutting device 16 detects the outer periphery of the display area P4 with a detecting means (detection unit) such as a camera 16a, and the first cutting device 16 along the outer periphery of the display area P4. The optical member sheet F1 and the second optical member sheet F2 are cut. Similarly, the third cutting device 19 detects the outer peripheral edge of the display area P4 with a detection means (detection unit) such as a camera 19a, and the third cutting device 19 moves the third optical member sheet F3 along the outer peripheral edge of the display area P4. Disconnect. Outside the display area P4, a frame portion G having a predetermined width for arranging a sealant or the like for joining the first substrate P1 and the second substrate P2 is provided. Laser cutting by the second cutting device 16 and the third cutting device 19 is performed within the width of the frame portion G.
 樹脂製の光学部材シートFXを単独でレーザーカットすると、光学部材シートFXの切断端が熱変形により膨れたり波打ったりすることがある。このため、レーザーカット後の光学部材シートFXを光学表示部品PXに貼合する場合には、光学部材シートFXにエア混入や歪み等の貼合不良が生じ易い。 When the resin-made optical member sheet FX is laser-cut alone, the cut end of the optical member sheet FX may be swollen or wavy due to thermal deformation. For this reason, when the optical member sheet FX after laser cutting is bonded to the optical display component PX, poor bonding such as air mixing and distortion is likely to occur in the optical member sheet FX.
 一方、光学部材シートFXを液晶パネルPに貼合した後に光学部材シートFXをレーザーカットする本実施形態では、光学部材シートFXの切断端が液晶パネルPのガラス面にバックアップされ、光学部材シートFXの切断端の膨れや波打ち等が生じ難く、かつ液晶パネルPへの貼合後であることから上記の貼合不良も生じ難い。 On the other hand, in this embodiment in which the optical member sheet FX is laser-cut after the optical member sheet FX is bonded to the liquid crystal panel P, the cut end of the optical member sheet FX is backed up on the glass surface of the liquid crystal panel P, and the optical member sheet FX It is difficult for the cut ends to bulge, corrugate, and the like, and since it is after bonding to the liquid crystal panel P, the above-mentioned bonding failure is also unlikely to occur.
 レーザー加工機の切断線の振れ幅(公差)はカッター等の切断刃のそれよりも小さい。したがって本実施形態では、切断刃を用いて光学部材シートFXを切断する場合と比べて、額縁部Gの幅を狭めることが可能であり、液晶パネルPの小型化及び(又は)表示領域P4の大型化が可能である。これは、近年のスマートフォンやタブレット端末のように、筐体のサイズが制限される中で表示画面の拡大が要求される高機能モバイルへの適用に有効である。 ¡The run-out width (tolerance) of the cutting line of the laser processing machine is smaller than that of a cutting blade such as a cutter. Therefore, in this embodiment, compared with the case where the optical member sheet FX is cut using a cutting blade, the width of the frame portion G can be reduced, and the liquid crystal panel P can be reduced in size and / or the display area P4. Larger size is possible. This is effective for application to high-function mobile devices that require expansion of the display screen while the size of the housing is limited, such as smartphones and tablet terminals in recent years.
 また、光学部材シートFXを液晶パネルPの表示領域P4に整合するシート片にカットした後に液晶パネルPに貼合する場合、シート片の寸法公差、液晶パネルPの寸法公差、及びシート片と液晶パネルPとの相対貼合位置の寸法公差が重なるため、液晶パネルPの額縁部Gの幅を狭めることが困難になる(表示エリアの拡大が困難になる)。 Further, when the optical member sheet FX is cut into a sheet piece aligned with the display area P4 of the liquid crystal panel P and then bonded to the liquid crystal panel P, the dimensional tolerance of the sheet piece, the dimensional tolerance of the liquid crystal panel P, and the sheet piece and the liquid crystal Since the dimensional tolerance of the relative bonding position with the panel P overlaps, it becomes difficult to narrow the width of the frame part G of the liquid crystal panel P (it becomes difficult to enlarge the display area).
 一方、光学部材シートFXを液晶パネルPに貼合した後に表示領域P4に合わせてカットする場合、切断線の振れ公差のみを考慮すればよく、額縁部Gの幅の公差を小さくすることができる(±0.1mm以下)。この点においても、液晶パネルPの額縁部Gの幅を狭めることができる(表示エリアの拡大が可能となる)。 On the other hand, when the optical member sheet FX is bonded to the liquid crystal panel P and then cut in accordance with the display region P4, only the runout tolerance of the cutting line needs to be considered, and the width tolerance of the frame portion G can be reduced. (± 0.1 mm or less). Also in this respect, the width of the frame part G of the liquid crystal panel P can be reduced (the display area can be enlarged).
 さらに、光学部材シートFXを刃物ではなくレーザーでカットすることで、切断時の力が液晶パネルPに入力されず、液晶パネルPの基板の端縁にクラックや欠けが生じ難くなり、ヒートサイクル等に対する耐久性が向上する。同様に、液晶パネルPに非接触であるため、電気部品取り付け部P5に対するダメージも少ない。 Further, by cutting the optical member sheet FX with a laser instead of a blade, the cutting force is not input to the liquid crystal panel P, and it becomes difficult for cracks and chips to occur at the edge of the substrate of the liquid crystal panel P, such as a heat cycle. The durability against is improved. Similarly, since there is no contact with the liquid crystal panel P, there is little damage to the electrical component mounting portion P5.
 図5に示すように、光学部材シートFX(図5では第三光学部材シートF3)をレーザーカットする場合、例えば表示領域P4の一長辺の延長上にレーザーカットの始点pt1を設定し、この始点pt1からまずこの一長辺の切断を開始する。レーザーカットの終点pt2は、レーザーが表示領域P4を一周して表示領域P4の始点側の短辺の延長上に至る位置に設定する。始点pt1及び終点pt2は、光学部材シートFXの余剰部分に所定の接続部分を残し、光学部材シートFXを巻き取る際の張力に耐え得るように設定される。 As shown in FIG. 5, when laser cutting the optical member sheet FX (third optical member sheet F3 in FIG. 5), for example, a laser cut start point pt1 is set on the extension of one long side of the display area P4. First, cutting of this one long side is started from the starting point pt1. The end point pt2 of the laser cut is set at a position where the laser goes around the display area P4 and reaches the extension of the short side on the start point side of the display area P4. The start point pt1 and the end point pt2 are set so as to be able to withstand the tension when the optical member sheet FX is wound up, leaving a predetermined connection portion in the surplus portion of the optical member sheet FX.
 図8は、第二切断装置16が備える吸引装置30を示す平面図である。第二切断装置16は、吸引装置30の他に、図12、図13に示すように、光学部材シートFXに光学部材シートFXの直交方向上側からレーザー光Lを照射して光学部材シートFXを切断するレーザー光照射装置21を備える。なお、第三切断装置19も同様の構成を備えている。 FIG. 8 is a plan view showing the suction device 30 provided in the second cutting device 16. In addition to the suction device 30, the second cutting device 16 irradiates the optical member sheet FX with laser light L from the upper side in the orthogonal direction of the optical member sheet FX as shown in FIGS. 12 and 13. A laser beam irradiation device 21 for cutting is provided. The third cutting device 19 has the same configuration.
 図8を参照し、吸引装置30は、切断する光学部材シートFXにおける平面視長方形状の対向部分(光学部材FSに相当、以下、切断領域(特定領域)Kという)の外周四辺の外側にそれぞれ配置される第一~第四集塵ボックス31a~31dと、各集塵ボックス31a~31dをそれぞれ図8の平面視で時計回り方向に隣接するものの側面に連結する第一~第四連結ブラケット32a~32dとを有する。
 換言すれば、第一連結ブラケット32aは、第一集塵ボックス31aを第二集塵ボックス31bの側面に連結する。第二連結ブラケット32bは、第二集塵ボックス31bを第三集塵ボックス31cの側面に連結する。第三連結ブラケット32cは、第三集塵ボックス31cを第四集塵ボックス31dの側面に連結する。第四連結ブラケット32dは、第四集塵ボックス31dを第一集塵ボックス31aの側面に連結する。
Referring to FIG. 8, the suction device 30 is disposed on the outer sides of the outer peripheral four sides of an opposing portion (corresponding to the optical member FS, hereinafter referred to as a cutting region (specific region) K) in a rectangular shape in plan view in the optical member sheet FX to be cut. The first to fourth dust collecting boxes 31a to 31d and the first to fourth connecting brackets 32a for connecting the dust collecting boxes 31a to 31d to the side surfaces of the adjacent ones in the clockwise direction in the plan view of FIG. To 32d.
In other words, the first connection bracket 32a connects the first dust collection box 31a to the side surface of the second dust collection box 31b. The second connection bracket 32b connects the second dust collection box 31b to the side surface of the third dust collection box 31c. The third connection bracket 32c connects the third dust collection box 31c to the side surface of the fourth dust collection box 31d. The fourth connection bracket 32d connects the fourth dust collection box 31d to the side surface of the first dust collection box 31a.
 以下、切断領域Kにおける各集塵ボックス31a~31dに対応する外周四辺をそれぞれ第一~第四切断線(加工位置、切断部)S1~S4という。また、集塵ボックス31a~31d、連結ブラケット32a~32d及び切断線S1~S4をそれぞれ総称して符号31,32,SXで示すことがある。第一集塵ボックス31a及び第三集塵ボックス31cは、切断領域K外周の長辺部分の外側に配置される。第二集塵ボックス31b及び第四集塵ボックス31dは、切断領域K外周の短辺部分の外側に配置される。図中符号CNは各集塵ボックス31の後方又は側方に突設されたダクト接続管を示す。 Hereinafter, the four outer sides corresponding to the respective dust collection boxes 31a to 31d in the cutting region K are referred to as first to fourth cutting lines (processing positions and cutting portions) S1 to S4, respectively. Further, the dust collection boxes 31a to 31d, the connecting brackets 32a to 32d, and the cutting lines S1 to S4 may be collectively indicated by reference numerals 31, 32, and SX, respectively. The first dust collection box 31a and the third dust collection box 31c are arranged outside the long side portion of the outer periphery of the cutting region K. The second dust collection box 31b and the fourth dust collection box 31d are disposed outside the short side portion of the outer periphery of the cutting region K. Reference numeral CN in the figure denotes a duct connection pipe projecting from the rear or side of each dust collection box 31.
 図12、図13を併せて参照し、各集塵ボックス31は中空の直方体形状を有し、平面視で対応する切断線(加工位置、切断部)SX側(以下、集塵ボックス31の前側とする)に位置する前壁33を、切断線SXに沿わせて配置される。各集塵ボックス31は、前壁33の下部を斜め前下方に傾斜させると共に、下壁34の前縁部に断面視三角形状の延出部35を形成する。前壁33の下部と下壁34の延出部35とにより、各集塵ボックス31の前下縁部に後上がりに傾斜した流路36aを有する吸引ノズル36が形成される。 12 and 13 together, each dust collection box 31 has a hollow rectangular parallelepiped shape, and corresponds to a cutting line (processing position, cutting portion) SX side in plan view (hereinafter, the front side of the dust collection box 31). And the front wall 33 located at the cutting line SX. Each dust collection box 31 inclines the lower part of the front wall 33 obliquely forward and downward, and forms an extension part 35 having a triangular shape in cross section in the front edge part of the lower wall 34. By the lower part of the front wall 33 and the extending part 35 of the lower wall 34, a suction nozzle 36 having a channel 36 a inclined rearwardly upward is formed at the front lower edge part of each dust collection box 31.
 吸引ノズル36は、対応する切断線SXの長さ方向(レーザー光Lの走査方向)で集塵ボックス31の全幅に亘る吸引口37を開口する。吸引口37は、切断領域Kの外側から対応する切断線SXに近接して配置される。前壁33は、上壁38に上下位置を調整可能に固定される。この前壁33の上下動により、吸引口37の上下幅を調整可能である。流路36aの断面視での傾斜角(図13では流路36aの下面である延出部35の傾斜面の傾斜角)θ1は、光学部材シートFXの上面に対して約45°とされる。流路36aの断面視での下流側への開き角(流路36aの上下面の開き角)θ2は、約15°に設定される。 The suction nozzle 36 opens a suction port 37 over the entire width of the dust collection box 31 in the length direction of the corresponding cutting line SX (scanning direction of the laser light L). The suction port 37 is disposed close to the corresponding cutting line SX from the outside of the cutting region K. The front wall 33 is fixed to the upper wall 38 so that the vertical position can be adjusted. The vertical width of the suction port 37 can be adjusted by the vertical movement of the front wall 33. The inclination angle (the inclination angle of the inclined surface of the extending portion 35, which is the lower surface of the flow path 36a in FIG. 13) θ1 in a cross-sectional view of the flow path 36a, is about 45 ° with respect to the upper surface of the optical member sheet FX. . The downstream opening angle (opening angle of the upper and lower surfaces of the flow path 36a) θ2 in the cross-sectional view of the flow path 36a is set to about 15 °.
 各集塵ボックス31は、平面視で対応する切断線SXよりも切断領域Kの外側に、レーザー光Lに干渉しない程度の距離dを空けて配置される。本実施形態では、レーザーカット時に吸引装置30が不動であり、レーザーカット時に吸引装置30が移動する場合に比べて距離dが小さく、吸引装置30の小型化に寄与する。 Each dust collection box 31 is arranged outside the cutting area K with respect to the corresponding cutting line SX in plan view with a distance d that does not interfere with the laser light L. In the present embodiment, the suction device 30 does not move during laser cutting, and the distance d is smaller than when the suction device 30 moves during laser cutting, which contributes to downsizing of the suction device 30.
 各集塵ボックス31の下壁34には、下壁34の内部にサポートエア用の流路41が形成される。流路41は、例えば後壁39の下端部等に開口する導入口42より導入されたサポートエアを、延出部35の下面に開口した導出口43まで送給する。下壁34の前部の下面には薄板状のガイド板44が固定される。ガイド板44及び下壁34の間に、下壁34の前方に開口する吹き出しノズル51が形成される。吹き出しノズル51は、集塵ボックス31の吸引口37の直下で吸引口37と同様に集塵ボックス31の全幅に亘って延びる吹き出し口52を形成する。 A support air flow path 41 is formed in the lower wall 34 of each dust collection box 31 inside the lower wall 34. The flow path 41 feeds support air introduced from, for example, an introduction port 42 that opens to the lower end portion of the rear wall 39 to the outlet port 43 that opens to the lower surface of the extension portion 35. A thin plate-shaped guide plate 44 is fixed to the lower surface of the front portion of the lower wall 34. A blowing nozzle 51 that opens in front of the lower wall 34 is formed between the guide plate 44 and the lower wall 34. The blowout nozzle 51 forms a blowout port 52 that extends across the entire width of the dust collection box 31 just like the suction port 37 just below the suction port 37 of the dust collection box 31.
 吸引装置30は、第二切断装置16による切断位置に光学表示部品PXが搬送される前は、例えば各集塵ボックス31を上昇させて切断位置から退避させ、切断位置に光学表示部品PXが搬送された後に各集塵ボックス31を下降させる。各集塵ボックス31は、下降時にはガイド板44の下面を光学表示部品PXの上面(切断する光学部材シートFXの最上面)に当接させ、対応する切断線SXの外側かつ近傍に吸引口37及び吹き出し口52を配置する。これにより、光学部材シートFXのレーザーカット時に、光学部材シートFXの溶融や分解反応により発生する煙状の分解物(ヒューム)を、各集塵ボックス31で集塵可能となる。 For example, before the optical display component PX is transported to the cutting position by the second cutting device 16, the suction device 30 raises each dust collection box 31 to retract from the cutting position, and the optical display component PX is transported to the cutting position. Then, each dust collection box 31 is lowered. When the dust collection boxes 31 are lowered, the lower surface of the guide plate 44 is brought into contact with the upper surface of the optical display component PX (the uppermost surface of the optical member sheet FX to be cut), and the suction port 37 is located outside and in the vicinity of the corresponding cutting line SX. And the blowout port 52 is arrange | positioned. Thereby, when the optical member sheet FX is laser-cut, smoke-like decomposition products (fumes) generated by melting and decomposition reactions of the optical member sheet FX can be collected in each dust collection box 31.
 各集塵ボックス31において、吸引ノズル36先端の風圧は静圧で0.1kPa以上、風速は7m/s以上に設定される。一方、吹き出しノズル51先端の風圧及び風速は、吸引ノズル36の風圧及び風速よりも小さく設定される。よって、吹き出しノズル51が吹き出すサポートエアは、吹き出し口52から出て間もなく、吹き出し口52の直上の吸引口37側に折り返すように流れて、吸引ノズル36に吸引される。この空気流により、吸引口37と切断線SXとの間の距離dの範囲において、光学部材シートFX上面へのヒュームの付着が効果的に抑えられる。吹き出しノズル51が吹き出すサポートエアは温風であり、昇華物であるヒュームに熱エネルギーを与えて光学部材シートFXにさらに付着し難くする。 In each dust collection box 31, the wind pressure at the tip of the suction nozzle 36 is set to 0.1 kPa or more at static pressure, and the wind speed is set to 7 m / s or more. On the other hand, the wind pressure and wind speed at the tip of the blowing nozzle 51 are set smaller than the wind pressure and wind speed of the suction nozzle 36. Therefore, the support air blown out by the blowout nozzle 51 flows from the blowout port 52 so as to return to the suction port 37 side immediately above the blowout port 52 and is sucked into the suction nozzle 36. By this air flow, fume attachment to the upper surface of the optical member sheet FX is effectively suppressed in the range of the distance d between the suction port 37 and the cutting line SX. The support air blown out by the blow-out nozzle 51 is warm air, and gives heat energy to the fumes that are sublimated materials, making it difficult to adhere to the optical member sheet FX.
 複数の切断線SX及び複数の集塵ボックス31は、平面視で長方形状の切断領域Kの全周を囲む。すなわち、第二切断装置16による切断工程では、光学部材シートFXの切断領域Kの外周をレーザー光Lが無端状に走査してカットする。なお、この切断工程のカットは矩形状に限らず任意の形状であってもよい。この形状が曲線を含む場合、吸引口37及び吹き出し口52も同様に湾曲することができる。また、無端状のカットに限らず三辺、二辺及び一辺のカットであってもよい。この場合、集塵ボックス31はカット位置にのみ対応して設けられてもよい。 The plurality of cutting lines SX and the plurality of dust collection boxes 31 surround the entire circumference of the rectangular cutting region K in plan view. That is, in the cutting process by the second cutting device 16, the laser beam L scans and cuts the outer periphery of the cutting region K of the optical member sheet FX in an endless manner. Note that the cutting in this cutting step is not limited to a rectangular shape, and may be an arbitrary shape. When this shape includes a curve, the suction port 37 and the blowout port 52 can be similarly curved. Moreover, it is not limited to an endless cut, but may be a cut of three sides, two sides, and one side. In this case, the dust collection box 31 may be provided corresponding to only the cutting position.
 図8、図10を参照し、各連結ブラケット32は、対応する集塵ボックス31の時計回り方向の側面に固定される側板46と、隣接する集塵ボックス31の側面に固定される連結板47とを有し、平面視L字状に形成される。 Referring to FIGS. 8 and 10, each connection bracket 32 includes a side plate 46 fixed to the side surface in the clockwise direction of the corresponding dust collection box 31 and a connection plate 47 fixed to the side surface of the adjacent dust collection box 31. And is formed in an L shape in plan view.
 図9、図11を併せて参照し、連結板47には、水平方向(光学部材シートFXの上面に沿う方向)に延びる長孔48が複数形成される。各長孔48に挿通したボルト49は、隣接する集塵ボックス31の側面に螺着し締め込まれる。これにより、隣接する集塵ボックス31同士が互いに直角に連結される。また、ボルト49を緩めた場合、隣接する集塵ボックス31同士を長孔48に沿ってスライド可能となる。 9 and 11 together, the connecting plate 47 is formed with a plurality of elongated holes 48 extending in the horizontal direction (the direction along the upper surface of the optical member sheet FX). The bolts 49 inserted through the long holes 48 are screwed onto the side surfaces of the adjacent dust collection boxes 31 and tightened. Thereby, adjacent dust collection boxes 31 are connected to each other at a right angle. When the bolts 49 are loosened, the adjacent dust collection boxes 31 can be slid along the long holes 48.
 各集塵ボックス31は、長孔48に沿う移動により、対応する切断線SXに沿う方向で移動する。この移動によって、隣接する集塵ボックス31の側面に対する各集塵ボックス31の吸引口37のオーバーラップ量を増減させ、これにより切断領域Kに臨む吸引口37の長さを増減させる。 Each dust collection box 31 moves in a direction along the corresponding cutting line SX by movement along the long hole 48. By this movement, the amount of overlap of the suction port 37 of each dust collection box 31 with respect to the side surface of the adjacent dust collection box 31 is increased or decreased, and thereby the length of the suction port 37 facing the cutting region K is increased or decreased.
 吸引装置30は、複数の集塵ボックス31を直角に連結したままで、前述の如く切断領域Kに臨む吸引口37の長さを増減させることで、複数の吸引口37に囲まれる矩形状の領域を拡大又は縮小する。これにより、光学部材シートFXの切断領域Kが異なる大きさの光学表示部品PXにレーザーカットを行う際にも、光学部材シートFXの切断線SXに各集塵ボックス31の吸引口37を適宜の距離に近接させることが可能となる。 The suction device 30 is formed in a rectangular shape surrounded by the plurality of suction ports 37 by increasing or decreasing the length of the suction ports 37 facing the cutting region K as described above while keeping the plurality of dust collection boxes 31 connected at right angles. Enlarge or reduce the area. Thereby, when performing laser cutting on the optical display component PX having a different size in the cutting region K of the optical member sheet FX, the suction port 37 of each dust collection box 31 is appropriately connected to the cutting line SX of the optical member sheet FX. It becomes possible to make it close to a distance.
 各集塵ボックス31は、対応する切断線SXに対してこの切断線SXと直交する方向で進退動する。しかしながら、単に切断線SXと交差する方向で移動する場合と比べて、上記構成では、各切断線SX同士の継ぎ目付近(切断領域Kの隅部)におけるヒュームも漏れなく集塵できる。 Each dust collection box 31 moves forward and backward in a direction perpendicular to the cutting line SX with respect to the corresponding cutting line SX. However, as compared with the case of simply moving in the direction intersecting the cutting line SX, in the above configuration, fumes near the seam between the cutting lines SX (corner of the cutting region K) can be collected without leakage.
 すなわち、上記構成では、各集塵ボックス31を対応する切断線SXに沿う方向で移動させつつ、隣接する集塵ボックス31に対する吸引口37のオーバーラップ量を増減させることで、複数の集塵ボックス31を同時に対応する切断線SXに対して進退させる。このため、常に吸引口37が矩形状の領域の隅部まで開口し、ヒュームを漏れなく集塵することが可能となる。 That is, in the above configuration, a plurality of dust collection boxes can be obtained by increasing or decreasing the overlap amount of the suction port 37 with respect to the adjacent dust collection boxes 31 while moving each dust collection box 31 in the direction along the corresponding cutting line SX. 31 is advanced and retracted with respect to the corresponding cutting line SX at the same time. For this reason, the suction port 37 always opens to the corner of the rectangular area, and it becomes possible to collect the fumes without leakage.
 図14、図15は、各集塵ボックス31を進退動させる構成の変形例を示す。各集塵ボックス31a~31dは、それぞれ図の平面視で時計回り方向に隣接するものの側面に第一~第四連結ブラケット32a’~32d’(以下、符号32’で総称することがある)により連結される。
 換言すれば、第一連結ブラケット32a’は、第一集塵ボックス31aを第二集塵ボックス31bの側面に連結する。第二連結ブラケット32b’は、第二集塵ボックス31bを第三集塵ボックス31cの側面に連結する。第三連結ブラケット32c’は、第三集塵ボックス31cを第四集塵ボックス31dの側面に連結する。第四連結ブラケット32d’は、第四集塵ボックス31dを第一集塵ボックス31aの側面に連結する。
 各連結ブラケット32’は、例えば対応する集塵ボックス31の時計回り方向の側面と隣接する集塵ボックス31の側面とにそれぞれ固定される一対の連結板47’を平面視L字状に結合して構成される。
FIG. 14 and FIG. 15 show a modification of the configuration for moving each dust collection box 31 forward and backward. The dust collection boxes 31a to 31d are first to fourth connection brackets 32a ′ to 32d ′ (hereinafter, may be collectively referred to as reference numeral 32 ′) on the side surfaces of the dust collection boxes 31a to 31d that are adjacent in the clockwise direction in the plan view. Connected.
In other words, the first connection bracket 32a ′ connects the first dust collection box 31a to the side surface of the second dust collection box 31b. The second connection bracket 32b ′ connects the second dust collection box 31b to the side surface of the third dust collection box 31c. The third connection bracket 32c ′ connects the third dust collection box 31c to the side surface of the fourth dust collection box 31d. The fourth connection bracket 32d ′ connects the fourth dust collection box 31d to the side surface of the first dust collection box 31a.
Each connection bracket 32 ′ connects, for example, a pair of connection plates 47 ′ fixed to the side surface of the corresponding dust collection box 31 in the clockwise direction and the side surface of the adjacent dust collection box 31 in an L shape in plan view. Configured.
 各連結板47’にはそれぞれ長孔48が複数形成され、この長孔48に挿通したボルト49を対応する集塵ボックス31の側面に螺着し締め込むことで、隣接する集塵ボックス31同士が連結される。また、ボルト49を緩めた集塵ボックス31を長孔48に沿ってスライドさせることで、集塵ボックス31を進退動させることが可能である。
 これにより、前述の如く複数の集塵ボックス31を対応する切断線SXに沿う方向で同時に移動させつつ進退させることが可能である。また、切断領域Kの短辺方向又は長辺方向でのみ集塵ボックス31を進退させることも可能である。
A plurality of long holes 48 are formed in each connecting plate 47 ′, and the bolts 49 inserted through the long holes 48 are screwed into the side surfaces of the corresponding dust collection boxes 31 to be tightened, so that adjacent dust collection boxes 31 are connected to each other. Are concatenated. Further, the dust collection box 31 can be moved forward and backward by sliding the dust collection box 31 with the bolts 49 loosened along the long holes 48.
Accordingly, as described above, the plurality of dust collection boxes 31 can be advanced and retracted while being simultaneously moved in the direction along the corresponding cutting line SX. Further, the dust collection box 31 can be advanced and retracted only in the short side direction or the long side direction of the cutting region K.
 本実施形態では、複数の集塵ボックス31を手動で移動させる構成であるが、複数の集塵ボックス31を別途駆動装置によって自動で移動させる構成としてもよい。 In the present embodiment, the plurality of dust collection boxes 31 are manually moved. However, the plurality of dust collection boxes 31 may be automatically moved by a separate driving device.
 以上説明したように、上記実施形態におけるレーザー加工装置は、光学表示部品PXにおける光学部材シートFXの切断線SXの近傍で切断線SXの全長に亘る吸引口37を開口させる吸引装置30を備えることで、レーザー光Lの傾斜等を不要にして製品加工精度を確保した上で、レーザー加工により生じるヒュームを切断線SXの全長に亘って漏れなく吸引することができる。これにより、製品表面へのヒュームの付着を抑えると共に、製品に付着したヒュームによるライン汚染を防ぐことができる。 As described above, the laser processing apparatus in the embodiment includes the suction device 30 that opens the suction port 37 over the entire length of the cutting line SX in the vicinity of the cutting line SX of the optical member sheet FX in the optical display component PX. Thus, it is possible to suck the fumes generated by the laser processing without omission over the entire length of the cutting line SX while ensuring the product processing accuracy by eliminating the inclination of the laser beam L and the like. As a result, it is possible to prevent fume from adhering to the product surface and to prevent line contamination due to fume adhering to the product.
 また、上記レーザー加工装置は、切断線SXが、光学部材シートFXの切断領域Kの外周に無端状に設けられ、吸引装置30が、切断領域Kの全周を囲むように設けられることで、切断領域Kの全周に亘って漏れなくヒュームを吸引除去できる。
 また、吸引装置30が、切断線SXに対して進退動可能とされることで、加工位置の異なる被加工物のレーザー加工にも容易に対応できる。
In the laser processing apparatus, the cutting line SX is provided endlessly on the outer periphery of the cutting region K of the optical member sheet FX, and the suction device 30 is provided so as to surround the entire periphery of the cutting region K. Fume can be sucked and removed without leakage over the entire circumference of the cutting region K.
Further, since the suction device 30 can be moved back and forth with respect to the cutting line SX, it can easily cope with laser processing of workpieces having different processing positions.
 また、上記レーザー加工装置は、吸引装置30が、切断線SXと吸引口37との間の製品表面に向けてエアを吹き出す吹き出し口52を有することで、切断線SXと吸引口37との間の製品表面へのヒュームの付着を抑制できる。
 また、吸引装置30が、吹き出し口から温風を吹き出すことで、切断線SXと吸引口37との間の製品表面へのヒュームの付着をより効果的に抑制できる。
In addition, the laser processing apparatus includes the blowout port 52 that blows out air toward the product surface between the cutting line SX and the suction port 37, so that the suction device 30 is located between the cutting line SX and the suction port 37. Can prevent fume from adhering to the product surface.
Further, the suction device 30 blows warm air from the blowout port, so that fume can be more effectively suppressed from adhering to the product surface between the cutting line SX and the suction port 37.
 そして、上記実施形態における光学表示デバイスの生産システムによれば、液晶パネルPの表示領域P4よりも大きい光学部材シートFXを液晶パネルPに貼合した後に、光学部材シートFXの余剰部分を切り離すことで、表示領域P4に対応する大きさの光学部材FSを液晶パネルPの面上で精度よく形成することができ、表示領域P4外側の額縁部Gを狭めて表示エリアの拡大及び機器の小型化を図ることができる。
 また、レーザー光Lを用いた切断は切断刃を用いた切断よりも精度が高く、切断刃を用いる場合と比べて表示領域P4周辺の額縁部Gを狭めることができる。
 また、光学部材シートFXの切断端にレーザー光Lの傾斜によるテーパー角度(貼合面と直交する方向に対する角度)を生じさせることもなく、光学表示部品PXに貼り残す光学部材シートFX(光学部材FS)の有効面積を広げてデバイスのさらなる狭額縁化に寄与することができる。
 そして、レーザー加工により生じるヒュームを切断線SXの全長に亘って漏れなく吸引でき、製品表面へのヒュームの付着を抑えることができると共に、製品に付着したヒュームによるライン汚染を防ぐことができる。
And according to the production system of the optical display device in the said embodiment, after bonding the optical member sheet | seat FX larger than the display area P4 of liquid crystal panel P to the liquid crystal panel P, the excess part of the optical member sheet | seat FX is cut off. Thus, the optical member FS having a size corresponding to the display region P4 can be accurately formed on the surface of the liquid crystal panel P, and the frame portion G outside the display region P4 is narrowed to enlarge the display area and downsize the device. Can be achieved.
Moreover, the cutting | disconnection using the laser beam L has a higher precision than the cutting | disconnection using a cutting blade, and can narrow the frame part G around the display area P4 compared with the case where a cutting blade is used.
Further, the optical member sheet FX (optical member) that remains on the optical display component PX without causing a taper angle (an angle with respect to the direction orthogonal to the bonding surface) due to the inclination of the laser light L to the cut end of the optical member sheet FX. The effective area of FS) can be expanded, contributing to further narrowing of the frame.
Further, the fumes generated by the laser processing can be sucked without leakage over the entire length of the cutting line SX, and the fume can be prevented from adhering to the product surface, and line contamination due to the fumes adhering to the product can be prevented.
 なお、本発明は上記実施形態に限られるものではない。例えば、本実施形態では、被加工物にレーザー光を照射して加工する例として、光学部材シートを枠状に切断する構成を挙げたが、これに限らず、例えば光学部材シートを少なくとも二つに分割したり、光学部材シートに貫通する切れ目を入れたり、光学部材シートに所定の深さの溝(切れ込み)を形成したりする構成であってもよい。具体的には、例えば光学部材シートの端部の切断(切り落とし)、ハーフカット、マーキング加工等がある。 The present invention is not limited to the above embodiment. For example, in the present embodiment, as an example of processing by irradiating a workpiece with laser light, a configuration in which an optical member sheet is cut into a frame shape is described. However, the present invention is not limited thereto, and for example, at least two optical member sheets are provided. The optical member sheet may be divided into slits, cuts penetrating the optical member sheet, or grooves (cuts) having a predetermined depth may be formed in the optical member sheet. Specifically, for example, there are cutting (cutting off), half-cutting, marking processing and the like of the end of the optical member sheet.
 また、上記実施形態においては、第二切断装置16は、表示領域P4の外周縁をカメラ16a等の検出手段で検出しつつ、表示領域P4の外周縁等に沿って第一光学部材シートF1及び第二光学部材シートF2を切断することとし、第三切断装置19は、表示領域P4の外周縁をカメラ19a等の検出手段で検出しつつ、表示領域P4の外周縁等に沿って第三光学部材シートF3を切断することとしたが、検出手段の構成はこれに限らない。 Moreover, in the said embodiment, the 2nd cutting device 16 detects the outer periphery of the display area P4 with detection means, such as the camera 16a, and the 1st optical member sheet | seat F1 and the outer periphery of the display area P4, etc. The third cutting device 19 cuts the second optical member sheet F2, and the third cutting device 19 detects the outer peripheral edge of the display area P4 with a detecting means such as a camera 19a, and the third optical device along the outer peripheral edge of the display area P4. Although the member sheet F3 is cut, the configuration of the detection means is not limited to this.
 具体的には、フィルム貼合システム1は、第二貼合シートF22において、第一光学部材シートF1及び第二光学部材シートF2と液晶パネルPとの貼合面の外周縁を検出する検出手段を有し、貼合面の外周縁に沿って設定された切断線SXを切断することとしてもよい。また、フィルム貼合システム1は、第三貼合シートF23において、第三光学部材シートF3と液晶パネルPとの貼合面の外周縁を検出する検出手段を有し、貼合面の外周縁に沿って設定された切断線SXを切断することとしてもよい。 Specifically, the film bonding system 1 detects the outer periphery of the bonding surface of the first optical member sheet F1, the second optical member sheet F2, and the liquid crystal panel P in the second bonding sheet F22. It is good also as cutting the cutting line SX set along the outer periphery of the bonding surface. Moreover, in the 3rd bonding sheet | seat F23, the film bonding system 1 has a detection means to detect the outer periphery of the bonding surface of the 3rd optical member sheet | seat F3 and liquid crystal panel P, and the outer periphery of a bonding surface The cutting line SX set along the line may be cut.
 このような、貼合面の外周縁の検出および切断装置による切断は、詳しくは以下のようにして行う。以下、図16~19を用い、フィルム貼合システム1の変形例について説明する。 Such detection of the outer periphery of the bonding surface and cutting with a cutting device are performed in detail as follows. Hereinafter, modified examples of the film bonding system 1 will be described with reference to FIGS.
 図16は、貼合面の外周縁を検出する第一検出手段61(検出部)の模式図である。本実施形態のフィルム貼合システム1が備える第一検出手段61は、第二貼合シートF22における、液晶パネルPとシート片F1Sとの貼合面(以下、第一貼合面SA1と称することがある。)の外周縁EDの画像を撮像する撮像装置63と、外周縁EDを照明する照明光源64と、撮像装置63で撮像した画像の記憶や、画像に基づいて外周縁EDを検出するための演算を行う制御部65と、を有する。 FIG. 16 is a schematic diagram of first detection means 61 (detection unit) that detects the outer periphery of the bonding surface. The 1st detection means 61 with which the film bonding system 1 of this embodiment is provided is the bonding surface (henceforth 1st bonding surface SA1) of liquid crystal panel P and the sheet piece F1S in the 2nd bonding sheet | seat F22. Imaging device 63 that captures an image of outer peripheral edge ED, illumination light source 64 that illuminates outer peripheral edge ED, storage of an image captured by imaging device 63, and detection of outer peripheral edge ED based on the image. And a control unit 65 that performs an operation for the purpose.
 このような第一検出手段61は、図1における第二切断装置16のパネル搬送上流側であって、挟圧ロール15bと第二切断装置16との間に設けられている。 Such first detection means 61 is provided on the panel conveyance upstream side of the second cutting device 16 in FIG. 1 and is provided between the pinching roll 15 b and the second cutting device 16.
 撮像装置63は、外周縁EDよりも第一貼合面SA1の内側に固定して配置されており、第一貼合面SA1の法線と、撮像装置63の撮像面63aの法線とが、角度θ(以下、撮像装置63の傾斜角度θと称する)をなすように傾斜した姿勢となっている。撮像装置63は、撮像面63aを外周縁EDに向け、第二貼合シートF22においてシート片F1Sが貼合された側から外周縁EDの画像を撮像する。 The imaging device 63 is fixed and arranged inside the first bonding surface SA1 with respect to the outer peripheral edge ED, and the normal line of the first bonding surface SA1 and the normal line of the imaging surface 63a of the imaging device 63 are arranged. The posture is inclined so as to form an angle θ (hereinafter referred to as an inclination angle θ of the imaging device 63). The imaging device 63 directs the imaging surface 63a to the outer peripheral edge ED, and captures an image of the outer peripheral edge ED from the side where the sheet piece F1S is bonded in the second bonding sheet F22.
 撮像装置63の傾斜角度θは、第一貼合面SA1を構成する第一基板P1の外周縁を確実に撮像できるように設定することができる。例えば、液晶パネルPが、マザーパネルを複数枚の液晶パネルに分割する、いわゆる多面取りで形成されている場合、液晶パネルPを構成する第一基板P1と第二基板P2との外周縁にずれが生じ、第二基板P2の端面が第一基板P1の端面よりも外側にずれることがある。このような場合、撮像装置63の傾斜角度θは、撮像装置63の撮像視野内に第二基板P2の外周縁が入り込まないように設定することができる。 The inclination angle θ of the imaging device 63 can be set so that the outer peripheral edge of the first substrate P1 constituting the first bonding surface SA1 can be reliably imaged. For example, when the liquid crystal panel P is formed by so-called multiple chamfering, in which the mother panel is divided into a plurality of liquid crystal panels, the liquid crystal panel P is shifted to the outer peripheral edge of the first substrate P1 and the second substrate P2 constituting the liquid crystal panel P. May occur, and the end surface of the second substrate P2 may be displaced outward from the end surface of the first substrate P1. In such a case, the inclination angle θ of the imaging device 63 can be set so that the outer peripheral edge of the second substrate P2 does not enter the imaging field of view of the imaging device 63.
 このような場合、撮像装置63の傾斜角度θは、第一貼合面SA1と撮像装置63の撮像面63aの中心との間の距離H(以下、撮像装置63の高さHと称する)に適合するように設定できる。例えば、撮像装置63の高さHが50mm以上100mm以下の場合、撮像装置63の傾斜角度θは、5°以上20°以下の範囲の角度に設定できる。ただし、経験的にずれ量が分かっている場合には、そのずれ量に基づいて撮像装置63の高さH及び撮像装置63の傾斜角度θを求めることができる。本実施形態では、撮像装置63の高さHが78mm、撮像装置63の傾斜角度θが10°に設定されている。 In such a case, the inclination angle θ of the imaging device 63 is a distance H between the first bonding surface SA1 and the center of the imaging surface 63a of the imaging device 63 (hereinafter referred to as the height H of the imaging device 63). Can be set to fit. For example, when the height H of the imaging device 63 is 50 mm or more and 100 mm or less, the inclination angle θ of the imaging device 63 can be set to an angle in the range of 5 ° or more and 20 ° or less. However, when the deviation amount is empirically known, the height H of the imaging device 63 and the inclination angle θ of the imaging device 63 can be obtained based on the deviation amount. In the present embodiment, the height H of the imaging device 63 is set to 78 mm, and the inclination angle θ of the imaging device 63 is set to 10 °.
 撮像装置63の傾斜角度θは、0°であってもよい。図17は、第一検出手段61の変形例を示す模式図であり、撮像装置63の傾斜角度θが0°である場合の例である。この場合、撮像装置63及び照明光源64の各々が、第一貼合面SA1の法線方向に沿って外周縁EDに重なる位置に配置されていてもよい。 The inclination angle θ of the imaging device 63 may be 0 °. FIG. 17 is a schematic diagram showing a modification of the first detection means 61, and is an example in the case where the inclination angle θ of the imaging device 63 is 0 °. In this case, each of the imaging device 63 and the illumination light source 64 may be disposed at a position overlapping the outer peripheral edge ED along the normal direction of the first bonding surface SA1.
 第一貼合面SA1と撮像装置63の撮像面63aの中心との間の距離H1(以下、撮像装置63の高さH1と称する)は、第一貼合面SA1の外周縁EDを検出しやすい位置に設定できる。例えば、撮像装置63の高さH1は、50mm以上150mm以下の範囲に設定できる。 A distance H1 between the first bonding surface SA1 and the center of the imaging surface 63a of the imaging device 63 (hereinafter referred to as a height H1 of the imaging device 63) detects the outer peripheral edge ED of the first bonding surface SA1. It can be set at an easy position. For example, the height H1 of the imaging device 63 can be set in the range of 50 mm to 150 mm.
 照明光源64は、第二貼合シートF22におけるシート片F1Sが貼合された側とは反対側に固定して配置されている。照明光源64は、外周縁EDよりも第一貼合面SA1の外側に配置されている。本実施形態では、照明光源64の光軸と撮像装置63の撮像面63aの法線とが平行になっている。 The illumination light source 64 is fixed and arranged on the opposite side to the side where the sheet piece F1S in the second bonding sheet F22 is bonded. The illumination light source 64 is arrange | positioned rather than the outer periphery ED on the outer side of 1st bonding surface SA1. In the present embodiment, the optical axis of the illumination light source 64 and the normal line of the imaging surface 63a of the imaging device 63 are parallel.
 なお、照明光源64は、第二貼合シートF22におけるシート片F1Sが貼合された側(すなわち、撮像装置63と同じ側)に配置されていてもよい。 In addition, the illumination light source 64 may be arrange | positioned at the side (namely, the same side as the imaging device 63) by which the sheet piece F1S in the 2nd bonding sheet | seat F22 was bonded.
 また、照明光源64から射出される照明光により、撮像装置63が撮像する外周縁EDが照明されていれば、照明光源64の光軸と撮像装置63の撮像面63aの法線とが交差していてもよい。 If the outer peripheral edge ED imaged by the imaging device 63 is illuminated by the illumination light emitted from the illumination light source 64, the optical axis of the illumination light source 64 and the normal line of the imaging surface 63a of the imaging device 63 intersect. It may be.
 図18は、貼合面の外周縁を検出する位置を示す平面図である。図に示す第二貼合シートF22の搬送経路上には、検査領域CAが設定されている。検査領域CAは、搬送される液晶パネルPにおける、第一貼合面SA1の外周縁EDに対応する位置に設定されている。図では、検査領域CAは、平面視矩形の第一貼合面SA1の4つの角部に対応する4箇所に設定されており、第一貼合面SA1の角部を外周縁EDとして検出する構成となっている。図では、第一貼合面SA1の外周縁のうち、角部に対応する鉤状の部分を外周縁EDとして示している。 FIG. 18 is a plan view showing a position where the outer peripheral edge of the bonding surface is detected. An inspection area CA is set on the conveyance path of the second bonding sheet F22 shown in the drawing. Inspection area | region CA is set in the position corresponding to the outer periphery ED of 1st bonding surface SA1 in liquid crystal panel P conveyed. In the figure, the inspection area CA is set at four locations corresponding to the four corners of the first bonding surface SA1 that is rectangular in plan view, and the corners of the first bonding surface SA1 are detected as the outer peripheral edge ED. It has a configuration. In the figure, among the outer peripheral edges of the first bonding surface SA1, the hook-shaped part corresponding to the corner is shown as the outer peripheral edge ED.
 図16の第一検出手段61は、4箇所の検査領域CAにおいて外周縁EDを検出する。
 具体的には、各検査領域CAには、それぞれ撮像装置63および照明光源64が配置されており、第一検出手段61は、搬送される液晶パネルPごとに第一貼合面SA1の角部を撮像し、撮像データに基づいて外周縁EDを検出する。検出された外周縁EDのデータは、図16に示す制御部65に記憶される。
The first detection means 61 in FIG. 16 detects the outer peripheral edge ED in the four inspection areas CA.
Specifically, the imaging device 63 and the illumination light source 64 are arranged in each inspection area CA, and the first detection means 61 is provided at each corner of the first bonding surface SA1 for each liquid crystal panel P to be transported. And the outer peripheral edge ED is detected based on the imaging data. Data of the detected outer peripheral edge ED is stored in the control unit 65 shown in FIG.
 なお、第一貼合面SA1の外周縁が検出可能であれば、検査領域CAの設定位置はこれに限らない。例えば、各検査領域CAが、第一貼合面SA1の各辺の一部(例えば各辺の中央部)に対応する位置に配置されていてもよい。この場合、第一貼合面SA1の各辺(四辺)を外周縁として検出する構成となる。 In addition, if the outer periphery of 1st bonding surface SA1 is detectable, the setting position of inspection area | region CA is not restricted to this. For example, each inspection area | region CA may be arrange | positioned in the position corresponding to a part (for example, center part of each side) of each edge | side of 1st bonding surface SA1. In this case, each side (four sides) of the first bonding surface SA1 is detected as an outer peripheral edge.
 また、撮像装置63および照明光源64は、各検査領域CAに配置されている構成に限らず、第一貼合面SA1の外周縁EDに沿うように設定された移動経路を移動可能である構成であってもよい。この場合、撮像装置63と照明光源64とが各検査領域CAに位置した際に外周縁EDを検出する構成とすることで、撮像装置63と照明光源64とがそれぞれ1つずつ設けられていれば、外周縁EDの検出が可能となる。 Moreover, the imaging device 63 and the illumination light source 64 are not limited to the configuration arranged in each inspection area CA, but are configured to be able to move along a movement path that is set along the outer peripheral edge ED of the first bonding surface SA1. It may be. In this case, the imaging device 63 and the illumination light source 64 are configured to detect the outer peripheral edge ED when the imaging device 63 and the illumination light source 64 are positioned in each inspection area CA, so that one imaging device 63 and one illumination light source 64 are provided. In this case, the outer periphery ED can be detected.
 第二切断装置16によるシート片F1Sおよび第二光学部材シートF2についての切断線は、第一貼合面SA1の外周縁EDの検出結果に基づいて設定される。 The cutting line for the sheet piece F1S and the second optical member sheet F2 by the second cutting device 16 is set based on the detection result of the outer peripheral edge ED of the first bonding surface SA1.
 例えば、記憶された第一貼合面SA1の外周縁EDのデータに基づいて、第一検出手段61の制御部65が、第一光学部材F11が液晶パネルPの外側(第一貼合面SA1の外側)にはみ出さない大きさとなるようにシート片F1Sおよび第二光学部材シートF2の切断線を設定する構成とすることができる。また、切断線の設定は、必ずしも第一検出手段61の制御部65で行う必要はなく、第一検出手段61で検出した外周縁EDのデータを用い、別途計算手段を用いて貼合面の外周縁に沿って切断線を設定することとしても構わない。 For example, based on the memorized data of the outer peripheral edge ED of the first bonding surface SA1, the control unit 65 of the first detection means 61 determines that the first optical member F11 is outside the liquid crystal panel P (first bonding surface SA1. The cutting line of the sheet piece F1S and the second optical member sheet F2 can be set so as not to protrude outside. In addition, the setting of the cutting line is not necessarily performed by the control unit 65 of the first detection unit 61, and the data of the outer peripheral edge ED detected by the first detection unit 61 is used, and the calculation of the bonding surface is performed separately. A cutting line may be set along the outer peripheral edge.
 第二切断装置16は、貼合面の外周縁EDに沿って設定された切断線において、シート片F1Sおよび第二光学部材シートF2を切断する。 The second cutting device 16 cuts the sheet piece F1S and the second optical member sheet F2 at a cutting line set along the outer peripheral edge ED of the bonding surface.
 図1に戻り、第二切断装置16は、第一検出手段61よりもパネル搬送下流側に設けられている。第二切断装置16は、液晶パネルPに貼合されたシート片F1Sおよび第二光学部材シートF2のうち表示領域P4(図4参照)との対向部分と、この対向部分の外側の余剰部分とを、検出された外周縁EDに基づいて設定された切断線に沿って切り離し、表示領域P4に対応する大きさの第一光学部材F11および第二光学部材F12(図7参照)を切り出す。これにより、液晶パネルPの上面に第一光学部材F11及び第二光学部材F12が重ねて貼合された第二片面貼合パネルP12が形成される。 Returning to FIG. 1, the second cutting device 16 is provided on the downstream side of the panel conveyance with respect to the first detection means 61. The second cutting device 16 includes a portion facing the display region P4 (see FIG. 4) of the sheet piece F1S and the second optical member sheet F2 bonded to the liquid crystal panel P, and a surplus portion outside the facing portion. Are cut along a cutting line set based on the detected outer peripheral edge ED, and the first optical member F11 and the second optical member F12 (see FIG. 7) having a size corresponding to the display region P4 are cut out. Thereby, the 2nd single-sided bonding panel P12 in which the 1st optical member F11 and the 2nd optical member F12 were piled up and bonded on the upper surface of liquid crystal panel P is formed.
 本実施形態では、平面視矩形状の液晶パネルPにおける機能部分を除いた三辺では、液晶パネルPの外周縁に沿って余剰部分をレーザーカットし、機能部分に相当する一辺では、液晶パネルPの外周縁から表示領域P4側に適宜入り込んだ位置で余剰部分をレーザーカットする構成を採用できる。例えば、第一基板P1がTFT基板の場合、機能部分に相当する一辺では機能部分を除くよう液晶パネルPの外周縁から表示領域P4側に所定量ずれた位置でカットする構成を採用できる。 In the present embodiment, the surplus portion is laser-cut along the outer peripheral edge of the liquid crystal panel P at three sides excluding the functional portion in the liquid crystal panel P having a rectangular shape in plan view, and the liquid crystal panel P at one side corresponding to the functional portion. It is possible to adopt a configuration in which the surplus portion is laser-cut at a position that appropriately enters the display region P4 side from the outer peripheral edge. For example, when the first substrate P1 is a TFT substrate, it is possible to adopt a configuration in which a cut is made at a position shifted from the outer peripheral edge of the liquid crystal panel P to the display region P4 side by a predetermined amount so as to exclude the functional portion on one side corresponding to the functional portion.
 図19は、貼合面の外周縁を検出する第二検出手段62(検出部)の模式図である。本実施形態のフィルム貼合システム1が備える第二検出手段62は、第三貼合シートF23における、液晶パネルPと第三光学部材シートF3との貼合面(以下、第二貼合面SA2と称することがある。)の外周縁EDの画像を撮像する撮像装置63と、外周縁EDを照明する照明光源64と、撮像装置63で撮像した画像を記憶し、画像に基づいて外周縁EDを検出するための演算を行う制御部65と、を有する。第二検出手段62は、上述の第一検出手段61と同様の構成を有している。 FIG. 19 is a schematic diagram of the second detection means 62 (detection unit) that detects the outer peripheral edge of the bonding surface. The 2nd detection means 62 with which the film bonding system 1 of this embodiment is provided is the bonding surface (henceforth, 2nd bonding surface SA2) of liquid crystal panel P and the 3rd optical member sheet | seat F3 in the 3rd bonding sheet | seat F23. The imaging device 63 that captures an image of the outer peripheral edge ED, the illumination light source 64 that illuminates the outer peripheral edge ED, and the image captured by the imaging device 63 are stored, and the outer peripheral edge ED is based on the image. And a control unit 65 that performs a calculation for detecting. The second detection means 62 has the same configuration as the first detection means 61 described above.
 このような第二検出手段62は、図1における第三切断装置19のパネル搬送上流側であって、挟圧ロール18bと第三切断装置19との間に設けられている。第二検出手段62は、第三貼合シートF23の搬送経路上において設定された検査領域において、上述の第一検出手段61と同様にして第二貼合面SA2の外周縁EDを検出する。 Such second detection means 62 is provided on the panel conveyance upstream side of the third cutting device 19 in FIG. 1 and is provided between the pinching roll 18b and the third cutting device 19. The 2nd detection means 62 detects outer periphery ED of 2nd bonding surface SA2 similarly to the above-mentioned 1st detection means 61 in the test | inspection area | region set on the conveyance path | route of the 3rd bonding sheet | seat F23.
 第三切断装置19による第三光学部材シートF3についての切断線は、第二貼合面SA2の外周縁EDの検出結果に基づいて設定される。 The cutting line for the third optical member sheet F3 by the third cutting device 19 is set based on the detection result of the outer peripheral edge ED of the second bonding surface SA2.
 例えば、記憶された第二貼合面SA2の外周縁EDのデータに基づいて、第二検出手段62の制御部65が、第三光学部材F13が液晶パネルPの外側(第二貼合面SA2の外側)にはみ出さない大きさとなるように第三光学部材シートF3の切断線を設定する構成とすることができる。また、切断線の設定は、必ずしも第二検出手段62の制御部65で行う必要はなく、第二検出手段62で検出した外周縁EDのデータを用い、別途計算手段を用いて貼合面の外周縁に沿って切断線を設定することとしても構わない。 For example, based on the stored data of the outer peripheral edge ED of the second bonding surface SA2, the control unit 65 of the second detection means 62 causes the third optical member F13 to be outside the liquid crystal panel P (second bonding surface SA2). The cutting line of the third optical member sheet F3 can be set so that the size does not protrude outside. In addition, the setting of the cutting line is not necessarily performed by the control unit 65 of the second detection unit 62, and the data of the outer peripheral edge ED detected by the second detection unit 62 is used, and the bonding surface is separately calculated using a calculation unit. A cutting line may be set along the outer peripheral edge.
 第三切断装置19は、貼合面の外周縁EDに沿って設定された切断線において、第三光学部材シートF3を切断する。 The third cutting device 19 cuts the third optical member sheet F3 at the cutting line set along the outer peripheral edge ED of the bonding surface.
 第三切断装置19は、液晶パネルPに貼合された第三光学部材シートF3のうち表示領域P4(図6参照)との対向部分と、この対向部分の外側の余剰部分とを、検出された外周縁EDに基づいて設定された切断線に沿って切り離し、表示領域P4に対応する大きさの第三光学部材F13(図7参照)を切り出す。これにより、第二片面貼合パネルP12の上面に第三光学部材F13が貼合された両面貼合パネルP13が形成される。
 以上のような変形例に係るフィルム貼合システムにおいても、製品加工精度に影響することなく製品表面へのヒュームの付着を効果的に抑えることができ、狭額縁化に寄与することができる。
The third cutting device 19 detects a portion facing the display region P4 (see FIG. 6) of the third optical member sheet F3 bonded to the liquid crystal panel P and a surplus portion outside the facing portion. The third optical member F13 (see FIG. 7) having a size corresponding to the display area P4 is cut out along the cutting line set based on the outer peripheral edge ED. Thereby, the double-sided bonding panel P13 by which the 3rd optical member F13 was bonded by the upper surface of the 2nd single-sided bonding panel P12 is formed.
Also in the film bonding system according to the above modification, fume adhesion to the product surface can be effectively suppressed without affecting the product processing accuracy, which can contribute to narrowing the frame.
 上記実施形態のフィルム貼合システム1では、検出手段(検出部)を用いて複数の液晶パネルPごとに貼合面の外周縁を検出し、検出した外周縁に基づいて、個々の液晶パネルPごとに貼合したシート片F1S、第二光学部材シートF2、第三光学部材シートF3の切断位置を設定する。これにより、液晶パネルPやシート片F1Sの大きさの個体差によらず所望の大きさの光学部材を切り離すことができる。このため、液晶パネルPやシート片F1Sの大きさの個体差による品質バラツキをなくし、表示領域周辺の額縁部を縮小して表示エリアの拡大及び機器の小型化を図ることができる。 In the film bonding system 1 of the said embodiment, the outer periphery of the bonding surface is detected for every some liquid crystal panel P using a detection means (detection part), and each liquid crystal panel P based on the detected outer periphery. The cutting position of the sheet piece F1S, the second optical member sheet F2, and the third optical member sheet F3 bonded to each other is set. Thereby, an optical member having a desired size can be separated regardless of individual differences in the sizes of the liquid crystal panel P and the sheet piece F1S. For this reason, quality variations due to individual differences in the sizes of the liquid crystal panel P and the sheet piece F1S can be eliminated, and the frame area around the display area can be reduced to enlarge the display area and downsize the device.
 上記実施形態及び変形例における構成は本発明の一例であり、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The configurations in the above-described embodiments and modifications are examples of the present invention, and various modifications can be made without departing from the gist of the present invention.
 1 フィルム貼合システム(光学表示デバイスの生産システム) 12 第一貼合装置(貼合装置) 15 第二貼合装置(貼合装置) 18 第三貼合装置(貼合装置) 16 第二切断装置(切断装置) 19 第三切断装置(切断装置) 21 レーザー光照射装置 30 吸引装置 37 吸引口 52 吹き出し口 61 第一検出手段(検出手段) 62 第二検出手段(検出手段) P 液晶パネル(光学表示部品) P4 表示領域 F1 第一光学部材シート(被加工物、光学部材シート) F2 第二光学部材シート(被加工物、光学部材シート) F3 第三光学部材シート(被加工物、光学部材シート) F11 第一光学部材(光学部材、特定領域、対向部分) F12 第二光学部材(光学部材、特定領域、対向部分) F13 第三光学部材(光学部材、特定領域、対向部分) P11 第一片面貼合パネル(光学表示部品、貼合体) P12 第二片面貼合パネル(光学表示部品、貼合体) P13 両面貼合パネル(光学表示デバイス) ED 外周縁 PX 光学表示部品 FS 光学部材 FX 光学部材シート SA1 第一貼合面(貼合面) SA2 第二貼合面(貼合面) SX 切断線(加工位置、切断部) Y,Y’ 余剰部分 L レーザー光 K 切断領域(特定領域)。 DESCRIPTION OF SYMBOLS 1 Film bonding system (production system of an optical display device) 12 1st bonding apparatus (bonding apparatus) 15 2nd bonding apparatus (bonding apparatus) 18 3rd bonding apparatus (bonding apparatus) 16 2nd cutting Device (cutting device) 19 Third cutting device (cutting device) 21 Laser light irradiation device 30 Suction device 37 Suction port 52 Outlet 61 First detection means (detection means) 62 Second detection means (detection means) P Liquid crystal panel ( Optical display component) P4 Display area F1 First optical member sheet (workpiece, optical member sheet) F2 Second optical member sheet (workpiece, optical member sheet) F3 Third optical member sheet (workpiece, optical member) Sheet) F11 first optical member (optical member, specific area, facing portion) F12 second optical member (optical member, specific area, Direction part) F13 3rd optical member (optical member, specific area, facing part) P11 1st single-sided bonding panel (optical display component, bonding body) P12 2nd single-sided bonding panel (optical display component, bonding body) P13 double-sided Bonding panel (optical display device) ED outer periphery PX optical display component FS optical member FX optical member sheet SA1 first bonding surface (bonding surface) SA2 second bonding surface (bonding surface) SX cutting line (processing position) , Cutting part) Y, Y 'surplus part L laser light K cutting area (specific area).

Claims (7)

  1.  被加工物の加工位置にレーザー光を照射して加工するレーザー加工装置であって、
     前記加工位置の近傍で前記加工位置の全長に亘る吸引口を開口させる吸引装置を備えるレーザー加工装置。
    A laser processing apparatus for irradiating a processing position of a workpiece with laser light,
    A laser processing apparatus comprising a suction device that opens a suction port over the entire length of the processing position in the vicinity of the processing position.
  2.  前記加工位置が、前記被加工物の特定領域の外周に無端状に設けられ、前記吸引装置が、前記特定領域の全周を囲むように設けられる請求項1に記載のレーザー加工装置。 The laser processing apparatus according to claim 1, wherein the processing position is provided endlessly on an outer periphery of the specific area of the workpiece, and the suction device is provided so as to surround the entire periphery of the specific area.
  3.  前記吸引装置が、前記加工位置に対して進退動可能とされる請求項1又は2に記載のレーザー加工装置。 The laser processing apparatus according to claim 1 or 2, wherein the suction device is movable back and forth with respect to the processing position.
  4.  前記吸引装置が、前記加工位置と前記吸引口との間の製品表面に向けてエアを吹き出す吹き出し口を有する請求項1から3の何れか一項に記載のレーザー加工装置。 The laser processing apparatus according to any one of claims 1 to 3, wherein the suction device includes a blowout port that blows air toward a product surface between the processing position and the suction port.
  5.  前記吸引装置が、前記吹き出し口から温風を吹き出す請求項4に記載のレーザー加工装置。 The laser processing apparatus according to claim 4, wherein the suction device blows out warm air from the outlet.
  6.  光学表示部品に光学部材を貼合して構成される光学表示デバイスの生産システムであって、
     前記光学表示部品に前記光学表示部品の表示領域よりも大きい光学部材シートを貼り合わせて貼合体とする貼合装置と、
     前記貼合体における前記光学部材シートの前記表示領域との対向部分と前記対向部分の外側の余剰部分とを切り離し、前記光学部材シートから前記表示領域に対応する大きさの前記光学部材を形成する切断装置とを備え、
     前記切断装置が、前記貼合体における前記光学部材シートの前記対向部分と前記余剰部分との間の切断部に向けて切断加工用のレーザー光を照射するレーザー光照射装置と、前記切断部の近傍で前記切断部の全長に亘る吸引口を開口させる吸引装置とを有する光学表示デバイスの生産システム。
    An optical display device production system configured by bonding an optical member to an optical display component,
    A laminating device for laminating an optical member sheet larger than the display area of the optical display component to the optical display component,
    The cutting | disconnection which cut | disconnects the opposing part with the said display area of the said optical member sheet | seat in the said bonding body, and the excess part of the outer side of the said opposing part, and forms the said optical member of the magnitude | size corresponding to the said display area from the said optical member sheet | seat. With the device,
    In the vicinity of the cutting unit, the cutting unit is configured to irradiate a laser beam for cutting processing toward the cutting part between the facing part and the surplus part of the optical member sheet in the bonded body, and And a suction device for opening a suction port over the entire length of the cutting portion.
  7.  前記貼合体において、前記光学部材シートと前記光学表示部品との貼合面の外周縁を検出する検出部を有し、
     前記切断部を、前記外周縁に沿って設定する請求項6に記載の光学表示デバイスの生産システム。
    In the pasting body, it has a detection part which detects the outer periphery of the pasting surface of the optical member sheet and the optical display component,
    The optical display device production system according to claim 6, wherein the cutting portion is set along the outer peripheral edge.
PCT/JP2014/051682 2013-04-08 2014-01-27 Laser machining device and system for producing optical display device WO2014167875A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480018797.6A CN105102175A (en) 2013-04-08 2014-01-27 Laser machining device and system for producing optical display device
KR1020157027044A KR20150140664A (en) 2013-04-08 2014-01-27 Laser machining device and system for producing optical display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-080846 2013-04-08
JP2013080846 2013-04-08
JP2013-104400 2013-05-16
JP2013104400A JP6120161B2 (en) 2013-04-08 2013-05-16 Laser processing apparatus and optical display device production system

Publications (1)

Publication Number Publication Date
WO2014167875A1 true WO2014167875A1 (en) 2014-10-16

Family

ID=51689293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051682 WO2014167875A1 (en) 2013-04-08 2014-01-27 Laser machining device and system for producing optical display device

Country Status (5)

Country Link
JP (1) JP6120161B2 (en)
KR (1) KR20150140664A (en)
CN (1) CN105102175A (en)
TW (1) TW201446381A (en)
WO (1) WO2014167875A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210181397A1 (en) * 2017-04-28 2021-06-17 Samsung Display Co., Ltd. Polarizing layer, display device with the same, and fabricating method for the display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998158B2 (en) * 2017-09-07 2022-01-18 株式会社ディスコ Cutting blade feeder
KR102241016B1 (en) * 2020-01-30 2021-04-28 주식회사 제이스텍 Inspection process method of display laser cutting equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417361U (en) * 1990-05-26 1992-02-13
JP2003107452A (en) * 2001-09-17 2003-04-09 Internatl Business Mach Corp <Ibm> Method of manufacturing liquid crystal display panel, method of manufacturing liquid crystal display device, and device for manufacturing the liquid crystal display device
JP2005074910A (en) * 2003-09-02 2005-03-24 Fuji Photo Film Co Ltd Color printer
WO2008143042A1 (en) * 2007-05-16 2008-11-27 Nitto Denko Corporation Laser processing method and laser-processed product
JP2009061498A (en) * 2006-10-17 2009-03-26 Nitto Denko Corp Optical member adhering method and apparatus using the method
US20090223944A1 (en) * 2008-03-04 2009-09-10 Universal Laser Systems, Inc. Laser-Based Material Processing Exhaust Systems and Methods for Using Such Systems
WO2009128207A1 (en) * 2008-04-15 2009-10-22 日東電工株式会社 Method and apparatus for continuously manufacturing liquid crystal display element
JP2010167484A (en) * 2009-01-26 2010-08-05 Takei Electric Industries Co Ltd Method and apparatus of removing thin film of thin film laminated glass substrate
WO2011004509A1 (en) * 2009-07-07 2011-01-13 株式会社片岡製作所 Laser cutting machine
JP2013152456A (en) * 2011-12-27 2013-08-08 Sumitomo Chemical Co Ltd Laser beam irradiation device, manufacturing device of optical member laminate, laser beam irradiation method, and manufacturing method of optical member laminate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361103A (en) 1991-06-06 1992-12-14 Olympus Optical Co Ltd Method and apparatus for detecting relative position
KR20040002796A (en) * 2002-06-28 2004-01-07 후지 샤신 필름 가부시기가이샤 Method and apparatus for bonding polarizing plate
KR100848854B1 (en) * 2008-04-21 2008-07-30 주식회사 탑 엔지니어링 Scribing apparatus of fragile substrate and method thereof
JP2011178636A (en) * 2010-03-03 2011-09-15 Mitsuboshi Diamond Industrial Co Ltd Method for dividing brittle material substrate, and brittle material member

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417361U (en) * 1990-05-26 1992-02-13
JP2003107452A (en) * 2001-09-17 2003-04-09 Internatl Business Mach Corp <Ibm> Method of manufacturing liquid crystal display panel, method of manufacturing liquid crystal display device, and device for manufacturing the liquid crystal display device
JP2005074910A (en) * 2003-09-02 2005-03-24 Fuji Photo Film Co Ltd Color printer
JP2009061498A (en) * 2006-10-17 2009-03-26 Nitto Denko Corp Optical member adhering method and apparatus using the method
WO2008143042A1 (en) * 2007-05-16 2008-11-27 Nitto Denko Corporation Laser processing method and laser-processed product
US20090223944A1 (en) * 2008-03-04 2009-09-10 Universal Laser Systems, Inc. Laser-Based Material Processing Exhaust Systems and Methods for Using Such Systems
WO2009128207A1 (en) * 2008-04-15 2009-10-22 日東電工株式会社 Method and apparatus for continuously manufacturing liquid crystal display element
JP2010167484A (en) * 2009-01-26 2010-08-05 Takei Electric Industries Co Ltd Method and apparatus of removing thin film of thin film laminated glass substrate
WO2011004509A1 (en) * 2009-07-07 2011-01-13 株式会社片岡製作所 Laser cutting machine
JP2013152456A (en) * 2011-12-27 2013-08-08 Sumitomo Chemical Co Ltd Laser beam irradiation device, manufacturing device of optical member laminate, laser beam irradiation method, and manufacturing method of optical member laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210181397A1 (en) * 2017-04-28 2021-06-17 Samsung Display Co., Ltd. Polarizing layer, display device with the same, and fabricating method for the display device

Also Published As

Publication number Publication date
TW201446381A (en) 2014-12-16
JP6120161B2 (en) 2017-04-26
KR20150140664A (en) 2015-12-16
JP2014217879A (en) 2014-11-20
CN105102175A (en) 2015-11-25

Similar Documents

Publication Publication Date Title
KR101973832B1 (en) Optical display device production system, and optical display device production method
JP5791018B2 (en) Optical display device production system and production method
KR101572402B1 (en) Laser irradiation device, optical member bonded body manufacturing device, laser irradiation method, and optical member bonded body manufacturing method
TWI441703B (en) Manufacturing system of optical component pasted material, manufacturing method and computer-readable recording medium
KR20150096691A (en) Manufacturing method for optical display device and manufacturing system for optical display device
JP6127707B2 (en) Optical display device production system and production method
WO2014167875A1 (en) Laser machining device and system for producing optical display device
KR20150048757A (en) Device for producing optical member pasted body
KR20140096269A (en) Manufacturing system of optical display device and manufacturing method
KR20160009556A (en) Optical display device production system, and optical display device production method
JP5828961B2 (en) Optical display device production method and optical display device production system
WO2015030074A1 (en) Production method for laminated optical member
KR20150121004A (en) Production system for optical display device
JP2013114227A (en) Manufacturing apparatus of optical member laminate and manufacturing method
WO2014024803A1 (en) System for producing optical display device and method for producing optical display device
JP5924726B2 (en) Manufacturing apparatus and manufacturing method of optical member bonded body
JP6227279B2 (en) Manufacturing apparatus and manufacturing method of optical member bonded body
WO2015030066A1 (en) Production method for laminated optical member
WO2014024872A1 (en) Optical display device production method and optical display device production system
WO2014185093A1 (en) Bonded optical member manufacturing system, manufacturing method, and recording medium
WO2014185092A1 (en) Bonded optical member manufacturing system, manufacturing method, and recording medium
JP2014224912A (en) Optical display device production system, and production method
JP2015049348A (en) Method for manufacturing optical member laminate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018797.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157027044

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782994

Country of ref document: EP

Kind code of ref document: A1