JP2013127060A - 水分吸着した窒化物蛍光体とその製造方法 - Google Patents

水分吸着した窒化物蛍光体とその製造方法 Download PDF

Info

Publication number
JP2013127060A
JP2013127060A JP2012250672A JP2012250672A JP2013127060A JP 2013127060 A JP2013127060 A JP 2013127060A JP 2012250672 A JP2012250672 A JP 2012250672A JP 2012250672 A JP2012250672 A JP 2012250672A JP 2013127060 A JP2013127060 A JP 2013127060A
Authority
JP
Japan
Prior art keywords
phosphor
nitride phosphor
nitride
water
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012250672A
Other languages
English (en)
Inventor
Shiho Takashina
志保 高階
Akihiro Oto
章裕 大戸
Doohun Kim
ドーフン キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012250672A priority Critical patent/JP2013127060A/ja
Publication of JP2013127060A publication Critical patent/JP2013127060A/ja
Pending legal-status Critical Current

Links

Classifications

    • Y02B20/181

Abstract

【課題】従来品より輝度、内部量子効率、外部量子効率の向上した窒化物蛍光体を提供することを課題とする。
【解決手段】下記一般式(1)で表される窒化物蛍光体であって、
熱重量測定において、窒化物蛍光体に吸着した全吸着水中の25%以上が、170℃から300℃の間で脱離する窒化物蛍光体。
LnSi:Z ・・・(1)
(一般式(1)中、Lnは賦活剤として用いる元素を除いた希土類元素であり、Zは賦活剤であり、xは2.7≦x≦3.3を満たし、yは5.4≦y≦6.6を満たし、nは10≦n≦12を満たす。)
【選択図】図1

Description

本発明は、窒化物蛍光体に関し、より詳しくは、輝度、内部量子効率、外部量子効率に優れた蛍光体に関する。
近年、省エネルギーの流れを受け、LEDを用いた照明やバックライトの需要が増加している。ここで用いられるLEDは、青または近紫外波長の光を発するLEDチップ上に、蛍光体を配置した白色発光LEDである。このようなタイプの白色発光LEDとしては、青色LEDチップ上に、青色LEDチップからの青色光を励起光として黄色に発光するYAG(イットリウムアルミニウムガーネット)蛍光体を用いたものが多く用いられている。
しかしながらYAG蛍光体は、大出力下で用いられる場合、蛍光体の温度が上昇すると輝度が低下する、いわゆる温度消光が大きいという問題や、より優れた色再現範囲や演色性を求めて、350〜420nm程度の光で励起しようとすると、輝度が著しく低下するという問題があった。そしてこれらの問題を解決するため、窒化物蛍光体で黄色発光のものが検討され、その有力な候補として例えば特許文献1に記載されるLa3Si611を母体とし賦活剤を添加した蛍光体(以下LSN蛍光体)などが開発されている。この蛍光体は、従来のYAG蛍光体に比べ、温度が上昇しても輝度の低下が小さく、かつ、近紫外線での励起でも十分な発光が得られるため、350〜420nm程度の光を発するLEDと青、赤などの蛍光体と組み合わせ使用することで、高演色性と高効率を両立した発光装置を作成することも期待される。
国際公開第2008/132954号パンフレット 国際公開第2010/114061号パンフレット
特許文献1に記載のLSN蛍光体は、従来のYAG蛍光体に比べて温度が上昇しても輝度の低下が小さく、かつ、近紫外線での励起でも十分な発光が得られるものである。
しかしながら蛍光体には、より少ないエネルギーで、より高い輝度を得ることが求められ、輝度、内部量子効率、外部量子効率の一層の向上が求められている。すなわち本発明の課題は、従来品より輝度、内部量子効率、外部量子効率の向上した窒化物蛍光体を提供することである。
本発明者らは、LSN蛍光体を高温、高湿度にさらし、輝度の維持率を確認する耐久性試験を行っていたところ、より過酷な条件にさらすことで輝度維持率が良くなるという傾向があることを見出した。そして過酷な条件、すなわち高温、高湿度の条件で蛍光体の処理を行ったところ、輝度も内部量子効率も10%程度向上するという、驚くべき結果を得ることができた。
本発明者らは、このように輝度、および内部量子効率が向上した蛍光体を解析した結果、その表面には、通常の吸着水とは水素結合の状態が異なる水が存在し、それが蛍光体表面にある種の膜を形成しているらしいという知見を得、本発明に到達した。
本発明は以下のとおりである。
[1]下記一般式(1)で表される窒化物蛍光体であって、
熱重量測定において、窒化物蛍光体に吸着した全吸着水中の25%以上が、170℃から300℃の間で脱離する窒化物蛍光体。
LnxSiyn:Z ・・・(1)
(一般式(1)中、Lnは賦活剤として用いる元素を除いた希土類元素であり、Zは賦活剤であり、xは2.7≦x≦3.3を満たし、yは5.4≦y≦6.6を満たし、nは10≦n≦12を満たす。)
[2]前記全吸着水中の30%以上が、170℃から300℃の間で脱離する[1]に記載の窒化物蛍光体。
[3]前記窒化物蛍光体は、コールターカウンター法で測定された平均粒径より算出される比表面積に対するBET法により求めた比表面積の比が、20以下であることを特徴とする[1]又は[2]に記載の窒化物蛍光体。
[4]前記窒化物蛍光体は、内部量子効率が71%以上である[1]乃至[3]のいずれかに記載の窒化物蛍光体。
[5][1]に記載の窒化物蛍光体の製造方法であって、
下記一般式(1)で表される窒化物蛍光体の原料混合物を準備する工程、
前記原料混合物を焼成する焼成工程、および、
前記焼成工程で得られた焼成物を蒸気加熱処理する工程、
を有する、窒化物蛍光体の製造方法。
LnxSiyn:Z ・・・(1)
(一般式(1)中、Lnは賦活剤として用いる元素を除いた希土類元素であり、Zは賦活剤であり、xは2.7≦x≦3.3を満たし、yは5.4≦y≦6.6を満たし、nは10≦n≦12を満たす。)
[6]窒化物蛍光体であって、熱重量測定において、窒化物蛍光体に吸着した全吸着水中の25%以上が、170℃から300℃の間で脱離することを特徴とする窒化物蛍光体。
本発明により、輝度、内部量子効率、外部量子効率の向上した窒化物蛍光体を提供できる。また、輝度、内部量子効率の向上した窒化物蛍光体の製造方法を提供することができる。
図1は、本発明の実施例1と比較例1の蛍光体の、各温度域における吸着水の脱離量を測定した結果を示すグラフである。 図2は、本発明の実施例5と比較例5の蛍光体の、各温度域における吸着水の脱離量を測定した結果を示すグラフである。 図3は、本発明の実施例6と比較例6の蛍光体の、各温度域における吸着水の脱離量を測定した結果を示すグラフである。 図4は、本発明の実施例7と比較例7の蛍光体の、各温度域における吸着水の脱離量を測定した結果を示すグラフである。 図5は、本発明の実施例8と比較例8の蛍光体の、各温度域における吸着水の脱離量を測定した結果を示すグラフである。 図6は、本発明の実施例9と比較例9の蛍光体の、各温度域における吸着水の脱離量を測定した結果を示すグラフである。
以下、本発明について実施形態や例示物を示して説明するが、本発明は以下の実施形態や例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変形して実施することができる。
(蛍光体の表面状態と、その判別方法)
本発明の蛍光体は、窒化物蛍光体の表面に、好ましくは、後述する特定の一般式(1)で示される蛍光体の表面に、通常と異なり多種の水素結合を有していると予測される特殊な吸着水が存在することを特徴とする。この吸着水は、通常の温度範囲では蒸発せず、通常の水の蒸発温度である100℃を大きく超えた170℃以上の高温にさらされて初めて蛍光体表面から脱離し始めるため、該吸着水が通常の蛍光体の使用状態では消失することは無い。
この吸着水の存在により蛍光体の輝度及び内部量子効率が向上することとなる。このように蛍光体の輝度及び内部量子効率が向上する理由としては、吸着水の存在により蛍光体よりも屈折率が低い薄い水の層が蛍光体表面に形成され、蛍光体内部からの光の取り出し率が向上するためと、本発明者らは推測する。
この薄い水の層こそが本発明の蛍光体を特徴付けるものである。この薄い水の層は、通常の表面吸着水が、100℃程度の温度で蛍光体の表面から離脱していくのに対し、170℃から300℃程度の高い温度にならないと表面から離脱しない。この点から発明者は、この水が通常の表面吸着水と異なり、通常より強い水素結合を有しているものであり、このため、輝度向上、内部量子効率および外部量子効率の向上などの効果を得られるのであろうと推測している。また、蛍光体を水に浸漬させたような状態にして輝度測定等を行っても、全く輝度の向上は観測されないため、この点からも表面に存在する水は通常の水ではないと考えられ、前述のように強い水素結合を有する特殊な水であると推察している。
本発明の蛍光体を特徴づける薄い水の層が存在していることは、以下の方法により確認することができる。
(吸着水の脱離温度)
本発明の蛍光体は窒化物蛍光体であって、好ましくは後述する一般式(1)で表される窒化物蛍光体であって、熱重量測定において、蛍光体に吸着した全吸着水中の25%以上、より好ましくは30%以上が、170℃から300℃の間で脱離するものである。さらに好ましくは、蛍光体に吸着した全吸着水中の35%以上が、170℃から300℃の間で脱離することである。上記説明したように、本発明の蛍光体の表面に存在する吸着水は、通常の水の蒸発温度である100℃ではあまり蒸発せず、170℃以上の高温にさらされると容易に蛍光体表面から脱離する。したがって、熱重量測定において、170℃から300℃の間で脱離する吸着水が多いことが本発明を特徴づける吸着水であり、本発明の蛍光体は、蛍光体に吸着した全吸着水中の25%以上、より好ましくは30%以上が本発明を特徴づける吸着水である。
(放出ガス分析による熱重量測定)
上記熱重量測定は、TPD(Thermal programmed Disorption:昇温脱離)測定において、分析された放出ガスのうち、分子量18のものを吸着水とみなす。測定は室温から1000℃までの範囲で行い、1000℃までの範囲で放出された分子量18のガスの量を全吸着水量と見なす。昇温速度は、33℃/分とする。170℃から300℃までの範囲で放出された分子量18のガスの量を、室温から1000℃間での範囲で放出された分子量18のガスの量で割ることにより、本発明の割合を求めることが出来る。同じ測定値であるので、割合(%)は無次元になる。
尚、通常の熱重量測定は、TG−DTA等の装置を用いて測定されることが多いが、TG測定では、蛍光体から脱離する物質が何かがわかりにくく、かつ窒化物蛍光体の表面が酸化されることによる重量増加もあるため、本発明ではTPDを使用し、分子量18のガ
スの量を測定する必要がある。
前述の通り、通常表面にある水は、その多くが170℃より低い温度で蒸発するため、本発明のような特殊な薄い水の層を形成していない場合には、170℃から300℃で脱離する水の量が25%を超えることは考えにくく、30%を超えることはない。よって本発明を特徴付ける多種の水素結合が蛍光体表面に存在していることを、確認することができる。熱重量測定は、例えば吸着ガス分析により行うことが可能であり、具体的には蛍光体分析用ガス分析装置(ANELVA社製)などがあげられる。
なお、本発明の蛍光体の特徴である多種の水素結合が蛍光体表面に存在することで、上記吸着水の脱離量を満たすこととなるが、その製造方法については後述する。
(表面積)
本発明の蛍光体は、窒化物蛍光体であって、好ましくは後述する特定の一般式(1)で示される蛍光体であって、コールターカウンター法で測定された平均粒径より算出される比表面積に対する、BET法により求めた比表面積の比が、20以下であることが好ましい。
後述する一般式(1)で表される蛍光体は、通常、上記両比表面積値に大きな差がある。しかしながら、本発明の蛍光体では、この両比表面積の比が20以下と小さい値になる。このことは、本発明の特殊な吸着水が、蛍光体表面の多くを覆い、その結果、窒素が吸着するサイトを埋めたためBET測定時の窒素吸着量が減少し、このような小さな比になったものと推定される。
コールターカウンター法にて求められる平均粒径は、体積メジアン径であり、この平均粒径から求められる表面積は、以下の式で与えられる。
この式で求められた比表面積は、蛍光体の表面が凹凸の無い平坦な球面であると仮定して求めたものであり、一方BET法により求めた比表面積は、粒子表面への窒素の吸着量から求めた実際の凹凸を反映した値である。
なお、コールターカウンター法による平均粒径の測定は、例えば、コールターカウンター粒度計を用いて測定することが可能である。
なお、本発明の蛍光体の特徴である多種の水素結合が蛍光体表面に存在することで、上記比表面積の比を満たすこととなるが、その製造方法については後述する。
(内部量子効率)
本発明の蛍光体は、内部量子効率が71%以上であることが好ましい。
内部量子効率については、例えば特許文献1の段落[0068]〜[0083]に説明があり、一般に内部量子効率は次の式で求められる。
内部量子効率(%)=蛍光体から発光されたフォトン数/蛍光体が吸収したフォトン数
すなわち、内部量子効率の値は、蛍光体からの光の取り出しやすさが含まれた値になっており、本発明の蛍光体のように蛍光体の表面に特殊な薄い水の層があると光の取り出しの効率が上がるので、結果として内部量子効率の値も向上すると考えられる。そのため、本発明の蛍光体の内部量子効率は高い値となり、特に71%以上であることが好ましい。
内部量子効率の測定に用いるフォトン数は、分光測定装置、例えば大塚電子株式会社製MCPD2000、MCPD7000などを用いて測定することができる。
なお、本発明の蛍光体の特徴である強い水素結合が表面に存在することで、上記内部量子効率を達成することができるが、その製造方法については後述する。
(蛍光体の種類)
本発明に使用される蛍光体は、窒化物蛍光体であって、好ましくは、その基本構造が以下の一般式(1)で表される蛍光体である。
LnxSiyn:Z ・・・(1)
上記一般式(1)中、Lnは賦活剤として用いる元素を除いた希土類元素であり、Zは賦活剤であり、xは2.7≦x≦3.3を満たし、yは5.4≦y≦6.6を満たし、nは10≦n≦12を満たす。
上記Lnは、Laを80モル%以上含む希土類元素であることが好ましく、Laを95モル%以上含む希土類元素であることがより好ましく、Laであることが更に好ましい。
Lnに含まれるLa以外の元素としては、希土類であれば問題なく使用できると考えられるが、好ましくは、他の蛍光体の場合にもしばしば置換が行われるイットリウムやガドリニウムなどであり、これらの元素はイオン半径も近く電荷も等しいため好ましい。
賦活剤Zとしては、Eu、Ceのどちらかを含むことが好ましく、Ceを80モル%以上含むことがより好ましく、Ceを95モル%以上含むことが更に好ましく、そしてCeであることが最も好ましい。
元素のモル比、すなわちx,y,zの比は、化学量論組成としては3:6:11であり、これに1割程度の過不足が有っても蛍光体として使用可能であることから、x、y、zの値はそれぞれ2.7≦x≦3.3、5.4≦y≦6.6、10≦n≦12の範囲に設定される。
尚、本発明の蛍光体は、窒化物蛍光体であり、好ましくは上述の一般式(1)で表されるものではあるが、色度点を変えるなどの目的で、カルシウム、ストロンチウムなどのアルカリ土類金属元素やアルミニウムなどで一部のサイトを置換したものも、本発明の範囲から排除されるものではない。例えば、カルシウム、イットリウム、ガドリニウム、ストロンチウムによる置換は発光波長を長くする際に使用でき、好ましく例示できる。またこれらの元素は、電荷保存則を満たすため、他の元素と同時に置換され、その結果SiやNのサイトが一部酸素などで置換されることがあり、そのような蛍光体も好適に使用することができる。
また、本発明は、窒化物蛍光体全般に適用できる。このように考えることができる理由は、窒化物蛍光体は、その他の蛍光体に比べ屈折率が高いため、本発明の特殊な水の膜を形成することにより、一般式(1)に記載された蛍光体に限定されず、他の窒化物蛍光体であっても同様の効果が得られると考えられるからである。このような窒化物蛍光体の例としては、βサイアロン、αサイアロン、CaAlSiN3、CaAlSi47、Sr2Si58を母体とする蛍光体が挙げられる。もちろんこれらの元素の一部が、他の元素、例えば酸素等に置き換わり、電荷補償のために他の元素も一部置き換わっていても、本発明の効果は得られると考えられる。これらの蛍光体の表面に本発明の特殊な水の膜を設ける場合には、好ましくは表面の水酸基の数が増えるようなコート又は表面処理を行ってもよい。具体的には水酸化ランタンや水酸化イットリウムのコートをした上に、本発明の処理を行うことができる。
(蛍光体の粒径)
本発明の蛍光体は、その体積メジアン径が、通常0.1μm以上、中でも0.5μm以上、また、通常35μm以下、中でも25μm以下の範囲であることが好ましい。体積メジアン径が小さすぎると、輝度が低下し、蛍光体粒子が凝集してしまう傾向がある。一方、体積メジアン径が大きすぎると、塗布ムラやディスペンサー等の閉塞が生じる傾向がある。このため上記範囲が好ましい。なお、体積メジアン径は、例えば前述のコールターカウンター法で測定でき、代表的な装置としては、ベックマンコールター社の「マルチサイザー」等を用いて測定することができる。
(蛍光体の製造方法)
(原料)
本発明の蛍光体は、蛍光体を製造する工程における最後の後処理で、蛍光体表面に強い水素結合を有する薄い水の層を形成するための加熱処理を行う。その部分を除くと、公知の特許文献1や、特許文献2に記載の製造方法で製造することができる。
例えば、原料として蛍光体前駆体を用意し、その蛍光体前駆体を必要に応じて混合し、混合した蛍光体前駆体を焼成する工程(焼成工程)を経て製造することができる。
これら製造方法の中で、合金を、原料の少なくとも一部とする方法、さらに詳しくは、少なくとも上記式(1)におけるLn元素、Z元素及びSi元素を含有する合金(以下これを「蛍光体製造用合金」ということがある。)を、フラックスの存在下で焼成する工程を有する方法により製造することが好ましい。かかる原料の一部又は全てを、蛍光体製造用合金として本発明の蛍光体を作成することができるが、この原料合金の製造方法については、特許文献2に詳しく記載され、原料合金の製造、粉砕、分級など必要に応じて使用できる方法が詳述されている。
上記製造方法のうち焼成工程については、水素含有窒素ガス雰囲気で行うことが好ましい。さらに、焼成後、得られる焼成物を酸性水溶液で洗浄することが好ましい。
かかる方法を必要に応じて組み合わせて用いることにより、一般式(1)記載の蛍光体を、好適に調製することができる。
(原料の混合)
蛍光体製造用合金に含有される金属元素の組成が、上記式(1)で表される結晶相に含まれる金属元素の組成に一致していれば蛍光体製造用合金のみを焼成すればよい。一方、蛍光体製造用合金を使用しないか、その組成が一致していない場合には、別の組成を有する蛍光体製造用合金、金属単体、金属化合物などを蛍光体製造用合金と混合して、原料中に含まれる金属元素の組成が上記式(1)で表される結晶相に含まれる金属元素の組成に一致するように調製し、焼成を行う。
ただしこの際に、製造しようとする蛍光体が、不純物相を作りやすい場合には、その不純物相が生じ難いよう、特定の元素の割合を多く入れることを行ってもよい。例えば本発明の一般式(1)で表される典型的な蛍光体である。La3Si611:Ceであれば、組成の近いLaSi35:Ceの発生を抑えるため、Laを多めに添加するなどが例示される。
蛍光体製造用合金以外に用いられる金属化合物に制限はなく、例えば、窒化物、酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、カルボン酸塩、ハロゲン化物等が挙げられる。具体的な種類は、これらの金属化合物の中から、目的物への反応性や焼成時におけるNOx、SOx等の発生量の低さ等を考慮して適宜選択すればよいが、本発明の蛍光体が窒素含有蛍光体である観点から、窒化物及び/又は酸窒化物を用いることが好ましい。中でも、窒素源としての役割も果たすため、窒化物を用いることが好ましい。
窒化物及び酸窒化物の具体例としては、LaN、Si34、CeN等の蛍光体を構成する元素の窒化物、La3Si411、LaSi35等の蛍光体を構成する元素の複合窒化物等が挙げられる。
また、上記の窒化物は、微量の酸素を含んでいてもよい。窒化物における酸素/(酸素+窒素)の割合(モル比)は本発明の蛍光体が得られる限り任意であるが、吸着水分由来の酸素を含めない場合には通常5%以下、好ましくは1%以下、より好ましくは0.5%以下、更に好ましくは0.3%以下、特に好ましくは0.2%以下とする。窒化物中の酸素の割合が多すぎると輝度が低下する可能性がある。
(焼成工程)
得られた原料は、フラックス存在下で焼成し窒化することにより、本発明の蛍光体の母体を得ることができる。ここで焼成は、後述するとおり、水素含有窒素ガス雰囲気下で行うのが好ましい。
(フラックス)
焼成工程においては、良好な結晶を成長させる観点から、反応系にフラックスを共存させることが好ましい。
フラックスの種類は特に制限されないが、例えば、NH4Cl、NH4F・HF等のハロゲン化アンモニウム;NaCO3、LiCO3等のアルカリ金属炭酸塩;LiCl、NaCl、KCl、CsCl、LiF、NaF、KF、CsF等のアルカリ金属ハロゲン化物;CaCl2、BaCl2、SrCl2、CaF2、BaF2、SrF2、MgCl2、MgF2等のアルカリ土類金属ハロゲン化物;BaO等のアルカリ土類金属酸化物;B23、H3BO3、Na247等のホウ素酸化物、ホウ酸及びアルカリ金属又はアルカリ土類金属のホウ酸塩化合物;Li3PO4、NH42PO4等のリン酸塩化合物;AlF3等のハロゲン化アルミニウム;ZnCl2、ZnF2等のハロゲン化亜鉛、酸化亜鉛等の亜鉛化合物;Bi23等の周期表第15族元素化合物;Li3N、Ca32、Sr32、Ba32、BN等のアルカリ金属、アルカリ土類金属又は第13族元素の窒化物などが挙げられる。
さらに、フラックスとして、例えば、LaF3、LaCl3、GdF3、GdCl3、LuF3、LuCl3、YF3、YCl3、ScF3、ScCl3等の希土類元素のハロゲン化物、La23、Gd23、Lu23、Y23、Sc23等の希土類元素の酸化物も挙げられる。
上記フラックスとしては、ハロゲン化物が好ましく、具体的には、例えばアルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、Znのハロゲン化物、希土類元素のハロゲン化物が好ましい。また、ハロゲン化物の中でも、フッ化物、塩化物が好ましい。
ここで、上記フラックスのうち潮解性のあるものについては、無水物を用いる方が好ましい。また、フラックスは1種のみを使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
さらに好適なフラックスとして、MgF2が挙げられるが、それ以外にCeF3、LaF3、YF3、GdF3等も好適に使用できる。このうちYF3、GdF3等は発光色の色度座標(x、y)を変化させる効果を有する。
また、炭酸セシウム及び/または硝酸セシウムを用いることも、好ましい。
また、ルビジウムを含むフラックスを使用した場合に、従来知られていたフッ化マグネシウムなどを使用するよりも優れた輝度の蛍光体が得られる。
その理由としては、フッ化マグネシウムは、フラックスとして非常に優れた作用をするが、副作用が無いわけではない。フッ化マグネシウムに含まれるマグネシウムイオンは、母体を構成するランタンイオンよりイオン半径が小さいイオンなので、LSNを構成するLaと置換したり、結晶格子間などに侵入して不純物として残ったりしやすく、これが結晶格子の歪みや結晶性の低下、非発光輻射の原因となって、蛍光体の輝度を低下させる。一方ルビジウムを含むフラックスは、ルビジウムイオンのイオン半径が非常に大きいため(シャノンの6配位のLa3+のイオン半径は117pmに対し、Rb+のイオン半径は166pm)、このように結晶中に入り込んで輝度を低下させる副作用をほとんどなくすことが出来る。このことは、Rbを含むフラックスを用いて焼成して得られたLSN蛍光体からは、LSN蛍光体を十分に洗浄した後に蛍光体を溶解させて元素分析してもルビジウムがほとんど検出されないことに、端的に現れている。また、ルビジウムの化合物は、比較的融点が低いため、低温からフラックスとしての作用を得られることも一因と考えられる。
フラックスの使用量は、原料の種類やフラックスの材料等によっても異なり任意であるが、原料全体に対して、通常0.01重量%以上、好ましくは0.1重量%以上、より好ましくは0.3重量%以上、また、通常20重量%以下、好ましくは10重量%以下の範囲が適当である。フラックスの使用量が少な過ぎると、フラックスの効果が現れない可能性があり、フラックスの使用量が多過ぎると、フラックス効果が飽和したり、母体結晶に取り込まれて発光色を変化させたり、輝度低下を引き起こしたり、焼成炉の劣化を引き起こしたりする場合がある。
(焼成条件)
原料混合物は、通常は坩堝、トレイ等の容器に充填し、雰囲気制御が可能な加熱炉に納める。この際、容器の材質としては、金属化合物との反応性が低いものが好ましく、例えば、窒化ホウ素、窒化珪素、炭素、窒化アルミニウム、モリブデン、タングステン等が挙げられる。中でも、モリブデン、窒化ホウ素が耐食性に優れることから好ましい。なお、上記の材質は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
ここで、使用する焼成容器の形状は任意である。例えば、焼成容器の底面が、円形、楕円形等の角のない形や、三角形、四角形等の多角形であってもよいし、焼成容器の高さも加熱炉に入る限り任意であり、低いものでも高いものでもよい。中でも、放熱性のよい形状を選択することが好ましい。
そして、原料混合物を焼成することにより、焼成された窒化物蛍光体を得ることができる。ただし、上記の原料混合物は、40%以下の体積充填率に保持した状態で焼成することが好ましい。なお、体積充填率は、(混合粉末の嵩密度)/(混合粉末の理論密度)×100[%]により求めることが出来る。
この蛍光体の原料混合物を充填した焼成容器を、焼成装置(以下これを「加熱炉」ということがある。)に納める。ここで使用する焼成装置としては、本発明の効果が得られる限り任意であるが、装置内の雰囲気を制御できる装置が好ましく、さらに圧力も制御できる装置が好ましい。例えば、熱間等方加圧装置(HIP)、抵抗加熱式真空加圧雰囲気熱処理炉等が好ましい。
また、加熱開始前に、焼成装置内に窒素を含むガスを流通して系内を十分にこの窒素含有ガスで置換することが好ましい。必要に応じて、系内を真空排気した後、窒素含有ガスを流通してもよい。
窒化処理の際に使用する窒素含有ガスとしては、窒素元素を含むガス、例えば窒素、アンモニア、或いは窒素と水素の混合気体等が挙げられる。また、窒素含有ガスは、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。これらの中で、窒素含有ガスとしては、水素を含む窒素ガス(水素含有窒素ガス)が好ましい。なお、水素含有窒素ガスにおける水素の混合割合は4体積%以下が爆発限界外であり、安全上好ましい。
窒化処理は、水素含有窒素ガスを充填した状態或いは流通させた状態で蛍光体原料を加熱することにより行なうが、その際の圧力は大気圧よりも幾分減圧、大気圧或いは加圧の何れの状態でもよい。ただし、大気中の酸素の混入を防ぐためには大気圧以上とすることが好ましい。圧力を大気圧未満にすると加熱炉の密閉性が悪い場合には多量の酸素が混入して特性の高い蛍光体を得ることができない可能性がある。水素含有窒素ガスの圧力は少なくともゲージ圧で0.1MPa以上が好ましい。あるいは、20MPa以上の高圧下で加熱することもできる。また、200MPa以下が好ましい。
その後、窒素を含むガスを流通して、系内を十分にこのガスで置換する。必要に応じて、系内を真空排気した後、ガスを流通してもよい。この窒化処理条件に関しては、窒化反応時の昇温速度や、予備窒化方法、焼成温度や保持時間などについて、前述の特許文献1、特許文献2などに詳しく記載されているので、これらの記載に基づき、製造すればよい。
(後処理工程)
本発明の製造方法においては、上述した工程以外にも、必要に応じてその他の工程を行ってもよい。例えば、上述の焼成工程後、必要に応じて粉砕工程、洗浄工程、分級工程、表面処理工程、乾燥工程などを行なってもよい。
(粉砕工程)
粉砕工程には、例えば、ハンマーミル、ロールミル、ボールミル、ジェットミル、リボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の粉砕機、乳鉢と乳棒を用いる粉砕などが使用できる。このとき、生成した蛍光体結晶の破壊を抑え、二次粒子の解砕等の目的とする処理を進めるためには、例えば、アルミナ、窒化珪素、ZrO2、ガラス等の容器中にこれらと同様の材質又は鉄芯入りウレタン等のボールを入れてボールミル処理を10分〜24時間程度の間で行うことが好ましい。この場合、有機酸やヘキサメタリン酸などのアルカリリン酸塩等の分散剤を0.05重量%〜2重量%用いてもよい。
(洗浄工程)
洗浄工程は、例えば、脱イオン水等の水、エタノール等の有機溶剤、アンモニア水等のアルカリ性水溶液などで蛍光体表面を行うことができる。
使用されたフラックスを除去する等、蛍光体の表面に付着した不純物相を除去し発光特性を改善するなどの目的のために、例えば、塩酸、硝酸、硫酸、王水、フッ化水素酸と硫酸との混合物などの無機酸;酢酸などの有機酸などを含有する酸性水溶液を使用することもできる。
不純物相である非晶質分を除去する目的のためにフッ化水素酸、フッ化アンモニウム(NH4F)、フッ化水素アンモニウム(NH4HF2)、フッ化水素ナトリウム、フッ化水素カリウム等を含有する酸性水溶液等が使用できる。これらの中で、NH4HF2水溶液が好ましい。NH4HF2水溶液の濃度は、通常1重量%〜30重量%、好ましくは5重量%〜25重量%である。また、必要に応じてこれらの薬剤を適宜混合して使用することもできる。これらの酸性水溶液は必要により温度コントロールすることが好ましい。
また、アルカリ性水溶液や酸性水溶液中で洗浄処理した後に、水で更に洗浄することが好ましい。
上記の洗浄工程により、蛍光体の輝度、発光強度、吸収効率、物体色を向上させることができる。
洗浄工程の一例を挙げると、洗浄後の焼成物を重量比で10倍量の10重量%NH4HF2水溶液中で一時間攪拌を行った後、水に分散させて1時間静置して得られる上澄み液のpHが中性(pH5〜9程度)となる程度まで洗浄を行うことが好ましい。上記の上澄み液が塩基性又は酸性に偏っていると、後述の液体媒体等と混合するときに液体媒体等に悪影響を与える可能性があるためである。
酸洗浄中に発生する不純物を除去するために、1種類目の液での洗浄後、2種類目の液での洗浄を行う方法や、2種以上の物質を混合した液での洗浄の方法も好ましい。前者の例として、NH4HF2水溶液での洗浄の後、塩酸での洗浄、最後に水洗という工程を挙げることができる。後者の例として、NH4HF2とHNO3の混合水溶液での洗浄後、水洗する工程を挙げることができる。
上記洗浄の程度は、洗浄後の蛍光体を重量比で10倍の水に分散後、1時間静置して得られる上澄み液の電気電導度でも表すことができる。上記電気伝導度は、発光特性の観点
からは低いほど好ましいが、生産性も考慮すると通常10mS/m以下、好ましくは5mS/m以下、より好ましくは4mS/m以下、さらに好ましくは0.5mS/m以下となるまで洗浄処理を繰り返し行うことが好ましい。
電気伝導度は、蛍光体の10重量倍の水中で所定時間(例えば10分間)撹拌して分散させた後、1時間静置して水よりも比重の重い粒子を自然沈降させ、このときの上澄み液の電気伝導度を、例えば東亜ディケーケー社製電気伝導度計「EC METER CM−30G」等を用いて測定すればよい。洗浄処理や電気伝導度の測定に用いる水としては、特に制限はないが、脱塩水又は蒸留水が好ましい。中でも特に電気伝導度が低いものが好ましく、通常0.0064mS/m以上、また、通常1mS/m以下、好ましくは0.5mS/m以下のものを用いる。なお、電気伝導度の測定は、通常、室温(25℃程度)にて行う。
(分級工程)
分級工程は、例えば、水篩を行う、あるいは、各種の気流分級機や振動篩など各種の分級機を用いることにより行うことができる。中でも、ナイロンメッシュによる乾式分級を用いると、体積平均系10μm程度の分散性の良い蛍光体を得ることができる。
また、ナイロンメッシュによる乾式分級と、水簸処理とを組み合わせて用いると、体積メジアン径20μm程度の分散性の良い蛍光体を得ることができる。
ここで、水篩や水簸処理では、通常、水媒体中に0.1重量%〜10重量%程度の濃度で蛍光体粒子を分散させる。また、蛍光体の変質を抑えるために、水媒体のpHを、通常4以上、好ましくは5以上、また、通常9以下、好ましくは8以下とする。また、上記のような体積メジアン型の蛍光体粒子を得るに際して、水篩及び水簸処理では、例えば50μm以下の粒子を得てから、30μm以下の粒子を得るといった、2段階での篩い分け処理を行う方が作業効率と収率のバランスの点から好ましい。また、下限としては、通常1μm以上、好ましくは5μm以上のものを篩い分ける処理を行うのが好ましい。
(乾燥工程)
このようにして洗浄を終了した蛍光体を、100℃〜200℃程度で乾燥させる。必要に応じて乾燥凝集を防ぐ程度の分散処理(例えばメッシュパスなど)を行ってもよい。
(蒸気加熱処理工程)
本発明の蛍光体は、先に述べたように、蛍光体表面に強い水素結合を有する特殊な水が存在することを特徴とするものである。そのような特殊な吸着水が存在する蛍光体は、上記工程を経て製造された蛍光体に、蒸気存在下、好ましくは水蒸気存在下で静置し、蒸気加熱処理することで得ることができる。
蒸気存在下に蛍光体を置くことで蛍光体表面に吸着水を存在させる場合は、温度は、通常50℃以上、好ましくは80℃以上、より好ましくは100℃以上、通常400℃以下、好ましくは300℃以下、より好ましくは200℃以下である。温度が低すぎると吸着水が蛍光体表面に存在することによる効果が得られにくい傾向があり、高すぎると蛍光体粒子の表面が荒れてしまう場合がある。
また、蒸気存在下に蛍光体をおくことで蛍光体表面に吸着水を存在させる場合は、湿度(相対湿度)は、通常50%以上、好ましくは80%以上であり、100%であることが特に好ましい。湿度が低すぎると吸着水が蛍光体表面に存在することによる効果が得られにくい傾向がある。なお、吸着水層形成の効果が得られる程度であれば、湿度が100%である気相に液相が共存していてもよい。
さらに、蒸気存在下に蛍光体をおくことで蛍光体表面に吸着水を存在させる場合は、圧力は、通常常圧以上、好ましくは0.12MPa以上、より好ましくは0.3MPa以上、また、通常10MPa以下、好ましくは1MPa以下、より好ましくは0.5MPa以下である。圧力が低すぎると吸着水が蛍光体表面に存在することによる効果が得られにくい傾向があり、高すぎると処理装置が大掛かりとなり、また作業上の安全性の問題が出てくる場合がある。
蒸気存在下に蛍光体をおくことで蛍光体表面に吸着水を存在させる場合は、当該蒸気存在下に蛍光体を保持する時間は前記の温度、湿度及び圧力に応じて一様ではないが、通常は高温であるほど、高湿度であるほど、高圧であるほど保持時間は短くて済む。具体的な時間の範囲を挙げると、通常0.5時間以上、好ましくは1時間以上、より好ましくは1.5時間以上、また、通常200時間以下、好ましくは100時間以下、より好ましくは12時間以下、更に好ましくは5時間以下である。
上記の条件を満たしながら蒸気加熱工程を行うための具体的な方法としては、オートクレーブ中で高湿度、高圧下におくという方法が例示できる。ここで、オートクレーブに加えて、あるいは、オートクレーブを用いる代わりに、プレッシャークッカー等のオートクレーブと同程度に高温・高湿条件下にすることができる装置を用いてもよい。プレッシャークッカーとしては、例えば、TPC−412M(ESPEC株式会社製)等を用いることができ、これによれば、温度を105℃〜162.2℃に、湿度を75〜100%(但し、温度条件によって異なる)に、圧力を0.020MPa〜0.392MPa(0.2kg/cm2〜4.0kg/cm2) に制御することができる。
オートクレーブ中に蛍光体を保持して蒸気加熱工程を行うようにすれば、高温、高圧かつ高湿度の環境において本発明の強い水素結合を有する特殊な水の層を形成することが可能であるため、特に短時間で吸着水を蛍光体表面に存在させることができる。具体的条件を挙げると、圧力が常圧(0.1MPa)以上であり、かつ、蒸気が存在する環境下に前記蛍光体を0.5時間以上置くとよい。
より好ましい条件について以下に記載する。圧力は、好ましくは0.2MPa以上、より好ましくは0.3MPa以上、また、通常10MPa以下、好ましくは1MPa以下、より好ましくは0.5MPa以下である。前記蒸気としては、飽和蒸気(ある一定の圧力下で気相と液相が平衡に共存する時の蒸気)が好ましい。また、蛍光体を、好ましくは1時間以上、より好ましくは1.5時間以上、また、通常12時間以下、好ましくは5時間以下、より好ましくは3時間以下だけおくようにすればよい。
なお、蛍光体は、例えばアルミナ製、磁製等の容器に入れてからオートクレーブに入れるとよい。この際、蛍光体に予め酸洗浄や分級、表面処理などの工程を実施しておいてもよいが、焼成後の蛍光体をそのまま使用しても効果は得られる。
(表面処理工程)
本発明の蛍光体を用いて発光装置を製造する際には、耐湿性等の耐候性を一層向上させるために、又は後述する発光装置の蛍光体含有部における樹脂に対する分散性を向上させるために、必要に応じて、蛍光体の表面を異なる物質で一部被覆する等の表面処理を行ってもよい。表面処理は、蒸気加熱処理工程の前に実施してもよいし、蒸気加熱処理工程の後に実施してもよく、蒸気加熱処理による特殊な吸着水の存在を妨げる、又は吸着した水を除去する効果を持つ表面処理でなければ両方の処理を同時に実施しても問題はない。
以下、実施例、比較例を示して本発明について更に具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更
して実施することができる。
なお、実施例、比較例の蛍光体の発光特性等の測定は、次の方法で行った。
(発光スペクトル)
発光スペクトルは、励起光源として150Wキセノンランプを、スペクトル測定装置としてMCPD7000(大塚電子社製)を用いて測定した。励起光455nmの条件で、380nm以上800nm以下の波長範囲においてスペクトル測定装置により各波長の発光強度を測定し、発光スペクトルを得た。
(色度座標、相対輝度)
x、y表色系(CIE 1931表色系)の色度座標は、上述の方法で得られた発光スペクトルの480nm〜780nmの波長領域のデータから、JIS Z8724に準じた方法で、JIS Z8701で規定されるXYZ表色系における色度座標xとyとして算出した。なお、相対輝度は、化成オプトニクス社製YAG(品番:P46−Y3)を波長455nmの光で励起した時のXYZ表色系におけるY値を100とした際の相対値で表している。
(量子効率について)
内部量子効率はFP−6500(日本分光社製)を用いて測定した。測定に使用する資料の量は1gとし、励起波長は455nmで測定を実施した。尚、発光は、480−780nmの範囲で測定した。
なお、内部量子効率の測定方法としては、使用している装置は異なるが、原理は特許文献1に記載のものと同じである。
(粒度測定)
粒径測定はCOULTER MULTISIZERII(ベックマン・コールター社)を用いた、電気的検知帯法によって測定した。使用したアパーチャーサイズは100μmで、蛍光体は事前に水中で超音波分散させてから測定を行った。
(BET法による比表面積測定)
測定にはBET比表面積計MS−9(ユアサアイオニクス株式会社製)を使用した。U字管中に蛍光体を約1.3g仕込み、150℃で15分脱気したあと窒素を吸着させ、吸着した窒素の量からBET1点法の原理を用いて比表面積を算出した。
(放出ガス分析による熱重量測定)
吸着水の量の分析は、ガス分析装置により行った。放出ガス量の分析は、蛍光体分析用ガス分析装置測定(ANELVA社製)を用い、マス分析の検出器としてM−QA200TS(ANELVA社製)を使用した。分子量18のガスを水と見なす。蛍光体は0.15g使用し、真空雰囲気下で33℃/分で1000℃まで温度を上昇させながら測定を実施した。
続いて実際の蛍光体の製造方法を説明する。
<実施例1>
(原料の調合)
La:Si=1:1(モル比)の合金、Si34、CeF3をLa:Si=3:6(モル比)かつCeF3/(合金+Si34)=6wt%になるように秤量した。秤量した原料をボールミルで混合した後、ナイロンメッシュの篩を通して原料を調合した。なお秤量から調合までの作業は、酸素濃度1%以下の窒素雰囲気のグローブボックス内で実施し、ボールミルは窒素を封入したポリポットを、同じく窒素を封入した密閉容器に入れた二重容器の状態で大気中に出して行った。ボールミルのメディア(ボール)は、ナイロンコー
トされた鉄ボールを使用した。
(焼成工程)
調合した原料をMoるつぼに充填し、電気炉内にセットした。装置内を真空排気した後、炉内温度を120℃まで昇温し、炉内圧力が真空であることを確認後、水素含有窒素ガス(窒素:水素=96:4(体積比))を大気圧になるまで導入した。その後、1550℃まで炉内温度を昇温し、1550℃で8時間保持した後降温を開始し、焼成処理を終了し蛍光体を得た。
(洗浄工程)
焼成した蛍光体をナイロンメッシュの篩を通した後ボールミルで粉砕し、1N塩酸中で1時間以上攪拌した後、水洗した。その後、脱水し、120℃の熱風乾燥機で乾燥し、ナイロンメッシュの篩を通して蛍光体を回収した。
(蒸気加熱処理)
上記の洗浄工程で得られた蛍光体をガラス製サンプル瓶に入れ、このサンプル瓶をオートクレーブ(平山製作所製 ハイクレーブ HG−50)内に入れ、20時間静置した。オートクレーブ内の環境は、飽和水蒸気下、135℃、0.33MPaであった。なお、上記の圧力値は、装置に表示される圧力(常圧との差圧)に常圧0.1MPaを足したものである。オートクレーブに静置した後の蛍光体を140℃の熱風乾燥機で2時間乾燥し、最終的な蛍光体1を得た。得られた蛍光体の色度座標、輝度、粒径を表1に示す。
<比較例1>
蒸気加熱処理を実施しなかった以外は実施例1と同様にして蛍光体を製造し、比較蛍光体1とした。得られた比較蛍光体の色度座標、輝度、粒径を表1に示す。
表1から解るように、上記加熱処理を実施した実施例の蛍光体は、相対輝度が約10%程度向上している。
次に、蛍光体に付着している水分量を測定するため、放出ガス量分析を行った。その結果を図1に示す。この結果から、実施例1の蛍光体は、170℃から300℃の間に、蛍光体に吸着した全吸着水中の約36%が脱離したことが分かった。一方比較例1の蛍光体は、170℃から300℃の間に、蛍光体に吸着した全吸着水中の約21%が脱離したことが分かった。
次に、実施例1と比較例1の蛍光体の比表面積を、前述のBET1点法により求めた値[a]およびコールターカウンター法から前述した式を用いて計算した値〔b〕、ならびにその比を表2に示す。本発明の蛍光体においては、BET法で求められる表面積が大幅に減少し、その結果、〔a〕/〔b〕の値が20以下になることが判る。
<参考例2>
原料の調合におけるボールミルでの混合において、メディアをジルコニアボールに変更し、洗浄工程における焼成した蛍光体を粉砕する時間を変更して、表1に示す粒径とした以外は、実施例1と同様にして蛍光体2を得た。得られた蛍光体の色度座標、輝度、粒径を表1に示す。
<比較参考例2>
蒸気加熱処理を実施しなかった以外は参考例2と同様にして蛍光体を製造し、比較蛍光体2とした。得られた比較蛍光体2の色度座標、輝度、粒径を表1に示す。
また、参考例2の蛍光体と、比較参考例2の蛍光体について、内部量子効率及び外部量子効率を測定した。この結果を表3に示す。
この結果から、本発明の蛍光体は、その内部量子効率及び外部量子効率も向上していることが推測される。
<参考例3>
(原料の調合)
La:Si=1:1(モル比)の合金、Si34、CeF3、GdF3をLa:Si=3:6(モル比)かつCeF3/(合金+Si34)=6wt%、GdF3/(合金+Si34)=13wt%になるように秤量した。秤量した原料を乳鉢で混合し、ナイロンメッシュの篩を通して調合した。なお秤量から調合までの作業は、酸素濃度1%以下の窒素雰囲気のグローブボックス内で実施した。
(焼成工程)
調合した原料をMoるつぼに充填し、電気炉内にセットした。装置内を真空排気した後、炉内温度を120℃まで昇温し、炉内圧力が真空であることを確認後、水素含有窒素ガス(窒素:水素=96:4(体積比))を大気圧になるまで導入した。その後、1550℃まで炉内温度を昇温し、1550℃で8時間保持した後降温を開始し、焼成処理を終了し蛍光体を得た。
(洗浄工程)
焼成した蛍光体をナイロンメッシュの篩を通した後、1N塩酸中で1時間以上攪拌した後、水洗・脱水を行った。その後、120℃の熱風乾燥機で乾燥し、ナイロンメッシュの篩を通して蛍光体を回収した。
(蒸気加熱工程)
上記の洗浄工程で得られた蛍光体をガラス製サンプル瓶に入れ、このサンプル瓶をオートクレーブ(平山製作所製 ハイクレーブ HG−50)内に入れ、20時間静置した。オートクレーブ内の環境は、飽和水蒸気下、135℃、0.33MPaであった。なお、上記の圧力値は、装置に表示される圧力(常圧との差圧)に常圧0.1MPaを足したものである。オートクレーブに静置した後の蛍光体を140℃の熱風乾燥機で2時間乾燥し、最終的な蛍光体を得た。得られた蛍光体の色度座標、輝度、を表4に示す。
<参考例4>
(原料の調合)
Ln:Si=1:1(モル比)の合金、Si34、LaF4をLn:Si=3:6(モル比)かつLaF3/(合金+Si34)=6wt%になるように秤量した以外は参考例3と同様にして参考例4の蛍光体を製造した。得られた蛍光体の色度座標、輝度、を表4に示す。なお合金のLnはLa:Ce:Y=0.81:0.06:0.13(モル比)のものを使用した。
<比較参考例3,4>
蒸気加熱処理を実施しなかった以外は参考例3と同様にして比較参考例3の蛍光体を製造した。また、蒸気加熱処理を実施しなかった以外は参考例4と同様にして比較参考例4の蛍光体を製造した。得られた蛍光体の色度座標、輝度、を表4に示す。
参考例3と比較参考例3、参考例4と比較参考例4の蛍光体の比較から明らかなように、本発明の製造方法で製造された蛍光体は、YやGdのような元素が添加された場合であっても、明確な輝度向上効果を示すことが確認できた。
<実施例5>
(原料の調合)
La:Si=1:1(モル比)の合金、Si34、CeF3をLa:Si=3:6(モル比)かつCeF3/(合金+Si3N4)=6wt%、Y23/(合金+Si34)=6wt%になるように秤量した。秤量した原料を混合した後、ナイロンメッシュの篩を通して原料を調合した。なお秤量から調合までの作業は、酸素濃度1%以下の窒素雰囲気のグローブボックス内で実施した。
(焼成工程)
調合した原料をMoるつぼに充填し、タングステンヒーターの電気炉内にセットした。装置内を真空排気した後、炉内温度を120℃まで昇温し、炉内圧力が真空であることを確認後、水素含有窒素ガス(窒素:水素=96:4(体積比))を大気圧になるまで導入した。その後、1550℃まで炉内温度を昇温し、1550℃で12時間保持した後降温を開始し、焼成処理を終了し蛍光体を得た。
(洗浄工程)
焼成した蛍光体をナイロンメッシュの篩を通した後ボールミルで粉砕し、1N塩酸中で
1時間以上攪拌した後、水洗・脱水した。
(蒸気加熱処理)
実施例1と同じ処理を行い、最終的な蛍光体5を得た。
<実施例6>
(原料の調合)
La:Si=1:1(モル比)の合金、Si34、CeF3をLa:Si=3:6(モル比)かつCeF3/(合金+Si34)=6wt%、GdF3/(合金+Si34)=9wt%になるように秤量した。秤量した原料を混合した後、ナイロンメッシュの篩を通して原料を調合した。なお秤量から調合までの作業は、酸素濃度1%以下の窒素雰囲気のグローブボックス内で実施した。
焼成工程から蒸気加熱処理までは実施例1と同様に行い、最終的な蛍光体6を得た。
<実施例7>
(原料の調合)
La:Si=1:1(モル比)の合金、Si34、CeF3をLa:Si=3:6(モル比)かつCeF3/(合金+Si34)=6wt%、La2(CO32/(合金+Si34)=2wt%になるように秤量した。秤量した原料を混合した後、ナイロンメッシュの篩を通して原料を調合した。なお秤量から調合までの作業は、酸素濃度1%以下の窒素雰囲気のグローブボックス内で実施した。
(焼成工程)
調合した原料をMoるつぼに充填し、タングステンヒーターの電気炉内にセットした。装置内を真空排気した後、炉内温度を300℃まで昇温し、炉内圧力が真空であることを確認後、水素含有窒素ガス(窒素:水素=96:4(体積比))を大気圧になるまで導入した。その後、まず、1350度まで炉内温度を昇温し、4時間保持することで一次焼成を行った。一次焼成後の焼成物は、グローブボックス内で乳鉢と乳棒を用いて粉砕し、ナイロンメッシュの篩を通した。その後、1525℃まで炉内温度を昇温し、12時間保持した後降温を開始し、焼成処理を終了し蛍光体を得た。
洗浄工程から蒸気加熱処理までは実施例1と同様に行い、最終的な蛍光体7を得た。
<実施例8>
(原料の調合)
La:Si=1:1(モル比)の合金、Si34、CeF3をLa:Si=3:6(モル比)かつCeF3/(合金+Si34)=6wt%、CaO/(合金+Si34)=1wt%になるように秤量した。秤量した原料を混合した後、ナイロンメッシュの篩を通して原料を調合した。なお秤量から調合までの作業は、酸素濃度1%以下の窒素雰囲気のグローブボックス内で実施した。
焼成工程から蒸気加熱処理までは実施例1と同様に行い、最終的な蛍光体8を得た。
<実施例9>
(原料の調合)
La:Si=1:1(モル比)の合金、Si34、CeF3をLa:Si=3:5.8(モル比)かつCeF3/(合金+Si34)=5wt%になるように秤量した。これに原料としてLa3Si611:Ce蛍光体を原料全体の重量に対し、5wt%分秤量した。秤量した原料を混合した後、ナイロンメッシュの篩を通して原料を調合した。なお秤量から調合までの作業は、酸素濃度1%以下の窒素雰囲気のグローブボックス内で実施した。
これを実施例7と同様の焼成条件で焼成し、実施例1と同様の条件で洗浄工程を行った。
(蒸気加熱処理)
上記の洗浄工程で得られた蛍光体をガラス製サンプル瓶に入れ、このサンプル瓶を高温高湿試験機(平山製作所製 PC−305S)内に入れ、40時間静置した。オートクレーブ内の環境は、飽和水蒸気下、158℃、0.49MPaであった。なお、上記の圧力値は、装置に表示される圧力(常圧との差圧)に常圧0.1MPaを足したものである。オートクレーブに静置した後の蛍光体を140℃の熱風乾燥機で2時間乾燥し、最終的な蛍光体9を得た。
<比較例5〜9>
蒸気加熱処理を行わない以外は、実施例5〜9と同様にして、比較例5〜9の蛍光体を得た。
実施例5から9、比較例5から9で得られた蛍光体の色度座標、輝度を表5に示す。表5から、蒸気加熱処理を実施した実施例の蛍光体は、相対輝度が大きく向上していることがわかる。
また、実施例5から9、比較例5から9に記載の蛍光体につき、蛍光体に付着している水分量を測定するため、放出ガス量分析を行った。その結果を図2〜6に示す。また、実施例と比較例の170℃から300℃における、脱離水の割合の比較を表6に示す。
これらの結果より、本発明の蛍光体は、吸着された水分が、特殊な水素結合を有するため、通常より高い温度で水分が離脱し、吸着している水の量全体の、25%以上が170℃から300℃で脱離していることが判る。一方、比較例の蛍光体は、最大値になる比較例1でも21%にしかならず、各図に示すように、170℃未満で脱離する水の割合が最も多くなる。一方本発明の蛍光体では、いずれも170℃以上300℃以下で脱離する水が最も多く、全体の25%以上を占めていることがわかる。
本発明により、高輝度、高効率の蛍光体を提供することが出来、特に白色LED用に用いた場合に、照明用、ディスプレイのバックライト用に好適に使用することが出来る。

Claims (6)

  1. 下記一般式(1)で表される窒化物蛍光体であって、
    熱重量測定において、窒化物蛍光体に吸着した全吸着水中の25%以上が、170℃から300℃の間で脱離する窒化物蛍光体。
    LnxSiyn:Z ・・・(1)
    (一般式(1)中、Lnは賦活剤として用いる元素を除いた希土類元素であり、Zは賦活剤であり、xは2.7≦x≦3.3を満たし、yは5.4≦y≦6.6を満たし、nは10≦n≦12を満たす。)
  2. 前記全吸着水中の30%以上が、170℃から300℃の間で脱離する請求項1に記載の窒化物蛍光体。
  3. 前記窒化物蛍光体は、コールターカウンター法で測定された平均粒径より算出される比表面積に対するBET法により求めた比表面積の比が、20以下であることを特徴とする請求項1又は2に記載の窒化物蛍光体。
  4. 前記窒化物蛍光体は、内部量子効率が71%以上である請求項1ないし3のいずれか1項に記載の窒化物蛍光体。
  5. 請求項1に記載の窒化物蛍光体の製造方法であって、
    下記一般式(1)で表される窒化物蛍光体の原料混合物を準備する工程、
    前記原料混合物を焼成する焼成工程、および、
    前記焼成工程で得られた焼成物を蒸気加熱処理する工程、
    を有する、窒化物蛍光体の製造方法。
    LnxSiyn:Z ・・・(1)
    (一般式(1)中、Lnは賦活剤として用いる元素を除いた希土類元素であり、Zは賦活剤であり、xは2.7≦x≦3.3を満たし、yは5.4≦y≦6.6を満たし、nは10≦n≦12を満たす。)
  6. 窒化物蛍光体であって、熱重量測定において、窒化物蛍光体に吸着した全吸着水中の25%以上が、170℃から300℃の間で脱離することを特徴とする窒化物蛍光体。
JP2012250672A 2011-11-15 2012-11-14 水分吸着した窒化物蛍光体とその製造方法 Pending JP2013127060A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012250672A JP2013127060A (ja) 2011-11-15 2012-11-14 水分吸着した窒化物蛍光体とその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011250153 2011-11-15
JP2011250153 2011-11-15
JP2012250672A JP2013127060A (ja) 2011-11-15 2012-11-14 水分吸着した窒化物蛍光体とその製造方法

Publications (1)

Publication Number Publication Date
JP2013127060A true JP2013127060A (ja) 2013-06-27

Family

ID=48777760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012250672A Pending JP2013127060A (ja) 2011-11-15 2012-11-14 水分吸着した窒化物蛍光体とその製造方法

Country Status (1)

Country Link
JP (1) JP2013127060A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028126A (ja) * 2014-07-08 2016-02-25 日亜化学工業株式会社 蛍光体およびそれを用いた発光装置ならびに蛍光体の製造方法
KR20210010538A (ko) * 2018-05-18 2021-01-27 덴카 주식회사 적색 형광체 및 발광 장치
JP2021520433A (ja) * 2018-04-06 2021-08-19 ルミレッズ ホールディング ベーフェー 発光材料

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296376A2 (de) * 2001-09-25 2003-03-26 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Beleuchtungseinheit mit mindestens einer LED als Lichtquelle
WO2004090991A1 (ja) * 2003-04-03 2004-10-21 Tokyo Electron Limited 半導体装置及びその製造方法
JP2008088362A (ja) * 2006-10-04 2008-04-17 Mitsubishi Chemicals Corp 蛍光体及びその製造方法、並びに、蛍光体含有組成物、発光装置、画像表示装置及び照明装置
WO2008132954A1 (ja) * 2007-04-18 2008-11-06 Mitsubishi Chemical Corporation 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、照明装置、画像表示装置、並びに窒素含有化合物
JP2009132916A (ja) * 2007-11-09 2009-06-18 Mitsubishi Chemicals Corp 蛍光体、及びその製造方法
JP2009173905A (ja) * 2007-12-28 2009-08-06 Mitsubishi Chemicals Corp 蛍光体、蛍光体の製造方法、蛍光体含有組成物および発光装置
JP2009249445A (ja) * 2008-04-03 2009-10-29 Mitsubishi Chemicals Corp 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、照明装置並びに画像表示装置
WO2010114061A1 (ja) * 2009-03-31 2010-10-07 三菱化学株式会社 蛍光体、蛍光体の製造方法、蛍光体含有組成物、発光装置、照明装置及び画像表示装置
WO2012017949A1 (ja) * 2010-08-04 2012-02-09 宇部興産株式会社 珪窒化物蛍光体用窒化珪素粉末並びにそれを用いたCaAlSiN3系蛍光体、Sr2Si5N8系蛍光体、(Sr,Ca)AlSiN3系蛍光体及びLa3Si6N11系蛍光体、及びその製造方法
JP2013127061A (ja) * 2011-11-15 2013-06-27 Mitsubishi Chemicals Corp 窒化物蛍光体とその製造方法

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296376A2 (de) * 2001-09-25 2003-03-26 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Beleuchtungseinheit mit mindestens einer LED als Lichtquelle
US20030094893A1 (en) * 2001-09-25 2003-05-22 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Illumination unit having at least one LED as light source
JP2003206481A (ja) * 2001-09-25 2003-07-22 Patent Treuhand Ges Elektr Gluehlamp Mbh 光源として少なくとも1つのledを備えた照明ユニット
JP2004311562A (ja) * 2003-04-03 2004-11-04 Tadahiro Omi 半導体装置及び、その製造方法
EP1617483A1 (en) * 2003-04-03 2006-01-18 Tokyo Electron Limited Semiconductor device and process for fabricating the same
CN1768431A (zh) * 2003-04-03 2006-05-03 东京毅力科创株式会社 半导体器件及其制造方法
US20070052042A1 (en) * 2003-04-03 2007-03-08 Tadahiro Ohmi Semiconductor device and method for manufacturing the same
WO2004090991A1 (ja) * 2003-04-03 2004-10-21 Tokyo Electron Limited 半導体装置及びその製造方法
JP2008088362A (ja) * 2006-10-04 2008-04-17 Mitsubishi Chemicals Corp 蛍光体及びその製造方法、並びに、蛍光体含有組成物、発光装置、画像表示装置及び照明装置
CN101663372A (zh) * 2007-04-18 2010-03-03 三菱化学株式会社 荧光体及其制造方法、含荧光体组合物、发光装置、照明装置、图像显示装置以及含氮化合物
WO2008132954A1 (ja) * 2007-04-18 2008-11-06 Mitsubishi Chemical Corporation 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、照明装置、画像表示装置、並びに窒素含有化合物
JP2008285659A (ja) * 2007-04-18 2008-11-27 Mitsubishi Chemicals Corp 蛍光体、蛍光体含有組成物、発光装置、照明装置、画像表示装置、及び窒素含有化合物
US20100085728A1 (en) * 2007-04-18 2010-04-08 Mitsubishi Chemical Corporation Phosphor and production method thereof, phosphor-containing composition, light emitting device, illuminating device, display, and nitrogen-containing compound
EP2141216A1 (en) * 2007-04-18 2010-01-06 Mitsubishi Chemical Corporation Phosphor and method for producing the same, phosphor-containing composition, light-emitting device, illuminating device, image display device, and nitrogen-containing compound
KR20100010922A (ko) * 2007-04-18 2010-02-02 미쓰비시 가가꾸 가부시키가이샤 형광체 및 그 제조 방법, 형광체 함유 조성물, 발광 장치, 조명 장치, 화상 표시 장치, 그리고 질소 함유 화합물
JP2009132916A (ja) * 2007-11-09 2009-06-18 Mitsubishi Chemicals Corp 蛍光体、及びその製造方法
JP2009173905A (ja) * 2007-12-28 2009-08-06 Mitsubishi Chemicals Corp 蛍光体、蛍光体の製造方法、蛍光体含有組成物および発光装置
JP2009249445A (ja) * 2008-04-03 2009-10-29 Mitsubishi Chemicals Corp 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、照明装置並びに画像表示装置
WO2010114061A1 (ja) * 2009-03-31 2010-10-07 三菱化学株式会社 蛍光体、蛍光体の製造方法、蛍光体含有組成物、発光装置、照明装置及び画像表示装置
KR20110138218A (ko) * 2009-03-31 2011-12-26 미쓰비시 가가꾸 가부시키가이샤 형광체, 형광체의 제조 방법, 형광체 함유 조성물, 발광 장치, 조명 장치 및 화상 표시 장치
EP2415848A1 (en) * 2009-03-31 2012-02-08 Mitsubishi Chemical Corporation Phosphor, method for produicng phosphor, phosphor-containing composition, light-emitting device, illuminating device, and image display device
CN102361956A (zh) * 2009-03-31 2012-02-22 三菱化学株式会社 荧光体、荧光体的制造方法、含荧光体组合物、发光装置、照明装置和图像显示装置
US20120256533A1 (en) * 2009-03-31 2012-10-11 Mitsubishi Chemical Corporation Phosphor, method for producing phosphor, phosphor-containing composition, light-emitting device, lighting system and image display device
JP5754374B2 (ja) * 2009-03-31 2015-07-29 三菱化学株式会社 蛍光体、蛍光体の製造方法、蛍光体含有組成物、発光装置、照明装置及び画像表示装置
WO2012017949A1 (ja) * 2010-08-04 2012-02-09 宇部興産株式会社 珪窒化物蛍光体用窒化珪素粉末並びにそれを用いたCaAlSiN3系蛍光体、Sr2Si5N8系蛍光体、(Sr,Ca)AlSiN3系蛍光体及びLa3Si6N11系蛍光体、及びその製造方法
JP2013127061A (ja) * 2011-11-15 2013-06-27 Mitsubishi Chemicals Corp 窒化物蛍光体とその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028126A (ja) * 2014-07-08 2016-02-25 日亜化学工業株式会社 蛍光体およびそれを用いた発光装置ならびに蛍光体の製造方法
JP2021520433A (ja) * 2018-04-06 2021-08-19 ルミレッズ ホールディング ベーフェー 発光材料
JP7373041B2 (ja) 2018-04-06 2023-11-01 ルミレッズ ホールディング ベーフェー 発光材料
KR20210010538A (ko) * 2018-05-18 2021-01-27 덴카 주식회사 적색 형광체 및 발광 장치
KR102642425B1 (ko) 2018-05-18 2024-03-04 덴카 주식회사 적색 형광체 및 발광 장치

Similar Documents

Publication Publication Date Title
WO2013073598A1 (ja) 窒化物蛍光体とその製造方法
US9920244B2 (en) Nitride phosphor and method for producing the same
US20120019126A1 (en) Oxynitride phosphors, method of preparation, and light emitting instrument
US11021652B2 (en) Phosphor particles with a protective layer, and method for producing the phosphor particles with the protective layer
JP5578739B2 (ja) アルカリ土類金属シリケート蛍光体及びその製造方法
JP2009173905A (ja) 蛍光体、蛍光体の製造方法、蛍光体含有組成物および発光装置
JP2013127061A (ja) 窒化物蛍光体とその製造方法
US11279875B2 (en) Nitride phosphor and method for producing nitride phosphor
JP2013249375A (ja) 蛍光体
Maggay et al. Novel red-emitting Ba3Y (BO3) 3: Bi3+, Eu3+ phosphors for N-UV white light-emitting diodes
JP2013127060A (ja) 水分吸着した窒化物蛍光体とその製造方法
JP2010196049A (ja) 蛍光体及びその製造方法、蛍光体含有組成物、並びに、該蛍光体を用いた発光装置、画像表示装置及び照明装置
JP2011052099A (ja) 窒化物蛍光体の製造方法
JP4956732B2 (ja) 電子線励起用の蛍光体およびカラー表示装置
JP2019112589A (ja) 窒化物蛍光体の製造方法、及び窒化物蛍光体
JP7400378B2 (ja) 発光装置、照明装置、画像表示装置および窒化物蛍光体
CN107338045A (zh) 一种微波辐射合成长余辉发光材料的方法
JP5870655B2 (ja) 窒化物蛍光体とその製造方法
JP2013112803A (ja) 窒化物蛍光体とその製造方法
JP7286962B2 (ja) 蓄光材料及び蓄光材料の製造方法
JP6962569B2 (ja) 蛍光体及びこれを用いた蛍光体含有組成物、並びにこれらを用いた発光装置、照明装置及び画像表示装置
JP2013209578A (ja) 窒化物蛍光体の製造方法と蛍光体及び発光装置
JP2023049445A (ja) 蛍光体、その製造方法および発光装置
WO2015111626A1 (ja) 蛍光体及び発光装置
EP3216841A1 (en) Phosphor and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906