JP2013121286A - 回転電機システム - Google Patents

回転電機システム Download PDF

Info

Publication number
JP2013121286A
JP2013121286A JP2011268991A JP2011268991A JP2013121286A JP 2013121286 A JP2013121286 A JP 2013121286A JP 2011268991 A JP2011268991 A JP 2011268991A JP 2011268991 A JP2011268991 A JP 2011268991A JP 2013121286 A JP2013121286 A JP 2013121286A
Authority
JP
Japan
Prior art keywords
rotor
field
rotating electrical
electrical machine
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011268991A
Other languages
English (en)
Inventor
Masahiko Osada
正彦 長田
Takuzo Mukai
向井  拓三
Masanao Domyo
正尚 道明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011268991A priority Critical patent/JP2013121286A/ja
Priority to CN2012105195702A priority patent/CN103166412A/zh
Publication of JP2013121286A publication Critical patent/JP2013121286A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】通電に伴う損失を従来よりも低減して効率を向上させ得る回転電機システムを提供することである。
【解決手段】回転電機システム1は、多相に固定子巻線11aが巻回されるステータ11と、ロータコア12bの各極にかかる一部または全部の極に界磁巻線12aが巻回されるロータ12とを備える回転電機10と、回転電機10の作動を制御する制御装置20とを有する。制御装置20は、速度信号と作動モード信号とに基づいてロータ12に生じる界磁磁束を制御する界磁磁束制御部21と、固定子巻線11aに所定電流値以上の固定子電流Isが流れる場合には固定子電流Isによって発生するリラクタンス磁束分だけ界磁巻線12aに流れる界磁電流Irを抑制する界磁電流制御部22とを有する。この構成によれば、界磁電流Irが抑制されるので通電に伴う損失も小さくなり、結果として効率を向上させることができる。
【選択図】図1

Description

本発明は、ステータ(固定子)とロータ(回転子)とを備える回転電機と、当該回転電機の作動を制御する制御装置とを有する回転電機システムに関する。
従来では、短絡比を大きくして安定度を高める回転電機に関する技術の一例が開示されている(例えば特許文献1を参照)。この回転電機は、d軸(磁極中心方向)側に形成されたスロット間の距離がその他のスロットの深さと同一に形成された場合より短くなるように形成される構成である。特許文献1の図1には、エアギャップの磁束密度分布を正弦波形に近づけるために、磁極に最も近いスロット(2,3)の深さが他のスロット(4,5)の深さよりも深く形成された回転子(1)が記載されている。
特開平10−023693号公報
しかし、特許文献1の技術を適用する場合、定格速度で定格電圧を発生するのに要する界磁電流は、スロットを同一の深さで形成した場合に比べて大きくする必要がある(特許文献1の段落[0022]を参照)。界磁電流が大きくなるにつれて発生する磁界の強さも大きくなる反面、通電に伴う損失も大きくなるので、結果として効率が低下するという問題点があった。
本発明はこのような点に鑑みてなしたものであり、通電に伴う損失を従来よりも低減して効率を向上させることができる回転電機システムを提供することを目的とする。
上記課題を解決するためになされた請求項1に記載の発明は、多相に固定子巻線(電機子巻線)が巻回されるステータ(固定子)とロータコア(ロータ本体)の各極にかかる一部または全部の極に界磁巻線が巻回されるロータ(回転子)とを備える回転電機と、前記回転電機の作動を制御する制御装置とを有する回転電機システムにおいて、前記制御装置は、速度信号と作動モード信号とに基づいて前記ロータに生じる界磁磁束を制御する界磁磁束制御部と、前記固定子巻線に所定電流値以上の固定子電流(ロータ電流)が流れる場合には前記固定子電流によって発生するリラクタンス磁束分だけ前記界磁巻線に流れる界磁電流(ステータ電流)を抑制する界磁電流抑制部とを有することを特徴とする。
この構成によれば、界磁磁束制御部によってロータに生じる界磁磁束が制御されるとともに、界磁電流抑制部によってリラクタンス磁束分だけ界磁巻線に流れる界磁電流が抑制される。界磁電流が抑制されるために通電に伴う損失も小さくなり、結果として効率を向上させることができる。
なお「多相」は、二相以上で任意の相数が該当する。「回転電機」は、回転する部位(例えば軸やシャフト等)を有する機器であれば任意である。例えば、発電機,電動機,電動発電機等が該当する。「速度信号」は、ロータの回転速度(回転数)を指令する信号を意味する。「作動モード信号」は、回転電機の作動モード(例えば力行モードや回生モード等)を指令する信号を意味する。これらの速度信号や作動モード信号は、アナログ信号やデジタル信号等のような信号の種類を問わない。「所定電流値」には、回転電機の仕様や要求特性等に応じて適切な値を設定することができ、定格電流値を含む。「巻回する」とは、巻き回すことを意味する。
請求項2に記載の発明は、前記界磁磁束制御部は、単相または多相の電力を受電し、前記ロータコアに巻回された前記界磁巻線の中から一以上の界磁巻線を選択して前記界磁磁束を制御することを特徴とする。この構成によれば、一以上の界磁巻線を選択して、通電方向や電流量等を制御することで、界磁磁束を制御する。この制御よって、磁束量や極数等を容易に変えることができる。
請求項3に記載の発明は、前記ロータは、前記ロータコアに前記界磁巻線を巻回する界磁巻線極と、前記ロータコアに前記界磁巻線を巻回しない非界磁巻線極とを有することを特徴とする。この構成によれば、界磁巻線極にのみ界磁巻線が巻回されるので、ロータ全体から見ると磁束分布が不均一になる。界磁巻線極およびその周辺では、磁束分布が高くなってリラクタンス磁束が増加するため、トルク(回転力や回転トルクと同様の意味である。以下同じである。)が向上する。一方、非界磁巻線極およびその周辺では、磁束分布が低くなってリラクタンス磁束が減少するため、ロータの回転数が増加する。
請求項4に記載の発明は、前記ロータは複数のロータスロットを有し、前記界磁巻線を巻回する前記ロータスロットは前記界磁巻線を巻回しない前記ロータスロットよりも大きく形成することを特徴とする。「大きく形成する」対象となる単位は、断面積・周方向幅・容積などのうちで一以上を含む。この構成によれば、大きく形成されたロータスロットは、界磁巻線の巻回を容易に行えるので、組み立て時間を短縮できる。
請求項5に記載の発明は、前記ロータコアは先端部にツバ状部位を有し、前記ツバ状部位は前記ステータへの通電により発生する磁界を減らす方向にずらして形成されることを特徴とする。この構成によれば、ツバ状部位は磁界を減らす方向にずらして形成されているので、固定子巻線による減磁界を活用することができる。また、電流位相を変えることで、作動モードに合わせて回転力を最適化(例えば最大化や最小化等)できる。なお「ツバ状部位」は磁界を減らす方向にずらして形成されていれば、形態(すなわち形状,配置,個数等)を問わない。
請求項6に記載の発明は、前記ロータは、前記ロータコアの極相互間に磁石を配置する第1極間と、前記ロータコアの極相互間に磁石を配置しない第2極間とを有することを特徴とする。この構成によれば、第1極間に配置される磁石によって発生する磁束は、リラクタンス磁束が増加するので、回転電機のトルクを向上させることができる。第1極間の数は要求特性に応じて任意に設定できるので、当該要求特性を満たす回転電機システムを提供することができる。「磁石」は磁束を発生可能であれば任意であり、永久磁石や電磁石等の種類を問わない。永久磁石には、例えばフェライト磁石,アルニコ磁石,サマリウムコバルト磁石,ネオジム鉄ボロン磁石,サマリウム鉄窒素磁石などが該当する。
請求項7に記載の発明は、前記ロータは前記ステータの外径側に配置されることを特徴とする。この構成によれば、ステータの外径側に配置されるロータ(いわゆるアウタロータ)は、ステータの内径側に配置されるロータ(いわゆるインナロータ)よりも磁性体の体積を多く確保できるので、通すことができる磁束量も増加する。したがって、回転電機のトルクを向上させることができる。なお「磁性体」には、硬質磁性体である磁石や、軟質磁性体(例えば鉄,ケイ素鋼,パーマロイ,センダスト,パーメンジュール,ソフトフェライト,アモルファス磁性合金,ナノクリスタル磁性合金などの材質からなる物体)を含む。
請求項8に記載の発明は、前記ステータはそれぞれが集中巻される前記固定子巻線を収容して12の整数倍からなるステータスロットを有し、前記ロータは12の整数倍または14の整数倍からなる前記極を有することを特徴とする。この構成によれば、集中巻によって固定子巻線の巻回が容易になり、組み立て時間を短縮できる。
請求項9に記載の発明は、車輪において、請求項1から8のいずれか一項に記載の回転電機システムまたは前記回転電機システムに含まれる回転電機を有することを特徴とする。この構成によれば、回転電機が電動機として作動する場合には、車輪を回転駆動させることができる。一方、回転電機が発電機として作動する場合には、車輪の回転数に応じた電力(回生エネルギー)を発生させることができる。また、上述した請求項1から8のいずれか一項にかかる回転電機システムの作用効果を奏する車輪を提供することができる。
回転電機システムの第1構成例を示す模式図である。 図1に示すII−II線矢視における回転電機の断面を示す模式図である。 界磁巻線を切り換えるための構成例を示す模式図である。 界磁巻線の構成例を示す模式図である。 ロータスロットの構成例を示す模式図である。 磁石を配置するロータの構成例を示す模式図である。 ツバ状部位の構成例を示す模式図である。 ステータの構成例を示す模式図である。 界磁制御処理の手続き例を示すフローチャート図である。 回転電機システムを構成する回転電機の第2構成例を示す模式図である。 回転電機を備えた車輪の構成例を示す模式図である。
以下、本発明を実施するための形態について、図面に基づいて説明する。なお、特に明示しない限り、「接続する」という場合には電気的に接続することを意味する。各図は、本発明を説明するために必要な要素を図示し、実際の全要素を図示しているとは限らない。上下左右等の方向を言う場合には、図面の記載を基準とする。図1〜図8に示す各模式図(具体的には断面図)については、見易さを考慮してハッチ線の図示を省略している。また説明文を簡素化するため、連続符号は記号「〜」を用いて表す。例えば、「界磁巻線12a1〜12a8」は「界磁巻線12a1,12a2,12a3,12a4,12a5,12a6,12a7,12a8」を意味する。同様に、「ステータティース11ta〜11tc」は「ステータティース11ta,11tb,11tc」を意味する。
〔実施の形態1〕
実施の形態1は、ステータの内径側にロータが配置されるインナロータ型の回転電機を含む回転電機システムの一例であって、図1〜図9を参照しながら説明する。図1には回転電機システムの第1構成例を模式図で示す。図2には図1に示すII−II線矢視における回転電機の断面を模式図で示す。図3には界磁巻線を切り換えるための構成例を模式図で示す。図4には界磁巻線の構成例を模式図で示す。図5にはロータスロットの構成例を模式図で示す。図6には磁石を配置するロータの構成例を模式図で示す。図7にはツバ状部位の構成例を模式図で示す。図8にはステータの構成例を模式図で示す。図9には界磁制御処理の手続き例を示すフローチャート図で示す。
図1に示す回転電機システム1は、回転電機10や制御装置20などを有する。なお図1では、回転電機10を覆う筐体やカバー等の図示を省略している。回転電機10は、ステータ11,ロータ12,回転軸13,ブラシ14,スリップリング15などを有し、ステータ11の内径側にロータ12が配置されるインナロータ型である。本形態の回転電機10には電動発電機を用いる。なお図示しないが、後述する回転電機10の状態を検出するための検出センサを必要に応じて備える。
ステータ11は磁性体で形成され、固定子巻線11a(ステータ巻線)やステータコア11b(ステータ本体)などを有する。ステータコア11bには、図8に示すように複数のステータティース11tが形成され、隣り合うステータティース11tの相互間に形成される空間が固定子巻線11aを収容するステータスロット11cになる。ステータスロット11cの数は任意に設定可能であるが、第1所定数(例えば3,4,6,12等)の整数倍を設定することが多い。
三相以上の多相に巻回される固定子巻線11aは、全節巻,分布巻,集中巻,短節巻などのいずれでもよい。巻回形態は、例えば一のステータティース11tごとに独立して巻回してもよく、隣り合うステータティース11tの相互間に巻回してもよく、二以上離れたステータティース11tの相互間に巻回してもよい。多相に接続する方法は周知であるので、図示および説明を省略する。本形態の固定子巻線11aは多相で集中巻にする。
ロータ12は磁性体で形成され、界磁巻線12a(ロータ巻線),ロータコア12b(ロータ本体),ロータスロット12c(図2を参照)などを有する。図2の断面図に示すように、ロータコア12bには複数のロータティース12tが形成される。界磁巻線12aが巻回されるロータティース12tは、界磁電流Irが流れる向きに応じた極(N極およびS極のうちで一方または双方が該当する。以下同じである。)を形成する。隣り合うロータティース12tの相互間に形成される空間は、界磁巻線12aを収容するロータスロット12cになる。ロータスロット12cの数は任意に設定可能であるが、第2所定数(例えば3,4,7,12,14等)の整数倍を設定することが多い。
界磁巻線12aは、全節巻,分布巻,集中巻,短節巻などのいずれでもよい。巻回形態の一例については後述する(図3〜図7を参照)。図示しないが、固定子巻線11aの巻回形態と同様の巻回形態を適用してもよい。すなわち、一のロータティース12tごとに独立して巻回してもよく、隣り合うロータティース12tの相互間に巻回してもよく、二以上離れたロータティース12tの相互間に巻回してもよい。
回転軸13はロータ12に固定される。その固定手段は任意であり、例えばボルトやネジ等の締結部材を用いる締結や、母材を溶かすことでハンダ付けやアーク溶接等を行う接合、接着剤を用いる接着などが該当する。
回転軸13の一方端は回転力を出力する出力軸として機能し、他方端は界磁電流Irの入力軸として機能する。出力軸には、回転可能な部材(例えば図11に示すホイール34等)が直接的または間接的に結合される。間接的な結合には動力伝達機構が介在する。動力伝達機構は動力を伝達可能な一以上の部材等で構成され、例えばカム,ラック&ピニオン,歯車(ギア),シャフトなどを含む。入力軸にはブラシ14やスリップリング15などを備える。ブラシ14は制御装置20に接続され、スリップリング15は界磁巻線12aに接続される。ブラシ14とスリップリング15とは界磁電流Irが流れるように接触する。制御装置20から出力される界磁電流Irはブラシ14を介してスリップリング15に流れ、さらに当該スリップリング15に接続される界磁巻線12aを流れてロータ12に界磁が形成される。
制御装置20は、外部装置と通信可能に構成される。この制御装置20は、後述する作動制御処理を含めて制御処理が可能な構成であれば、ソフトウェア構成であるとハードウェア構成であるとを問わない。また制御装置20は、外部装置から受ける信号に基づいて回転電機10の作動を制御する機能や、回転電機10の状態を外部装置に伝達する機能などを含む。外部装置には、例えばECUやコンピュータ等が該当する。
外部装置から受ける信号には、例えば速度信号や作動モード信号などを含む。速度信号には、例えば回転数を増加させる加速信号、回転数を減少させる減速信号、回転数を維持する定速信号、回転を停止する停止信号などを含む。作動モード信号には、例えば回転電機10を電動機として作動させる力行モード(電動機モード)や、回転電機10を発電機として作動させる回生モード(発電機モード)などを含む。検出センサによって検出される回転電機10の状態には、例えば回転数、温度、誘導起電力(回生エネルギー)や相電圧等の電圧値、界磁電流Irや固定子電流Is等の電流値などを含む。
図1に示す制御装置20は、界磁磁束制御部21や界磁電流制御部22などを有する。界磁磁束制御部21は、図示しない電力源(例えばバッテリや燃料電池等)から単相または多相の電力を受電し、外部装置から受ける速度信号と作動モード信号とに基づいて、ロータ12に生じる界磁磁束を制御する。具体的には、固定子巻線11aに流す固定子電流Isの大きさや、界磁巻線12aに流す界磁電流Irの大きさを制御し、結果としてロータ12に生じる界磁磁束を制御する。この制御では、図2に示すロータコア12bに巻回された界磁巻線12aの中から一以上の界磁巻線12aを選択するため、図3に示す巻線切換部SWに対して切換指令Scの伝達(出力)も行う。
界磁電流制御部22は、固定子巻線11aに所定電流値以上の固定子電流Isが流れる場合には、固定子電流Isによって発生するリラクタンス磁束分だけ界磁巻線12aに流れる界磁電流Irを抑制する。所定電流値は任意に設定可能である。例えば車両(二輪車や四輪車などを含む。以下同じである。)については、発進時、加速時、登坂走行時などにおいてそれぞれ必要とするトルクを得るために流す電流値が該当する。固定子電流Isによって発生するリラクタンス磁束や、当該リラクタンス磁束に対応する界磁電流Irの電流値については、実験や実地試験等を行って車両に応じた適切な数値をマップ等で設定する。界磁巻線12aに流す界磁電流Irを抑制できるので、界磁巻線12aに流し得る界磁電流Irの大きさが幅広くなり、結果として速度制御範囲を広げることができる。
次に界磁巻線12aの巻回形態を含むロータ12の構成例(第1構成例〜第5構成例)について、図3〜図7を参照しながら説明する。なお図3〜図7に示す各図は、理解を容易にするために簡略化して示す。言い換えれば、各図に示すロータティース12t,界磁巻線12a,ロータスロット12cの数や各部の形状等は一例に過ぎない。実際の数や各部の形状等は、回転電機10の仕様や要求特性等に応じて適切に設定される。
(ロータの第1構成例)
図3に示す第1構成例は、全部(全数)のロータティースに界磁巻線を多相(本形態ではU相,V相,W相からなる三相)で巻回し、相ごとに界磁電流Irが流れるように対象となる界磁巻線12aを切り換える巻線切換部SWを有する。巻線切換部SWは、制御装置20内外のいずれに備えてもよい。また巻線切換部SWは、制御装置20から伝達される切換指令Scに基づいて、対象となる界磁巻線12aを切り換えることが可能な構成であれば任意である。すなわち、スイッチやリレー等のようなハードウェア構成でもよく、CPUがプログラムを実行して切り換えを実現するソフトウェア構成でもよい。
図3に示すロータ12は、8つのロータティース12t(すなわち図示するロータティース12t1〜12t8)や、ロータティースごとに巻回される8つの界磁巻線12a(すなわち図示する界磁巻線12a1〜12a8)などを有する。界磁巻線12a1,12a4,12a7をU相に割り当て、界磁巻線12a2,12a5,12a8をV相に割り当て、界磁巻線12a3,12a6をW相に割り当てる。回転電機10の作動モード(例えば力行モードや回生モード等)の変更など、必要に応じて界磁巻線12a1〜12a8に割り当てる相を変更してもよい。
なお、上述した界磁巻線12aの割り当ては一例に過ぎず、多相の各相にそれぞれに割り当てる界磁巻線12aの数は同数とする場合が多い。また、各ロータティース12tの形状はほぼ同一に形成し、隣り合うロータティース12tの相互間に形成されるロータスロット12cの形状もほぼ同一に形成にするものと仮定する。
巻線切換部SWは、制御装置20から伝達される切換指令Scに基づいて、U相巻線(すなわち界磁巻線12a1,12a4,12a7)と、V相巻線(すなわち界磁巻線12a2,12a5,12a8)と、W相巻線(すなわち界磁巻線12a3,12a6)とを切り換えたり、界磁巻線12a1〜12a8に流す界磁電流Irの方向を切り換えたりする。通電する界磁巻線12aや、界磁電流Irの通電方向、制御装置20から流す界磁電流Irの大きさ(電流量)などを制御することで、ロータ12の界磁磁束を制御し、ロータ12における磁束分布,磁束量,極数等を容易に制御することができる。
(ロータの第2構成例)
図4に示す第2構成例では、一部(全数のうちで一以上)のロータティースに界磁巻線を巻回する。多相で巻回する場合には切り換えが必要となるが、図3に示す巻線切換部SWの図示は省略している。なお、多相の各相にそれぞれに割り当てる界磁巻線12aの数と、各ロータティース12tの形状と、各ロータスロット12cの形状とは、それぞれ第1構成例と同様である。
図4に示すロータ12は、8つのロータティース12t(すなわち図示するロータティース12t1〜12t8)や、一部のロータティース12tごとに巻回される4つの界磁巻線12a(すなわち図示する界磁巻線12a1,12a3,12a5,12a7)などを有する。界磁巻線12a1,12a3,12a5,12a7が巻回されるロータティース12t1,12t3,12t5,12t7は、界磁電流Irが流れると極が生じるので、「界磁巻線極」に相当する。界磁巻線12a1,12a3,12a5,12a7のうちで、どの界磁巻線をU相,V相,W相のいずれに割り当てるのかは任意である。第1構成例と同様に、多相の各相にそれぞれに割り当てる界磁巻線12aの数は同数とする場合が多い。界磁巻線が巻回されないロータティース12t2,12t4,12t6,12t8は、「非界磁巻線極」に相当する。
(ロータの第3構成例)
図5に示す第3構成例では、一部(全数のうちで一以上)のロータティースに界磁巻線を巻回する。多相で巻回する場合には切り換えが必要となるが、図3に示す巻線切換部SWの図示は省略している。なお、多相の各相にそれぞれに割り当てる界磁巻線12aの数と、各ロータティース12tの形状とは、それぞれ第1構成例と同様である。ただし、ロータスロット12cの形状が後述するように相違する。
図5に示すロータ12は、8つのロータティース12t(すなわち図示するロータティース12t1〜12t8)や、一部のロータティース12tごとに巻回される2つの界磁巻線12a(すなわち図示する界磁巻線12a3,12a7)などを有する。界磁巻線12a3,12a7のうちで、どの界磁巻線をU相,V相,W相のいずれに割り当てるのかは任意である。第1構成例と同様に、多相の各相にそれぞれに割り当てる界磁巻線12aの数は同数とする場合が多い。
ロータティース12t1とロータティース12t2との相互間に形成される空間は、ロータスロット12c1である。ロータティース12t2とロータティース12t3との相互間に形成される空間は、ロータスロット12c2である。以下同様にして、ロータスロット12c2〜12c8が形成される。これらのロータスロット12c1〜12c8のうちで、一部のロータスロット12c2,12c3,12c6,12c7にかかる断面積S1は、他のロータスロット12c1,12c4,12c5,12c8にかかる断面積S2に比べて大きく形成される。断面積が大きなロータスロット12c2,12c3,12c6,12c7ではクリアランスを大きく確保できるので、ロータティース12tに界磁巻線12aを巻回する際に手間を要せず容易に行える。
(ロータの第4構成例)
図6に示す第4構成例では、一部(全数のうちで一以上)のロータティースに界磁巻線を巻回する。多相で巻回する場合には切り換えが必要となるが、図3に示す巻線切換部SWの図示は省略している。なお、多相の各相にそれぞれに割り当てる界磁巻線12aの数と、各ロータティース12tの形状とは、それぞれ第1構成例と同様である。ただし、ロータスロット12cの形状が後述するように相違する。
図6に示すロータ12は、8つのロータティース12t(すなわち図示するロータティース12t1〜12t8)や、一部のロータティース12tごとに巻回される4つの界磁巻線12a(すなわち図示する界磁巻線12a1,12a3,12a5,12a7)、磁石16(すなわち図示する磁石16a〜16f)などを有する。本形態では、磁石16として永久磁石のフェライト磁石を用いる。第2構成例と同様に、どの界磁巻線12aをU相,V相,W相のいずれに割り当てるのかは任意である。また、多相の各相にそれぞれに割り当てる界磁巻線12aの数は同数とする場合が多い。
磁石16は、ロータティース12t(特に先端部)の相互間に配置される。図6の構成例に示す磁石16aは、ロータティース12t1とロータティース12t2との間に配置される。磁石16bは、ロータティース12t3とロータティース12t4との間に配置される。以下同様にして、図示する磁石16c〜16fが隣り合うロータティース12tの相互間に配置される。磁石16a〜16fは、いずれも磁束を発生可能であれば任意であり、永久磁石や電磁石等の種類を問わない。なお、磁石16の「配置」には、移動不能な固定と、移動可能な保持とを含む。固定方法や保持方法は任意である。
各ロータティース12tは、界磁巻線12aに流れる界磁電流Irの向きに応じた極を形成する。よって、界磁巻線12aが巻回されるロータティース12tの相互間は「極間」に相当する。極間のうち、磁石16が配置される極間は「第1極間」に相当し、磁石16が配置されない極間は「第2極間」に相当する。第1極間に配置される磁石16によって発生する磁束はリラクタンス磁束を増加させるので、回転電機10のトルクを向上させることができる。
(ロータの第5構成例)
図7(A)には、ロータ12の一部分(2つのロータティース12t)を示す。当該図7(A)に示す第5構成例では、ロータティース12tの先端形状(ツバ状部位)を周方向に非対称形状で形成する。非対称形状で形成する対象は、ロータ12に形成されたロータティース12tにかかる全数の全部でもよく、当該全数の一部でもよい。非対称形状の形成例を図7(B)〜図7(D)に示す。なお、図7(B)〜図7(D)に示すツバ状部位12d(具体的にはツバ状部位12d1〜12d4)は、磁界を減らす方向にずらして形成されていれば、形態を問わない。また、ロータティース12tの本体(すなわちツバ状部位を除く部位)の周方向幅を「本体周方向幅」と呼ぶことにする。
図7(B)に示すロータティース12tは、ツバ状部位12d1,12d2を有する。ツバ状部位12d1の周方向幅W1は、ツバ状部位12d2の周方向幅W2よりも小さい(すなわちW1<W2)。周方向幅W1,W2の大きさ(長さ)は、ステータ11に巻回される固定子巻線11aへの通電により発生する磁界を減らす方向に対応させる。図7(B)ではW1<W2であるので、右方向が磁界を減らす方向に相当する。磁界を減らす方向であれば、W1>W2となるようにツバ状部位12d1,12d2を形成してもよい。
図7(C)に示すロータティース12tは、周方向における一方側(図7(C)では右側)にのみツバ状部位12d2を有する。上述した図7(B)との比較では、ロータティース12tの本体周方向幅Twaがほぼ同一であると仮定すると、図7(C)のツバ状部位12d2は周方向幅W3(=W1+W2)で形成する。ツバ状部位12d2の厚みは、回転電機10の仕様や要求特性等に応じて実線のように厚く形成したり、二点鎖線で示すように薄く形成したりする(他のツバ状部位12d1,12d3,12d4についても同様である)。図示しないが、周方向における他方側(図7(C)では左側)にのみツバ状部位を有する構成としてもよい。一方側または他方側のいずれにツバ状部位を有するかは、ステータ11に巻回される固定子巻線11aへの通電により発生する磁界を減らす方向に対応させる。
図7(D)に示すロータティース12tは、ツバ状部位12d3,12d4を有する。ロータティース12tの本体周方向幅Twbは、上述した図7(B)に示すロータティース12tの本体周方向幅Twaよりも小さい(すなわちTwb<Twa)と仮定する。この仮定下において、ロータティース12tの本体周方向幅が小さい分だけ、ツバ状部位12d3,12d4の周方向幅W4,W5を大きくする。言い換えれば、ロータティース12t全体の周方向幅を一定値で形成する必要がある場合には、ツバ状部位の周方向幅で調整する。式で表せば「Twa+W1+W2=Twb+W4+W5」となるように周方向幅W4,W5の大きさ(長さ)を調整する。周方向幅W4と周方向幅W5の各大きさは、図7(B)に示す周方向幅W1,W2の大きさと同様に設定する。
次にステータ11に形成するステータティース11tの構成例について、図8を参照しながら説明する。図8(A)は、回転電機10の一部分(90度)を拡大して示す断面図であって、図2と同様の断面図である。ただし、巻線(固定子巻線11aや界磁巻線12a)の図示は省略する。図8(B)〜図8(D)にはステータティース11t(特に先端部)の構成例を示す。
ステータ11には、複数のステータティース11tが回転電機10の中心側に向かって突出するように形成される。複数のステータティース11tは、その先端部に形成されるツバ状部位の形状に応じて複数のティースグループに分けられる。図8(A)に示す構成例では、3つのティースグループTg1〜Tg3に分けられる。ティースグループTg1の形成例を図8(B)に示し、ティースグループTg2の形成例を図8(C)に示し、ティースグループTg3の形成例を図8(D)に示す。
図8(B)に示すステータティース11taは、図8(A)に示すロータティース12taに対応する形状(ほぼL字状)に形成される。図8(C)に示すステータティース11tbは、図8(A)に示すロータティース12tbに対応して周方向に対称となる対称形状に形成される。図8(D)に示すステータティース11tcは、ステータティース11taの鏡像体となるような形状に形成される。この構成によれば、ロータ12が特定の位置やその前後の領域内ではツバ状部位を通じて磁束が通り易くなり、当該磁束はリラクタンス磁束を増加させるので、回転電機10のトルクを向上させることができる。また、ロータ12全体から見ると磁束分布が不均一になるので、磁束分布が高い領域ではリラクタンス磁束が増加して回転力(回転トルク)が向上し、磁束分布が低い領域ではロータ12の回転数が増加する。
なお、理解を容易にするために図8には3種類の形状を示したが、実際には3種類に限られない。すなわち、ステータティース11tおよびロータティース12tのそれぞれ先端部に形成されるツバ状部位を通じて磁束が通り易い最適な種類数に設定する。形成されるティースの数にもよるが、2種類でもよく、4種類でもよく、5種類以上でもよい。また回転電機10の仕様や要求特性等によっては、ティースグループTg1(ステータティース11ta)とティースグループTg3(ステータティース11tc)とが逆の位置に配置され、図8(A)とは鏡像の形状で形成される場合もある。
またステータティース11ta〜11tcの形状は、図8(B)〜図8(D)に示す形状に限られない。例えば、図7(C)に示す形状でもよく、図7(D)に示す形状でもよく、その他の形状でもよい。要するに、リラクタンス磁束が増加するように、ツバ状部位を通じて磁束が通り易くなる形状であればよい。
上述のように構成された回転電機システム1において、回転電機10の作動を制御する例について図9を参照しながら説明する。図9には、作動制御処理の手続きの一例をフローチャートで示す。当該作動制御処理は制御装置20で行われる制御処理の一つであり、繰り返し実行される。なお図9において、ステップS11は界磁磁束制御部21および巻線切換部SWに相当し、ステップS14,S17は界磁電流制御部22に相当する。
図9に示す作動制御処理では、まず外部装置から何らかの信号を受けたか否かを判別する〔ステップS10〕。当該信号には、上述した速度信号や作動モード信号等を含む。もし外部装置から何ら信号を受けていなければ(NO)、何も行うことなく作動制御処理をリターンする。一方、外部装置から何ら信号を受けた場合には(YES)、後述するステップS11以降を実行する。
なお括弧内に示すように、回転電機10の作動に関する制御を行うための制御条件を満たすか否かで判別してもよい。制御条件は、回転電機10の仕様や要求特性等に応じて任意の条件を設定することができる。例えば、上述した外部装置から何らかの信号を受けることや、ステップS10の実行前に行った検出センサによる検出値が所定の検出値に達したことなどが該当する。
ステップS11では、外部装置から受けた信号のうちで、速度信号と作動モード信号とに基づいて、ロータ12に生じる界磁磁束を制御する。具体的には、上述したように、固定子巻線11aに流す固定子電流Isの大きさや、界磁巻線12aに流す界磁電流Irの大きさを制御する。この制御によって固定子電流Isや界磁電流Irの大きさが変化するので、固定子電流Isについては後述するステップS14で判別を行う。また、界磁巻線12aは多相に接続されるので、図2に示す巻線切換部SWに切換指令Scを伝達して、相ごとに界磁巻線12aの切り換えを行う。
上記ステップS11の制御とともに、回転電機10の状態を検出センサで検出する〔ステップS12〕。検出センサで検出する検出対象は、例えば回転数、温度、誘導起電力(回生エネルギー)や相電圧等の電圧値、界磁電流Irや固定子電流Is等の電流値などを含む一以上が該当する。検出センサで検出した検出値は、制御装置20に備える記録媒体に記録するほか、必要に応じて二点鎖線で示すように外部装置に伝達(出力)する〔ステップS13〕。この伝達は、例えば外部装置が現在の回転電機10の状態を把握する必要がある場合などで行われる。
ステップS11で検出した固定子電流Isが所定電流値以上になっているか否かを判別する〔ステップS14〕。所定電流値は、上述したように例えば車両については、発進時、加速時、登坂走行時などにおいてそれぞれ必要とするトルクを得るために流す電流値などである。もし固定子電流Isが所定電流値未満であれば(NO)、何も行うことなく作動制御処理をリターンする。
一方、固定子電流Isが所定電流値以上である場合には(YES)、固定子電流Isによって発生するリラクタンス磁束分に対応する界磁電流Irを求める〔ステップS15〕。界磁電流Irを求める方法は任意である。例えば、記録媒体に予め記録されたマップ等を参照したり、ステータコア11bやロータコア12bに用いられる磁性体の材質(材料や素材の意味を含む。)に応じて固定子電流Isと界磁電流Irとの関係を規定する関数式を用いて算出したりする。
ステップS12で検出した界磁電流Ir(検出界磁電流値)とステップS15で求めた界磁電流Ir(算出界磁電流値)とを比較し、検出界磁電流値>算出界磁電流値であるか否かを判別する〔ステップS16〕。もし検出界磁電流値≦算出界磁電流値であれば(NO)、何も行うことなく作動制御処理をリターンする。一方、検出界磁電流値>算出界磁電流値である場合には(YES)、界磁巻線12aに流す界磁電流Irを抑制したうえで〔ステップS17〕作動制御処理をリターンする。
上述した実施の形態1によれば、以下に示す各効果を得ることができる。まず請求項1に対応し、回転電機10と制御装置20とを有する回転電機システム1において、制御装置20は、速度信号と作動モード信号とに基づいてロータ12に生じる界磁磁束を制御する界磁磁束制御部21(図9のステップS11を参照)と、固定子巻線11aに所定電流値以上の固定子電流Isが流れる場合には固定子電流Isによって発生するリラクタンス磁束分だけ界磁巻線12aに流れる界磁電流Irを抑制する界磁電流制御部22(図9のステップS14,S17を参照)とを有する構成とした(図1を参照)。この構成によれば、リラクタンス磁束分だけ界磁巻線12aに流れる界磁電流Irが抑制されるので通電に伴う損失も小さくなり、結果として効率を向上させることができる。
請求項2に対応し、界磁磁束制御部21は、単相または多相の電力を受電し、ロータコア12bに巻回された界磁巻線12aの中から一以上の界磁巻線12aを選択して界磁磁束を制御する構成とした(図1,図3,図9のステップS11を参照)。この構成によれば、ロータ12の磁束量や極数等を容易に変えることができる。
請求項3に対応し、ロータ12は、ロータコア12bに界磁巻線12aを巻回する界磁巻線極(図4ではロータティース12t1,12t3,12t5,12t7)と、ロータコア12bに界磁巻線12aを巻回しない非界磁巻線極とを有する構成とした(図4を参照)。この構成によればロータ12全体から見ると磁束分布が不均一になる。界磁巻線極およびその周辺では、磁束分布が高くなってリラクタンス磁束が増加するため、トルクが向上する。一方、非界磁巻線極およびその周辺では、磁束分布が低くなってリラクタンス磁束が減少するため、ロータ12の回転数が増加する。
請求項4に対応し、ロータ12は複数のロータスロット12cを有し、界磁巻線12aを巻回するロータスロット12c(断面積S2)は界磁巻線12aを巻回しないロータスロット12c(断面積S1)よりも大きく形成する構成とした(図5を参照)。この構成によれば、大きく形成されたロータスロット12cは、界磁巻線12aの巻回を容易に行えるので、組み立て時間を短縮できる。断面積に代えて(あるいは併用して)、周方向幅や容積などのうちで一以上を大きく形成しても同様の作用効果が得られる。
請求項5に対応し、ロータコア12bは先端部にツバ状部位12d(図7ではツバ状部位12d1〜12d4)を有し、ツバ状部位12dはステータ11への通電により発生する磁界を減らす方向にずらして形成される構成とした(図7を参照)。この構成によれば、ツバ状部位12dは磁界を減らす方向にずらして形成されているので、固定子巻線11aによる減磁界を活用することができる。また、電流位相を変えることで、作動モードに合わせて回転力を最適化(例えば最大化や最小化等)できる。
請求項6に対応し、ロータ12は、ロータコア12bの極相互間に磁石16(図6では磁石16a〜16f)を配置する第1極間と、ロータコア12bの極相互間に磁石16を配置しない第2極間とを有する構成とした(図6を参照)。この構成によれば、第1極間に配置される磁石16によって発生する磁束は、リラクタンス磁束が増加するので、回転電機10のトルクを向上させることができる。第1極間の数は要求特性に応じて任意に設定できるので、当該要求特性を満たす回転電機システム1を提供することができる。
請求項8に対応し、ステータ11はそれぞれが集中巻される固定子巻線11aを収容して12の整数倍からなるステータスロット11cを備えるステータコア11bを有し、ロータ12は12の整数倍または14の整数倍からなる極(すなわちロータティース12t)を有する構成とした(図2,図5を参照)。この構成によれば、集中巻によって固定子巻線11aの巻回が容易になり、組み立て時間を短縮できる。
〔実施の形態2〕
実施の形態2は、ステータの外径側にロータが配置されるアウタロータ型の回転電機を含む回転電機システムの一例であって、図10を参照しながら説明する。当該図10には、図1に示す第1構成例に代わる回転電機10の第2構成例を示す。なお図示および説明を簡単にするために、実施の形態2では実施の形態1と異なる構成等を説明する。よって、実施の形態1で用いた要素と同一の要素には同一の符号を付して説明を省略する。
図10に示す回転電機10は、ステータ11,ロータ12,ベアリング17,ステー18,ホルダ19などを有し、ステータ11の外径側にロータ12が配置されるアウタロータ型である。ステータ11は、固定子巻線11aやステータコア11bのほかに、ステー18,ホルダ19などを有する。
ステータコア11bは磁性体(特に軟質磁性体)で形成され、ステー18やホルダ19を介して支軸12fに固定されている。図示しないが、ステータコア11bには図8(A)に示すステータスロット11cと同様に形成される複数のステータスロットを有する。当該ステータスロットに収容される固定子巻線11aは、ステータティース11tの相互間に巻回される。ステー18にはフレームや他の部材等を用いてもよい。ホルダ19にはブッシュや他の部材等を用いてもよい。ステータ11とロータ12との間にはベアリング17が介在し、ロータ12が回転自在となるように構成される。
ロータ12は、界磁巻線12aやロータコア12bのほかに、支持体12eなどを有する。支持体12eは、ステータ11の外周側に配置され、材質や形状を問わない。「形状」には、平面や、非平面(曲面や凹凸面等のように平面以外の面を意味する。以下同じである。)を含む。図10に示す支持体12eは、基本的に円錐状(円錐台を含む)で形成されている。ただし、動力(回転力)を外部に伝達するための中心部と、ロータコア12bを固定するための周縁部とがそれぞれL字状に曲げられている。
上述した実施の形態2によれば、下記の作用効果を得ることができる。なお図10に示す回転電機10は、実施の形態1に示す回転電機10と比べてステータ11とロータ12との配置が異なるに過ぎない。他の構成要素については実施の形態1と同様であるので、実施の形態1と同様の作用効果を得ることができる。
請求項7に対応し、ロータ12はステータ11の外径側に配置される構成とした(図10を参照)。この構成によれば、ステータ11(磁性体)の体積を多く確保できるので、通すことができる磁束量も増加する。したがって、回転電機10のトルクを向上させることができる。
〔実施の形態3〕
実施の形態3は、上述した実施の形態2で説明した回転電機システム1または回転電機10を車輪に適用する例である。当該実施の形態3は図11を参照しながら説明する。なお、回転電機10の構成等は実施の形態1,2と同様であり、図示および説明を簡単にするために実施の形態3では実施の形態1,2と異なる点について説明する。よって、実施の形態1,2で用いた要素と同一の要素には同一の符号を付して説明を省略する。
図11には、駆動輪となる車輪30の構成例を断面図で示す。この車輪30は、実施の形態2における回転電機10(図10を参照)のほか、フレーム31,ホイール34,タイヤ33などを有する。フレーム31は、車両に備えるフレームを兼用してもよい。回転電機10は、フレーム31の先端部(図面下部)に備える。理解し易くするために、図11では回転電機10を覆う筐体やカバー等は省略している。なお図示しない制御装置20(図1を参照)は、二輪車や四輪車等の車両に備える。
回転電機10の支軸11eは、例えばボルトやナット等の固定部材32,36によってフレーム31に固定されている。ロータ12は、ベアリング17(図10を参照)を介して支軸11eの軸心を中心として回転し、ホイール34とともに回転する。ロータ12とホイール34との間にはワッシャ35を介在させている。
図11には車輪30に回転電機10を含む構成例を示したが、回転電機10のほかに制御装置20(図1を参照)を含む構成としてもよい。言い換えれば、車輪30に回転電機システム1を含む構成としてもよい。この構成では、筐体やカバー等の内部に制御装置20を配置すればよい。
また車輪30の構成要素として、図11では実施の形態2に示すアウタロータ型の回転電機10(図10を参照)を適用した。この形態に代えて、実施の形態1に示すインナロータ型の回転電機10(図1〜図8を参照)を適用してもよい。この場合、回転軸13はホイール34に固定され、力行モードでは回転電機10(特にロータ12)から動力(回転力)がホイール34に伝達され、回生モードではホイール34の動力が回転電機10に伝達される。支軸12fはフレーム31の一部で構成してもよい。単にステータ11とロータ12との配置が異なるに過ぎないので、図11の構成と同様の作用効果が得られる。
上述した実施の形態3によれば、請求項9に対応し、車輪30は実施の形態1または実施の形態2に示す回転電機10を有する構成とした(図11を参照)。この構成によれば、回転電機10が電動機として作動する場合には、車輪30を回転駆動させることができる。一方、回転電機10が発電機として作動する場合には、車輪30の回転数に応じた電力(回生エネルギー)を発生させることができる。また、実施の形態1または実施の形態2に示す回転電機システム1の作用効果を奏する車輪30を提供することができる。
〔他の実施の形態〕
以上では本発明を実施するための形態について実施の形態1〜3に従って説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
上述した実施の形態1〜3では、制御装置20は界磁磁束制御部21と界磁電流制御部22とを有する構成とした(図1を参照)。この形態に代えて(あるいは併用して)、速度信号と作動モード信号とに基づいてステータ11に生じる固定子磁束を制御する固定子磁束制御部と、界磁巻線12aに他の所定電流値以上の界磁電流Irが流れる場合には界磁電流Irによって発生するリラクタンス磁束分だけ界磁巻線12aに流れる固定子電流Isを抑制する固定子電流制御部とを備える構成としてもよい。リラクタンス磁束の発生源がロータ12側であるかステータ11側であるかの相違に過ぎないので、上述した実施の形態1〜3と同様の作用効果を得ることができる。
上述した実施の形態1〜3では、磁石16として永久磁石のフェライト磁石を適用した。この構成に代えて、他の磁石を適用してもよい。例えば永久磁石では、アルニコ磁石,サマリウムコバルト磁石,ネオジム鉄ボロン磁石,サマリウム鉄窒素磁石などが該当する。永久磁石以外では電磁石が該当する。いずれの磁石にせよ、リラクタンス磁束を増加させ得るので、上述した実施の形態1〜3と同様の作用効果を得ることができる。
上述した実施の形態2では、ロータ12の支持体12eを円錐状に形成する構成とした(図10を参照)。この形態に代えて、他の形状で形成してもよい。他の形状は、例えば円盤状(円板状),円環状(ドーナツ状)等が該当する。いずれの形状にせよ、円形状(円に近い多角形状を含む)で形成することにより、ロータ12を回転させることができるので、上述した実施の形態1〜3と同様の作用効果を得ることができる。
1 回転電機システム
10 回転電機
11 ステータ(固定子)
11a 固定子巻線
11b ステータコア
11c ステータスロット
11t(11ta〜11tc) ステータティース(極)
12 ロータ(回転子)
12a(12a1〜12a8) 界磁巻線
12b ロータコア
12c(12c1〜12c8) ロータスロット
12d(12d1〜12d4) ツバ状部位
12t(12t1〜12t8) ロータティース(極)
16(16a〜16f) 磁石
20 制御装置
21 界磁磁束制御部
22 界磁電流制御部
30 車輪
SW 巻線切換部
Ir 界磁電流
Is 固定子電流

Claims (9)

  1. 多相に固定子巻線が巻回されるステータと、ロータコアの各極にかかる一部または全部の極に界磁巻線が巻回されるロータとを備える回転電機と、
    前記回転電機の作動を制御する制御装置とを有する回転電機システムにおいて、
    前記制御装置は、
    速度信号と作動モード信号とに基づいて、前記ロータに生じる界磁磁束を制御する界磁磁束制御部と、
    前記固定子巻線に所定電流値以上の固定子電流が流れる場合には、前記固定子電流によって発生するリラクタンス磁束分だけ前記界磁巻線に流れる界磁電流を抑制する界磁電流抑制部と、
    を有することを特徴とする回転電機システム。
  2. 前記界磁磁束制御部は、単相または多相の電力を受電し、前記ロータコアに巻回された前記界磁巻線の中から一以上の界磁巻線を選択して前記界磁磁束を制御することを特徴とする請求項1に記載の回転電機システム。
  3. 前記ロータは、前記ロータコアに前記界磁巻線を巻回する界磁巻線極と、前記ロータコアに前記界磁巻線を巻回しない非界磁巻線極とを有することを特徴とする請求項1または2に記載の回転電機システム。
  4. 前記ロータは、複数のロータスロットを有し、
    前記界磁巻線を巻回する前記ロータスロットは、前記界磁巻線を巻回しない前記ロータスロットよりも大きく形成することを特徴とする請求項1から3のいずれか一項に記載の回転電機システム。
  5. 前記ロータコアは先端部にツバ状部位を有し、
    前記ツバ状部位は、前記ステータへの通電により発生する磁界を減らす方向にずらして形成されることを特徴とする請求項1から4のいずれか一項に記載の回転電機システム。
  6. 前記ロータは、前記ロータコアの極相互間に磁石を配置する第1極間と、前記ロータコアの極相互間に磁石を配置しない第2極間とを有することを特徴とする請求項1から5のいずれか一項に記載の回転電機システム。
  7. 前記ロータは、前記ステータの外径側に配置されることを特徴とする請求項1から6のいずれか一項に記載の回転電機システム。
  8. 前記ステータは、それぞれが集中巻される前記固定子巻線を収容し、12の整数倍からなるステータスロットを有し、
    前記ロータは、12の整数倍または14の整数倍からなる前記極を有することを特徴とする請求項1から7のいずれか一項に記載の回転電機システム。
  9. 請求項1から8のいずれか一項に記載の回転電機システムまたは前記回転電機システムに含まれる回転電機を有することを特徴とする車輪。
JP2011268991A 2011-12-08 2011-12-08 回転電機システム Withdrawn JP2013121286A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011268991A JP2013121286A (ja) 2011-12-08 2011-12-08 回転電機システム
CN2012105195702A CN103166412A (zh) 2011-12-08 2012-12-06 旋转电机系统以及车轮

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011268991A JP2013121286A (ja) 2011-12-08 2011-12-08 回転電機システム

Publications (1)

Publication Number Publication Date
JP2013121286A true JP2013121286A (ja) 2013-06-17

Family

ID=48589218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011268991A Withdrawn JP2013121286A (ja) 2011-12-08 2011-12-08 回転電機システム

Country Status (2)

Country Link
JP (1) JP2013121286A (ja)
CN (1) CN103166412A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076999A (ja) * 2013-10-09 2015-04-20 株式会社デンソー 多相回転機
DE102016224916A1 (de) * 2016-12-14 2018-06-14 Bayerische Motoren Werke Aktiengesellschaft Rotor und Rotorschaltung für einen Elektromotor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104986037B (zh) * 2015-07-25 2017-12-29 肖光烈 一种电动汽车的自发电装置
CN110208695B (zh) * 2019-06-24 2021-06-08 三一重能股份有限公司 一种集电环故障监测方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303674B2 (ja) * 1996-07-05 2002-07-22 株式会社日立製作所 回転電機及びその円筒形回転子
EP1046812B1 (en) * 1999-04-19 2004-09-29 Mitsuba Corporation Starter generator
JP5120586B2 (ja) * 2005-06-28 2013-01-16 株式会社デンソー 界磁巻線型同期機
JP5300139B2 (ja) * 2009-04-27 2013-09-25 本田技研工業株式会社 電動機の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076999A (ja) * 2013-10-09 2015-04-20 株式会社デンソー 多相回転機
DE102016224916A1 (de) * 2016-12-14 2018-06-14 Bayerische Motoren Werke Aktiengesellschaft Rotor und Rotorschaltung für einen Elektromotor
US11218064B2 (en) 2016-12-14 2022-01-04 Bayerische Motoren Werke Aktiengesellschaft Rotor and rotor circuit for an electric motor

Also Published As

Publication number Publication date
CN103166412A (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
JP4649625B1 (ja) 磁束量可変回転電機システム
EP2184838B1 (en) Axial gap type motor
JP4449035B2 (ja) 電動車両用の永久磁石回転電機
US7462968B2 (en) Electric wheel
JP5477161B2 (ja) ダブルステータ型モータ
JP4403253B1 (ja) 磁束量可変軸方向間隙回転電機システム
JP5849890B2 (ja) ダブルステータ型モータ
JP5299679B2 (ja) モータジェネレータ
JP2008086064A (ja) ブラシレスモータ
KR20070114634A (ko) 다단 회전자를 구비한 코어리스 모터 및 그 모터를 사용한구동장치
JP6158022B2 (ja) 回転電機、及び車輌
JP2008259302A (ja) 電動機の制御装置
JP5323592B2 (ja) 永久磁石回転電機及びそれを用いた電動車両
JP2013121286A (ja) 回転電機システム
JP2000224790A (ja) 回転電機及びそれを用いた電動車両
JP2008054419A (ja) モータ制御システム
JP3704881B2 (ja) 永久磁石併用同期回転機およびその駆動方法
JP6035957B2 (ja) 回転機
JP2010183648A (ja) 永久磁石回転電機及びそれを用いた電動車両
JP2002252947A (ja) 回転電機とそれを用いた電動車両
JP2005253168A (ja) 永久磁石回転電機及びそれを用いた電動パワーステアリング装置
JP2002191157A (ja) 永久磁石併用同期回転機
JP2010068605A (ja) 永久磁石回転電機
JP2013090383A (ja) Srモータ
JP2006025486A (ja) 回転電機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140617