JP2013101130A - 生体データから隠れたパターンに基づいて生物学的状態相互間を区別する方法 - Google Patents

生体データから隠れたパターンに基づいて生物学的状態相互間を区別する方法 Download PDF

Info

Publication number
JP2013101130A
JP2013101130A JP2012286014A JP2012286014A JP2013101130A JP 2013101130 A JP2013101130 A JP 2013101130A JP 2012286014 A JP2012286014 A JP 2012286014A JP 2012286014 A JP2012286014 A JP 2012286014A JP 2013101130 A JP2013101130 A JP 2013101130A
Authority
JP
Japan
Prior art keywords
data
biological
cluster
chromosome
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012286014A
Other languages
English (en)
Inventor
A Hitt Ben
エー. ヒット,ベン
Emanuel F Petricoin Iii
エフ.,ザ サード ペトリコイン,エマニュエル
Peter J Levin
ジェイ. レビン,ピーター
Lance A Liotta
エー. リオッタ,ランス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ahn Gook Pharmaceutical Co Ltd
US Government
Original Assignee
Ahn Gook Pharmaceutical Co Ltd
US Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ahn Gook Pharmaceutical Co Ltd, US Government filed Critical Ahn Gook Pharmaceutical Co Ltd
Publication of JP2013101130A publication Critical patent/JP2013101130A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/40ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/10Signal processing, e.g. from mass spectrometry [MS] or from PCR
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • Y10S707/99933Query processing, i.e. searching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99941Database schema or data structure
    • Y10S707/99943Generating database or data structure, e.g. via user interface

Abstract

【課題】隠れた、または明白でない区別的生体データ・パターンの発見および分析を通して、生物学的状態を確定するプロセスを提供する。
【解決手段】対象から採取した生体試料の分析を行うことにより得られたデータ・ストリームを分析することにより対象が疾患を有するか否かを測定する方法であって、該データ・ストリームを表すベクトル、及び、該ベクトルが、多次元空間中の疾患に関係するデータ・クラスター内に存在しているか否かを測定すること、ならびに、該ベクトルが疾患クラスター内に存在する場合には、対象が疾患を有することを示すアウトプットを産生すること、を含んで成る、方法。
【選択図】なし

Description

本出願は、2000年9月12日に出願された出願番号第60/232,909号明細書、2001年3月23日に出願された出願番号第60/278,550号明細書、2000年7月18日に出願された出願番号第60/219,067号明細書および2001年5月8日に出願された「血清中の卵巣癌および前立腺癌のタンパク質シグナルで、データ法アルゴリズムが疾患を明らかにする (A Data Method Algorithm Reveals Disease with Protein Signal of Ovarian and Prostate Cancer in Serum)」(出願番号未定)と題する米国仮出願の優先権を、米国特許法第119条(e)(1)項の規定に基づいて主張する。前記明細書の全体を参照により、本明細書中に組み込む。
I. 発明の分野
本発明の分野は、隠れた、または明白でない区別的生体データ・パターンの発見および分析を通して、生物学的状態を確定するプロセスに関する。生体データは健康データ、臨床データ、または生体試料(例えば、ヒトからの生体試料、例えば、血清、血液、唾液、血漿、乳頭吸引物質、滑液、脳脊髄液、汗、尿、便、涙、気管洗浄物質、綿棒で集められた物質(swabbing)、針吸引物質、精液、膣液、射精前物質等)等から得ることができる。このようなデータまたは試料は、ドナーの生物学的状態を確定するために分析される。生物学的状態は、病理学的診断、毒性状態、薬物の有効性、疾患の予後診断等であってよい。
具体的には、本発明は、分析法に関し、この分析法は、a)より大きなデータ・ストリームのサブセットである隠れた区別的生体データ・パターン(例えば、器官の生物学的状態を分類する血清試料中のタンパク質発現のパターン)を発見し、前記区別が、学習データセット内の2つ以上の生物学的状態を区別する能力を示唆し、b)前記パターンを未知の試料または試験試料を分類するのに適用する。より具体的には、本発明はデータ・ストリームの分析法に関し、この方法は生体試料中の分子(例えば、タンパク質、ペプチド、DNA、RNA等)の物理的または化学的な分析(例えば、試料の質量分析)から導き出される。
これらのパターンは、「隠れた」ものとして定義付けされている。なぜならば、これらのパターンは、比較的大きな極めて複雑なデータセット内にしばしば埋もれており、明白でなく、または、眼または他の既存の分類システムでは明らかでない。このパターン自体は、3つ以上の値の組み合わせとして定義付けすることができ、これにより、n次元空間内のベクトルの位置は、個々の値が区別可能でない場合にも生物学的状態相互間で区別的である。本発明の区別的なパターンは新規である。なぜならば、これらのパターンは、生物学的データ内の個々のデータポイント相互間の同一性または関連性の認識なしに、または、生体試料中の分子相互間の同一性または関連性の認識なしに定義付けすることができるからである。
このような生物学的状態を発見するための1つの分析法は、2つの関連ヒューリスティック・アルゴリズムである、学習アルゴリズムと、診断アルゴリズムとを適用することから成り、診断アルゴリズムのパラメータは、学習アルゴリズムを学習データセットに適用することにより設定されるので、2つ以上の生物学的状態を区別することができる。このような生物学的状態は、疾患の有無、薬剤の効果の有無、薬剤の毒性の有無等であってよい。本発明は種々の癌(癌腫、黒色腫、リンパ腫、肉腫、芽細胞腫、白血病、骨髄腫、神経腫瘍等、および、卵巣、前立腺および乳房のような器官の癌を含むが、これらに限定されるものではない)の診断のための総体的、特定的な実施であるが、病原体および毒性の存在も明らかにされる。本発明の好ましい態様は、器官または組織の現在または将来の生物学的状態を反映する分子パターンの発見および使用である。本発明の別の態様は、生物学的状態の分子パターンを記述するデータと他の非生物学的または臨床的データ(例えば、精神医学的事項)とを組み合わせることにより、患者の健康を記述する分類をもたらすことである。
II. 発明の背景
生物学的状態の変化、特に疾患の早期発見は、医学研究および臨床分野の主要な焦点である。従来技術には、組織試料の物理的または化学的な分析により形成されたデータ・ストリームからの診断情報を抽出しようとする取組みの例が含まれる。これらの技術は総体的に「データ・マイニング」と呼ばれる。マイニングされたデータ・ストリームは、2つの形から成るのが典型的である。すなわち、DNAオリゴヌクレオチド・アレイ(「DNAマイクロアレイ」)とのハイブリッド形成によるmRNA発現のレベルの分析、および、細胞または血清の試料中に存在するタンパク質のレベルの分析である。この場合、タンパク質は、質量分析を用いて分子量によって特徴付けされるか、または、2−Dゲル技術を用いて分子量と電荷との組み合わせにより特徴付けされる。
ラジエシュ・パレック(Rajesh Parekh)および共同研究者は、血清または血漿の試料を使用した、タンパク質に基づく肝細胞癌のデータ・マイニング診断について(国際公開第99/41612号パンフレット)、組織試料を使用した、タンパク質に基づく乳癌のデータ・マイニング診断について(国際公開第00/55628号パンフレット)、また、血清または血漿試料を使用した、タンパク質に基づくリウマチ様関節炎のデータ・マイニング診断について(国際公開第99/47925号パンフレット)記載している。それぞれのパンフレットにおいて、二次元ゲル分析が実施される。分析は、2−Dゲルによって確定される個々のタンパク質のレベルを測定し、正常な組織と比較して悪性度が上昇または低下したタンパク質を同定することから成る。
リオッタ(Liotta)およびペトリコイン(Petricoin)(国際公開第00/49410号パンフレット)は、2−Dゲルおよび質量分析の両方を用いる、タンパク質に基づく診断法の付加的な例を提供している。しかし、リオッタおよびペトリコインの分析は、これが特異的な腫瘍マーカーの探索から成るという点で、パレックの分析と同様である。腫瘍マーカーを同定しようという取組みもまた、DNAマイクロアレイを使用して行われている。ロギング(Loging)・W. T. (2000, Genome Res. 10, 1393-02)は、多形性膠芽腫においてDNAマイクロアレイによって腫瘍マーカーを同定する取組みを記載している。ヘルデンフォーク(Heldenfalk)・I. 他(2001, New England J. Med. 344, 539)は、相互のおよび共通の突発性乳癌から、DNAマイクロアレイ・データのデータ・マイニングによって、BRCA1およびBRCA2突然変異から生じる乳癌の遺伝性の形を区別する腫瘍マーカーを同定する取組みを報告している。
アロン(Alon)他(1999, PNAS 96, 6745-50)は、DNAマイクロアレイ技術を用いて、結腸腫瘍試料と正常な結腸組織とを比較して、調和的に働く発現レベルを有する遺伝子のクラスターを同定することを記載している。このような研究は実際に、正常な組織と比較して、腫瘍中で相対的に過剰発現または過少発現させられる遺伝子を同定した。しかし、クラスタリング・アルゴリズムは、腫瘍マーカーのタイプのパターンと異なる遺伝子発現の診断パターンを同定できるように構成されたものではない。
腫瘍マーカーとは異なるインジケーターに向けられたデータ・マイニングの取組みが診断に利用されている。これらの取組みは通常、パターン認識法を採用することにより、個々の診断マーカーを同定するか、または、データセット相互の関係を分類する。種々異なる条件下での相関した発現に基づいて、遺伝子をカテゴリーに分類するためのパターン認識法の利用の先駆けとなったのは、アイゼン・M. (Eisen, M.)他 (1998, PNAS 95, 14863-68);ブラウン・MPS(Brown, MPS)他 (2000, PNAS 97, 262-67)およびアルター・O. (Alter, O.)他 (2000, PNAS 97, 10101-06)であった。一般に、これらの技術はベクトル空間を利用し、この空間内で、各ベクトルは遺伝子またはDNAマイクロアレイ上の位置に相当する。各ベクトルは、種々異なる条件下での遺伝子の相対的な発現レベルに個別に相当するスカラーから構成されている。従って、例えば、ブラウン他は、79次元ベクトル空間内でベクトルを分析する。この空間内で、各次元は酵母ライフサイクルの段階における時点に相当し、2,467個のベクトルのそれぞれは遺伝子に相当する。パターン認識アルゴリズムは、互いに相関して発現する遺伝子のクラスターを同定するのに使用される。主要な関心は遺伝子発現の相関であるから、アイゼン他のパターン認識アルゴリズムおよび関連作業において採用される測定基準は、ピアソン係数または内積型測定基準であり、ユークリッド距離測定基準ではない。クラスタリングが一旦確立されると、各クラスターの有意性は、クラスターの遺伝子のいかなる共通の既知の特性に留意することによっても確定できる。同一クラスター内に見出される、従来特徴付けされていない遺伝子は、これらの共通の特性のうちの1以上を共有し得ることが推定される。
アイゼン他のパターン認識技術は、アリザデー(Alizadeh)およびシュタウト(Staudt)によって、悪性腫瘍のタイプの診断に応用された。アリザデーおよびシュタウトは初めに、それぞれが遺伝子に対応するベクトルを構築した。それぞれのベクトルは、ある特定の差別化状態下における、例えば休止末梢血リンパ球またはマイトジェンによって刺激されたT細胞における遺伝子の相対的な発現レベルに対応するスカラーを有する。次いでパターン認識アルゴリズムは、遺伝子の発現の相関に従って遺伝子をクラスタリングし、それぞれの差別化状態の特徴を示す発現パターンを定義付けする。次いで、mRNAを遺伝子クラスターの定義付けに用いられるのと同じDNAマイクロアレイとハイブリッド形成することにより、びまん性大型B細胞リンパ腫(DLBCL)の試料が分析された。DLBCLは、それぞれが標準的な差別化状態の特徴を示す少なくとも2つの発現パターンを有することが判った。DLBCLの予後は、特徴的な差別化状態と相関することが判った。従って、アリザデーおよびシュタウトにおいて提示され回答された診断に関する論点は、良性であるかまたは悪性であるかを確定することではなく、悪性の遺伝子発現パターンと最も類似した遺伝子発現パターンを有する差別化された細胞のタイプを同定することにより、悪性のタイプまたはサブタイプを確定するのものである。アリザデー他 (2000, Nature 403, 503-511)。急性骨髄性白血病と急性リンパ性白血病とを区別するのに、同様の技術が使用されている。ゴルブ(Golub, T.R.)他、(1999, Science 286, 531-537)。
従って、多数の、すなわち1,000個を上回るデータポイントを有する物理的または化学的な分析に基づくデータ・マイニング法が、2つのタイプから成ることが判る。すなわち、正常な細胞と比較して、所定のタイプの悪性細胞中で増減する発現レベルを有する遺伝子またはタンパク質のような個々のマーカーを同定するためのデータ・マイニング;および、最も類似する正常な細胞型に従って既知の悪性細胞を分類するために、差別化された正常な細胞型の特徴を示す既知の遺伝子発現のパターンを使用するデータ・マイニング、という2つのタイプである。
従って、単独のマーカー(例えば、腫瘍マーカー)または遺伝子発現クラスター以外の生体データを使用して、生物学的状態を確定することができる方法が必要となる。通常の場合、疾患の病理において単独のマーカーが果たす役割を、生体試料の分析に先立って認識し、確立しなければならず、これには極めて多くの場合、高いコストがかかる。さらに、これらのマーカーは、内部の器官または腫瘍内に局在化し、このようなマーカーを含有する生体試料を得るためには、複雑で侵襲的な局在化された生検を行わなければならない。疾患のような生物学的状態が複雑な場合には、このような試料中に存在する分子の相互関係に関する事前の広範囲な知識なしに、その生物学的状態に固有の複雑なデータを用いて、生物学的状態を診断する能力が例外的に必要となる。
さらに、遺伝子発現クラスター分析は範囲を限定される。なぜならば、このような分析は、その遺伝子の発現が原因となるにせよ、生物学的状態の特徴を示す遺伝子の原因となる作用によって影響されるにすぎないにせよ、このこととは無関係に全ての発現遺伝子の分析を組み込むからである。クラスタリング分析は、当該生物学的状態の特徴を示す遺伝子だけを組み込むのではなく、アッセイから生じたデータ範囲全体を使用し、従ってこの分析は複雑かつ厄介になる。さらに、遺伝子発現分析は核酸抽出法に関与せねばならず、これによりこの分析は複雑になり、時間がかかるようになる。適用時のパターン認識アルゴリズムも難しくなる。なぜならば、採用された遺伝子発現相関が複雑なピアソン係数または内積型測定基準であり、単純なユークリッド距離測定基準ではないからである。
従来技術とは異なり、本発明は、より広範囲な複雑なデータフィールド内のサブセットとして、最適な隠れた分子パターンを発見する。これによりパターン自体は生物学的状態相互間で区別を示す。従って、本発明は、従来技術において開示した分析法と関連する前述の問題の全てを回避し、それまで未知であった診断パターンを発見することができる。このような隠れた分子パターンは、健康データ、臨床データ、または生体データから導き出されたデータ・ストリーム内に存在する。生体データは単純な生体液、例えば、血清、血液、唾液、血漿、乳頭吸引物質、滑液、脳脊髄液、汗、尿、便、涙、気管洗浄物質、綿棒で集められた物質、針吸引物質、精液、膣液、射精前物質等から導出されてよく、このような導出は、定期的なサンプリングを簡単にする。ただしこのような分子パターンの発現は遠隔器官の疾患状態の特徴を示す。生体試料中に存在する特異的腫瘍マーカーまたは分子の相互関係に関する事前の知識は必要とされず、または望まれもしない。本発明はまた、データ生成法およびデータ分析法を開示する。このようなデータ分析法は、最適化アルゴリズムを組み込む。このようなアルゴリズムにおいて、分子パターンは認識されて適応度を試験される。この適応試験において、生体試料の分析に際して、生物学的状態相互間を最良に区別する適応パターンが選ばれる。
III. 発明の概要
本発明は、生物学的状態を事実上診断可能な、または予測可能な生体試料中のある特定の分子の発現パターンがもし全体的に隠れているのでないならば、その微妙なパターンを検出するための、パターン発見法およびパターン発見アルゴリズムを使用することを含む。本発明の1つの態様の場合、このような分子発現パターンは、タンパク質、特に低分子量タンパク質(すなわち、20,000Da未満)の発現パターンである。タンパク質発現のこのような隠れたパターンは、アルゴリズムに提供されたデータ・ストリーム全体の唯一のサブセット、またはいくつかのサブセットから得ることができ、または、データ・ストリーム全体の分析から得ることができる。パターンは、3つ以上の値のベクトルとして定義付けすることができるので、n次元空間におけるベクトルの位置は、個々の値が区別的でなくても、生物学的状態相互間で区別を示す。当該分子は、タンパク質(完全タンパク質、分割タンパク質、または部分発現タンパク質)、ペプチド、リン脂質、DNA、RNA等のような適切な生体物質であってよい。
生物学的状態相互間を区別する区別的パターンは、生体試料の物理的または化学的な分析から導出されたより大きなデータ・ストリーム内に隠された小さなデータ・サブセットである場合が多い。従って生物学的状態相互間を区別するこのような区別的パターンを見出すためには、この区別的パターンを形成する特徴の最適集合を見出すための手段が必要となる。本発明は特徴のこのような最適集合を見出すためのプロセスを組み込む。種々の分類成功度で本発明を実施するのに、区別的パターンのための多数の特徴選択法を用いることができる。これらの方法としては、統計法、段階的回帰法、線形最適化法等が挙げられるが、これらに限定されるものではない。しかし、統計法は多変量線形回帰のような少なくとも単純な周知の形においてしばしば線形である点で、いくつかの限界を有する。さらに、統計モデルは、非線形データに関して堅牢ではない傾向がある。統計モデルが成功裡に採用できる個々の変数の数は、一般に10以下であり、事実上好ましい限界は5つまたは6つである。好ましい態様は、遺伝的アルゴリズム、進化計算法を適応パターン認識アルゴリズムに直接に結びつけることにより、最適な特徴集合を効率的に見出す。標題「ヒューリスティックな分類法 (Heuristic Method of Classification) 」(出願日:2001年6月19日、2000年6月19日出願の出願番号60/212,404号明細書の優先権を主張)を参照されたい。
本発明により開示される1つの方法は、2つの関連ヒューリスティック・アルゴリズムである、学習アルゴリズムと、診断アルゴリズムとから成る。診断アルゴリズムは、学習アルゴリズムを学習(または訓練)データセットに適用することにより生成される。学習データセットは、生体試料から形成されたデータセットである。この生体試料には、パターン発見のために当該生物学的状態が提供される。例えば、学習データセットは、確立された生検診断、例えば、良性腫瘍や悪性腫瘍を有する個体の血清から採取されたデータから成ってよい。このことは、学習アルゴリズムが、癌血清試料から正常な血清を区別できるタンパク質の認証(signature)パターンを見出すことを可能にする。
1つの態様では、本発明による方法は、先ず、生体試料に高処理能力の物理的または化学的な分析を受けさせることにより、データ・ストリームを得る。このようなデータ・ストリームとしては、限定するものでなく、サンプル中に見出されたタンパク質、または、種々異なる試験ポリヌクレオチドから成るアレイとのmRNAハイブリッド形成強度に見出されたタンパク質の質量スペクトル・データが挙げられる。一般には、データ・ストリームは、多数(10,000以上)の強度によって特徴付けされる。これらの強度は、種々異なる試料のデータ・ストリーム中の相応する個々のデータが同定可能となるように生成される。
診断法の第1のステップは、ベクトル、すなわち、データ・ストリームの特徴を示す少数(2〜20100個、より典型的には5〜208個)から成る順序のある集合を算出することである。データ・ストリームをベクトルに変換することを「抽象化」と呼ぶ。この態様では、抽象化は、データ・ストリームから少数の特定の強度を選択することにより実施される。
診断法の第2のステップは、そのベクトルが存在するデータ・クラスターを、もしそれがあるならば確定することである。データ・クラスターは数学的構造である。これらの構造は、ベクトル空間内で固定的サイズを有する互いに重なり合わない「球」と多次元同等物である。このようなデータ・クラスターは超球として知られる。各データ・クラスターの位置および関連診断は、訓練データセットから学習アルゴリズムによって確定される。生体試料のベクトルが既知のクラスター内に存在する場合、試料には、そのクラスターと関連する診断が与えられる。試料ベクトルがいかなる既知のクラスターからも外れて存在する場合、試料はその分類基準には合致しないという診断、または、詳細不明の異型のもの、すなわち「異型試料、NOS」であるという診断を下すことができる。例えば、患者から採取された生体試料が特定の癌の悪性状態の分類と合致しない場合、この試料は、非悪性、非正常として、または詳細不明の異型のもの、「異型試料、NOS」として分類されることになる。
学習アルゴリズムは、既知の数学的技術と、2つのプリセット・パラメータとの組み合わせを利用する。ユーザーは、ベクトル空間の次元数とデータ・クラスターのサイズとを前もってセットする。典型的には、ベクトル空間は、各次元における強度の変化が一定であるような、正規化されたベクトル空間である。このように、クラスターのサイズは、クラスター内に存在するベクトルの間の最小類似百分率として表すことができる。
1つの態様では、学習アルゴリズムは2つの包括的な部分から成る。これらの部分は、他者によって開発され、この分野では周知である、遺伝的アルゴリズム(J.H. Holland, 「自然系および人為系における適応(Adaptation in Natural and Artificial Systems)」, MIT Press 1992年)および自己編成型適応パターン認識システム(T. Kohonen, 「自己編成・連想記憶(Self Organizing and Associative Memory), 情報科学(Information Sciences)における8集」, Springer Verlag, 1984年; Kohonen, T, 「自己編成マップ (Self-organizing Maps)」, ハイデルベルク、Springer Verlag, 1997年)である。遺伝的アルゴリズムは、これらがあたかも、コンピュータによる自然淘汰プロセスを通して操作可能である個々のエレメントから成る情報であるかのように、複雑なデータセットを編成し分析する。
本発明の場合、それ自体において、かつ自ずから「診断的」な、隠れたまたは微妙な分子発現パターンの探索は、学習アルゴリズムまたはデータ・マイニング技術の従来の実施によって生成されるパターンの探索とは質的に異なる。これまでのデータ・マイニングの実施は、分類を示す特異的分子産物、例えば、病理学的条件において上昇または下降するタンパク質または転写物を同定した。従って、識別された分子産物のレベルはそれ自体、診断的と呼ばれる。なぜならば産物のレベルは、分子産物のレベルを正規化するのに用いられるおそらくは正規化分子産物以外の、試料中の分子産物のレベルをさらに考えに入れることなしに診断に用いられるからである。それ自体診断的なこのような分子産物の一例は腫瘍マーカーである。
これに対して、本発明によるデータ・クラスター分析の場合、特定のマーカー、例えばタンパク質または転写物のレベルの診断有意性は、試料ベクトルを算出するのに用いられる他の要素のレベルに関連する。このような結果を以後、前後関係による診断結果と呼ぶ。このようにデータ・マイニング技術の従来の実施では、当該生体試料と学習データセットとの間の類似は、特定の診断分子産物と比較した、生体試料の特定のグループ分けに基づいていた。しかし本発明の場合、学習アルゴリズムは、データパターンの同一性または関係に関して事前の情報を知ることなしに、すなわち、特定の診断分子産物が特定の分類を示すという事前の入力なしに、全体的に新しい分類パターンを発見する。
本発明は、分類、例えば、癌腫、黒色腫、リンパ腫、肉腫、芽細胞腫、白血病、骨髄腫および神経腫瘍のような癌における悪性度の診断をもたらすために、隠れた、前後関係による診断パターンを見出すという、予期せぬ、または明白でない発見に一部基づく。
IV. (発明の詳細な説明)
本発明は、a)生体データを表すデータ・ストリーム(または生体データを表すデータ・ストリームと臨床データ、健康データまたは非生体データとの組み合わせ)を生成し、そのデータを抽象化して固有ベクトルにし;b)分子発現の隠れた診断パターンを発見し(すなわち、パターン発見);さらに、c)このような分子発現パターンがどの当該生物学的状態を表すのかを確定する、ことを含む。当該分子としては、限定するものではないが、タンパク質、ペプチド、RNA、DNA等が挙げられる。生体試料としては、限定するものではないが、血清、血液、唾液、血漿、乳頭吸引物質、滑液、脳脊髄液、汗、尿、便、涙、気管洗浄物質、綿棒で集められた物質、針吸引物質、精液、膣液、射精前物質等が挙げられる。
当該生物学的状態は、病理学的診断、毒性状態、薬物の有効性、疾患の予後診断、病期、器官の生物学的状態、病原体(例えば、ウィルス)の存在、1種以上の薬物の毒性等であってよい。本発明は、タンパク質のような或る特定の分子の発現パターンの変化が、非罹患状態とは区別可能であるようないかなる疾患の診断にも用いることができる。このようにして、遺伝的異常を発現させる遺伝的要素を有する疾患、薬物毒性の発現が認められるような疾患、または、体内の分子レベルが影響されるような疾患も、本発明により研究することができる。このような疾患としては、限定するものではなく、癌(癌腫、黒色腫、リンパ腫(ホジキン型および非ホジキン型)、肉腫、芽細胞腫、白血病、骨髄腫および神経腫瘍、例えば膠芽腫等)、アルツハイマー病、関節炎、糸球体腎炎、自己免疫疾患等が挙げられる。癌腫の例としては、限定するものではなく、すい臓、腎臓、肝臓および肺の癌腫;胃腸の癌腫が挙げられる。
本発明は、早期診断が重要であるがしかし症状がないため技術的に難しい特定の疾患の診断、および、病理組織の代謝活性のため、血清中で検出可能な差異を形成することが予期されるような疾患の診断に特に有用である。従って悪性度の早期診断が、本発明を利用する上での主要な焦点となる。
本発明の具体的な構成要素を以下に説明する。
A. データ・ストリームの生成
データ・ストリームは、高処理量データ・ストリームをもたらす生体試料の、いかなる再現可能な物理的または化学的な分析であってもよい。高処理量データ・ストリームは、少なくとも千分の一(3つの有効数字)、より好ましくは一万分の一で定量可能な1,000個以上の測定値によって特徴付けされることが好ましい。データ・ストリーム生成法は数多く存在する。当該分子がタンパク質またはペプチドの場合、本発明の1つの態様では、データ・ストリームを生成するのに、タンパク質の「飛行時間(time of flight)」形質量スペクトルを使用してもよい。当該分子がタンパク質またはペプチドの場合、より具体的には、マトリックス支援レーザー脱離イオン化飛行時間(MALDI−TOF)分光法および表面増強レーザー脱離イオン化飛行時間(SELDI−TOF)分光法を用いてもよい。国際公開第00/49410号パンフレットを一般的に参照されたい。1つの態様では、毒性を表す生物学的状態に対応するデータ・ストリーム、および、病原体を検出するためのデータ・ストリームを生成するのに、SELDI−TOFを用いてもよい。別の態様では、遺伝子発現分類のための連続増幅遺伝子発現(SAGE)を用いて、データ・ストリームを生成することができる。ある特定の環境では、データ・ストリームは、2−Dゲル、例えば二次元ポリアクリルアミドゲル電気泳動法(2D−PAGE)を用いて生成することができる。
臨床病理学の場合、分析のための好ましい患者試料は血清である。しかし、比較的均質な生検標本を用いることもできる。ある特定の病状の場合、他の液体、例えば、滑液を関節炎の鑑別診断に、または尿を膠芽腫の鑑別診断に用いることができる。
SELDI−TOFおよびMALDI−TOFのどちらの分析にも含まれる特定のタンパク質は、採用される表面またはマトリックスに依存する。C−18アルカン表面のような親油性表面は、陰イオンまたは陽イオン性の表面と比較して特に便利である。しかし、種々異なる表面を利用して同一試料から、複数のスペクトルを生成できることは当業者には明らかである。これらのスペクトルを繋げて、本発明により分析可能な「超スペクトル」をもたらすことができる。同様に、本発明により分析可能な2つ以上の高処理アッセイ法からのデータを1つに合わせることもできる。さらに、本発明に記載した生体データを、臨床データ、健康データまたは非生体データと結びつけることもできる。
使用されるのが表面であれ、マトリックスであれ、表面とマトリックスとの組み合わせであれ、1つの生体試料から次の生体試料まで、表面が確実に均一になるように、大きな注意を払わなければならない。
データ・ストリームには、分子量のような決まった順序を有するパラメータによって本質的には編成されず任意の順序を有する測定値も含むことができる。このように、組織試料が生検標本である場合、データ・ストリーム中の個々の遺伝子の順序が任意であることを認識した上で、2,000個以上の遺伝子の発現レベルを同時に測定するDNAマイクロアレイ・データをデータ・ストリームとして使用することができる。
当業者には明らかであるように、機器の利用可能な商業的な態様に沿って、生体試料からのデータ・ストリームの生成と、最適な論理染色体に基づくデータ・ストリームの抽象化とを2つの別個のプロセスと考えて、本発明を説明する。しかし、唯一のルーティン設計を選択すると、測定機器自体が抽象機能を発揮することが可能になる。このことによって、このような診断法および特許請求の範囲に対する本発明の関与に変化が生じることはなく、主張した診断法の抽象化部分とベクトル分析部分とを相異なるコンピュータ・デバイス上で実施可能であると見なすことができる。
なお、本発明の方法を用いて、患者試料からの単独のデータ・ストリームを複合診断のために分析することができる。このような複合診断にかかる付加的なコストは僅かである。なぜならば、それぞれの診断にとって特異的なステップはコンピュータ処理だけで済むからである。
B. 抽象化プロセス
本発明の診断プロセスにおける第1のステップは、データ・ストリームを固有ベクトルに変換することである。データは、ピーク全体に1.0の任意の値を割り当て、他の全ての点には所与の分数値を割り当てることにより、抽象化に先立って正規化すると便利である。例えば、データ・ストリームがTOF質量スペクトルによって生成される実施例の場合、TOF質量スペクトルの最も単純な抽象化は、少数のデータポイントの選択から成る。当業者には明らかなように、インターバル全体にわたる平均、または、選択された典型的データから所定の距離を置いたデータポイント相互間のより複雑な和または差のような、複数のポイントのより複雑な関数を構築することもできる。データ・ストリームの強度値のこのような関数も使用することができ、実施例において示す単純な抽象化と同等に機能することが期待される。
やはり当業者に明らかなように、任意のポイントに瞬間的な勾配をつけることにより行われる抽象化が本発明において機能を発揮できるかどうかを、ルーティン実行により確定することができる。従って実施例のルーティン実行時に得られるこのような変化は本発明の範囲内にある。
C. パターン発見
上記概要において論議した多数の方法により、パターン発見が達成される。ただし好ましい態様の場合、パターン発見は診断アルゴリズムと学習アルゴリズムを含む。本発明のこの態様を実践するために、ルーティン実行者は、学習アルゴリズムを採用することにより、診断アルゴリズムを作成しなければならない。学習アルゴリズムを採用するために、ルーティン実行者は訓練データセットを使用し、2つのパラメータと、次元数と、データ・クラスターのサイズとを選択しなければならない。標題「ヒューリスティックな分類法 (Heuristic Method of Classification) 」を有する米国特許出願明細書(出願日:2001年6月19日、2000年6月19日出願の出願番号60/212,404号明細書の優先権を主張)を参照されたい。
1つの態様の場合、他者によって開発され業界では周知の2つの異なるタイプの、公然と入手可能な汎用ソフトウェア、つまりデータ・ストリームの抽象化を制御する最適な論理染色体(注1)を同定するために論理染色体集合を処理する遺伝学的アルゴリズム(J.H. Holland著「自然系および人為系における適応(Adaptation in Natural and Artificial Systems)と、論理染色体によって生成されたあらゆるベクトル集合に基づいてデータ・クラスターの集合を同定する、メリーランド州グリーンベルトの、Group One Softwareから入手可能な適応型自己編成パターン認識システム(T. Kohonen著「自己編成・連想記憶、情報科学第8集(Self Organizing and Associative Memory, 8 Series in Information Sciences)」 Springer Verlag刊 1984年; Kohonen T著 「自己編成マップ(Self-organizing Maps)」ハイデルベルクのSpringer Verlag刊 1997年参照)とを組み合わせることにより、学習アルゴリズムを実行することができる。具体的には、適応型パターン認識ソフトウェアは、均質なデータ・クラスター、すなわち、唯1つの分類タイプを備えた学習集合のベクトルを含有するクラスター内に存在するベクトルの数を最大化する。(注1:「論理染色体」という用語は遺伝学的学習アルゴリズムと関連して使用される。なぜならば、アルゴリズムの論理動作は、再生、選択、組換えおよび変異と類似しているからである。もちろん、DNAその他における論理染色体の生物学的な態様はない。本発明の遺伝学的学習アルゴリズムは純粋にコンピュータ・デバイスであり、生物学に基づいた情報処理のためのスキームと混同してはならない。)
遺伝学的アルゴリズムは本質的に、固有ベクトルを算出するのに使用されるデータポイントを確定する。ただし専門技術用語と調和させて、選択されるべき特定のポイントのリストを論理染色体と呼ぶ。論理染色体は、固有ベクトルの次元の数と同数の「遺伝子」を含有する。妥当な数のデータポイントから成るいかなる集合も論理染色体であり得る。ただしこの場合、重複する染色体の遺伝子がないことだけが条件となる。遺伝子の順序は本発明にとって重要ではない。
2つの見合った条件がある場合に遺伝学的アルゴリズムを使用することができる。固定サイズの不連続要素から成る集合またはストリングによって、問題に対する特定の解決策が表現可能でなければならない。これらの要素は数字または文字であってよい。さらなる解決策をもたらすために、ストリングを組み換えることができる。また各解決策の相対的な長所を示す数値、つまりその適応度を算出できなければならない。このような条件下では、遺伝学的アルゴリズムの詳細は、解決が求められている問題とは無関係である。従って、本発明の場合、汎用の遺伝学的アルゴリズム・ソフトウェアを採用することができる。アルゴンヌ国立研究所から入手可能なPGAPackライブラリのアルゴリズムが適している。特定の論理染色体の適応度の算出について、以下に説明する。
説明のための例では、約100個の試料データ・ストリームから成る訓練データセットを使用した。それぞれの試料データ・ストリームは約15,000個のデータポイントを含有する。遺伝学的アルゴリズムを、ランダムに選択した15,000個の論理染色体で初期化した。アルゴリズムが進行するのに伴い、より適応性の高い論理染色体は複製され、より適応性の低い論理染色体は終結される。論理染色体間で組換えが行われ、突然変異が生じる。この突然変異は、染色体の要素のランダムな置き換えによって発生する。論理染色体の最初に選択された集まりがランダムであることは、本発明の重要な特徴ではない。極めて高い可変性を有するデータポイントを同定するためにデータ・ストリームの全体集合を予め選別することは有用であるが、しかしこのような技術は、所望しない初期化の傾向を招いてしまうおそれもある。このようなプロセスを生き延びた最良適応パターンは、生物学的状態相互間を区別し、望ましい分類を確定するのに用いられる。
D. パターン認識プロセスおよび適応度スコア生成
遺伝学的アルゴリズムによって生成される論理染色体のそれぞれの適応度スコアが算出される。適応度スコアの算出には、所与の論理染色体に最適なデータ・クラスター集合を生成することが必要になる。データ・クラスターは単に、訓練データセットの目的ベクトルが内在するベクトル空間の容積である。最適なデータ・クラスター集合の生成法は、本発明にとって重大ではなく、後で考察する。しかし、データ・クラスター・マップを生成するのにどのような方法を使用するのであれ、マップは以下の規則、すなわち:(i)各データ・クラスターはそのデータ・クラスター内に位置するデータポイントの中心に配置すべきであり、(ii)2つのデータ・クラスターが重なり合ってはならず、(iii)正規化ベクトル空間内の各クラスターの次元が、マップの生成に先立って固定される、という規則によって制約される。
上述のように、学習アルゴリズムを採用するために、ルーティン実行者は訓練データセットを使用し、2つのパラメータと、次元数と、データ・クラスターのサイズとを選択しなければならない。両パラメータは、ルーティン実験を用いて設定することができる。ベクトルにおける次元数には絶対的または固有の上限はないが、しかし、学習アルゴリズム自体が各実行中に次元数を本質的に制限する。次元数が過度に少ないかまたはクラスターのサイズが過度に大きいと、学習アルゴリズムは、全てのサンプルを均質なクラスターに正確に分類する論理染色体を生成しそこなう。次元数が多すぎる場合には逆のことが言える。この環境下では、学習アルゴリズムは、学習プロセスの早期に、最大限可能な適応度を有する多くの論理染色体を発生させ、したがって、実りのない選択しか行えない。同様に、データ・クラスターのサイズが余りにも小さいと、クラスターの数は訓練データセット内のサンプルの数に近似するのが判り、また、やはりこの場合もルーティン実行者は、多数の論理染色体が最大適応度をもたらすことを見出すことになる。
当業者には明らかなように、訓練データセットはほぼ常に均質なデータ・クラスターに割り当てることができる。従って、学習アルゴリズムによって生成された診断アルゴリズムの値は、訓練データセット以外のデータセットを選別する診断アルゴリズムの能力によって試験されなければならない。学習アルゴリズムが生成する診断アルゴリズムが、訓練データセットを首尾よく割り当てるものの、試験データセットを不十分にしか割り当てない場合、訓練データは、学習アルゴリズムによって過剰適応させられたと言われる。過剰適応は、次元数が過度に多い場合、および/または、データ・クラスターのサイズが過度に小さい場合に生じる。
データ・クラスターのサイズを定義付けするのに用いられる方法は、本発明の一部である。クラスターのサイズは、データ・クラスターのあらゆる2つの構成要素の間のユークリッド距離(根二乗和)に相当する最大値によって定義付けすることができる。データ・ストリームがSELDI−TOF質量分析データによって生成される場合、本発明には、90%の類似率の要求に相応するデータ・クラスターのサイズが適している。数学的には、90%の類似率は、クラスターのあらゆる2つの構成要素間の距離が、正規化ベクトル空間内の2つのポイント相互間の最大距離の0.1未満であることを要求することにより定義付けされる。この算出に際して、ベクトル空間は、訓練データセット内のベクトルの各スカラーの範囲が0.0〜1.0となるように正規化される。こうして正規化された、ベクトル空間内のあらゆる2つのベクトル間の最大限生じ得る距離はルートNとなる。この場合Nは次元数である。各クラスターのユークリッド直径は0.1 × ルート(N)となる。
ベクトル空間の特定の正規化は、この方法の重大な特徴ではない。前述の方法は、算出を簡単にするために選択したものである。それぞれの次元を所定の範囲に合わせるのではなく、各次元が等しい差異を有するように基準化することにより、別の正規化を達成することもできる。
当業者にはさらに明らかなように、データ・ストリーム内の値の分布が正規分布または非正規分布された対数である場合、データ・ストリームを、対数の形に変換してもよい。
論理染色体のための最適なデータ・クラスター集合が生成されると、その染色体に対応する適応度スコアを算出することができる。本発明の場合、染色体の適応度スコアは、均質なクラスター内、すなわち、単独診断を有する試料からの固有ベクトルを含有するクラスター内に存在する訓練データセットのベクトルの数に概ね相当する。より正確に述べるなら、適応度スコアは、それぞれのクラスターに均質性スコアを割り当てることにより算出される。均質性スコアは、均質なクラスターに対応する0.0から、等しい数の悪性および良性の試料ベクトルを含有するクラスターに対応する0.5まで変化する。染色体の適応度スコアは、データ・クラスターの平均適応度スコアである。従って、0.0の適応度スコアは最も適応度が高い。論理染色体はより多くのデータ・クラスターを生成する傾向がある。すなわち、2つの論理染色体がデータの割り当てにおいて同数のエラーを有する場合、論理染色体がより多数のクラスターを生成すると、平均均質性スコアは低くなり、ひいては適応度スコアがより良好になる。
データ・クラスターを生成するための好ましい技術は、コホーネン(Kohonen)によって開発された自己編成マップ・アルゴリズムを使用することである(Kohonen, T, 「自己編成マップ (Self-organizing Maps)」, ハイデルベルク、Springer Verlag, 1997年)。「リード・クラスター・マップ(Lead Cluster Map(LCM))」または「アダプティブ・フィーチャ・マップ(Adaptive Feature Map)」と様々に呼ばれるこの種の技術は、公然と入手可能な汎用ソフトウェアによって実施することができる。適切な製造供給元および製品には、Group One Softwareから入手可能なモデル1(Model 1)およびアダプティブ・フィーチャ・マップ(Adaptive Fuzzy Feature Map) (American Heuristics Corp.)が含まれる。LCMは、a) 非線形モデル化法であり; b) 独立変数が事実上無限であり; c) 他の非線形モデル化技術と比べて適応性を有する、という重要な利点を有する。LCMはデータストリーム中の新規なパターンを検出し、めったにないパターンを追跡することができる。このことは生物学的状態、つまりウィルスへの変異を分類する上で特に重要である。
E. 特定の態様の説明および検証
1.前立腺癌の診断の経緯
上述の学習アルゴリズムを利用して、55人の血清試料のSELDI−TOF質量スペクトル(MS)を使用した前立腺癌の診断のために、本発明を採用した。これらの試料のうち30個の試料は、生検により前立腺癌と診断されており、4.0ng/mlを上回る前立腺血清抗原(PSA)レベルを有しており、25個の正常な試料は1ng/ml未満のPSAレベルを有している。7つの分子量値(2092、2367、2582、3080、4819、5439および18,220Da)を選択することにより、MSデータを抽象化した。7個の分子量値を選択することにより、MSデータを抽象化した。特定の分子量は本発明の重要なパラメータではなく、吸収面に応じて変わってよい。訓練データセット内の各ベクトルを均質なデータ・クラスターに割り当てるクラスター・マップを生成した。クラスター・マップは34個のクラスター、つまり17個の良性クラスターと17個の悪性クラスターとを含有した。
訓練データセットから排除された231個のサンプルを使用して、診断アルゴリズムを試験した。種々の臨床診断および病理学的診断を有する患者から採取した6組の試料を使用した。病理学的・臨床的記述およびアルゴリズムの結果は次の通りであった:1) PSA>4ng/mlを有し、生検で癌と証明されている24人の患者のうち、22人が疾患データ・クラスターに位置し、2人はどのクラスターにも位置しなかった;2) 6人の正常者は全て健康クラスターに位置した;3) 良性前立腺肥大(BPH)または前立腺炎を患い、PSA<4ng/mlを有する39人のうち、7人は疾患データ・クラスターに位置し、健康データ・クラスターに位置する者はおらず、32人がどのデータ・クラスターにも位置しなかった;4) BPHまたは前立腺炎を患い、4<PSA<10ng/mlを有する139人の患者のうち、42人が疾患データ・クラスターに位置し、2人が健康データ・クラスターに位置し、95人がどのデータ・クラスターにも位置しなかった;5) BPHまたは前立腺炎を患い、PSA>10ng/mlを有する19人のうち、9人が疾患データ・クラスターに位置し、健康データ・クラスターに位置する者はおらず、10人がどのデータ・クラスターにも位置しなかった。生検で悪性腫瘍と証明されており、PSA>10ng/mlを有する患者から、前立腺摘除の前後に試料を採取することにより、第6のデータセットを作成した。予想通り、手術前の7つの試料のそれぞれは疾患データセットに割り当てられた。しかし、手術の6週間後、PSAレベルが1ng/ml未満に低下した時点で採取されたサンプルは、いかなるデータセットにも割り当てることができなかった。これらの結果を表1に要約する。
前述の試験の結果を評価するときには、4〜10ng/mlのPSAを有し、生検により良性と診断された患者の潜伏癌の率が約30%であることを思い出さなければならない。従って、高PSAを有するがしかし癌の組織診断は下されていない患者の18%〜47%が悪性であるという所見は、悪性腫瘍の存在の正確な予測を裏付けている。
目下のところより重要なのは、非癌・非正常カテゴリーが訓練中には存在しなかったにもかかわらず、診断アルゴリズムが3)、4)および5)のうちの試料を有意な割合で非癌・非正常カテゴリーに分類できることである。実際に、この群からのいずれの試料も相当数の潜伏癌キャリヤを必ず含むことになるという事実から、BPHまたは前立腺炎試料が訓練データセット内に含まれているはずがないことが明らかである。
Figure 2013101130
2.卵巣癌の診断の経緯
再び患者の血清のSELDI−TOF MS分析を利用して、卵巣癌の診断アルゴリズムを生成するのに、上述の方法を採用した。クラスター集合マップを構築するのに、100個の試料から成る訓練集合を用いた。5つの分子量(531、681、903、1108および2863m/e)を選択することにより、MSデータを抽象化した。15個の疾患クラスターと11個の健康クラスターとから成るクラスター・マップを構築した。卵巣癌であることが証明されている訓練データセット中の50個の試料のうち、40個が疾患データ・クラスターに割り当てられ、残りの10個は偽陰性に割り当てられた。健常者からの50個の試料のうち、44個が健康データ・クラスターに割り当てられ、残りの6つは偽陽性に割り当てられた。
選択された分子量のそれぞれに関して、健康データ・クラスターの値および疾患データ・クラスターの値の範囲が重なり合うことが判った。実際、5つの分子量のうちの4つに関して、疾患データ・クラスターの範囲は、健康データ・クラスターの範囲を包含する。さらに、検出された診断パターンは、腫瘍マーカーによってもたらされたものではなく、前後関係による診断結果によってもたらされたものである。
さらに100個の試料を用いて、診断アルゴリズムを試験した。これらの試料を3つの臨床的、病理学的な群に分けた。これらの群およびアルゴリズムの結果は以下の通りであった:1) 疾患を有していない患者からの50個の試料のうち、47個が健康データ・クラスターに割り当てられ、3つが疾患データ・クラスターに割り当てられ;2) 卵巣癌第II期、第III期、または第IV期の32人の患者の全てが疾患データ・クラスターに割り当てられ、さらに、3) 卵巣癌第I期の18人の患者の全てが、疾患データ・クラスターに位置した。これらの結果を表2に要約した。
Figure 2013101130
3.早期疾患に対する感度
200個の標本から成る卵巣癌研究集合内の、ランダムに選択した血清(対照集団から50個および疾患集団から50個の血清)から成る集合を、SELDI−TOF質量分析およびこれに続く生物情報学法の訓練に際して選択した。15,0005個のパターン順列から成る開始集合から見出された、534、989、2111、2251および2465Daの5つの独立した分子量領域における質量強度のパターンは、98%(49/50)の卵巣癌試料と94%の対照とを、訓練集合において正しく分離した。最適なタンパク質の(proteomic)パターンは、診断内容を知らせない事例からの100個のSELDI−TOFデータ・ストリームで挑戦して、100個の未知の試験試料中に含有された50個全ての癌標本内の卵巣癌の存在を正確に予知することができた(50/50、93%〜100%の95%信頼区間)。このような予知は、18/18の第I期癌の正確な分類(82%〜100%の95%信頼区間)を含む一方、癌のないことを知らせない試料に対する特異性を維持する(47/50、84%〜99%の95%信頼区間、カイ二乗検定でp全体<10-10)。これらの結果は、血清中の低分子量タンパク質のパターンが、隔たった部位の器官内部の組織の病理の変化を反映するという仮説を裏付ける。さらに、このようなパターンは、早期の病理学的変化の敏感なインジケータであり得る。それというのも、このようなパターンは、器官に閉じ込められた第I期の卵巣癌標本からの18個の血清全てを正確に分類したからである。
4.前立腺癌および良性前立腺肥大症の存在の特定、予知および区別
先ず、本発明により、無症状の、年齢の整合した男性から導出された血清から、生検によって前立腺癌であることが証明された男性からの血清を区別可能なタンパク質のパターンを見出すことに挑戦した。訓練集合は56個の血清から成り、そのうち31個は、生検によって前立腺癌が証明された無症状の男性からのものであり(PSA>4ng/ml、平均14.5ng/ml)、25個は、前立腺癌の証拠のない、年齢の整合した男性からのものである(PSA<1ng/ml、平均0.3ng/ml)。これら56個の血清をSELDI−TOFによって分析した。パターン発見分析は、2092、2367、2582、3080、4819、5439および18220Daの特定の分子量における、(15,0007個の可能な順列からの)7つのタンパク質ピークを組み合わせた正規化強度の有意なパターンを見出した。これらのパターンは前立腺血清訓練集合において分析された56個全ての試料を区別することができた。
訓練後、最適なタンパク質のパターンを、227個の内容を知らせない血清試料で試験した。内容を知らせない研究集合は、a) 捕集時点で4〜10ng/mlのPSA値を有する、無症状であり、次いで生検により癌と証明された男性からの24個の血清、b) 年齢の整合した6人の男性からの対照血清(PSA<1ng/ml)、およびc) 生検により良性前立腺肥大症または前立腺炎と証明された男性からの197個の血清(PSA値範囲:0.4ng/ml〜36ng/ml)を含有した。
前立腺認証パターンを用いて、データ・マイニング・ツールは、4〜10ng/mlのPSA値を含有する17/18を含めて、内容を知らせない研究集合中の前立腺癌の存在を正確に予知することができた(92%、22/24、BPH患者と比較してp<0.000001)。重要なのは、生検によってBPHと証明された患者の70%(137/197)が独自(非正常・非癌)の表現型に属するとして分類されたことである。BPH陽性集団からの血清の1%だけが正常表現型として分類された。6個の健康対照からの血清を、生検により癌と証明された24人の患者の血清と比較すると、6/6人の健康な患者が正しく分類され、これと比較して22/24人の前立腺癌患者が正しく分類された(p<0.000001)。さらに、PSAレベルの上昇(PSAが上昇した正常、BPH)と、疾患の重症度分類の上昇との間の関係には統計学的に有意な傾向が生じた(p=1.4 × 10-4)。前立腺切除治療を受けた7被験者のうちの7人からの適合された血清から成るブラインド集合において、最適化前立腺認証は、癌表現型から非癌(ただし非正常)表現型に戻った(p=0.016;59%〜100%の95%信頼区間)。
5.試料源の調製および分析
a.卵巣癌
施設内治験審査委員会(Institutional Review Board: IRM)完全管理に従って、早期発見研究ネットワーク(Early Detection Research Network: EDRN)の全国卵巣癌早期発見プログラム(National Ovarian Cancer Early Detection Program)から、匿名の卵巣スクリーニング血清を得た。この集合は、200人の無症状の女性からの血清を含有し、このうち100人は試料採取時点で卵巣癌を患い、100人は、家系または以前の乳癌診断から判断して卵巣癌の危険がある対照女性である(表3)。この罹患していない女性群は、過去5年間にわたって追跡されており、病気にかかっていない。診断および介入に先立って、全ての血清を得た。疾患集団は、組織学的に確認された漿液性乳頭状癌、類内膜癌、明細胞癌、粘液性癌、腺癌および全ての段階の混合型卵巣癌を含んだ。疾患集団における全ての女性は、広範囲な外科的審査および正式なFIGO段階付けを受けた。
Figure 2013101130
b.前立腺癌
匿名の前立腺スクリーニング血清研究集合を、前立腺癌スクリーニング・クリニックから得た。ここではインフォームド・コンセント承認下で試料を得た(277個の試料)(表3)。施設内治験審査委員会承認のインフォームド・コンセント下で国立癌研究所 (National Cancer Institute)で、付加的な20個の匿名の標本を捕集した。1996年にチリでの試行が開始され、5年間続けられた。被験者資格基準は、前立腺癌の病歴がない50歳を上回る無症状の男性であることを必要とした。全ての男性は血清試料を提供し、次いで医学評価およびデジタル直腸検査を受けた。次いで血清PSA>4.0ng/mlであるかまたはデジタル直腸検査で疑わしいと考えられる男性は、病理診断のためにシングルコア針生検を受けた。前立腺癌は段階全範囲(I〜III)およびグリーソン・スコア(4〜9)で表した。NCIで取得した20個の血清は、a)診断時および生検により、器官に閉じ込められた前立腺癌の存在が証明された、診断時点および前立腺切除から6週間後の7人の男性、およびb)PSA<1.0ng/mlの正常な健康な男性有志から採取されたものである。医学検査、診断および処置に先立って、全ての血清を得た。全ての血清を捕集し、遠心分離し、アリコートし、使用するまで液体窒素中に保存した。受け取った血清を一度融解し、10ミリリットルのアリコートに分離し、次いでSELDI−TOF分析を実施するまで液体窒素中に再冷凍した。
5.タンパク質分析
Protein Biology System 1 SELDI−TOF質量分析計 (カリフォルニア州フリーモント在、Ciphergen Biosystems)でタンパク質質量認証を生成するために、血清を一度融解して使用した。アンギオテンシンI(アミノ酸配列1〜10)とウシのシトクロムc(カリフォルニア州フリーモント、Ciphergen Biosystems)とをそれぞれ1286.5Daおよび12230.9Daの質量で使用して、外部質量較正を達成した。1000〜20,000Da質量範囲内でC18逆相疎水性相互作用表面に結合可能な全てのタンパク質のタンパク質プロフィールを生成した。有機酸マトリックス表面は、α−シアノ−4−ヒドロキシ−桂皮酸(CHCA)であった。このマトリックスは、選択された標的(bait)からの完全タンパク質電離のために、タンパク質混合物と共結晶化することが必要とされる。
試料調製:1マイクロリットルのアセトニトリル(ミズーリ州セントルイス、Sigma-Aldrich Co.)を、8−フィーチャ(feature)C18疎水性相互作用タンパク質チップ(カリフォルニア州フリーモント、Ciphergen Biosystems)の試料スポットに加えた。このチップは、タンパク質毎に特異的な固有一次アミノ酸配列に依存する疎水性相互作用を介してタンパク質と結合することになる。アセトニトリルの塗布に続いて、1μLの血清を添加した。試料をチップ上で空気乾燥させた。チップを4分間、脱イオン水中で渦状に運動させることにより、強力に洗浄し、空気乾燥させた。最後に、0.5μLのCHCA溶液を添加した。マトリックス溶液を乾燥させた後、付加的な0.5μLのマトリックスを各試料に塗布し、空気乾燥させた。C18チップを選んだ理由は、このチップが、最も多数の相異なるタンパク質認証およびペプチド認証を一貫して、かつ再現可能に生成することが判ったからである(データは図示せず)。SELDI−TOFは、他の飛行時間形分光分析技術と同様に、低分子量範囲(<20,000Da)においてその最良の感度を有する。データを記録し、SELDIプロテイン・バイオロジー・システム(バージョン2.0)ソフトウェア(カリフォルニア州パロアルト在、Ciphergen Biosystems, Inc.)での分析のために最適化した。フィルタリングや規準化を全くしていない生のSELDIデータを、データ・マイニング・ツールによる分析のために、ASCIIデータ・ファイルに変換した。
6.薬物毒性の検出
ドキソルビシンで処置されたラットからの生体試料から得られたデータ・ストリームで、本発明の方法を試験した。このドキソルビシンは心臓毒性を生じさせることが証明されている。生理食塩水で対照を処置した。心臓毒性を示すラットから得られた生体試料は、100%の選択度と100%の感度とで正確に分離され、偽陽性はなかった。表4参照。
Figure 2013101130
7.薬物処置の検出
ドキソルビシンおよび心臓保護剤とでラットを処置した。従って、毒性を有する動物と、毒性を有しない動物とがいることになる。表8に示すように、本発明の方法を用いて、処置された動物は1匹を除いて全て正しく同定することができ、誤分類されたのは2匹の対照動物だけであった。表5参照。
Figure 2013101130
8.ウィルスの検出
細胞溶解物中でシミアン・フォーミ・ウィルス (Simian Foamy Virus) を検出した。感染細胞からの溶解物は時間の80%(8/10)だけ、偽陽性なしで正しく分類された。表6参照。
Figure 2013101130
9.卵巣癌のためのウィンドイング(windowing)技術の利用
最初の具体化は、タンパク質データ・ストリーム中の100個の連続的な特徴から成る群を単純な試行錯誤で選択することに基づく。適応パターン認識アルゴリズム、Lead Cluster Map(LCM)を採用した。データ・ストリームのサンプリングは、走行毎にデータ・ストリーム中の異なる点において開始した。走行は、100個の特徴から成る14〜15の集団を集めることから成る。連続25回の走行後、最良のモデルが、ほぼ30%の偽陽性率で、正しい生物学的状態を80%だけ正確に予知した。これらの結果は、生物学的状態を分類する上でタンパク質パターンの使用が有効であることを示す。実際に、このようなレベルの精度を有するモデルは、有力な治療用化合物をバッチ・スクリーニングするのに極めて適するはずである。表7参照。
Figure 2013101130
10.乳癌の検出
乳癌患者から採取した乳頭吸引分質を、本発明のプロセスを用いて分類した。乳頭吸引物質を質量分析にかけ、この物質にパターン発見法を施した。92%近くの感度を観察した。表8参照。
Figure 2013101130

Claims (65)

  1. 生体データから生物学的状態を分類する方法であって、前記生物学的状態を記述している区別的パターンを検出することにより、生体データから生物学的状態を分類する方法。
  2. 生体データから生物学的状態を分類する方法であって、該方法が以下のステップ、すなわち:
    a. データ・ストリーム内のより大きいデータセットのサブセットである、学習データセットでの成功により定義付けされた区別を示す区別的パターンを検出するステップと、
    b. 既知のデータサンプルまたは試験データサンプルを分類するために、前記区別的パターンを適用するステップと、
    c. 生物学的状態を示す、個々のデータポイントが区別的でなくても区別的である前記区別的パターンを使用することにより、未知のデータサンプルを分類するステップと、
    から成る、生体データから生物学的状態を分類する方法。
  3. 既知の生物学的状態を定義付けする複数の所定の診断クラスターを有するベクトル空間を使用して区別的パターンを検出することにより、生体データ内の生物学的状態を分類する方法であって、該方法が以下のステップ:
    a. 前記生体データを記述する正規化されたデータ・ストリームを形成するステップと;
    b. 前記データ・ストリームを特徴付けする試料ベクトルを算出するために、前記データ・ストリームを抽象化するステップと;
    c. 前記試料ベクトルが内在する診断クラスターを、もしこれがあるならば同定するステップと;
    d. 前記同定された診断クラスターの診断を前記生体データに割り当てるか、または、同定されるクラスターがない場合には、異型試料、NOSという診断を前記生体データに割り当てるステップと、さらに;
    e. 前記生物学的状態を記述した、個々のデータポイントが区別的でなくても区別的である前記区別的パターンを使用することにより、未知のデータサンプルを分類するステップと
    を含む、生体データ内の生物学的状態を分類する方法。
  4. 前記区別が、学習データセットにおける成功によって定義付けされ、前記学習データセットが、生物学的状態が知られている生体データから形成される、請求項1から3までのいずれか1項に記載の方法。
  5. 前記生体データが、生体試料中の分子の発現を記述するデータである、請求項1から3までのいずれか1項に記載の方法。
  6. 前記生体データが臨床データから導出される、請求項1から3までのいずれか1項に記載の方法。
  7. 生体データが、臨床データと、生体試料中の分子の発現を記述するデータとの組み合わせである、請求項1から3までのいずれか1項に記載の方法。
  8. 生体データが、非生体データと、生体試料中の分子の発現を記述するデータとの組み合わせである、請求項1から3までのいずれか1項に記載の方法。
  9. 前記分子が、タンパク質、ペプチド、リン脂質、DNAおよびRNAから成る群から選択される、請求項5に記載の方法。
  10. 前記分子が、タンパク質、ペプチド、リン脂質、DNAおよびRNAから成る群から選択される、請求項7に記載の方法。
  11. 前記分子が、タンパク質、ペプチド、リン脂質、DNAおよびRNAから成る群から選択される、請求項8に記載の方法。
  12. 前記生体試料が、血清、血液、唾液、血漿、乳頭吸引物質、滑液、脳脊髄液、汗、尿、便、涙、気管洗浄物質、綿棒で集められた物質、針吸引物質、精液、膣液、射精前物質から成る群から選択される、請求項5に記載の方法。
  13. 前記生体試料が、血清、血液、唾液、血漿、乳頭吸引物質、滑液、脳脊髄液、汗、尿、便、涙、気管洗浄物質、綿棒で集められた物質、針吸引物質、精液、膣液、射精前物質のような体液から成る群から選択される、請求項7に記載の方法。
  14. 前記生体試料が、血清、血液、唾液、血漿、乳頭吸引物質、滑液、脳脊髄液、汗、尿、便、涙、気管洗浄物質、綿棒で集められた物質、針吸引物質、精液、膣液、射精前物質のような体液から成る群から選択される、請求項8に記載の方法。
  15. 前記生体試料が、組織培養上清、凍結乾燥組織培養、およびウィルス培養から成る群から選択される、請求項5に記載の方法。
  16. 前記生体試料が、組織培養上清、凍結乾燥組織培養、およびウィルス培養から成る群から選択される、請求項7に記載の方法。
  17. 前記生体試料が、組織培養上清、凍結乾燥組織培養、およびウィルス培養から成る群から選択される、請求項8に記載の方法。
  18. 前記生物学的状態が疾患である、請求項1から3までのいずれか1項に記載の方法。
  19. 前記生物学的状態が病期である、請求項1から3までのいずれか1項に記載の方法。
  20. 前記生物学的状態が疾患の予後である、請求項1から3までのいずれか1項に記載の方法。
  21. 前記生物学的状態が身体内部器官の疾患である、請求項1から3までのいずれか1項に記載の方法。
  22. 前記生物学的状態が身体内部器官の病期である、請求項1から3までのいずれか1項に記載の方法。
  23. 前記生物学的状態が身体内部器官の健康である、請求項1から3までのいずれか1項に記載の方法。
  24. 前記生物学的状態が1種以上の化学薬品の毒性である、請求項1から3までのいずれか1項に記載の方法。
  25. 前記生物学的状態が1種以上の化学薬品の相対毒性である、請求項1から3までのいずれか1項に記載の方法。
  26. 前記生物学的状態が薬物の有効性である、請求項1から3までのいずれか1項に記載の方法。
  27. 前記生物学的状態が1種以上の薬物の有効性である、請求項1から3までのいずれか1項に記載の方法。
  28. 前記生物学的状態が治療の養生法に対する感応性である、請求項1から3までのいずれか1項に記載の方法。
  29. 前記生物学的状態が身体器官の動揺状態である、請求項1から3までのいずれか1項に記載の方法。
  30. 前記生物学的状態が1種以上の病原体の存在である、請求項1から3までのいずれか1項に記載の方法。
  31. 前記疾患が、罹患状態における固有分子の発現パターンの変化が非罹患状態とは異なる疾患である、請求項18に記載の方法。
  32. 前記疾患が癌である、請求項18に記載の方法。
  33. 前記疾患が自己免疫疾患、アルツハイマー病および関節炎から成る群から選択される、請求項18に記載の方法。
  34. 前記疾患が糸球体腎炎である、請求項18に記載の方法。
  35. 前記疾患が感染病である、請求項18に記載の方法。
  36. 前記癌が癌腫、黒色腫、リンパ腫、肉腫、芽細胞腫、白血病、骨髄腫および神経腫瘍から成る群から選択される、請求項32に記載の方法。
  37. 前記癌腫が前立腺癌である、請求項37に記載の方法。
  38. 前記癌腫が卵巣癌である、請求項36に記載の方法。
  39. 前記データ・ストリームが、高処理量データ生成法によって形成される、請求項2または3に記載の方法。
  40. 前記データ・ストリームが、飛行時間形質量スペクトルである、請求項2または3に記載の方法。
  41. 前記飛行時間形質量スペクトルが、表面増強レーザ脱離飛行時間形質量分析によって生成される、請求項40に記載の方法。
  42. 前記飛行時間形質量スペクトルが、マトリックス支援レーザ脱離イオン化飛行時間によって生成される、請求項40に記載の方法。
  43. 前記方法がさらに、パターン認識法を用いることから成る、請求項1から3までのいずれか1項に記載の方法。
  44. 前記パターン認識法がさらに、学習アルゴリズムと診断アルゴリズムとを含む、請求項43に記載の方法。
  45. 前記方法がさらに、学習データ・ストリーム集合を用いることによって、当該生物学的状態に対応する診断アルゴリズムを構築することを含み、前記診断アルゴリズムが、固定数の次元のベクトル空間内で所定の等しいサイズの複数の診断クラスターを有することを特徴とし、以下のステップ、すなわち:
    a. 各学習データ・ストリームが既知の生物学的状態で生体試料を記述する、学習データ・ストリーム集合を提供するステップと;
    b. 前記データ・ストリームの所定数のポイントの位置を指定するランダムな論理染色体の初期集合を選択するステップと;
    c. 前記染色体によって指定された位置でのデータ・ストリームを抽象化することにより、各染色体および各データ・ストリームに対応するベクトルを算出するステップと;
    d. 均一なステータスを有するクラスター内に存在するベクトルの数を最大化する所定の等しいサイズの複数の非重複データ・クラスターのベクトル空間内の位置を見出すことにより、前記ベクトルの数が多くなればなるほど高くなる、各染色体の適応度を確定するステップと;
    e. 前記ステップ(c)および(d)とを繰り返し、適応度が低い論理染色体を終結し、高適応度の論理染色体を複製し、前記染色体を組換え、ランダムに修飾することから成る反復プロセスによって、前記論理染色体集合を最適化するステップと;
    f. 前記反復プロセスを終結し、非重複データ・クラスターの好ましい集合を可能にする論理染色体を選択するステップと;さらに、
    g. 前記選択された論理染色体と、均質な非重複データ・クラスターとを構築する診断アルゴリズムを構築するステップと
    を含む、請求項1から3までのいずれか1項に記載の方法。
  46. 前記方法がさらに、最適化された染色体と、データ・クラスターの適応度最大化集合とを具体化する診断アルゴリズムを試験することにより、前記診断アルゴリズムがいかに正確に試験データ・ストリーム集合を診断するかを確定するステップを含み、前記試験データ・ストリーム集合がそれぞれ、前記学習データ・ストリームとは無関係な既知の診断を有する、請求項45に記載の方法。
  47. 前記ベクトル空間が5〜10個の次元を含有する、請求項45に記載の方法。
  48. 個体の器官の疾患を診断する方法であって、該方法が:
    a. 被験体からの生体試料を分析し、前記分析から、前記試料の特徴を示す4〜20個のスカラーを有する正規化ベクトルを算出し、
    b. データ・クラスター・マップによって占有された4〜20個の次元のベクトル空間を提供し、前記データ・クラスター・マップが、等しいサイズの少なくとも6つの非重複データ・クラスターから成り、複数の前記データ・クラスターが疾患診断と関連し、複数の前記データ・クラスターが正常試料と関連し、前記マップのデータ・クラスターが2つ以上の診断と関連することはなく;
    c. 前記データ・クラスター・マップのデータ・クラスターのいずれかに固有ベクトルが存在するならば、該ベクトルがどのデータ・クラスターに存在するのかを算出し;さらに、
    d. 前記固有ベクトルが内在するデータ・クラスターと関連する疾患診断を、前記試料に割り当てるか、または、前記ベクトルが内在するクラスターがない場合には、非正常という分類を割り当てる、
    ことを含む、個体の器官の疾患を診断する方法。
  49. 個体の器官の病期を診断する方法であって、該方法が:
    a. 被験体からの生体試料を分析し、前記分析から、前記試料の特徴を示す4〜20個のスカラーを有する正規化ベクトルを算出し、
    b. データ・クラスター・マップによって占有された4〜20個の次元のベクトル空間を提供し、前記データ・クラスター・マップが、等しいサイズの少なくとも6つの非重複データ・クラスターから成り、複数の前記データ・クラスターが疾患診断と関連し、複数の前記データ・クラスターが正常試料と関連し、前記マップのデータ・クラスターが2つ以上の診断と関連することはなく;
    c. 前記データ・クラスター・マップのデータ・クラスターのいずれかに固有ベクトルが存在するならば、該ベクトルがどのデータ・クラスターに存在するのかを算出し;さらに、
    d. 前記固有ベクトルが内在するデータ・クラスターと関連する疾患診断を、前記試料に割り当てるか、または、前記ベクトルが内在するクラスターがない場合には、非正常という分類を割り当てる、
    ことを含む、個体の器官の病期を診断する方法。
  50. 前記疾患が癌である、請求項48に記載の方法。
  51. 前記疾患が癌である、請求項49に記載の方法。
  52. 前記病期が原発性悪性腫瘍である、請求項49に記載の方法。
  53. 前記生体試料が、血清、血液、唾液、血漿、乳頭吸引物質、滑液、脳脊髄液、汗、尿、便、涙、気管洗浄物質、綿棒で集められた物質、針吸引物質、精液、膣液、射精前物質のような体液から成る群から選択される、請求項48または49に記載の方法。
  54. 前記データ・クラスターマップがパターンを定義付けし、前記ベクトルの少なくとも1つのスカラーが前後関係による診断結果である、請求項48または49に記載の方法。
  55. 前記データ・クラスターのサイズが、ユークリッド測定基準によって定義付けされる、請求項48または49に記載の方法。
  56. 被験体の器官の原発性悪性腫瘍を診断する方法であって、該方法が:
    a. 被験体からの生体試料を分析し、前記分析から、前記試料の特徴を示す少なくとも4つのスカラーを有する正規化ベクトルを算出し、
    b. データ・クラスター・マップによって占有されたベクトル空間を提供し、前記データ・クラスター・マップが、等しいサイズの少なくとも6つの非オーバラップ・データ・クラスターから成り、複数の前記データ・クラスターが悪性診断と関連し、複数の前記データ・クラスターが良性診断と関連し、前記マップのデータ・クラスターが2つ以上の診断と関連することはなく、少なくとも1つのスカラーが前後関係による診断結果である結果を測定し、前記データ・クラスターのサイズが、ユークリッド測定基準によって定義付けされ;
    c. 前記データ・クラスター・マップのデータ・クラスターのいずれかに固有ベクトルが存在するならば、該ベクトルがどのデータ・クラスターに存在するのかを算出し;さらに、
    d. 前記固有ベクトルが内在するデータ・クラスターと関連する診断を、前記試料に割り当てるか、または、前記ベクトルが内在するクラスタがない場合には、非正常、非悪性という診断を割り当てる、
    ことを含む、個体の器官の原発性悪性腫瘍を診断する方法。
  57. 前記生体試料が、血清、血液、唾液、血漿、乳頭吸引物質、滑液、脳脊髄液、汗、尿、便、涙、気管洗浄物質、綿棒で集められた物質、針吸引物質、精液、膣液、射精前物質のような体液から成る群から選択される、請求項56に記載の方法。
  58. 複数のスカラーが、前後関係による診断結果である結果を測定する、請求項56に記載の方法。
  59. プログラムを実行するためのコンピュータ実行可能コードを指定するコンピュータ・ソフトウェア製品であって、前記プログラムが以下のステップ、すなわち:
    a. 生体試料を試料識別子で記述する正規化データ・ストリームを入力するステップと;
    b. 各クラスターが既知の生物学的状態の診断と関連する診断クラスターの集合を入力するステップと、
    c. 前記データ・ストリームを特徴付けする試料ベクトルを算出するために、前記データ・ストリームを抽象化するステップと;
    d. 前記試料ベクトルが内在する前記診断クラスタがあれば、これを同定するステップと;
    e. 特定された診断クラスターの診断を前記試料に割り当てるか、または、特定されたクラスターがない場合には、非正常、非悪性という診断を前記試料に割り当てるステップと;
    f. 前記割り当てられた診断と前記試料識別子とを出力するステップと
    を含むプログラムを実行するための、コンピュータ実行可能コードを指定するコンピュータ・ソフトウェア製品。
  60. 汎用デジタル・コンピュータであって、該コンピュータが、請求項59に記載の実行可能コードを実行するためのプログラムを含む、汎用デジタル・コンピュータ。
  61. プログラムを実行するためのコンピュータ実行可能コードを指定するコンピュータ・ソフトウェア製品であって、前記プログラムが以下のステップ、すなわち:
    a. 各データ・ストリームが既知の生物学的状態で生体試料を記述する教育データ・ストリームから成る集合を入力するステップと;
    b. オペレータによって指定された数のポイントと、オペレータによって指定されたクラスターのサイズとを入力するステップと;
    c. 前記データ・ストリームの予め指定された数のポイントの位置を指定するランダムな論理染色体の初期集合を選択するステップと;
    d. 前記染色体によって指定された位置でのデータ・ストリームを抽象化することにより、各染色体および各データ・ストリームに対応するベクトルを算出するステップと;
    e. 均一なステータスを有するクラスター内に存在するベクトルの数を最大化する所定の等しいサイズの複数の非重複データ・クラスターのベクトル空間内の位置を見出すことにより、前記ベクトルの数が多くなればなるほど高くなる、各染色体の適応度を確定するステップと;
    f. 前記ステップ(d)および(e)とを繰り返し、適応度が低い論理染色体を終結し、高適応度の論理染色体を複製し、前記染色体を組換え、ランダムに修飾することから成る反復プロセスによって、論理染色体集合を最適化するステップと;
    g. 前記反復プロセスを終結するステップと;
    h. 最適化された論理染色体と、該最適化された染色体の適応度を最大化する前記データ・クラスターの位置とを出力して、前記出力された論理染色体とデータ・クラスターとを具体化する診断アルゴリズムを実施可能にするステップとを含む、プログラムを実行するための、コンピュータ実行可能コードを指定するコンピュータ・ソフトウェア製品。
  62. 汎用デジタル・コンピュータであって、該コンピュータが、請求項61に記載の実行可能コードを実行するためのプログラムを含む、汎用デジタル・コンピュータ。
  63. 生物学的状態を確定するための診断モデルであって、診断アルゴリズムが、固定数の次元のベクトル空間内で所定の等しいサイズの複数の診断クラスターを有することを特徴とする、生物学的状態を確定するための診断モデル。
  64. 前記診断クラスターが以下のステップ、すなわち:
    a. 各学習データ・ストリームが既知の生物学的状態で生体試料を記述する、学習データ・ストリームの集合を提供するステップと;
    b. 前記データ・ストリームの所定数のポイントの位置を指定するランダムな論理染色体の初期集合を選択するステップと;
    c. 前記染色体によって指定された位置でのデータ・ストリームを抽象化することにより、各染色体および各データ・ストリームに対応するベクトルを算出するステップと;
    d. 均一なステータスを有するクラスター内に存在するベクトルの数を最大化する所定の等しいサイズの複数の非重複データ・クラスターのベクトル空間内の位置を見出すことにより、前記ベクトルの数が多くなればなるほど高くなる、各染色体の適応度を確定するステップと;
    e. 前記ステップ(c)および(d)とを繰り返し、適応度が低い論理染色体を終結し、高適応度の論理染色体を複製し、前記染色体を組換え、ランダムに修飾することから成る反復プロセスによって、論理染色体集合を最適化するステップと;
    f. 前記反復プロセスを終結し、非重複データ・クラスターの好ましい集合を可能にする論理染色体を選択するステップと
    によって生成される、請求項63に記載の診断モデル。
  65. 診断クラスターであって、該診断クラスターが請求項64に記載のモデルによって生成される、診断クラスター。
JP2012286014A 2000-07-18 2012-12-27 生体データから隠れたパターンに基づいて生物学的状態相互間を区別する方法 Pending JP2013101130A (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US21906700P 2000-07-18 2000-07-18
US60/219,067 2000-07-18
US23229900P 2000-09-12 2000-09-12
US60/232,299 2000-09-12
US27855001P 2001-03-23 2001-03-23
US60/278,550 2001-03-23
US28936201P 2001-05-08 2001-05-08
US60/289,362 2001-05-08

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002512687A Division JP5246984B2 (ja) 2000-07-18 2001-07-18 生体データから隠れたパターンに基づいて生物学的状態相互間を区別する方法

Publications (1)

Publication Number Publication Date
JP2013101130A true JP2013101130A (ja) 2013-05-23

Family

ID=30119299

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002512687A Expired - Fee Related JP5246984B2 (ja) 2000-07-18 2001-07-18 生体データから隠れたパターンに基づいて生物学的状態相互間を区別する方法
JP2012286014A Pending JP2013101130A (ja) 2000-07-18 2012-12-27 生体データから隠れたパターンに基づいて生物学的状態相互間を区別する方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2002512687A Expired - Fee Related JP5246984B2 (ja) 2000-07-18 2001-07-18 生体データから隠れたパターンに基づいて生物学的状態相互間を区別する方法

Country Status (15)

Country Link
US (2) US6925389B2 (ja)
EP (1) EP1386275A2 (ja)
JP (2) JP5246984B2 (ja)
KR (1) KR101054732B1 (ja)
CN (1) CN1484806A (ja)
AU (2) AU2001280581A1 (ja)
BR (1) BR0112667A (ja)
CA (1) CA2415775A1 (ja)
EA (1) EA200300161A1 (ja)
IL (1) IL153856A0 (ja)
MX (1) MXPA03000506A (ja)
NO (1) NO20030251L (ja)
NZ (1) NZ524171A (ja)
SG (1) SG144731A1 (ja)
WO (1) WO2002006829A2 (ja)

Families Citing this family (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2410158A1 (en) * 2000-06-02 2001-12-13 Large Scale Proteomics, Corp. Protein markers for pharmaceuticals and related toxicity
ATE406627T1 (de) 2000-06-19 2008-09-15 Correlogic Systems Inc Heuristisches klassifikationsverfahren
WO2002006829A2 (en) * 2000-07-18 2002-01-24 Correlogic Systems, Inc. A process for discriminating between biological states based on hidden patterns from biological data
US6539102B1 (en) * 2000-09-01 2003-03-25 Large Scale Proteomics Reference database
US6980674B2 (en) * 2000-09-01 2005-12-27 Large Scale Proteomics Corp. Reference database
CN1623091A (zh) 2000-11-16 2005-06-01 赛弗根生物系统股份有限公司 质谱分析方法
JP4986370B2 (ja) 2000-12-22 2012-07-25 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Rgmおよびそのモジュレーターの用途
US8041541B2 (en) * 2001-05-24 2011-10-18 Test Advantage, Inc. Methods and apparatus for data analysis
US20030009293A1 (en) * 2001-01-09 2003-01-09 Anderson Norman G. Reference database
US8068987B2 (en) * 2001-08-13 2011-11-29 Bg Medicine, Inc. Method and system for profiling biological systems
US20050222972A1 (en) * 2002-01-04 2005-10-06 Hewlett-Packard Development Company, L.P. Computer implemented, fast, approximate clustering based on sampling
US20020193950A1 (en) * 2002-02-25 2002-12-19 Gavin Edward J. Method for analyzing mass spectra
JP2005521138A (ja) * 2002-03-15 2005-07-14 パシフィック エッジ バイオテクノロジー リミティド 遺伝子発現データを使用する適応学習システムの医療適用
JP2005526972A (ja) * 2002-05-02 2005-09-08 シファーゲン バイオシステムズ, インコーポレイテッド 多糖系ヒドロゲルをコーティングした表面を有するバイオチップ
AR040711A1 (es) 2002-07-29 2005-04-13 Us Agriculture Un metodo para verificacion de calidad/control de calidad para proceso de bioensayo de alto rendimiento
EP1394715A1 (en) * 2002-08-02 2004-03-03 Europroteome AG An expert system for clinicial outcome prediction
EP1394549A1 (en) * 2002-08-23 2004-03-03 Bayer HealthCare AG Biomarkers for diagnosing Alzheimer's disease
WO2004043236A2 (en) 2002-11-12 2004-05-27 Becton, Dickinson And Company Diagnosis of sepsis or sirs using biomarker profiles
EP1573054A4 (en) * 2002-11-12 2005-12-28 Becton Dickinson Co DIAGNOSIS FOR SEPTICEMIA OR SIRS USING BIOMARKER PROFILES
AU2003291483A1 (en) 2002-11-12 2004-06-03 Becton, Dickinson And Company Diagnosis of sepsis or sirs using biomarker profiles
US20040096896A1 (en) * 2002-11-14 2004-05-20 Cedars-Sinai Medical Center Pattern recognition of serum proteins for the diagnosis or treatment of physiologic conditions
WO2004052191A1 (ja) * 2002-12-09 2004-06-24 Ajinomoto Co., Inc. 生体状態情報処理装置、生体状態情報処理方法、生体状態情報管理システム、プログラム、および、記録媒体
EP1573044A4 (en) 2002-12-18 2006-07-05 Ciphergen Biosystems Inc SERUM BIOMARKERS OF LUNG CANCER
US20040171091A1 (en) * 2003-02-27 2004-09-02 Cell Work, Inc. Standardized evaluation of therapeutic efficacy based on cellular biomarkers
US6977370B1 (en) 2003-04-07 2005-12-20 Ciphergen Biosystems, Inc. Off-resonance mid-IR laser desorption ionization
EP1616181B1 (en) 2003-04-17 2009-08-12 Vermillion, Inc. Polypeptides related to natriuretic peptides and methods of their identification and use
WO2004097368A2 (en) * 2003-04-28 2004-11-11 Ciphergen Biosystems, Inc. Improved immunoassays
US20040236603A1 (en) * 2003-05-22 2004-11-25 Biospect, Inc. System of analyzing complex mixtures of biological and other fluids to identify biological state information
US7425700B2 (en) 2003-05-22 2008-09-16 Stults John T Systems and methods for discovery and analysis of markers
WO2004111201A2 (en) * 2003-06-11 2004-12-23 Research Foundation Of State University Of New York Data classification using point-wise tests
CN1813190B (zh) * 2003-07-02 2011-06-29 佳能株式会社 信息获取方法
WO2005008247A2 (en) * 2003-07-11 2005-01-27 Science & Technology Corporation @ Unm. Detection of endometrial pathology
EP1649281A4 (en) * 2003-08-01 2007-11-07 Correlogic Systems Inc MULTIPLE HIGH RESOLUTION SERUM PROTEOMIC CHARACTERISTICS FOR THE DETECTION OF OVARIAN CANCER
AU2004267806A1 (en) * 2003-08-20 2005-03-03 Bg Medicine, Inc. Methods and systems for profiling biological systems
US7634360B2 (en) * 2003-09-23 2009-12-15 Prediction Sciences, LL Cellular fibronectin as a diagnostic marker in stroke and methods of use thereof
EP1694816B1 (en) 2003-11-07 2013-08-28 Ciphergen Biosystems, Inc. Biomarkers for alzheimer's disease
WO2005055812A2 (en) 2003-12-05 2005-06-23 Ciphergen Biosystems, Inc. Serum biomarkers for chagas disease
JP4774534B2 (ja) * 2003-12-11 2011-09-14 アングーク ファーマシューティカル カンパニー,リミティド 集中化適応モデル及び遠隔操作サンプルプロセッシングの使用を介した生物学的状態の診断方法
US7259258B2 (en) * 2003-12-17 2007-08-21 Illumina, Inc. Methods of attaching biological compounds to solid supports using triazine
US20050181398A1 (en) * 2004-01-16 2005-08-18 Fung Eric T. Specific detection of host response protein clusters
US7608458B2 (en) * 2004-02-05 2009-10-27 Medtronic, Inc. Identifying patients at risk for life threatening arrhythmias
JP2007523324A (ja) * 2004-02-05 2007-08-16 メドトロニック・インコーポレーテッド 命にかかわる不整脈のリスク状態にある患者を識別する方法及び装置
US20050209785A1 (en) * 2004-02-27 2005-09-22 Wells Martin D Systems and methods for disease diagnosis
US7035740B2 (en) * 2004-03-24 2006-04-25 Illumina, Inc. Artificial intelligence and global normalization methods for genotyping
US7485430B2 (en) * 2004-04-15 2009-02-03 The Curators Of The University Of Missouri Methods and compositions for evaluation of fertility
EP1756578A2 (en) 2004-04-20 2007-02-28 Board of Regents, The University of Texas System Using plasma proteomic pattern for diagnosis, classification, prediction of response to therapy and clinical behavior, stratification of therapy, and monitoring disease in hematologic malignancies
BRPI0510266A (pt) 2004-04-26 2007-10-30 Childrens Medical Center métodos para a detecção de uma doença ou distúrbio angiogênico em um indivìduo, para a detecção de cáncer em um indivìduo, para o tratamento de um indivìduo afetado com uma doença ou distúrbio angiogênico, para a determinação da probabilidade de eficácia de uma terapia anti-angiogênica, para a determinação da eficácia de uma terapia de teste na modulação dos nìveis de reguladores angiogênicos de plaqueta, para a criação de um registro ou perfil de plaqueta para uma doença ou distúrbio angiogênico e para a monitoração da eficácia de uma terapia em um indivìduo com uma doença ou distúrbio angiogênico
US20050244973A1 (en) * 2004-04-29 2005-11-03 Predicant Biosciences, Inc. Biological patterns for diagnosis and treatment of cancer
US8027791B2 (en) * 2004-06-23 2011-09-27 Medtronic, Inc. Self-improving classification system
US20050287574A1 (en) * 2004-06-23 2005-12-29 Medtronic, Inc. Genetic diagnostic method for SCD risk stratification
US8335652B2 (en) * 2004-06-23 2012-12-18 Yougene Corp. Self-improving identification method
US20060024746A1 (en) * 2004-07-14 2006-02-02 Artann Laboratories, Inc. Methods and devices for optical monitoring and rapid analysis of drying droplets
EP1827507A4 (en) * 2004-11-30 2008-06-25 Bg Medicine Inc BIOLOGICAL SYSTEMS ANALYSIS
US20060115429A1 (en) * 2004-11-30 2006-06-01 Noubar Afeyan Biological systems analysis
EP1838867B1 (en) * 2005-01-06 2011-03-09 Eastern Virginia Medical School Apolipoprotein a-ii isoform as a biomarker for prostate cancer
US20060160156A1 (en) * 2005-01-13 2006-07-20 Suzanne Klimberg Tears as a screening medium
US20060157647A1 (en) * 2005-01-18 2006-07-20 Becton, Dickinson And Company Multidimensional liquid chromatography/spectrometry
JP2008530555A (ja) * 2005-02-09 2008-08-07 コレロジック システムズ,インコーポレイテッド 細菌及び芽胞の同定
EP1848819A4 (en) * 2005-02-16 2010-01-06 Genetic Technologies Ltd METHOD FOR GENETIC ANALYSIS WITH AMPLIFICATION OF COMPLEMENTARY DUPLICATES
JPWO2006098192A1 (ja) * 2005-03-16 2008-08-21 味の素株式会社 生体状態評価装置、生体状態評価方法、生体状態評価システム、生体状態評価プログラム、評価関数作成装置、評価関数作成方法、評価関数作成プログラムおよび記録媒体
JP4843987B2 (ja) * 2005-04-05 2011-12-21 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
KR20080006617A (ko) 2005-04-15 2008-01-16 백톤 디킨슨 앤드 컴퍼니 패혈증의 진단
US7499751B2 (en) * 2005-04-28 2009-03-03 Cardiac Pacemakers, Inc. Cardiac signal template generation using waveform clustering
US20080312514A1 (en) * 2005-05-12 2008-12-18 Mansfield Brian C Serum Patterns Predictive of Breast Cancer
EP2993474B1 (en) 2005-06-24 2019-06-12 Vermillion, Inc. Biomarkers for ovarian cancer: beta-2 microglobulin
US20070178526A1 (en) * 2005-07-20 2007-08-02 Kountakis Stilianos E Use of protein profiles in disease diagnosis and treatment
US20080234944A1 (en) * 2005-07-21 2008-09-25 Koninklijke Philips Electronics, N.V. Method and Apparatus for Subset Selection with Preference Maximization
US8921102B2 (en) * 2005-07-29 2014-12-30 Gpb Scientific, Llc Devices and methods for enrichment and alteration of circulating tumor cells and other particles
CN101238467A (zh) 2005-08-05 2008-08-06 皇家飞利浦电子股份有限公司 具有动态基因分布的搜索空间遍历
US9955438B2 (en) 2005-09-27 2018-04-24 Qualcomm Incorporated Method and apparatus for carrier allocation and management in multi-carrier communication systems
WO2007038414A2 (en) * 2005-09-27 2007-04-05 Indiana University Research & Technology Corporation Mining protein interaction networks
JP2009510002A (ja) 2005-09-30 2009-03-12 アボット ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 反発誘導分子(rgm)タンパク質ファミリーのタンパク質の結合ドメイン、及びその機能的断片、及びそれらの使用
US7599893B2 (en) * 2005-10-13 2009-10-06 Aureon Laboratories, Inc. Methods and systems for feature selection in machine learning based on feature contribution and model fitness
WO2007070809A2 (en) * 2005-12-12 2007-06-21 Mcgill University Biomarkers for babesia
AU2007209980A1 (en) * 2006-01-27 2007-08-09 Eastern Virginia Medical School Proteomic fingerprinting of human IVF-derived embryos: identification of biomarkers of developmental potential
EP1996949A4 (en) 2006-03-11 2010-01-20 Univ Leland Stanford Junior BETA-2 MICROGLOBULIN AS A BIOMARKER FOR PERIPHERAL ARTERY DISEASE
US7736905B2 (en) * 2006-03-31 2010-06-15 Biodesix, Inc. Method and system for determining whether a drug will be effective on a patient with a disease
US7533070B2 (en) * 2006-05-30 2009-05-12 Honeywell International Inc. Automatic fault classification for model-based process monitoring
US20080070792A1 (en) * 2006-06-14 2008-03-20 Roland Stoughton Use of highly parallel snp genotyping for fetal diagnosis
US20080090239A1 (en) * 2006-06-14 2008-04-17 Daniel Shoemaker Rare cell analysis using sample splitting and dna tags
US8137912B2 (en) 2006-06-14 2012-03-20 The General Hospital Corporation Methods for the diagnosis of fetal abnormalities
US8372584B2 (en) 2006-06-14 2013-02-12 The General Hospital Corporation Rare cell analysis using sample splitting and DNA tags
US20080050739A1 (en) * 2006-06-14 2008-02-28 Roland Stoughton Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats
WO2008025093A1 (en) * 2006-09-01 2008-03-06 Innovative Dairy Products Pty Ltd Whole genome based genetic evaluation and selection process
US20080201095A1 (en) * 2007-02-12 2008-08-21 Yip Ping F Method for Calibrating an Analytical Instrument
WO2008123948A1 (en) 2007-03-27 2008-10-16 Vermillion, Inc. Biomarkers for ovarian cancer
EP2639315A1 (en) 2007-05-11 2013-09-18 The Johns Hopkins University Biomarkers for melanoma
CN101855553B (zh) 2007-06-29 2014-06-11 韩国安国药品株式会社 卵巢癌的预测标记
US20090049856A1 (en) * 2007-08-20 2009-02-26 Honeywell International Inc. Working fluid of a blend of 1,1,1,3,3-pentafluoropane, 1,1,1,2,3,3-hexafluoropropane, and 1,1,1,2-tetrafluoroethane and method and apparatus for using
WO2009058331A2 (en) 2007-10-29 2009-05-07 Vermilllion, Inc. Biomarkers for the detection of early stage ovarian cancer
EP2229588A4 (en) * 2007-11-14 2011-05-25 Medtronic Inc DIAGNOSTIC KITS FOR CHOOSING THERAPY IN CASE OF SUDDEN DEATH BY CARDIAC ARREST (SCD) OR CARDIAC ARREST (SCA)
US20110143956A1 (en) * 2007-11-14 2011-06-16 Medtronic, Inc. Diagnostic Kits and Methods for SCD or SCA Therapy Selection
JP5616797B2 (ja) * 2008-02-19 2014-10-29 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 高い信頼性で微生物に対して陽性として培養物を認定するためのシステムおよび方法
US8962803B2 (en) 2008-02-29 2015-02-24 AbbVie Deutschland GmbH & Co. KG Antibodies against the RGM A protein and uses thereof
WO2009123737A2 (en) 2008-04-03 2009-10-08 Becton, Dickinson And Company Advanced detection of sepsis
US7776522B2 (en) * 2008-04-24 2010-08-17 Becton, Dickinson And Company Methods for diagnosing oncogenic human papillomavirus (HPV)
EP3378951B1 (en) 2008-09-20 2020-05-13 The Board of Trustees of the Leland Stanford Junior University Noninvasive diagnosis of aneuploidy by sequencing
US11298113B2 (en) 2008-10-01 2022-04-12 Covidien Lp Device for needle biopsy with integrated needle protection
US8968210B2 (en) 2008-10-01 2015-03-03 Covidien LLP Device for needle biopsy with integrated needle protection
US9782565B2 (en) 2008-10-01 2017-10-10 Covidien Lp Endoscopic ultrasound-guided biliary access system
US9186128B2 (en) 2008-10-01 2015-11-17 Covidien Lp Needle biopsy device
US9332973B2 (en) 2008-10-01 2016-05-10 Covidien Lp Needle biopsy device with exchangeable needle and integrated needle protection
US8543625B2 (en) * 2008-10-16 2013-09-24 Intelliscience Corporation Methods and systems for analysis of multi-sample, two-dimensional data
GB2464677A (en) 2008-10-20 2010-04-28 Univ Nottingham Trent A method of analysing data by using an artificial neural network to identify relationships between the data and one or more conditions.
EP2384367A4 (en) 2008-12-30 2013-07-10 Janssen Biotech Inc SERUM MARKERS TO PREDICT THE CLINICAL RESPONSE TO ANTI-TNF ANTIBODIES IN PATIENTS WITH MORBUS BECHTEREW
US20100191790A1 (en) * 2009-01-29 2010-07-29 Agilent Technologies, Inc. System and method for correlation scoring of signals
US20100317006A1 (en) * 2009-05-12 2010-12-16 Medtronic, Inc. Sca risk stratification by predicting patient response to anti-arrhythmics
SG10201405883XA (en) 2009-09-23 2014-11-27 Celmatix Inc Methods and devices for assessing infertility and/or egg quality
US20110105856A1 (en) * 2009-10-29 2011-05-05 Robyn Aylor Haines Diagnostic testing
EP2510001B1 (en) 2009-12-08 2015-12-02 AbbVie Deutschland GmbH & Co KG Monoclonal antibodies against the rgm a protein for use in the treatment of retinal nerve fiber layer degeneration
US8187979B2 (en) * 2009-12-23 2012-05-29 Varian Semiconductor Equipment Associates, Inc. Workpiece patterning with plasma sheath modulation
WO2011106084A1 (en) * 2010-02-24 2011-09-01 Biodesix, Inc. Cancer patient selection for administration of therapeutic agents using mass spectral analysis
WO2011129382A1 (en) 2010-04-16 2011-10-20 Abbott Japan Co. Ltd. Methods and reagents for diagnosing rheumatoid arthritis
EP2628013B1 (en) 2010-10-14 2019-06-12 The Johns Hopkins University Biomarkers of brain injury
CN103229179B (zh) * 2010-12-08 2016-08-24 霍夫曼-拉罗奇有限公司 用于自动显示生物监测数据中的模式的系统和方法
WO2013003350A2 (en) 2011-06-27 2013-01-03 Eisai R&D Management Co., Ltd. Microrna biomarkers indicative of alzheimer's disease
US20130073221A1 (en) * 2011-09-16 2013-03-21 Daniel Attinger Systems and methods for identification of fluid and substrate composition or physico-chemical properties
CA2850930A1 (en) 2011-10-03 2013-04-11 Celmatix, Inc. Methods and devices for assessing risk to a putative offspring of developing a condition
AU2012352168C1 (en) 2011-12-14 2018-01-25 AbbVie Deutschland GmbH & Co. KG Composition and method for the diagnosis and treatment of iron-related disorders
US9636398B2 (en) 2011-12-14 2017-05-02 AbbVie Deutschland GmbH & Co. KG Composition and method for the diagnosis and treatment of iron-related disorders
PL2807192T3 (pl) 2012-01-27 2019-02-28 Abbvie Deutschland Kompozycja oraz sposób diagnostyki i leczenia chorób związanych ze zwyrodnieniem neurytów
EP2825891A1 (en) 2012-03-13 2015-01-21 AbbVie Inc. Method for selecting or identifying a subject for v1b antagonist therapy
US20140024546A1 (en) 2012-05-01 2014-01-23 Synapdx Corporation Systems and methods for normalizing gene expression profiles of biological samples having a mixed cell population
EP2844773B1 (en) 2012-05-04 2017-08-16 Boreal Genomics Corp. Biomarker analysis using scodaphoresis
MX361457B (es) 2012-05-11 2018-12-06 Reset Therapeutics Inc Sulfonamidas que contienen carbazol como moduladoras de criptocromo.
US10288626B2 (en) 2012-09-14 2019-05-14 University Of Kentucky Research Foundation Secreted tumor-associated cytochrome as a blood-based biomarker for cancer
US9177098B2 (en) 2012-10-17 2015-11-03 Celmatix Inc. Systems and methods for determining the probability of a pregnancy at a selected point in time
US10162800B2 (en) 2012-10-17 2018-12-25 Celmatix Inc. Systems and methods for determining the probability of a pregnancy at a selected point in time
WO2014071281A1 (en) 2012-11-02 2014-05-08 The Johns Hopkins University Dna methylation biomarkers of post-partum depression risk
US9087298B2 (en) 2012-12-05 2015-07-21 International Business Machines Corporation Inference of anomalous behavior of members of cohorts and associate actors related to the anomalous behavior based on divergent movement from the cohort context centroid
US9836577B2 (en) 2012-12-14 2017-12-05 Celmatix, Inc. Methods and devices for assessing risk of female infertility
CA2914918C (en) 2013-05-10 2023-10-10 Johns Hopkins University Compositions and methods for ovarian cancer assessment having improved specificity
AU2014302070B2 (en) * 2013-06-28 2016-09-15 Nantomics, Llc Pathway analysis for identification of diagnostic tests
WO2015006645A1 (en) 2013-07-11 2015-01-15 The Johns Hopkins University A dna methylation and genotype specific biomarker of suicide attempt and/or suicide ideation
JP6611710B2 (ja) 2013-07-17 2019-11-27 ザ・ジョンズ・ホプキンス・ユニバーシティ 脳損傷の検出および転帰についてのマルチプロテインバイオマーカー測定法
US9898575B2 (en) 2013-08-21 2018-02-20 Seven Bridges Genomics Inc. Methods and systems for aligning sequences
US9116866B2 (en) 2013-08-21 2015-08-25 Seven Bridges Genomics Inc. Methods and systems for detecting sequence variants
CN105793859B (zh) 2013-09-30 2020-02-28 七桥基因公司 用于检测序列变异体的系统
US9753131B2 (en) * 2013-10-09 2017-09-05 Massachusetts Institute Of Technology Motion tracking via body radio reflections
KR101473705B1 (ko) * 2013-10-11 2014-12-18 삼성에스디에스 주식회사 생물학적 샘플 분석 시스템 및 방법
WO2015058095A1 (en) 2013-10-18 2015-04-23 Seven Bridges Genomics Inc. Methods and systems for quantifying sequence alignment
JP2016533182A (ja) 2013-10-18 2016-10-27 セブン ブリッジズ ジェノミクス インコーポレイテッド 疾患に誘導された変異を同定するための方法およびシステム
WO2015058093A1 (en) 2013-10-18 2015-04-23 Seven Bridges Genomics Inc. Methods and systems for genotyping genetic samples
US11049587B2 (en) 2013-10-18 2021-06-29 Seven Bridges Genomics Inc. Methods and systems for aligning sequences in the presence of repeating elements
US9063914B2 (en) 2013-10-21 2015-06-23 Seven Bridges Genomics Inc. Systems and methods for transcriptome analysis
KR20160107237A (ko) 2014-01-10 2016-09-13 세븐 브릿지스 지노믹스 인크. 판독물 맵핑에서 알려진 대립 유전자의 사용을 위한 시스템 및 방법
US10619210B2 (en) 2014-02-07 2020-04-14 The Johns Hopkins University Predicting response to epigenetic drug therapy
US9817944B2 (en) 2014-02-11 2017-11-14 Seven Bridges Genomics Inc. Systems and methods for analyzing sequence data
TWI690521B (zh) 2014-04-07 2020-04-11 美商同步製藥公司 作為隱花色素調節劑之含有咔唑之醯胺類、胺基甲酸酯類及脲類
KR20150137283A (ko) * 2014-05-29 2015-12-09 사회복지법인 삼성생명공익재단 생물학적 샘플 분석 시스템 및 방법
US10208350B2 (en) 2014-07-17 2019-02-19 Celmatix Inc. Methods and systems for assessing infertility and related pathologies
US10222386B2 (en) 2014-09-19 2019-03-05 The Johns Hopkins University Biomarkers of congnitive dysfunction
CN107408043A (zh) 2014-10-14 2017-11-28 七桥基因公司 用于序列流水线中的智能工具的系统和方法
GB2533098B (en) * 2014-12-09 2016-12-14 Ibm Automated management of confidential data in cloud environments
WO2016134365A1 (en) 2015-02-20 2016-08-25 The Johns Hopkins University Biomarkers of myocardial injury
US10192026B2 (en) 2015-03-05 2019-01-29 Seven Bridges Genomics Inc. Systems and methods for genomic pattern analysis
US10275567B2 (en) 2015-05-22 2019-04-30 Seven Bridges Genomics Inc. Systems and methods for haplotyping
US10793895B2 (en) 2015-08-24 2020-10-06 Seven Bridges Genomics Inc. Systems and methods for epigenetic analysis
US10724110B2 (en) 2015-09-01 2020-07-28 Seven Bridges Genomics Inc. Systems and methods for analyzing viral nucleic acids
US10584380B2 (en) 2015-09-01 2020-03-10 Seven Bridges Genomics Inc. Systems and methods for mitochondrial analysis
US11347704B2 (en) 2015-10-16 2022-05-31 Seven Bridges Genomics Inc. Biological graph or sequence serialization
US20170199960A1 (en) 2016-01-07 2017-07-13 Seven Bridges Genomics Inc. Systems and methods for adaptive local alignment for graph genomes
US10364468B2 (en) 2016-01-13 2019-07-30 Seven Bridges Genomics Inc. Systems and methods for analyzing circulating tumor DNA
US10460829B2 (en) 2016-01-26 2019-10-29 Seven Bridges Genomics Inc. Systems and methods for encoding genetic variation for a population
US10262102B2 (en) 2016-02-24 2019-04-16 Seven Bridges Genomics Inc. Systems and methods for genotyping with graph reference
US11250931B2 (en) 2016-09-01 2022-02-15 Seven Bridges Genomics Inc. Systems and methods for detecting recombination
US11266344B2 (en) 2016-09-21 2022-03-08 Samsung Electronics Co., Ltd. Method for measuring skin condition and electronic device therefor
EP3522893A4 (en) 2016-10-04 2020-08-26 University Of Maryland, Baltimore METHODS OF TREATMENT OF SEPTICEMIA USING LIPID A-BASED THERAPEUTIC AGENTS (ASLA) ANTISEPSY
US20200041492A1 (en) 2017-03-09 2020-02-06 Rijksuniversiteit Groningen Biomarkers for cellular senescence
WO2018227202A1 (en) * 2017-06-09 2018-12-13 Bellwether Bio, Inc. Determination of cancer type in a subject by probabilistic modeling of circulating nucleic acid fragment endpoints
WO2019133717A1 (en) 2017-12-29 2019-07-04 Abbott Laboratories Novel biomarkers and methods for diagnosing and evaluating traumatic brain injury
JP6852004B2 (ja) * 2018-03-07 2021-03-31 株式会社東芝 データ解析システム、データ解析方法、及びプログラム
US20210239700A1 (en) 2018-05-04 2021-08-05 Abbott Laboratories Hbv diagnostic, prognostic, and therapeutic methods and products
US20200097879A1 (en) * 2018-09-25 2020-03-26 Oracle International Corporation Techniques for automatic opportunity evaluation and action recommendation engine
KR102206905B1 (ko) 2018-12-28 2021-01-25 (주)아이쿱 혈액검사 결과 기반 생활패턴 및 변화인자 추정방법
WO2020172712A1 (en) 2019-02-27 2020-09-03 Epiaxis Therapeutics Pty Ltd Methods and agents for assessing t-cell function and predicting response to therapy
MX2022001519A (es) 2019-08-05 2022-04-06 Seer Inc Sistemas y metodos para preparacion de muestras, generacion de datos y analisis de proteina corona.
WO2022187818A1 (en) * 2021-03-03 2022-09-09 Lanzatech, Inc. System for control and analysis of gas fermentation processes
WO2023122723A1 (en) 2021-12-23 2023-06-29 The Broad Institute, Inc. Panels and methods for diagnosing and treating lung cancer
WO2024044578A1 (en) 2022-08-22 2024-02-29 University Of Virginia Dna methylation biomarkers of premenstrual dysphoric disorder and perimenopausal depression

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036973A1 (en) * 1998-12-23 2000-06-29 Medispectra, Inc. Optical methods and systems for cervical screening

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935562A (en) * 1974-02-22 1976-01-27 Stephens Richard G Pattern recognition method and apparatus
US4075475A (en) 1976-05-03 1978-02-21 Chemetron Corporation Programmed thermal degradation-mass spectrometry analysis method facilitating identification of a biological specimen
US4697242A (en) 1984-06-11 1987-09-29 Holland John H Adaptive computing system capable of learning and discovery
US4646355A (en) * 1985-03-15 1987-02-24 Tektronix, Inc. Method and apparatus for input picture enhancement by removal of undersired dots and voids
GB2187035A (en) * 1986-01-27 1987-08-26 Eric James Sjoberg Pyrolysis mass spectrometer disease diagnosis aid
US4881178A (en) 1987-05-07 1989-11-14 The Regents Of The University Of Michigan Method of controlling a classifier system
US5697369A (en) 1988-12-22 1997-12-16 Biofield Corp. Method and apparatus for disease, injury and bodily condition screening or sensing
AU7563191A (en) 1990-03-28 1991-10-21 John R. Koza Non-linear genetic algorithms for solving problems by finding a fit composition of functions
US5210412A (en) * 1991-01-31 1993-05-11 Wayne State University Method for analyzing an organic sample
US5784162A (en) * 1993-08-18 1998-07-21 Applied Spectral Imaging Ltd. Spectral bio-imaging methods for biological research, medical diagnostics and therapy
ES2102518T3 (es) 1991-08-28 1997-08-01 Becton Dickinson Co Motor de atraccion por gravitacion para el agrupamiento autoadaptativo de corrientes de datos n-dimensionales.
US5632957A (en) * 1993-11-01 1997-05-27 Nanogen Molecular biological diagnostic systems including electrodes
EP1139289B1 (en) 1992-09-01 2011-03-09 Apple Inc. Improved vector quantization
US5790761A (en) 1992-12-11 1998-08-04 Heseltine; Gary L. Method and apparatus for the diagnosis of colorectal cancer
EP1347493A3 (en) * 1993-05-28 2005-11-23 Baylor College Of Medicine Method and apparatus for desorption and ionization of analytes
US5995645A (en) * 1993-08-18 1999-11-30 Applied Spectral Imaging Ltd. Method of cancer cell detection
US5352613A (en) 1993-10-07 1994-10-04 Tafas Triantafillos P Cytological screening method
US6025128A (en) 1994-09-29 2000-02-15 The University Of Tulsa Prediction of prostate cancer progression by analysis of selected predictive parameters
WO1996012187A1 (en) * 1994-10-13 1996-04-25 Horus Therapeutics, Inc. Computer assisted methods for diagnosing diseases
US5848177A (en) * 1994-12-29 1998-12-08 Board Of Trustees Operating Michigan State University Method and system for detection of biological materials using fractal dimensions
GB2301897B (en) 1995-06-08 1999-05-26 Univ Wales Aberystwyth The Composition analysis
KR100197580B1 (ko) * 1995-09-13 1999-06-15 이민화 무선 통신망을 이용한 실시간 생체신호모니터링시스템
US5716825A (en) 1995-11-01 1998-02-10 Hewlett Packard Company Integrated nucleic acid analysis system for MALDI-TOF MS
US5687716A (en) 1995-11-15 1997-11-18 Kaufmann; Peter Selective differentiating diagnostic process based on broad data bases
DE19543020A1 (de) * 1995-11-18 1997-05-22 Boehringer Mannheim Gmbh Verfahren und Vorrichtung zur Bestimmung von analytischen Daten über das Innere einer streuenden Matrix
SE9602545L (sv) * 1996-06-25 1997-12-26 Michael Mecklenburg Metod för att diskriminera komplexa biologiska prover
US5839438A (en) 1996-09-10 1998-11-24 Neuralmed, Inc. Computer-based neural network system and method for medical diagnosis and interpretation
IL129498A0 (en) 1996-11-04 2000-02-29 Dimensional Pharm Inc System method and computer program product for identifying chemical compounds having desired properties
US6571227B1 (en) 1996-11-04 2003-05-27 3-Dimensional Pharmaceuticals, Inc. Method, system and computer program product for non-linear mapping of multi-dimensional data
EP1164203B1 (en) * 1996-11-06 2007-10-10 Sequenom, Inc. DNA Diagnostics based on mass spectrometry
US6157921A (en) 1998-05-01 2000-12-05 Barnhill Technologies, Llc Enhancing knowledge discovery using support vector machines in a distributed network environment
US5905258A (en) 1997-06-02 1999-05-18 Advanced Research & Techology Institute Hybrid ion mobility and mass spectrometer
NZ516848A (en) * 1997-06-20 2004-03-26 Ciphergen Biosystems Inc Retentate chromatography apparatus with applications in biology and medicine
US6081797A (en) 1997-07-09 2000-06-27 American Heuristics Corporation Adaptive temporal correlation network
US5974412A (en) 1997-09-24 1999-10-26 Sapient Health Network Intelligent query system for automatically indexing information in a database and automatically categorizing users
CA2321160A1 (en) 1998-02-13 1999-08-19 Oxford Glycosciences (Uk) Ltd. Methods and compositions for diagnosis of hepatoma
GB9805477D0 (en) 1998-03-13 1998-05-13 Oxford Glycosciences Limited Methods and compositions for diagnosis of rheumatoid arthritis
US6085576A (en) * 1998-03-20 2000-07-11 Cyrano Sciences, Inc. Handheld sensing apparatus
WO1999050437A1 (en) * 1998-03-30 1999-10-07 Esa, Inc. Methodology for predicting and/or diagnosing disease
US6723564B2 (en) 1998-05-07 2004-04-20 Sequenom, Inc. IR MALDI mass spectrometry of nucleic acids using liquid matrices
CA2331508A1 (en) * 1998-05-09 1999-11-18 Ikonisys, Inc. Method and apparatus for computer controlled rare cell, including fetal cell, based diagnosis
US6077693A (en) * 1998-05-14 2000-06-20 Incyte Pharmaceuticals, Inc. Polynucleotide encoding a promonocyte associated protein
AU772680B2 (en) 1999-02-16 2004-05-06 Government of The United States of America, as represented by The Secretary Department of Health & Human Services, The National Institutes of Health, The LCM (Laser capture microdissection) for cellular protein analysis
GB9905817D0 (en) 1999-03-12 1999-05-05 Oxford Glycosciences Uk Ltd Methods
US6714925B1 (en) * 1999-05-01 2004-03-30 Barnhill Technologies, Llc System for identifying patterns in biological data using a distributed network
US7057168B2 (en) * 1999-07-21 2006-06-06 Sionex Corporation Systems for differential ion mobility analysis
US6329652B1 (en) 1999-07-28 2001-12-11 Eastman Kodak Company Method for comparison of similar samples in liquid chromatography/mass spectrometry
US6615199B1 (en) 1999-08-31 2003-09-02 Accenture, Llp Abstraction factory in a base services pattern environment
AU7586100A (en) 1999-09-17 2001-04-17 Affymetrix, Inc. Method of cluster analysis of gene expression profiles
AU1350501A (en) 1999-10-27 2001-05-08 Barnhill Technologies, Llc Methods and devices for identifying patterns in biological systems and methods for uses thereof
CA2388595C (en) 1999-10-27 2010-12-21 Biowulf Technologies, Llc Methods and devices for identifying patterns in biological systems and methods for uses thereof
DE10021737C2 (de) 2000-05-04 2002-10-17 Hermann Haller Verfahren und Vorrichtung zur qualitativen und/oder quantitativen Bestimmung eines Protein- und/oder Peptidmusters einer Flüssigkeitsprobe, die dem menschlichen oder tierischen Körper entnommen wird
ATE406627T1 (de) * 2000-06-19 2008-09-15 Correlogic Systems Inc Heuristisches klassifikationsverfahren
US6680203B2 (en) * 2000-07-10 2004-01-20 Esperion Therapeutics, Inc. Fourier transform mass spectrometry of complex biological samples
AU2001273486A1 (en) * 2000-07-17 2002-01-30 Labnetics, Inc. Method and apparatus for the processing of remotely collected electronic information characterizing properties of biological entities
WO2002006829A2 (en) * 2000-07-18 2002-01-24 Correlogic Systems, Inc. A process for discriminating between biological states based on hidden patterns from biological data
CN1623091A (zh) 2000-11-16 2005-06-01 赛弗根生物系统股份有限公司 质谱分析方法
CA2435254C (en) 2001-01-24 2012-05-15 Biowulf Technologies, Llc Methods of identifying patterns in biological systems and uses thereof
AU2002314715B2 (en) 2001-02-16 2006-07-27 Ciphergen Biosystems, Inc. Method for correlating gene expression profiles with protein expression profiles
EP1385998A1 (en) 2001-04-19 2004-02-04 Ciphergen Biosystems, Inc. Biomolecule characterization using mass spectrometry and affinity tags
US20020160420A1 (en) 2001-04-30 2002-10-31 George Jackowski Process for diagnosis of physiological conditions by characterization of proteomic materials
WO2003014735A1 (en) * 2001-08-03 2003-02-20 General Hospital Corporation System, process and diagnostic arrangement establishing and monitoring medication doses for patients
US8068987B2 (en) 2001-08-13 2011-11-29 Bg Medicine, Inc. Method and system for profiling biological systems
US20020193950A1 (en) 2002-02-25 2002-12-19 Gavin Edward J. Method for analyzing mass spectra
JP4585167B2 (ja) * 2002-11-29 2010-11-24 東芝医用システムエンジニアリング株式会社 X線コンピュータ断層撮影システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036973A1 (en) * 1998-12-23 2000-06-29 Medispectra, Inc. Optical methods and systems for cervical screening

Also Published As

Publication number Publication date
WO2002006829A2 (en) 2002-01-24
CA2415775A1 (en) 2002-01-24
CN1484806A (zh) 2004-03-24
JP2004519659A (ja) 2004-07-02
KR20030074585A (ko) 2003-09-19
EP1386275A2 (en) 2004-02-04
KR101054732B1 (ko) 2011-08-05
BR0112667A (pt) 2006-05-09
EA200300161A1 (ru) 2003-12-25
WO2002006829A3 (en) 2003-11-20
US20030004402A1 (en) 2003-01-02
US20050043593A9 (en) 2005-02-24
NZ524171A (en) 2006-09-29
JP5246984B2 (ja) 2013-07-24
IL153856A0 (en) 2003-07-31
NO20030251D0 (no) 2003-01-17
AU2010246364A1 (en) 2010-12-16
US6925389B2 (en) 2005-08-02
US20050260671A1 (en) 2005-11-24
SG144731A1 (en) 2008-08-28
AU2001280581A1 (en) 2002-01-30
MXPA03000506A (es) 2004-09-10
NO20030251L (no) 2003-03-17

Similar Documents

Publication Publication Date Title
JP5246984B2 (ja) 生体データから隠れたパターンに基づいて生物学的状態相互間を区別する方法
Li et al. Discovery of significant rules for classifying cancer diagnosis data
US10713590B2 (en) Bagged filtering method for selection and deselection of features for classification
US8478534B2 (en) Method for detecting discriminatory data patterns in multiple sets of data and diagnosing disease
Ornstein et al. Serum proteomic profiling can discriminate prostate cancer from benign prostates in men with total prostate specific antigen levels between 2.5 and 15.0 ng/ml
KR101642270B1 (ko) 진화 클러스터링 알고리즘
US20020095260A1 (en) Methods for efficiently mining broad data sets for biological markers
US20060064253A1 (en) Multiple high-resolution serum proteomic features for ovarian cancer detection
White et al. Bioinformatics strategies for proteomic profiling
WO2003041562A2 (en) Molecular cancer diagnosis using tumor gene expression signature
Keller et al. A minimally invasive multiple marker approach allows highly efficient detection of meningioma tumors
US20060287969A1 (en) Methods of processing biological data
Zhang et al. Multiple biomarker panels for early detection of breast cancer in peripheral blood
Driscoll et al. Classification of gene expression data with genetic programming
AU2008201163A1 (en) A process for discriminating between biological states based on hidden patterns from biological data
van Bakel et al. A tutorial for DNA microarray expression profiling
Mirsadeghi et al. A post-method condition analysis of using ensemble machine learning for cancer prognosis and diagnosis: a systematic review
Hu et al. Gene Selection in Terms of Performance Based Consistency
Tran A novel method for finding sub-classification diagnosis biomarkers of ovarian cancer
Al-Osimi et al. GRC-MS: AGenetic RULE-BASED CLASSIFIER MODEL FOR ANALYSIS OF MASS SPECTRA DATA
Samarasinghe et al. Validating a gene expression signature of invasive ductal carcinoma of the breast and detecting key genes using neural networks

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311