JP2013098269A - Method for manufacturing substrate having heat dissipation - Google Patents

Method for manufacturing substrate having heat dissipation Download PDF

Info

Publication number
JP2013098269A
JP2013098269A JP2011238197A JP2011238197A JP2013098269A JP 2013098269 A JP2013098269 A JP 2013098269A JP 2011238197 A JP2011238197 A JP 2011238197A JP 2011238197 A JP2011238197 A JP 2011238197A JP 2013098269 A JP2013098269 A JP 2013098269A
Authority
JP
Japan
Prior art keywords
heat dissipation
substrate
heat
led chip
copper plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011238197A
Other languages
Japanese (ja)
Inventor
Masuichi Sato
佐藤益一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011238197A priority Critical patent/JP2013098269A/en
Publication of JP2013098269A publication Critical patent/JP2013098269A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

PROBLEM TO BE SOLVED: To expand a market due to the improvement of luminance deterioration and lifetime deterioration of an LED chip by providing a method for manufacturing an illumination apparatus structured to efficiently perform heat dissipation to solve the problem of preventing the propagation of LED lighting because the durability of an element is short due to the largeness of a heating value even though the LED lighting is propagating.SOLUTION: To achieve improvement of a substrate structured not to use an insulation sheet having poor thermal conductivity and heat dissipation due to a copper plate having good thermal conductivity, copper foil 3 on a glass epoxy substrate 8 and an electrode 6 of an LED chip are soldered to connect an end of the electrode to a copper plate 10 with a heat conductivity gel 12, achieving a structure that is easily subjected to heat dissipation. Heat is transferred to a radiator by avoiding the use of a resin layer as much as possible to establish a method for manufacturing an illumination apparatus structured to efficiently perform heat dissipation. The method is a method for manufacturing an LED lighting having a new glass epoxy substrate 8 with high heat dissipation.

Description

本発明は、LEDチップによって発生する熱を、効率よく放熱器に導くための新規な基板の製造法に関する。  The present invention relates to a novel substrate manufacturing method for efficiently guiding heat generated by an LED chip to a radiator.

家庭の電燈やテレビ、さらに商工業分野の照明に、LED照明が、省エネの点から徐々に普及している。LEDチップを取付けるベースには、アルミ基板が広く使用されている。アルミニウムは、金銀銅についで熱伝導率が高く、236W/mKの数値を有している。しかし、LED基板構造が適切でなく、熱伝導を阻害し、LEDチップの低寿命化や回路素子の破壊、ハンダの劣化等のトラブルが発生し、耐久性が問題になっている。  LED lighting is gradually becoming popular from the viewpoint of energy saving in household appliances, televisions, and commercial and industrial lighting. An aluminum substrate is widely used for the base to which the LED chip is attached. Aluminum has a high thermal conductivity after gold, silver and copper, and has a value of 236 W / mK. However, the LED substrate structure is not appropriate, impedes heat conduction, causes troubles such as a shortened life of the LED chip, destruction of circuit elements, and deterioration of solder, and durability is a problem.

そこで、本発明者は、あまり検討されていない絶縁シート層の省略、さらに下記の(1)式で表される熱伝導率の向上のためのファクターの見直しを行うことにした。熱伝導率kは、熱の伝わり易さを表す値であり、板状材料の厚さが1m、内外温度差が1℃あるときに、どれぐらい熱を伝えるかを表す数値で、この値が大きいほど熱伝導性が高い。
k=W/mK ・・・・(1)
ここで、kは熱伝導率、Wは熱量、mは板状材料の厚さ、Kは絶対温度である。
Therefore, the present inventor decided to omit the insulating sheet layer, which has not been studied much, and to review the factors for improving the thermal conductivity represented by the following formula (1). The thermal conductivity k is a value indicating the ease of heat transfer, and is a numerical value indicating how much heat is transferred when the thickness of the plate-like material is 1 m and the internal / external temperature difference is 1 ° C. The larger the value, the higher the thermal conductivity.
k = W / mK (1)
Here, k is the thermal conductivity, W is the amount of heat, m is the thickness of the plate material, and K is the absolute temperature.

通常のLED照明では、LEDチップを、銅パターン、絶縁シート及びアルミベースからなるアルミ基板に取付けて使用している。LEDチップは、図1に示すように、その電極を銅パターンとハンダ付けにより取付けている。この構造の場合には、LED電極からアルミベースに電流が流れないようにするために、銅パターンとアルミベースの間の絶縁シートが必須である。ハイパワーLEDでは、発熱量が多く、アルミベースの上に絶縁シートがあると、熱の移動が妨害され、LEDチップの寿命が短くなる。これがLEDの普及の妨げになっていた。  In normal LED lighting, an LED chip is attached to an aluminum substrate made of a copper pattern, an insulating sheet, and an aluminum base. As shown in FIG. 1, the LED chip has its electrodes attached by soldering with a copper pattern. In the case of this structure, an insulating sheet between the copper pattern and the aluminum base is essential in order to prevent current from flowing from the LED electrode to the aluminum base. In a high power LED, the amount of heat generated is large, and if there is an insulating sheet on the aluminum base, heat transfer is hindered and the life of the LED chip is shortened. This hindered the spread of LEDs.

LEDと高放熱基板をキーワードとして、公報テキスト検索を公開特許公報と公開実用新案公報について実施した。ヒット件数は1件で、特許文献1であった。貫通孔又はスリット状の貫通孔を設けて、熱の移動を容易にする技術であった。  Using the LED and the high heat dissipation substrate as keywords, a gazette text search was conducted for the published patent gazette and the published utility model gazette. The number of hits was 1, which was Patent Document 1. This is a technique for facilitating the movement of heat by providing a through hole or a slit-like through hole.

高熱伝導基板に、高熱伝導絶縁膜を接合させる技術が開発され、発表されている(非特許文献1)。銅バンプによって層間接続を行って、温度上昇を抑える技術が公開されている(非特許文献2及び3)。  A technique for bonding a high thermal conductive insulating film to a high thermal conductive substrate has been developed and published (Non-Patent Document 1). Techniques for suppressing temperature rise by performing interlayer connection with copper bumps are disclosed (Non-Patent Documents 2 and 3).

特開2006−147333JP 2006-147333 A

OKIテクニカルレビュー 2010年4月 第216号OKI Technical Review April 2010 No.216 電気化学工業の新会社設立発表 2007年4月17日Announcement of establishment of a new company of Electrochemical Industry April 17, 2007 デンカAGSP株式会社 ホームページ 高放熱基板の基本構成DENKA AGSP Corporation Homepage Basic configuration of high heat dissipation board

通常使用されているアルミ基板を見ると、アルミの熱伝導率が、236であっても銅箔シートとアルミ基板の間に、絶縁シートが挟まれているため、熱伝導ができない構造になっている。絶縁のためには、熱伝導率0.2以下の樹脂を使用せざるを得ないからである。本発明者は、従来の基板の構造に関する考え方から脱却して、放熱性の良い、すなわち熱伝導性に優れた基板の採用を課題とした。また、基板と放熱器の接点も、密着が悪く、空気を含むことがあると、同様に熱伝導の妨げになっていた。また、従来のアルミ基板構造では、二つの絶縁層を有するLEDパッケージであり、絶縁層を少なくするのが大きな課題である。  Looking at the commonly used aluminum substrate, even if the thermal conductivity of aluminum is 236, the insulation sheet is sandwiched between the copper foil sheet and the aluminum substrate, so the structure cannot conduct heat. Yes. This is because a resin having a thermal conductivity of 0.2 or less must be used for insulation. The present inventor has moved away from the conventional way of thinking about the structure of the substrate, and has made it a subject to adopt a substrate with good heat dissipation, that is, excellent thermal conductivity. Further, the contact between the substrate and the radiator is poorly adhered, and if air may be contained, it similarly hinders heat conduction. In addition, the conventional aluminum substrate structure is an LED package having two insulating layers, and it is a big problem to reduce the number of insulating layers.

従来の技術は、図1のように、アルミニウムベースの上に、絶縁層を設けてあり、これが熱移動を妨げていることが分った。この課題を解決するために、チップをブリッジタイプにしたのが、一つの効果であり、図2のように絶縁層を省略できることが実現した。ハンダ付けする銅箔3の代わりに、図2のように銅板7を使用して、アルミベースを使用しないで、ハンダ4のみで、銅板と電極との短絡を図る構造とした。  As shown in FIG. 1, in the conventional technique, it has been found that an insulating layer is provided on an aluminum base, which prevents heat transfer. In order to solve this problem, one of the effects is that the chip is a bridge type, and it has been realized that the insulating layer can be omitted as shown in FIG. Instead of the copper foil 3 to be soldered, a copper plate 7 is used as shown in FIG. 2, and an aluminum base is not used, and only the solder 4 is used to short-circuit the copper plate and the electrode.

図2の構造では、量産の過程で自動化できないプロセスがあり、図2のLED基板では、コスト高のため採算が合わなかった。そこで、図3の構造を開発して、高放熱性を実現した。すなわち、ブリッジ構造は維持したまま、LED電極の下を銅パターンとし、両者をハンダ付けをした。アルミ基板は、ガラエポ基板に変更した。ブリッジ状の基板の上にLEDチップがあり、そのすき間に、断面がT字型の銅板を差込み、LED電極との間を熱伝導ゲルで接合させた。さらに、基板へのT字型の銅板の接合は、熱伝導絶縁塗料を接着剤として採用した。  In the structure of FIG. 2, there is a process that cannot be automated in the process of mass production, and the LED substrate of FIG. Therefore, the structure of FIG. 3 was developed to achieve high heat dissipation. That is, while maintaining the bridge structure, a copper pattern was formed under the LED electrode, and both were soldered. The aluminum substrate was changed to a glass epoxy substrate. There was an LED chip on a bridge-shaped substrate, a copper plate having a T-shaped cross section was inserted into the gap, and the LED electrode was joined with a heat conductive gel. Further, a heat conductive insulating paint was used as an adhesive for bonding the T-shaped copper plate to the substrate.

さらに、放熱性を向上させるために、図4の構造の突起のあるアルミニウム放熱器の突起部分を、チップの下の穴に差込み固定して、放熱性を向上させた。  Furthermore, in order to improve the heat dissipation, the protruding portion of the aluminum radiator with the protrusion of the structure of FIG. 4 was inserted and fixed in the hole under the chip to improve the heat dissipation.

アルミ基板の時には、初期温度20℃で、点灯時間後には、LEDチップが68℃まで
上昇していたが、本考案の構造では、40℃の温度上昇に留まった。これまでの構造では、絶縁シートと基板、基板と放熱器の間の接着層の2か所で、熱伝導を妨げていたが、基板内の絶縁層がなくなり、絶縁層は1か所となった。熱伝導ゲルによって、熱伝導率398のT型銅板の一次放熱器へ熱移動がスムースに行えるようになった効果である。基板と放熱器の接合に当っては、接着樹脂を少なくし、空気層を含まないように丁寧に接着することに留意して、温度上昇を抑える効果が生まれた。
In the case of an aluminum substrate, the LED chip rose to 68 ° C. after the lighting time at an initial temperature of 20 ° C., but in the structure of the present invention, the temperature rise was only 40 ° C. In the structure so far, heat conduction has been hindered in two places, the insulating sheet and the substrate, and the adhesive layer between the substrate and the radiator, but there is no insulating layer in the substrate, and there is only one insulating layer. It was. This is an effect that the heat transfer gel can smoothly transfer the heat to the primary radiator of the T-type copper plate having a heat conductivity of 398. At the time of joining the substrate and the heatsink, the effect of suppressing the temperature rise was born, paying attention to the adhesive resin being reduced and carefully bonding so as not to include the air layer.

従来の一般的なLEDチップの装着模式図Schematic diagram of conventional general LED chip mounting 銅板をベースとし熱伝導性を改良してブリッジタイプにLEDチップを装 着した現行品の基板模式図Schematic diagram of the current product with a copper plate as a base and with improved thermal conductivity and a bridge type LED chip. 第1次放熱器で、断面T字型の銅板のはめ込み式とし、ハンダ又は熱伝導 ゲルと熱伝同塗料によって個定した模式図、塗料の厚みを拡大した模式 図である。It is a schematic diagram in which a copper plate with a T-shaped cross section is fitted in the primary radiator, and is identified by solder or heat conductive gel and heat transfer paint, and the thickness of the paint is enlarged. 銅板の放熱器に代わって設置するフィンの模式図Schematic diagram of fins installed in place of a copper plate radiator

図3によって説明する。所定サイズのガラエポ基板8の上に銅パターン3を印刷し、LED取り付けパターンの中央にスリット穴をあけ、その穴に銅の第1次放熱器10であるT型断面のプレート突起を、基板の穴に、はめ込んで基板を組み立て、LEDチップの反対面に熱伝導絶縁塗料11を、塗布する。出来上がった基板にLEDチップをハンダにより実装する。熱伝導絶縁塗料には、窒化アルミ、銅の粉末、熱伝導性のホイスカー等から選択された熱伝導物質が練り込んであり、製作した基板のLEDチップから放熱機又は、放熱ケースに熱移動がスムースに起る構造にした。ハンダや絶縁シートの接着剤は、空気層を含まないように、可能な限り平滑に塗布することが重要である。  This will be described with reference to FIG. A copper pattern 3 is printed on a glass epoxy substrate 8 of a predetermined size, a slit hole is formed in the center of the LED mounting pattern, and a T-shaped cross-section plate protrusion, which is a copper primary radiator 10, is formed on the hole. The substrate is assembled by fitting into the hole, and the heat conductive insulating paint 11 is applied to the opposite surface of the LED chip. The LED chip is mounted on the finished substrate by soldering. The heat conductive insulating paint is kneaded with a heat conductive material selected from aluminum nitride, copper powder, heat conductive whisker, etc., and heat transfer from the LED chip of the manufactured board to the heat sink or heat dissipation case. It has a smooth structure. It is important that the solder or the insulating sheet adhesive is applied as smoothly as possible so as not to include an air layer.

冷却をさらに効果的に実施するために、図4に示すような放熱器または放熱ケースに突起の出たものを採用して、一段と放熱性を向上させることも出来る。  In order to carry out cooling more effectively, it is possible to further improve the heat dissipation by adopting a radiator or a heat dissipation case with protrusions as shown in FIG.

銅パターン3が印刷された1mm厚さの30mm×40mmの大きさのガラエポ基板3・4に、図3の8のように、基板にスリット穴をあけて、LED電極6をハンダ付けして、ブリッジタイプに、LEDチップ5・6と基板3・8が接合された後、ブリッジの間に、T字型の突起のある銅板10を差込みその先を熱伝導ゲル12で固めた形を採用する。  A slit hole is made in the substrate as shown in 8 of FIG. 3 on a 1 mm-thick 30 mm × 40 mm glass epoxy substrate 3 and 4 on which the copper pattern 3 is printed, and the LED electrode 6 is soldered. After the LED chips 5 and 6 and the substrates 3 and 8 are joined to the bridge type, a copper plate 10 with a T-shaped protrusion is inserted between the bridges and the tip is hardened with a heat conductive gel 12 is adopted. .

銅パターン3が印刷された1mm厚さの30mm×40mmの大きさのガラエポ基板3・4に、図3の8のように、LED電極6の間に基板にスリット穴をあけて、その穴にT字型の突起のある銅板10を差込み、接着材で接着し、出来上がった基板上に、LED電極をハンダ付けして、LED基板を作る。  A slit hole is made in the substrate between the LED electrodes 6 as shown in 8 of FIG. 3 in a 1 mm-thick 30 mm × 40 mm glass epoxy substrate 3 and 4 on which the copper pattern 3 is printed. A copper plate 10 having a T-shaped protrusion is inserted and bonded with an adhesive, and an LED electrode is soldered on the completed substrate to make an LED substrate.

製造手順としては、LEDチップが二極で一極が放熱端子と共用の場合には、放熱端子側に穴をあけ、銅のT型第一次放熱器10の突起部分を差込み、接着剤で固定して熱伝導絶縁塗料11により電気絶縁性を付与した。  As a manufacturing procedure, when the LED chip has two poles and one pole is shared with the heat radiating terminal, a hole is made on the heat radiating terminal side, the protrusion of the copper T-type primary radiator 10 is inserted, and an adhesive is used. It fixed and electrically insulating property was provided with the heat conductive insulating coating material 11.

出来上がった基板にLEDチップを実装して完成させる。これでLEDチップから発生する熱は、熱伝導ゲルの熱伝導性物質により銅板に伝わり放熱された。放熱用の銅板は、極めて小量の熱伝導接着剤である塗料でガラエポに固定させており、テストでは、1時間の点灯でのLEDチップの温度上昇は、42℃に抑えられた。熱伝導性の良好なLED照明器となった。  An LED chip is mounted on the completed substrate and completed. Thus, the heat generated from the LED chip was transferred to the copper plate by the heat conductive material of the heat conductive gel and dissipated. The heat-dissipating copper plate was fixed to the glass epoxy with a very small amount of heat conductive adhesive, and in the test, the temperature rise of the LED chip after lighting for 1 hour was suppressed to 42 ° C. An LED illuminator with good thermal conductivity was obtained.

これまで、LEDチップの熱は、アルミ基板の背面の金属板に伝わりにくかった。そのためLEDチップの輝度低下、寿命低下が起った。これが原因で普及をさまたげてきた。絶縁層の省略と熱伝導の改良技術を取り入れた本発明によって、LEDチップの温度上昇が抑えられ、耐久性の向上が実現でき、高出力LEDが必要な工場や劇場の照明への利用が拡大すると考えている。また、基板の小型によりLED以外でも放熱の必要な場合でも効率よく放熱ができる。  Until now, it has been difficult for the heat of the LED chip to be transferred to the metal plate on the back surface of the aluminum substrate. For this reason, the brightness and life of the LED chip are reduced. This has hindered widespread use. The present invention, which incorporates the omission of the insulating layer and improved heat conduction technology, can suppress the temperature rise of the LED chip, improve the durability, and expand the use for lighting in factories and theaters that require high power LEDs. I think so. Further, due to the small size of the substrate, heat can be efficiently dissipated even when heat is required other than the LED.

1アルミ基板のアルミベース
2絶縁層
3銅箔層
4ハンダ層
5LEDチップ
6LEDの電極
7銅板
8ガラエポ基板
9ハンダ
10銅のT型第一次放熱器
11熱伝導絶縁塗料
12熱伝導ゲル
13アルミニウム放熱器
1 Aluminum substrate 2 Aluminum layer 2 Insulating layer 3 Copper foil layer 4 Solder layer 5 LED chip 6 LED electrode 7 Copper plate 8 Glass epoxy substrate 9 Solder 10 Copper T-type primary radiator 11 Thermal conductive insulating paint 12 Thermal conductive gel 13 Aluminum heat dissipation vessel

Claims (3)

複数の銅パターンが印刷された所定サイズのガラエポ基板に、LEDチップが二つの電極と一つの放熱電極の合計三つの電極を有するチップでは、中央の放熱電極の位置に穴をあけて基板を製作し、その穴に第一次放熱器のT字型の突起のある銅板又はアルミニウム放熱器の突起部を差込み、銅板やアルミニウム放熱器を、熱伝導絶縁塗料を塗布して固定して、出来上がった基板にハンダと熱伝導ゲルを使用してLEDチップを実装して完成させることを特徴とする放熱性を有する基板の製造法  If the LED chip has a total of three electrodes, two electrodes and one heat dissipation electrode, on a glass epoxy substrate of a predetermined size on which a plurality of copper patterns are printed, a hole is made at the center of the heat dissipation electrode to produce the substrate. The copper plate or aluminum radiator with the T-shaped projection of the primary radiator was inserted into the hole, and the copper plate or aluminum radiator was fixed by applying heat conductive insulating paint. A method of manufacturing a heat-radiating substrate characterized by mounting and completing an LED chip using solder and a thermal conductive gel on the substrate 複数の銅パターンが印刷された所定サイズのガラエポ基板に、LEDチップが二極で一極が放熱端子と共用の場合には、放熱用端子側に穴をあけて基板を製作し、その穴にT字型の突起のある銅板又はアルミニウム放熱器の突起部を差込み、銅板やアルミニウム放熱器を、熱伝導絶縁塗料を塗布して固定して、出来上がった基板にハンダと熱伝導ゲルを使用してLEDチップを実装して完成させることを特徴とする放熱性を有する基板の製造  If the LED chip is two-pole and one pole is shared with the heat dissipation terminal on a glass epoxy board of a predetermined size printed with a plurality of copper patterns, a board is manufactured by making a hole on the heat dissipation terminal side, and in that hole Insert the copper plate or aluminum radiator with a T-shaped protrusion, and fix the copper plate or aluminum radiator by applying heat conductive insulating paint, and use solder and heat conductive gel on the finished board Manufacturing of a substrate with heat dissipation, characterized by mounting and completing an LED chip 第一次放熱器のT型の銅板の先とLED電極の接合を電気絶縁の必要な場合は、窒化アルミ、ダイヤ等の微粉末、電気絶縁性が必要でない場合には、銅、アルミナ、ナノカーボンから選択した微粉末の混入した熱伝導ゲルによって行うことを特徴とする請求項1又は2のLED基板の製造法
When electrical insulation is required between the tip of the T-shaped copper plate of the primary heatsink and the LED electrode, fine powders such as aluminum nitride and diamond, and when electrical insulation is not required, copper, alumina, nano 3. The method for producing an LED substrate according to claim 1, wherein the heat conduction gel is mixed with fine powder selected from carbon.
JP2011238197A 2011-10-31 2011-10-31 Method for manufacturing substrate having heat dissipation Pending JP2013098269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011238197A JP2013098269A (en) 2011-10-31 2011-10-31 Method for manufacturing substrate having heat dissipation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011238197A JP2013098269A (en) 2011-10-31 2011-10-31 Method for manufacturing substrate having heat dissipation

Publications (1)

Publication Number Publication Date
JP2013098269A true JP2013098269A (en) 2013-05-20

Family

ID=48619938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011238197A Pending JP2013098269A (en) 2011-10-31 2011-10-31 Method for manufacturing substrate having heat dissipation

Country Status (1)

Country Link
JP (1) JP2013098269A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107842716A (en) * 2017-10-18 2018-03-27 安徽建筑大学 A kind of integrated form alternating-current light emitting diode light engine, substrate and its manufacture method
KR20180086841A (en) * 2017-01-24 2018-08-01 이희준 Heat sink and lighting device comprising the same
CN111218245A (en) * 2020-03-02 2020-06-02 赣州逸豪新材料股份有限公司 Aluminum substrate heat-conducting glue and preparation method thereof
CN113099604A (en) * 2021-05-07 2021-07-09 高德(无锡)电子有限公司 Interconnected printed circuit board capable of being used for product with ultrahigh heat dissipation requirement and manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180086841A (en) * 2017-01-24 2018-08-01 이희준 Heat sink and lighting device comprising the same
KR101980074B1 (en) * 2017-01-24 2019-05-20 이희준 Heat sink and lighting device comprising the same
CN107842716A (en) * 2017-10-18 2018-03-27 安徽建筑大学 A kind of integrated form alternating-current light emitting diode light engine, substrate and its manufacture method
CN111218245A (en) * 2020-03-02 2020-06-02 赣州逸豪新材料股份有限公司 Aluminum substrate heat-conducting glue and preparation method thereof
CN113099604A (en) * 2021-05-07 2021-07-09 高德(无锡)电子有限公司 Interconnected printed circuit board capable of being used for product with ultrahigh heat dissipation requirement and manufacturing method
CN113099604B (en) * 2021-05-07 2024-04-23 高德(江苏)电子科技股份有限公司 Interconnection printed circuit board for ultrahigh heat dissipation requirement product and manufacturing method thereof

Similar Documents

Publication Publication Date Title
AU2012333908C1 (en) Manufacturing process of high-power LED radiating structure
KR101507668B1 (en) Method for manufacturing heat sink structure for high-power led
CN101888740B (en) Convex metal printed circuit board and manufacturing method thereof
CN201918430U (en) Integral heat dissipation structure for LED substrate
US10524349B2 (en) Printed circuit board with built-in vertical heat dissipation ceramic block, and electrical assembly comprising the board
TWI690246B (en) Built-in longitudinal heat dissipation ceramic block printed circuit board and circuit assembly with the circuit board
JP3128955U (en) Electric circuit board structure with heat dissipation sheet
JP2013098269A (en) Method for manufacturing substrate having heat dissipation
JP2009212367A (en) Semiconductor light-emitting device
WO2018018961A1 (en) Pcb, method for manufacturing same, and mobile terminal
TWM491958U (en) Floating copper heat sink frame for LED flip-chip package and LED package
TW201436701A (en) Heat dissipating module
TWI449226B (en) Thermal structure for led device
CN103234181A (en) High heat conduction light-emitting diode (LED) welding method
TW201242123A (en) Structure of the LED package
TW201429009A (en) Light emitting diode device and a method for manufacturing heat dissipating substrate
CN209708967U (en) A kind of LED light module
TWM502251U (en) LED heat dissipation substrate
JP3169094U (en) New LED board structure with high heat dissipation
CN203503690U (en) LED lamp with ceramic heat radiation substrate
TWI769090B (en) Light source module
CN109524374B (en) LED light-emitting module
KR101801195B1 (en) Method for manufacturing led lighting module and led lighting module manufactured by the same
JP2014072331A (en) Metal base circuit board and mounting substrate
TW201344707A (en) A method of manufacturing a new aluminum plate