JP2013087554A - Liquefaction measure structure and liquefaction measure construction method - Google Patents

Liquefaction measure structure and liquefaction measure construction method Download PDF

Info

Publication number
JP2013087554A
JP2013087554A JP2011230969A JP2011230969A JP2013087554A JP 2013087554 A JP2013087554 A JP 2013087554A JP 2011230969 A JP2011230969 A JP 2011230969A JP 2011230969 A JP2011230969 A JP 2011230969A JP 2013087554 A JP2013087554 A JP 2013087554A
Authority
JP
Japan
Prior art keywords
liquefaction
tunnel
groundwater
shield tunnel
weir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011230969A
Other languages
Japanese (ja)
Other versions
JP5929089B2 (en
Inventor
Mitsuyasu Kaihara
光恭 貝原
Hiroshi Inagaki
紘史 稲垣
Akira Yamamoto
山本  彰
Mamoru Sawara
守 佐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2011230969A priority Critical patent/JP5929089B2/en
Publication of JP2013087554A publication Critical patent/JP2013087554A/en
Application granted granted Critical
Publication of JP5929089B2 publication Critical patent/JP5929089B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquefaction measure structure in which liquefaction measures can be implemented according to a ground water level reduction construction method even when power is not supplied, for example, in the case of power failure, and a liquefaction measure construction method.SOLUTION: A liquefaction measure structure 10 is provided for implementing liquefaction measures by reducing a ground water level. The liquefaction measure structure 10 is constructed on the underground foundation subjected to liquefaction measures, comprises a shield tunnel 12 including an inflow port through which ground water flows in and an embankment 16 with a predetermined height which is provided in a terminal end of the shield tunnel 12, and is configured such that the ground water flowing into the shield tunnel 12 flows over the embankment 16 and flows out of the shield tunnel 12.

Description

本発明は、地下水位を低下させることにより液状化対策を行うための液状化対策構造及び液状化対策工法に関する。   The present invention relates to a liquefaction countermeasure structure and a liquefaction countermeasure construction method for taking a liquefaction countermeasure by lowering a groundwater level.

地下水位を低下させることにより行う液状化対策工法として、液状化対策の対象の地下地盤内あるいはその近傍にトンネルを構築し、そのトンネルから延びる有孔管等の人工ドレーン材を、対象の地下地盤内に敷設することで、対象の地下地盤内の地下水がトンネルに集まるようにし、トンネルに集まった地下水を、立坑を通して揚水ポンプで吸い上げる方法が知られている(例えば、特許文献1参照)。   As a liquefaction countermeasure method performed by lowering the groundwater level, a tunnel is constructed in or near the underground ground subject to liquefaction countermeasures, and an artificial drain material such as a perforated pipe extending from the tunnel is used as the target underground ground. A method is known in which groundwater in a target underground ground is collected in a tunnel by laying in the ground, and the groundwater collected in the tunnel is sucked up by a pumping pump through a shaft (for example, see Patent Document 1).

特開平11―229405号公報JP-A-11-229405

特許文献1に記載の液状化対策工法では、揚水ポンプを使用するため、停電時等の電力が供給されない時にはトンネルから排水することができず、地下水位を低下させることができない。従って、地震時に停電が原因で地下水位を低下させることができずに、液状化を防止できなくなる可能性がある。   In the liquefaction countermeasure method described in Patent Document 1, since a pump is used, it is not possible to drain from the tunnel when power is not supplied during a power failure or the like, and the groundwater level cannot be lowered. Therefore, the groundwater level cannot be lowered due to a power failure during an earthquake, and liquefaction may not be prevented.

本発明は、上記事情に鑑みてなされたものであり、停電時等の電力が供給されない時にも地下水位を低下させることによる液状化対策を実施できる液状化対策構造及び液状化対策工法を提供することを課題とするものである。   The present invention has been made in view of the above circumstances, and provides a liquefaction countermeasure structure and a liquefaction countermeasure method capable of implementing a liquefaction countermeasure by lowering the groundwater level even when power is not supplied during a power failure or the like. This is a problem.

上記課題を解決するために、本発明に係る液状化対策構造は、地下水位を低下させることにより液状化対策を行うための液状化対策構造であって、液状化対策の対象の地下地盤に非開削工法により構築され、地下水が流入する流入口を有するトンネルと、前記トンネルの末端に設けられた所定の高さの堰と、を備え、前記トンネル内に流入した地下水が前記堰を越流して前記トンネルから流出するように構成されている。   In order to solve the above-mentioned problems, the liquefaction countermeasure structure according to the present invention is a liquefaction countermeasure structure for reducing liquefaction by lowering the groundwater level, and is not applied to the underground ground subject to liquefaction countermeasures. A tunnel constructed by an open-cut method and having an inflow port through which groundwater flows, and a weir having a predetermined height provided at the end of the tunnel, the groundwater flowing into the tunnel overflowing the weir It is configured to flow out of the tunnel.

前記液状化対策構造は、前記流入口から側方へ延びる、地下水が流入可能な複数のドレーン材を備えてもよい。   The liquefaction countermeasure structure may include a plurality of drain materials that extend laterally from the inlet and into which groundwater can flow.

また、前記液状化対策構造は、前記トンネルから地表面へ延びる立坑を備えてもよい。   The liquefaction countermeasure structure may include a shaft extending from the tunnel to the ground surface.

また、前記液状化対策構造は、海又は川に隣設され、前記堰を越流した地下水が貯留される貯留部と、前記貯留部の水位が前記海又は川の水位よりも高い場合に開いて前記貯留部から前記海又は川に排水する排水ゲートとを備えてもよい。   In addition, the liquefaction countermeasure structure is adjacent to the sea or river, and is opened when the water level of the ground part that has overflowed the weir is stored and when the water level of the storage part is higher than the water level of the sea or river. And a drain gate for draining from the reservoir to the sea or river.

また、本発明に係る液状化対策工法は、地下水位を低下させることにより液状化対策を行う液状化対策工法であって、液状化対策の対象の地下地盤に、地下水が流入する流入口を有するトンネルを非開削工法により構築し、前記トンネルの末端に、所定の高さの堰を設け、前記トンネル内に流入した地下水を、前記堰を越流させて前記トンネルから流出させる。   In addition, the liquefaction countermeasure method according to the present invention is a liquefaction countermeasure method for reducing liquefaction by lowering the groundwater level, and has an inflow port through which groundwater flows into the underground ground subject to liquefaction countermeasures. A tunnel is constructed by a non-cutting method, a weir having a predetermined height is provided at the end of the tunnel, and groundwater that has flowed into the tunnel is caused to overflow the weir and flow out of the tunnel.

本発明によれば、停電時等の電力が供給されない時にも地下水位を低下させることによる液状化対策を実施できる。   ADVANTAGE OF THE INVENTION According to this invention, even when electric power is not supplied at the time of a power failure etc., the countermeasure against liquefaction by reducing a groundwater level can be implemented.

一実施形態に係る液状化対策構造を示す平面図である。It is a top view which shows the liquefaction countermeasure structure which concerns on one Embodiment. 図1の2−2断面図である。It is 2-2 sectional drawing of FIG. 図2の3−3断面図である。FIG. 3 is a sectional view taken along line 3-3 in FIG. 2. (A)は、表層の非液状化層の厚さH(m)とその下の液状化層の厚さH(m)との関係によって、地表面に被害が及ぶ程度を示すグラフであり、(B)は、(A)の結果を得るために確認した土質と地下水位のモデルを示す図である。(A) is, depending on the relationship between the thickness H 2 of the surface layer of the non-liquefied layer thickness H 1 (m) a liquid layer below it (m), a graph showing the extent of up damage to the ground surface Yes, (B) is a diagram showing a soil and groundwater level model confirmed to obtain the result of (A).

以下、本発明の一実施形態を、図面を参照しながら説明する。図1は、本発明の一実施形態に係る液状化対策構造10を示す平面図であり、図2は、図1の2−2断面図であり、図3は、図2の3−3断面図である。これらの図に示すように、本実施形態に係る液状化対策構造10は、幹線道路1の両側に住宅用の敷地2が位置する宅地の地下地盤に構築されている。この液状化対策構造10が構築されることにより、当該地下地盤の地下水位が、遊水池5の水位を基準として、TP+2.0〜+2.5m(GL−0.5〜−1.0m)からTP+0.5m(GL−2.5m)に低下されている。これによって、当該地下地盤のTP+0.5m(GL−2.5m)以浅の層が非液状化層3となり、TP+0.5m(GL−2.5m)以深の層が液状化層4となっている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1 is a plan view showing a liquefaction countermeasure structure 10 according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line 2-2 in FIG. 1, and FIG. 3 is a sectional view taken along the line 3-3 in FIG. FIG. As shown in these figures, the liquefaction countermeasure structure 10 according to the present embodiment is constructed on the underground ground of a residential land where residential sites 2 are located on both sides of the main road 1. By constructing this liquefaction countermeasure structure 10, the groundwater level of the underground ground is from TP + 2.0 to +2.5 m (GL−0.5 to −1.0 m) based on the water level of the reservoir 5. It is lowered to TP + 0.5 m (GL−2.5 m). As a result, a layer shallower than TP + 0.5 m (GL−2.5 m) of the underground ground becomes the non-liquefied layer 3, and a layer deeper than TP + 0.5 m (GL−2.5 m) becomes the liquefied layer 4. .

液状化対策構造10は、幹線道路1の幅方向中央部の直下において幹線道路1に沿って遊水池5まで延びるシールドトンネル12と、シールドトンネル12からその両側へ水平に延びる複数のドレーン材14と、シールドトンネル12の末端に設けられた堰16と、海又は川と遊水池5との間の堤防6に設けられたフラップゲート18と、シールドトンネル12から地上まで鉛直に延びる複数の立坑20とを備えている。   The liquefaction countermeasure structure 10 includes a shield tunnel 12 that extends to the basin 5 along the main road 1 immediately below the central portion in the width direction of the main road 1, and a plurality of drain materials 14 that extend horizontally from the shield tunnel 12 to both sides thereof. A weir 16 provided at the end of the shield tunnel 12, a flap gate 18 provided on the embankment 6 between the sea or river and the basin 5, and a plurality of vertical shafts 20 extending vertically from the shield tunnel 12 to the ground. It has.

シールドトンネル12は、シールド工法により構築された直径が2mのトンネルである。このシールドトンネル12の軸心の深さはTP−0.5mであり、上端及び下端の深さは夫々、TP+0.5m、TP−1.5mである。即ち、シールドトンネル12は、地下水位低下工法により低下させた後の地下水位(TP+0.5m)以深に構築されている。また、シールドトンネル12の土被りは2.5mであり、シールドトンネル12の直径以上である。   The shield tunnel 12 is a tunnel having a diameter of 2 m constructed by a shield method. The depth of the axial center of the shield tunnel 12 is TP−0.5 m, and the depths of the upper end and the lower end are TP + 0.5 m and TP−1.5 m, respectively. That is, the shield tunnel 12 is constructed deeper than the groundwater level (TP + 0.5 m) after being lowered by the groundwater level lowering method. Moreover, the earth covering of the shield tunnel 12 is 2.5 m, which is equal to or larger than the diameter of the shield tunnel 12.

複数のドレーン材14は、塩化ビニル等の樹脂製の直径0.1〜0.2mの有孔管であり、シールドトンネル12の両側に、所定間隔(例えば、1.5m)おきに設置されている。このドレーン材14は、ボーリングマシンを使用してシールドトンネル12から水平方向に穿孔しつつ、その孔内に圧入する。ここで、水平方向への穿孔は、ボーリングマシンのロッドを継ぎ足しながら必要長さまで行い、ドレーン材14の圧入も、短い管を継ぎ足しながら孔の先端まで行う。   The plurality of drain members 14 are perforated pipes having a diameter of 0.1 to 0.2 m made of resin such as vinyl chloride, and are installed on both sides of the shield tunnel 12 at predetermined intervals (for example, 1.5 m). Yes. This drain material 14 is press-fitted into the hole while drilling in the horizontal direction from the shield tunnel 12 using a boring machine. Here, the drilling in the horizontal direction is performed to the required length while adding the rod of the boring machine, and the drain material 14 is also pressed into the tip of the hole while adding the short pipe.

複数のドレーン材14は、シールドトンネル12の軸心の深さ(TP−0.5m)、即ち、地下水位低下工法により低下させた後の地下水位以深に設置されており、この複数のドレーン材14を通じて地下水がシールドトンネル12内に集まるようになっている。なお、ドレーン材14は、網状の管材であってもよい。   The plurality of drain materials 14 are installed at a depth (TP-0.5 m) of the axis of the shield tunnel 12, that is, deeper than the groundwater level after being lowered by the groundwater level lowering method. Through 14, groundwater is collected in the shield tunnel 12. The drain material 14 may be a net-like tube material.

堰16は、シールドトンネル12の末端と遊水池5とを隔てるように構築されている。ここで、堰16の高さが、遊水池5の水面より高いTP+0.5mに設定され、シールドトンネル12の末端の上部は大気に開放されていることから、帯水層からシールドトンネル12の末端への地下水の流れが生じる。そして、シールドトンネル12の末端で地下水が堰16により塞き止められることにより、シールドトンネル12内が地下水で満たされる。そして、シールドトンネル12内が地下水で満たされると、シールドトンネル12の末端において地下水が堰16を越流して遊水池5に流れ出る。これにより、地下水位が、堰16の高さ(TP+0.5m)まで低下する。なお、堰16は、シールドトンネル12の末端を囲うように枡状に構成されており、シールドトンネル12の末端から流出した地下水が溜まる。   The weir 16 is constructed so as to separate the end of the shield tunnel 12 from the reservoir 5. Here, the height of the weir 16 is set to TP + 0.5 m, which is higher than the surface of the reservoir 5 and the upper end of the shield tunnel 12 is open to the atmosphere. The flow of groundwater to The ground water is blocked by the weir 16 at the end of the shield tunnel 12, so that the shield tunnel 12 is filled with the ground water. When the inside of the shield tunnel 12 is filled with groundwater, the groundwater flows over the weir 16 at the end of the shield tunnel 12 and flows out to the recreational basin 5. Thereby, a groundwater level falls to the height (TP + 0.5m) of the weir 16. The weir 16 is configured in a bowl shape so as to surround the end of the shield tunnel 12, and the groundwater flowing out from the end of the shield tunnel 12 accumulates.

フラップゲート18は、堤防6の海又は川の側の面に揺動可能に設けられ、堤防6に形成された開口7を開閉する。ここで、フラップゲート18の支軸19は、遊水池5の水位に配されており、海又は川の水位が遊水池5の水位よりも低い場合は、フラップゲート18が海又は川の側に揺動して開口7を開放し、遊水池5から海又は川へ排水させる。一方、海又は川の水位が上がった場合は、フラップゲート18が閉じて海又は川から遊水池5への逆流を防止する。これにより、遊水池5の水位が維持される。   The flap gate 18 is swingably provided on the surface of the dike 6 on the sea or river side, and opens and closes the opening 7 formed in the dike 6. Here, the support shaft 19 of the flap gate 18 is arranged at the water level of the basin 5, and when the water level of the sea or river is lower than the water level of the basin 5, the flap gate 18 is on the sea or river side. Swing to open the opening 7 and drain from the reservoir 5 to the sea or river. On the other hand, when the water level of the sea or river rises, the flap gate 18 is closed to prevent backflow from the sea or river to the basin 5. Thereby, the water level of the reservoir 5 is maintained.

複数の立坑20は、シールドトンネル12に沿って所定間隔おきに構築されている。この複数の立坑20は、地震時に液状化対策構造10の周辺の地盤の間隙水圧が過剰になった場合に、図中矢印Aで示すように、シールドトンネル12内の被圧地下水を地上へ排出する排出口として機能する。   The plurality of shafts 20 are constructed at predetermined intervals along the shield tunnel 12. The plurality of shafts 20 discharge the groundwater under pressure in the shield tunnel 12 to the ground as shown by an arrow A in the figure when the ground water pressure around the liquefaction countermeasure structure 10 becomes excessive during an earthquake. It functions as a discharge outlet.

また、シールドトンネル12の末端には中水道22が接続されており、この中水道22が、シールドトンネル12内の地下水を工業用水や便器洗浄水等に利用するべく浄化処理して工業用地等に供給する。   Further, a middle water supply 22 is connected to the end of the shield tunnel 12, and this middle water supply 22 purifies the ground water in the shield tunnel 12 to be used for industrial water, toilet flushing water, etc., to an industrial site or the like. Supply.

ところで、液状化対策構造10を構築した後、シールドトンネル12とドレーン材14との接続部を止水する等してシールドトンネル12内への地下水の流入を防止することにより、シールドトンネル12内での作業が可能となる。ここで、当該作業としては、ドレーン材14に2重管ストレーナーを通しての薬液注入工法の実施が挙げられ、当該作業を実施することにより、敷地2の地下地盤を、より一層液状化の発生し難い優良な地盤にすることができる。   By the way, after the liquefaction countermeasure structure 10 is constructed, by preventing the inflow of groundwater into the shield tunnel 12 by stopping the connection between the shield tunnel 12 and the drain material 14, Work becomes possible. Here, as the said operation | work, execution of the chemical | medical solution injection | pouring method through the drain material 14 through a double pipe | tube strainer is mentioned, By carrying out the said operation | work, it is hard to generate | occur | produce liquefaction further in the underground ground of the site 2. It can be a good ground.

図4(A)は、表層の非液状化層の厚さH(m)とその下の液状化層の厚さH(m)との関係によって、地表面に被害が及ぶ程度(地表面水平加速度値200cm/s相当の場合)を示すグラフであり、図4(B)は、図4(A)の結果を得るために確認した土質と地下水位のモデルを示す図である(小規模建築物基礎設計指針 日本建築学会編集 90頁から抜粋)。 FIG. 4 (A), the relationship between the thickness H 2 of the surface layer of the non-liquefied layer thickness H 1 (m) a liquid layer below it (m), degree ranging damage on the ground surface (ground FIG. 4B is a diagram showing a soil and groundwater level model confirmed to obtain the result of FIG. 4A (in the case of a surface horizontal acceleration value equivalent to 200 cm / s 2 ). Basic design guidelines for small-scale buildings (Extracted from page 90 of the Architectural Institute of Japan).

図4(B)の(イ)、(ロ)、(ハ)に示すように、非液状化層は、地下水位以浅の砂層または粘土層(細粒分含有率F>35%の粒度の土層)であり、液状化層は、非液状化層の下面から地表面下5m(GL−5m)までの砂層である。 As shown in (a), (b), and (c) of FIG. 4B, the non-liquefied layer is a sand layer or a clay layer shallower than the groundwater level (with a fine particle content F c > 35% particle size). The liquefied layer is a sand layer from the lower surface of the non-liquefied layer to 5 m (GL-5 m) below the ground surface.

図4(A)のグラフに示すように、非液状化層の厚さH(m)と液状化層の厚さH(m)とが一致する場合は、液状化の影響が地表面に及ぶ程度は小さくなる。また、非液状化層の厚さH(m)が2m以上である場合は、液状化層の厚さH(m)が非液状化層の厚さH(m)よりも厚くなっても、液状化の影響が地表面に及ぶ程度が小さくなることもあり、さらには、液状化の影響が地表面に及ぶ程度が大きくなることはない。これに対して、本実施形態では、非液状化層3の厚さが2.5mであることから、液状化の影響が地表面に及ぶ程度が大きくなることはない。 Figure 4 As shown in the graph of (A), in the case where the thickness H 2 of the thickness H 1 (m) a liquid layer of the non-liquefied layer (m) match, the effect is the ground surface of the liquefaction The extent to which is reduced. Further, when the thickness H 1 (m) of the non-liquefied layer is 2 m or more, the thickness H 2 (m) of the liquefied layer becomes thicker than the thickness H 1 (m) of the non-liquefied layer. However, the extent to which the influence of liquefaction reaches the ground surface may be reduced, and further, the extent to which the influence of liquefaction reaches the ground surface is not increased. On the other hand, in this embodiment, since the thickness of the non-liquefied layer 3 is 2.5 m, the extent to which the influence of liquefaction reaches the ground surface does not increase.

また、本実施形態では、地下水位の低下量が1.5mであることから、地下水位の低下による地盤沈下に起因する地表面変位も殆ど生じることがなく、地表面の建物等に変状が生じる可能性も殆ど無い。なお、地下水位の低下量は、地下水位の低下による地盤沈下を考慮して、1〜3mが望ましい。また、低下後の地下水位は、地下水位の低下量やシールドトンネル12の土被りの厚さ等を考慮して、GL−2.0〜4.0mが望ましい。   Moreover, in this embodiment, since the amount of groundwater level reduction is 1.5 m, there is almost no displacement of the ground surface due to ground subsidence due to the groundwater level reduction, and there is deformation in the buildings on the ground surface. There is almost no possibility of it occurring. In addition, the amount of decrease in the groundwater level is preferably 1 to 3 m in consideration of ground subsidence due to the decrease in the groundwater level. The groundwater level after the decrease is preferably GL-2.0 to 4.0 m in consideration of the amount of decrease in the groundwater level, the thickness of the cover of the shield tunnel 12, and the like.

本実施形態に係る液状化対策構造10では、シールドトンネル12を遊水池5まで構築し、その末端に堰16を設けて、シールドトンネル12内に集まった地下水が堰16を越流して遊水池5に排出されるように構成した。これにより、シールドトンネル12内に集まった地下水を排出するためのポンプが不要になり、停電時等の電力が供給されない時でも、液状化対策の対象地盤の地下水位を低下させることができ、液状化対策を実施できる。特に、地震時の電力が供給されない時に液状化対策を有効に実行できるため、効果的である。また、ポンプの維持管理を不要にできる。   In the liquefaction countermeasure structure 10 according to the present embodiment, the shield tunnel 12 is constructed up to the basin 5 and a dam 16 is provided at the end thereof. The groundwater collected in the shield tunnel 12 overflows the dam 16 and flows into the basin 5. It was configured to be discharged. This eliminates the need for a pump for discharging the groundwater collected in the shield tunnel 12, and can reduce the groundwater level of the target ground for liquefaction countermeasures even when power is not supplied during a power failure or the like. Can be implemented. In particular, it is effective because liquefaction measures can be effectively executed when power is not supplied during an earthquake. In addition, maintenance of the pump can be made unnecessary.

また、シールドトンネル12内の地下水が末端において堰16で塞き止められることにより、シールドトンネル12内を地下水で満たすことができるため、シールドトンネル12の土被りが浅い場合でも、シールドトンネル12の浮力による浮き上がりを抑制でき、地表面の変状を防止することができる。なお、シールドトンネル12内の80〜100%の容積を地下水で満たした状態にしておくことが望ましい。   Further, since the groundwater in the shield tunnel 12 is blocked by the weir 16 at the end, the shield tunnel 12 can be filled with the groundwater, so that the buoyancy of the shield tunnel 12 can be achieved even when the shield tunnel 12 is shallow. It is possible to suppress the lifting due to, and to prevent the deformation of the ground surface. In addition, it is desirable to make 80-100% of the volume in the shield tunnel 12 be filled with groundwater.

また、シールドトンネル12の末端を大気に開放して当該末端に堰16を設けたことにより、堰16の高さによって地下水位を設定することができる。従って、シールドトンネル12を構築する深さによらず、地下水位を設定することができ、例えば、シールドトンネル12の上端の高さよりも堰16の高さが高くなるように、シールドトンネル12を構築する深さを深くしてもよい。この場合でも、地下水位低下工法により低下させた後の地下水位は、堰16の高さに一致する。   Moreover, by opening the end of the shield tunnel 12 to the atmosphere and providing the weir 16 at the end, the groundwater level can be set according to the height of the weir 16. Accordingly, the groundwater level can be set regardless of the depth at which the shield tunnel 12 is constructed. For example, the shield tunnel 12 is constructed such that the height of the weir 16 is higher than the height of the upper end of the shield tunnel 12. You may deepen the depth. Even in this case, the groundwater level after being lowered by the groundwater level lowering method matches the height of the weir 16.

また、本実施形態に係る液状化対策構造10では、シールドトンネル12から地表面に延びる複数の立坑20が、地震時に液状化対策構造10の周辺の地盤の間隙水圧が過剰になった場合に、シールドトンネル12内の被圧地下水を地上へ排出する排出口として機能する。これにより、地震時にシールドトンネル12内での被圧地下水の流動、及び、シールドトンネル12内への被圧地下水の流入を促進でき、液状化対策構造10の周辺の地盤の間隙水圧を速やかに消散させることができる。   Further, in the liquefaction countermeasure structure 10 according to the present embodiment, when a plurality of shafts 20 extending from the shield tunnel 12 to the ground surface have excessive pore water pressure in the ground around the liquefaction countermeasure structure 10 during an earthquake, It functions as a discharge port for discharging the pressured groundwater in the shield tunnel 12 to the ground. As a result, the flow of the pressured groundwater in the shield tunnel 12 and the inflow of the pressured groundwater into the shield tunnel 12 during the earthquake can be promoted, and the pore water pressure in the ground around the liquefaction countermeasure structure 10 can be quickly dissipated. Can be made.

また、本実施形態に係る液状化対策構造10では、堤防6に設けられたフラップゲート18が、海又は川の水位が遊水池5の水位よりも低い場合に開いて、遊水池5から海又は川へ排水させる。これにより、遊水池5の水位が堰16の高さより高くなることを防止でき、シールドトンネル12から遊水池5への排水が阻害されることを防止できる。また、フラップゲート18が、海又は川の水位が上がった場合には閉じて海又は川から遊水池5への逆流を防止する。これにより、遊水池5の水位を維持することができる。   Further, in the liquefaction countermeasure structure 10 according to the present embodiment, the flap gate 18 provided in the levee 6 is opened when the sea or river level is lower than the level of the basin 5, and from the basin 5 to the sea or Drain to the river. Thereby, it can prevent that the water level of the reservoir 5 becomes higher than the height of the weir 16, and it can prevent that the drainage from the shield tunnel 12 to the reservoir 5 is inhibited. Further, the flap gate 18 is closed when the water level of the sea or river rises to prevent backflow from the sea or river to the basin 5. Thereby, the water level of the reservoir 5 can be maintained.

以上、本発明を実施するための形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。例えば、上記実施形態では、トンネルをシールド工法によって構築したシールドトンネル12としたが、推進工法等の他の非開削工法によって構築したトンネルとしてもよい。また、ドレーン材14を設けることは必須ではなく、シールドトンネル12の流入口から直接地下水がシールドトンネル12に流入するようにしてもよい。   As mentioned above, although the form for implementing this invention was demonstrated, the said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and equivalents thereof are also included in the present invention. For example, in the above embodiment, the tunnel is a shield tunnel 12 constructed by a shield construction method, but may be a tunnel constructed by another non-cutting construction method such as a propulsion construction method. In addition, it is not essential to provide the drain material 14, and groundwater may directly flow into the shield tunnel 12 from the inlet of the shield tunnel 12.

また、堰16を上下に可動である可動堰として地下水位を制御できるようにしてもよい。これにより、例えば、表面に盛土された場合に可動堰を上昇させて地下水位を上げたり、表面が掘削された場合に可動堰を下降させて地下水位を下げたりすることができる。   Further, the water level may be controlled by using the weir 16 as a movable weir that is movable up and down. Thereby, for example, when the surface is embanked, the movable weir can be raised to raise the groundwater level, and when the surface is excavated, the movable weir can be lowered to lower the groundwater level.

1 幹線道路、2 敷地、3 非液状化層、4 液状化層、5 遊水池、6 堤防、7 開口、10 液状化対策構造、12 シールドトンネル、14 ドレーン材、16 堰、18 フラップゲート、19 支軸、20 立坑、22 中水道 1 Main road, 2 sites, 3 Non-liquefied layer, 4 Liquefied layer, 5 Reservoir, 6 Embankment, 7 Opening, 10 Liquefaction countermeasure structure, 12 Shield tunnel, 14 Drain material, 16 Weir, 18 Flap gate, 19 Support shaft, 20 shaft, 22 sewer

Claims (5)

地下水位を低下させることにより液状化対策を行うための液状化対策構造であって、
液状化対策の対象の地下地盤に非開削工法により構築され、地下水が流入する流入口を有するトンネルと、
前記トンネルの末端に設けられた所定の高さの堰と、
を備え、
前記トンネル内に流入した地下水が前記堰を越流して前記トンネルから流出するように構成された液状化対策構造。
A liquefaction countermeasure structure for liquefaction countermeasures by lowering the groundwater level,
A tunnel that has been constructed by a non-open-cut method in the underground ground subject to liquefaction countermeasures, and has an inlet through which groundwater flows,
A weir with a predetermined height provided at the end of the tunnel;
With
A liquefaction countermeasure structure configured such that groundwater flowing into the tunnel flows over the weir and flows out of the tunnel.
前記流入口から側方へ延びる、地下水が流入可能な複数のドレーン材を備える請求項1に記載の液状化対策構造。   The liquefaction countermeasure structure according to claim 1, comprising a plurality of drainage materials that extend laterally from the inflow port and into which groundwater can flow. 前記トンネルから地表面へ延びる立坑を備える請求項1又は請求項2に記載の液状化対策構造。   The liquefaction countermeasure structure according to claim 1 or 2, further comprising a shaft extending from the tunnel to the ground surface. 海又は川に隣設され、前記堰を越流した地下水が貯留される貯留部と、
前記貯留部の水位が前記海又は川の水位よりも高い場合に開いて前記貯留部から前記海又は川に排水する排水ゲートと、
を備える液状化対策構造。
A storage section that is installed next to the sea or river and stores the groundwater that overflows the weir,
A drainage gate that opens when the water level of the reservoir is higher than the water level of the sea or river and drains from the reservoir to the sea or river;
Liquefaction countermeasure structure with
地下水位を低下させることにより液状化対策を行う液状化対策工法であって、
液状化対策の対象の地下地盤に、地下水が流入する流入口を有するトンネルを非開削工法により構築し、前記トンネルの末端に、所定の高さの堰を設け、前記トンネル内に流入した地下水を、前記堰を越流させて前記トンネルから流出させる液状化対策工法。
It is a liquefaction countermeasure construction method that performs liquefaction countermeasures by lowering the groundwater level,
A tunnel that has an inflow port through which groundwater flows into the underground ground subject to liquefaction countermeasures is constructed by a non-open-cut method, and a weir with a predetermined height is provided at the end of the tunnel, and the groundwater that flows into the tunnel is A liquefaction countermeasure method that causes the weir to overflow and flow out of the tunnel.
JP2011230969A 2011-10-20 2011-10-20 Liquefaction countermeasure structure and liquefaction countermeasure construction method Expired - Fee Related JP5929089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011230969A JP5929089B2 (en) 2011-10-20 2011-10-20 Liquefaction countermeasure structure and liquefaction countermeasure construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011230969A JP5929089B2 (en) 2011-10-20 2011-10-20 Liquefaction countermeasure structure and liquefaction countermeasure construction method

Publications (2)

Publication Number Publication Date
JP2013087554A true JP2013087554A (en) 2013-05-13
JP5929089B2 JP5929089B2 (en) 2016-06-01

Family

ID=48531745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011230969A Expired - Fee Related JP5929089B2 (en) 2011-10-20 2011-10-20 Liquefaction countermeasure structure and liquefaction countermeasure construction method

Country Status (1)

Country Link
JP (1) JP5929089B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221985A (en) * 2013-05-13 2014-11-27 大成建設株式会社 Groundwater level control system
JP7471183B2 (en) 2020-09-11 2024-04-19 株式会社竹中工務店 Water collection structure and construction method of water collection structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110500133A (en) * 2019-07-12 2019-11-26 淮北矿业股份有限公司 Novel down-hole exploiting field drain control unit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995954A (en) * 1995-10-04 1997-04-08 Ohbayashi Corp Liquefaction countermeasure structure and construction method thereof for ground
JPH1082076A (en) * 1996-09-05 1998-03-31 Shimizu Corp Rock ground-water intake installation
JPH11229405A (en) * 1998-02-16 1999-08-24 Ohmoto Gumi Co Ltd Preventive method against liquefaction of right under ground of existing structure
JPH11247284A (en) * 1999-01-11 1999-09-14 Hitachi Ltd Drainage pump for underground drainage facilities of great depth
JP2004218211A (en) * 2003-01-10 2004-08-05 Kubota Corp Float type screen
JP2006307523A (en) * 2005-04-28 2006-11-09 Sekisui Chem Co Ltd Water tank
JP2007284992A (en) * 2006-04-17 2007-11-01 Hitachi Plant Technologies Ltd Screen operation control system in confluent conduit
JP2008038543A (en) * 2006-08-09 2008-02-21 Aqua Control:Kk Construction method and device for draining groundwater
JP2008542019A (en) * 2005-06-02 2008-11-27 ガリブ,サード,エイ. Wastewater treatment system and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995954A (en) * 1995-10-04 1997-04-08 Ohbayashi Corp Liquefaction countermeasure structure and construction method thereof for ground
JPH1082076A (en) * 1996-09-05 1998-03-31 Shimizu Corp Rock ground-water intake installation
JPH11229405A (en) * 1998-02-16 1999-08-24 Ohmoto Gumi Co Ltd Preventive method against liquefaction of right under ground of existing structure
JPH11247284A (en) * 1999-01-11 1999-09-14 Hitachi Ltd Drainage pump for underground drainage facilities of great depth
JP2004218211A (en) * 2003-01-10 2004-08-05 Kubota Corp Float type screen
JP2006307523A (en) * 2005-04-28 2006-11-09 Sekisui Chem Co Ltd Water tank
JP2008542019A (en) * 2005-06-02 2008-11-27 ガリブ,サード,エイ. Wastewater treatment system and method
JP2007284992A (en) * 2006-04-17 2007-11-01 Hitachi Plant Technologies Ltd Screen operation control system in confluent conduit
JP2008038543A (en) * 2006-08-09 2008-02-21 Aqua Control:Kk Construction method and device for draining groundwater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221985A (en) * 2013-05-13 2014-11-27 大成建設株式会社 Groundwater level control system
JP7471183B2 (en) 2020-09-11 2024-04-19 株式会社竹中工務店 Water collection structure and construction method of water collection structure

Also Published As

Publication number Publication date
JP5929089B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
CN103510528B (en) For the blind drainage structure of underground structure anti-floating
CN104131575B (en) A kind of karst height grows the leak stopping water discharge method of the stratum dam foundation
CN103046565B (en) Draining method for ultra-deep batholith deep foundation pit
CN205387712U (en) Quick treatment device of foundation pit piping
CN102061706A (en) Assembly steel box cofferdam and construction method thereof
JP5430783B2 (en) Fresh water storage system
JP2013127162A (en) Device for lifting and discharging deep part water of dam lake
CN103088836A (en) Sedimentation control method for pumping water and performing reinjection in well casing simultaneously
CN109610405A (en) Half lunar crater shape water pond and its construction method
JP5929089B2 (en) Liquefaction countermeasure structure and liquefaction countermeasure construction method
CN106436717A (en) Impervious curtain river-near foundation pit adopting dewatering wells and design method
CN201794082U (en) Local precipitation and drainage device for deep foundation pit
JP4678893B1 (en) Intake mechanism of Sabo Dam
CN201915414U (en) Spliced steel box coefferdam
CN104060622A (en) Method for discharging water in pint through steel bucket in pit
CN103669333B (en) It is easy to the friction pile of vacuum-dewatering
CN110185051A (en) Deep narrow excavation water discharge method
JP3777085B2 (en) Construction method of underground storage structure and underground storage structure
CN112031021A (en) Construction method of cylindrical self-sinking underground space structure
CN201554028U (en) Root-type deep-hole drainage pile
CN112031009A (en) Construction method of cylindrical self-sinking underground space structure
CN221167883U (en) Precipitation structure in foundation pit engineering
CN201288320Y (en) Relief well tube
JP2007218072A (en) Manhole
CN203939038U (en) In a kind of hole, cheat steel drum and fall dewatering installation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5929089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees