JPH1082076A - Rock ground-water intake installation - Google Patents

Rock ground-water intake installation

Info

Publication number
JPH1082076A
JPH1082076A JP8235665A JP23566596A JPH1082076A JP H1082076 A JPH1082076 A JP H1082076A JP 8235665 A JP8235665 A JP 8235665A JP 23566596 A JP23566596 A JP 23566596A JP H1082076 A JPH1082076 A JP H1082076A
Authority
JP
Japan
Prior art keywords
water
groundwater
tunnel
rock
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8235665A
Other languages
Japanese (ja)
Other versions
JP3579809B2 (en
Inventor
Hironori Momota
博宣 百田
Makoto Honda
眞 本多
Hiroshi Kazama
広志 風間
Makoto Suzuki
鈴木  誠
Takuro Nishi
琢郎 西
Hisashi Takenaka
久 竹中
Kazuto Shimizu
一都 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP23566596A priority Critical patent/JP3579809B2/en
Publication of JPH1082076A publication Critical patent/JPH1082076A/en
Application granted granted Critical
Publication of JP3579809B2 publication Critical patent/JP3579809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/40Protecting water resources
    • Y02A20/406Aquifer recharge

Landscapes

  • Sewage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ground-water intake installation capable of efficiently taking and utilizing rock ground-water having possibility to obtain stabilized intake. SOLUTION: As a rock ground-water intake installation, a collecting tunnel 10 formed so as to fall down to a water collecting section 11 and a water supply tunnel 30 formed so as to fall down to the lower ground surface L from the water collecting section 11 and opened to the lower ground surface L are provided in a rock 2 of a bedrock 1 having difference of altitude on the ground surface. In that case, a shaft 20 passing through the high ground surface H and formed toward the high ground surface H and a partition wall 23 partitioning the shaft 20 into a space on the collecting tunnel 10 and a space 22 on the water supply tunnel 30 side and capable of optionally setting the height of a linked space between the spaces 21 and 22 are provided to the water collecting section 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、岩盤中を流れる岩
盤地下水を好適に取水し、さらに得られた水資源を既存
の水資源貯水施設を併わせて有効に活用する岩盤地下水
取水施設に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bedrock groundwater intake facility for appropriately drawing bedrock groundwater flowing in bedrock and effectively utilizing the obtained water resources together with existing water resource storage facilities.

【0002】[0002]

【従来の技術】現在、飲料水、工業用水、農業用水等に
用いられる水資源は、主に、河川、湖沼等の自然水域か
らの取水、ダムからの取水、および土壌中の地下水揚水
で賄われている。しかしながら、河川、湖沼からの取水
施設や、ダムの建設に適した立地が減少してきており、
また、土壌中の地下水揚水においても、土壌中の地下水
位の低下や地盤沈下の問題から取水が制限される方向に
ある。したがって、水資源の確保が困難になってきてい
る。
2. Description of the Related Art Water resources currently used for drinking water, industrial water, agricultural water and the like are mainly provided by water from natural waters such as rivers and lakes, water from dams, and groundwater pumping in soil. Have been done. However, the number of water intake facilities from rivers and lakes and locations suitable for dam construction are decreasing.
Also, in the case of groundwater pumping in soil, water intake tends to be limited due to the problem of groundwater level drop in the soil and land subsidence. Therefore, it is becoming difficult to secure water resources.

【0003】そのため、これらに代わる水資源確保の方
法が模索されており、そのひとつに海水淡水化プラント
が挙げられる。この海水淡水化プラントによれば、海水
から無尽蔵に水資源を確保することが可能であるが、そ
の反面設備コストや運転コストが高く、一般には普及し
ていないのが現状である。
[0003] Therefore, alternative methods of securing water resources are being sought, one of which is a seawater desalination plant. According to this seawater desalination plant, it is possible to secure inexhaustible water resources from seawater, but on the other hand, equipment costs and operation costs are high, and at present it is not widely used.

【0004】[0004]

【発明が解決しようとする課題】このような従来型の水
資源開発施設の適地が減少する状況を考慮して、未だ活
用されていない岩盤中を流れる地下水、すなわち岩盤地
下水が、新たな水資源として注目を集めているが、その
利用はなされておらず水資源として有効利用する特別な
取水設備等は提案されていないのが現状である。
In consideration of the situation where the suitable area of the conventional water resources development facility is reduced, groundwater flowing in the rock which has not been used yet, that is, rock groundwater, is used as a new water resource. However, it has not been used yet, and no special water intake facilities or the like that can be effectively used as water resources have been proposed at present.

【0005】例えば、トンネル構築後の坑内の湧水は単
なる排水として処理されるのが一般的である。また、工
事中の湧水対策に用いる水抜きボーリングは、それ自体
が仮設の施設であって湧水を有効利用するというもので
はない。
[0005] For example, spring water in a pit after the construction of a tunnel is generally treated as mere drainage. Drainage boring used for spring water countermeasures during construction is a temporary facility itself, and does not mean that spring water is effectively used.

【0006】本発明は上記の事情に鑑みてなされたもの
であり、安定した取水量が見込める岩盤地下水を効率よ
く取水して利用することができる岩盤地下水取水施設を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a rock groundwater intake facility capable of efficiently taking and utilizing rock groundwater that can be expected to have a stable water intake.

【0007】[0007]

【課題を解決するための手段】上記の問題を解決するた
めの手段として、請求項1に記載された岩盤地下水取水
施設は、地表面に高低差を有する地山の岩盤中に、集水
部に向けて下るように形成された集水トンネルと、この
集水部から低位の地表に向けて下るように形成され、低
位の地表に開口した送水トンネルとを備えてなり、集水
部には、高位の地表に向けて形成され、該地表に貫通し
た集水坑と、この集水坑を集水トンネル側の空間と送水
トンネル側の空間とに仕切り、且つ集水トンネル側の空
間と送水トンネル側の空間との連通空間の高さを任意に
設定可能な隔壁とが設けられていることを特徴としてい
る。
According to a first aspect of the present invention, there is provided a rock groundwater intake facility according to the first aspect of the present invention, wherein a groundwater collecting section is provided in a ground rock having a height difference on the ground surface. A water collection tunnel formed so as to descend toward the water surface, and a water transmission tunnel formed so as to descend from the water collection part toward the lower surface and open to the lower surface. A water collection pit formed toward the high ground surface and penetrating the ground surface, and the water collection pit is partitioned into a space on the water collection tunnel side and a space on the water transmission tunnel side, and the space on the water collection tunnel side and the water supply It is characterized in that a partition wall is provided which can arbitrarily set the height of a communication space with the space on the tunnel side.

【0008】請求項2に記載された岩盤地下水取水施設
は、請求項1に記載された岩盤地下水取水施設におい
て、送水トンネルの途中位置に設けられ、集水された地
下水を貯留する貯水空洞と、この貯水空洞から流出する
地下水の流量を制御する送水量制御装置とを備えること
を特徴としている。
A rock groundwater intake facility according to a second aspect of the present invention is the rock groundwater intake facility according to the first aspect, wherein the groundwater intake facility is provided at an intermediate position of the water supply tunnel and stores collected groundwater. And a water flow control device for controlling the flow rate of groundwater flowing out of the water storage cavity.

【0009】請求項3に記載された岩盤地下水取水施設
は、請求項1または2に記載された岩盤地下水取水施設
において、集水坑が貫通した地表よりも高位の水源から
取水し、集水坑に向けて送水する送水路を備えることを
特徴としている。
A rock groundwater intake facility according to a third aspect of the present invention is the rock groundwater intake facility according to the first or second aspect, wherein water is taken from a water source higher than the ground surface through which the water collection pit penetrates, and It is characterized by having a water supply channel for supplying water toward the sea.

【0010】請求項4に記載された岩盤地下水取水施設
は、請求項1、2、3のいずれかに記載された岩盤地下
水取水施設において、送水トンネルが低位の水資源貯水
施設に連結されていることを特徴としている。
A rock groundwater intake facility according to a fourth aspect of the present invention is the rock groundwater intake facility according to any one of the first, second, and third aspects, wherein the water supply tunnel is connected to a lower-level water resource storage facility. It is characterized by:

【0011】[0011]

【発明の実施の形態】本発明に係る岩盤地下水取水施設
の第1の実施形態を図1に示して説明する。図1に示す
岩盤地下水取水施設は、丘陵地等の地表面に高低差を有
する地山1に構築されており、地山1の岩盤2中に傾斜
して掘削された集水トンネル10と、集水トンネル10
の坑口に位置して地下水の集まる集水部11から高位の
地表Hに向けて鉛直上方に掘削され、その高位の地表H
に貫通した立坑(集水坑)20と、集水部11から低位
の地表Lに向けて傾斜して掘削され、その低位の地表L
に開口した送水トンネル30とを備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a bedrock groundwater intake facility according to the present invention will be described with reference to FIG. The rock groundwater intake facility shown in FIG. 1 is constructed on a ground 1 having a height difference on the ground surface such as a hill, and a water collecting tunnel 10 which is excavated at an angle in the rock 2 of the ground 1. Water collection tunnel 10
Is excavated vertically upward from the water collection section 11 where the groundwater gathers and is located at the entrance of
Pit (water collecting pit) 20 penetrating into the ground, and water is excavated from the water collecting part 11 inclining toward the lower surface L, and the lower surface L
And a water supply tunnel 30 that is open to the outside.

【0012】集水トンネル10の両側壁面および天井面
には、岩盤2中を流れる地下水を集水する集水孔12が
岩盤2中に向けて多数形成されている。また、集水トン
ネル10の底面には、湧き出した地下水を下方に向けて
流す溝状の導水路13が形成されている。
A large number of water collecting holes 12 for collecting groundwater flowing in the rock 2 are formed on the both side walls and the ceiling of the water collecting tunnel 10 toward the rock 2. On the bottom surface of the water collecting tunnel 10, there is formed a groove-shaped water conduit 13 for flowing the groundwater that has flowed downward.

【0013】立坑20の内部には、この立坑20を集水
トンネル10側の空間21と送水トンネル30側の空間
22とに仕切る隔壁23が設けられており、この隔壁2
3には、所要の高さにそれぞれ離間して複数のバルブ2
4が設置されている。
Inside the shaft 20, there is provided a partition wall 23 for partitioning the shaft 20 into a space 21 on the side of the water collection tunnel 10 and a space 22 on the side of the water supply tunnel 30.
3 includes a plurality of valves 2 separated from each other at a required height.
4 are installed.

【0014】送水トンネル30の途中位置には、集水さ
れた地下水を貯留する貯水空洞40が設けられており、
この貯水空洞40には、低位の地表Lに向けて流出する
地下水の流量を制御する送水量制御装置として、開度が
自在に調節できるバルブ41が設置されている。なお、
送水トンネル30のうち、貯水空洞40よりも上流側に
位置する第1の送水トンネル31は貯水空洞40の天井
部に開口されており、貯水空洞40よりも下流側に位置
する第2の送水トンネル32は貯水空洞40の底部に開
口されている。
A water storage cavity 40 for storing collected groundwater is provided at an intermediate position of the water supply tunnel 30.
The water storage cavity 40 is provided with a valve 41 whose opening can be freely adjusted as a water supply control device for controlling the flow rate of groundwater flowing toward the lower surface L of the ground. In addition,
Among the water supply tunnels 30, a first water supply tunnel 31 located upstream of the water storage cavity 40 is opened at the ceiling of the water storage cavity 40, and a second water supply tunnel located downstream of the water storage cavity 40. 32 is opened at the bottom of the water storage cavity 40.

【0015】さらに、地山1には、立坑20が貫通した
高位の地表Hよりもさらに高位に位置する河川(水源)
Rから取水し、立坑20に向けて送水する送水路50が
設けられている。送水路50の上端は河川Rの計画最高
水位(H.W.L.)を越した位置に開口されている。
また、送水路50の途中位置には、河川水中の懸濁物等
を除去する濾過装置51が設けられている。
Further, a river (water source) located at a higher level than the high surface H through which the shaft 20 penetrates is located on the ground 1.
A water supply channel 50 that takes in water from the R and feeds water toward the shaft 20 is provided. The upper end of the water channel 50 is opened at a position exceeding the planned maximum water level (HWL) of the river R.
Further, a filtering device 51 for removing suspended matters and the like in the river water is provided at an intermediate position of the water supply channel 50.

【0016】上記のように構成された岩盤地下水取水施
設においては、岩盤2中を流れる地下水が、地下水面の
高低差から生れるエネルギーによって自然湧水として得
られるので、次のような運転方法により有効な利水を図
ることができる。
In the rock groundwater intake system configured as described above, the groundwater flowing in the rock 2 is obtained as natural spring water by the energy generated from the height difference of the groundwater table. Effective water use can be achieved.

【0017】岩盤2中を流れる地下水は、地下水面より
も低位に位置する集水トンネル10に向けて移動し、集
水トンネル10の壁面および集水孔12から湧き出す。
湧き出した地下水は、集水トンネル10を流れ下り、集
水部11を満たし集水トンネル10側の空間21を満た
す。この状態においても立坑20の水位は地下水面より
も低いため、地下水は集水トンネル10内に湧き出し続
け、これによって空間21の水位は漸次高まる。
The groundwater flowing through the bedrock 2 moves toward the water collecting tunnel 10 located at a lower level than the groundwater surface, and springs out from the wall surface of the water collecting tunnel 10 and the water collecting hole 12.
The springed groundwater flows down the water collecting tunnel 10 to fill the water collecting part 11 and fill the space 21 on the water collecting tunnel 10 side. Even in this state, since the water level of the shaft 20 is lower than the groundwater level, the groundwater continues to flow into the water collecting tunnel 10, whereby the water level of the space 21 gradually increases.

【0018】各バルブ24をすべて閉じた状態であれ
ば、空間21の水位が上昇し地下水面との差が縮まるに
つれて集水トンネル10内の湧水量が抑えられ、空間2
1の水位が地下水面と同じ高さまで上昇したところで集
水トンネル10内の湧水が止まる。そこで、各バルブ2
4を上方に位置するものから任意の数だけ開放し、それ
らのバルブ24から空間21を満たした地下水を送水ト
ンネル30側の空間22に向けて放出する。このとき、
開放するバルブ24の数を減らして空間21の水位を高
めに設定すれば、集水トンネル10内の湧水量が少なく
なってバルブ24から放出される水量も少なくなり、開
放するバルブ24の数を増やして空間21の水位を低め
に設定すれば、集水トンネル10内の湧水量が多くなっ
てバルブ24から放出される水量も多くなるので、必要
とされる取水量に応じて開放するバルブ24の数を調節
する。
If all the valves 24 are closed, as the water level in the space 21 rises and the difference from the groundwater level decreases, the amount of spring water in the water collection tunnel 10 is suppressed, and the space 2
When the water level 1 rises to the same level as the groundwater level, the spring water in the water collection tunnel 10 stops. Therefore, each valve 2
4 is opened by an arbitrary number from those located above, and the groundwater filled in the space 21 is discharged from the valves 24 toward the space 22 on the water transmission tunnel 30 side. At this time,
If the number of valves 24 to be opened is reduced and the water level of the space 21 is set higher, the amount of spring water in the water collecting tunnel 10 is reduced, the amount of water discharged from the valves 24 is reduced, and the number of valves 24 to be opened is reduced. If the water level of the space 21 is set lower by increasing the amount of water, the amount of spring water in the water collection tunnel 10 increases and the amount of water discharged from the valve 24 increases. Adjust the number of

【0019】放出された地下水は、第1の送水トンネル
31を流れ下り、貯水空洞40を経て第2の送水トンネ
ル32をさらに流れ下り、低位の地表Lに設けられた開
口に向かうので、送水量制御装置としてのバルブ41の
開度を適宜調節して貯水空洞40への貯蔵を図りながら
計画的に外部への送水を行う。なお、地下空洞40にも
周囲の岩盤2から地下水が湧き出すので、この湧水をも
取水して有効に利用する。
The released groundwater flows down the first water supply tunnel 31, further flows down the second water supply tunnel 32 through the water storage cavity 40, and goes to the opening provided on the lower surface L, so that the amount of water supplied is The water is sent to the outside systematically while the storage in the water storage cavity 40 is planned by appropriately adjusting the opening degree of the valve 41 as a control device. In addition, since groundwater springs out from the surrounding bedrock 2 also into the underground cavity 40, this spring water is also taken and used effectively.

【0020】また、送水路50からは、河川Rの水位が
計画最高水位を越した場合にその増水分の河川水を取水
し、濾過装置51で懸濁物等を除去したうえで、立坑の
うち送水トンネル30側の空間22に送水して有効に利
用する。
Further, when the water level of the river R exceeds the planned maximum water level, the river water of the increased water is taken in from the water supply channel 50, the suspended matter and the like are removed by the filtration device 51, and then the shaft of the shaft is removed. The water is supplied to the space 22 on the side of the water transmission tunnel 30 for effective use.

【0021】渇水期を見込んだ岩盤地下水取水施設の効
果的な運転方法としては、まず、平年時には、空間21
の水位を比較的高くして周辺環境へ影響が及ばない程度
に取水量を少なく設定し、バルブ24から放出される地
下水と、岩盤2から貯水空洞40へ湧き出す地下水とを
貯水空洞40に貯蔵する。貯水空洞40の貯蔵量が最大
となったら、バルブ24から放出される地下水の水量と
貯水空洞40へ湧き出す地下水の水量とを合計した岩盤
地下水量(平年時合計送水量)に相当する地下水を第2
の送水トンネル32から放出して常時利用する。
An effective method of operating a rocky groundwater intake facility in anticipation of a drought period is as follows.
The water level is set to a relatively high level so that the surrounding environment is not affected, and the groundwater discharged from the valve 24 and the groundwater discharged from the rock 2 into the storage cavity 40 are stored in the storage cavity 40. I do. When the storage volume of the water storage cavity 40 becomes the maximum, the groundwater corresponding to the rock groundwater amount (total water supply amount during normal years) obtained by adding the water amount of the groundwater discharged from the valve 24 and the water amount of the groundwater flowing into the water storage cavity 40 is calculated. Second
From the water supply tunnel 32 and is always used.

【0022】渇水時には、空間21の水位を低くして取
水量を多く設定し、平年時合計送水量以上の地下水を利
用する。加えて、貯水空洞40の貯蔵量を減らせば、岩
盤2から貯水空洞40に湧き出す地下水の水量も増える
ので、さらに多くの地下水を利用することが可能であ
る。
At the time of drought, the water level in the space 21 is lowered to set a large amount of water intake, and groundwater that is equal to or greater than the total water supply during normal years is used. In addition, if the storage amount of the storage cavity 40 is reduced, the amount of groundwater that springs out from the bedrock 2 into the storage cavity 40 increases, so that more groundwater can be used.

【0023】上記のように構成された岩盤地下水取水施
設によれば、岩盤2中を流れる地下水を集水トンネル1
0の壁面からの自然湧水として得ることができ、この地
下水を、集水トンネル10および集水部11に貯留させ
ることができる。そして、隔壁23に設置された各バル
ブ24を上方に位置するものから任意の数だけ開放し、
双方の空間21、22の連通空間の高さを任意に設定す
ることで、集水部11から送水トンネル30に流入する
地下水の流量を段階的に調節することができる。さら
に、自然湧水として得た地下水を、送水トンネル30を
通じて低位の地表Lから放出することで、揚水装置等の
設備を使用せずに取水することができる。これによっ
て、揚水装置等の建設コストや運転コスト等が不要とな
り、当該施設を建設し運用するうえで大幅なコスト削減
が可能となる。
According to the rock groundwater intake system constructed as described above, the groundwater flowing through the rock 2 is collected by the collection tunnel 1.
The groundwater can be stored in the water collection tunnel 10 and the water collection unit 11 as natural spring water from the wall surface of the zero. Then, each valve 24 installed on the partition wall 23 is opened by an arbitrary number from those located above,
By arbitrarily setting the height of the communication space between the two spaces 21 and 22, the flow rate of the groundwater flowing into the water supply tunnel 30 from the water collecting part 11 can be adjusted stepwise. Furthermore, by discharging groundwater obtained as natural spring water from the lower surface L through the water supply tunnel 30, water can be taken without using equipment such as a pumping device. As a result, the construction cost and operation cost of the pumping device and the like become unnecessary, and the cost can be significantly reduced in constructing and operating the facility.

【0024】岩盤地下水は気象等の影響を受けにくく安
定した取水量が見込めるので、外部への送水を行いなが
らも貯水空洞40に地下水を貯蔵しておくことができ、
渇水時等においてこの貯蔵しておいた地下水を放水する
ことで、集水トンネル10から取水される地下水の水量
以上の利水が可能となり、これによって渇水時にも安定
した水の供給が可能となる。さらに、地下空洞40にも
周囲の岩盤2から地下水が湧き出すので、この湧水も取
水して利用することができる。
Since the rock groundwater is not easily affected by the weather and the like, and a stable water intake can be expected, the groundwater can be stored in the water storage cavity 40 while water is supplied to the outside.
By discharging the stored groundwater at the time of drought or the like, it is possible to use water more than the amount of the groundwater taken from the water collection tunnel 10, thereby enabling stable water supply even at the time of drought. Furthermore, since groundwater springs out from the surrounding bedrock 2 also into the underground cavity 40, this spring water can also be taken and used.

【0025】さらに、送水路50を通じて水位が増した
河川Rから取水し、送水トンネル30側の空間22に送
水することで、他の水源から得た水をも利用して貯水空
洞40の貯蔵量を増やすことができる。
Further, by taking water from the river R whose water level has increased through the water supply channel 50 and sending it to the space 22 on the side of the water supply tunnel 30, the amount of water stored in the water storage cavity 40 is also utilized utilizing water obtained from other water sources. Can be increased.

【0026】貯水空洞40に貯蔵された地下水を、水量
に関わらず常時放水しておけば、貯水空洞40周辺の岩
盤2中を流れる地下水は貯水空洞40に向かい、逆に貯
蔵された地下水は岩盤2内に向かわないので、貯蔵水の
漏洩が生じない合理的な貯蔵方式を実現できる。このた
め、貯水空洞40は漏洩防止を目的とした巻きたてコン
クリートや鋼板ライニング等の技術が不要になり、施工
コストの削減が可能である。
If the groundwater stored in the water storage cavity 40 is constantly discharged regardless of the amount of water, the groundwater flowing in the rock 2 around the water storage cavity 40 goes to the water storage cavity 40, and the groundwater stored in the water storage cavity 40 2, it is possible to realize a rational storage method that does not cause leakage of stored water. Therefore, the water storage cavity 40 does not require technologies such as rolled concrete and steel plate lining for the purpose of preventing leakage, and construction costs can be reduced.

【0027】なお、本実施形態においては、隔壁23に
複数のバルブ24を設置しこれらの開閉によって集水部
11から送水トンネル30に流入する地下水の流量を制
御したが、これに代えて、立坑の高さ方向に伸縮自在な
隔壁を採用してもよい。
In the present embodiment, a plurality of valves 24 are installed on the partition wall 23, and the flow rate of the groundwater flowing into the water supply tunnel 30 from the water collecting section 11 is controlled by opening and closing these valves. A partition which can expand and contract in the height direction may be adopted.

【0028】また、貯水空洞40の最高部から、第1の
送水トンネル31、立坑20を経て空気抜き管を配設す
れば、貯水空洞40のほぼ100%を地下水の貯蔵に充
てることができる。
If an air vent pipe is provided from the highest part of the water storage cavity 40 through the first water supply tunnel 31 and the shaft 20, almost 100% of the water storage cavity 40 can be used for storing groundwater.

【0029】次に、本発明に係る岩盤地下水取水施設の
第2の実施形態を図2に示して説明する。図2に示す岩
盤地下水取水施設は、第1の実施形態とほぼ同様に、丘
陵地等の地表面に高低差を有する地山1に構築されてお
り、岩盤2中に掘削された集水トンネル10と、地下水
の集まる集水部11から鉛直上方に掘削された立坑20
と、集水部11から傾斜して掘削され低位の地表Lに開
口した送水トンネル30とを備えてなるものである。
Next, a second embodiment of the rock groundwater intake facility according to the present invention will be described with reference to FIG. The rock groundwater intake facility shown in FIG. 2 is constructed in a mountain 1 having a height difference on the ground surface such as a hill, and a water collection tunnel excavated in the rock 2 in substantially the same manner as in the first embodiment. 10 and a shaft 20 excavated vertically upward from a water collecting section 11 where groundwater gathers.
And a water supply tunnel 30 which is excavated at an angle from the water collecting part 11 and opened to the lower surface L.

【0030】しかしながら、この岩盤地下水取水施設に
は、送水トンネル30の途中位置に貯水空洞が設けられ
ておらず、送水トンネル30が当該施設に隣接するダム
貯水池(水資源貯水施設)Dに連結されている。しか
も、当該施設の最深部にあたる送水トンネル30の先端
は、ダム貯水池Dの利水容量水位(H.W.L.)と同
等もしくは高位に位置している。
However, in this rocky groundwater intake facility, a water storage cavity is not provided at an intermediate position of the water supply tunnel 30, and the water supply tunnel 30 is connected to a dam reservoir (water resource storage facility) D adjacent to the water supply tunnel. ing. In addition, the tip of the water supply tunnel 30, which is the deepest part of the facility, is located at a level equal to or higher than the water use capacity water level (HWL) of the dam reservoir D.

【0031】上記のように構成された岩盤地下水取水施
設においても、岩盤2中を流れる地下水が自然湧水とし
て得られる。岩盤地下水は気象等の影響を受けにくく安
定した取水量が見込めるので、例えば異常気象による長
期間の降水量低下によってダム貯水池Dの貯水量が低下
した場合にも、当該施設から得られた地下水をダム貯水
池Dに放水することでその貯水量を回復させることがで
きる。これによってダム貯水池Dの計画流量を賄い、異
常気象に影響されず安定した水の供給が可能となる。
In the rock groundwater intake facility configured as described above, the groundwater flowing in the rock 2 is obtained as natural spring water. Since the rock groundwater is less likely to be affected by weather and the like, and a stable water intake can be expected, the groundwater obtained from the facility can be used even when the storage volume of the dam reservoir D decreases due to a long-term decrease in precipitation due to abnormal weather, for example. By discharging water to the dam reservoir D, the amount of water stored can be restored. As a result, the planned flow rate of the dam reservoir D is covered, and stable water supply can be performed without being affected by abnormal weather.

【0032】[0032]

【発明の効果】以上説明したように、請求項1に記載さ
れた岩盤地下水取水施設によれば、岩盤中に集水トンネ
ルを形成することにより、岩盤中を流れる地下水を集水
トンネルの壁面からの自然湧水として得ることができ、
この地下水を、集水トンネルおよび集水部に貯留するこ
とができる。また、集水部に、高位の地表に貫通した集
水坑を形成し、この集水坑を集水トンネル側の空間と送
水トンネル側の空間とに仕切る隔壁の高さを可変として
双方の空間の連通空間の高さを任意に設定することで、
集水トンネルから送水トンネルに流入する地下水の流量
を自在に調節することができる。さらに、当該施設を地
表面に高低差を有する地山に構築し、送水トンネルを集
水部から低位の地表に向けて下るように形成して低位の
地表に開口させることにより、自然湧水として得た地下
水を、揚水装置等の設備を使用せずに取水することがで
きる。これらのことから、揚水装置等の建設コストや運
転コスト等が不要となり、当該施設を建設し運用するう
えで大幅なコスト削減が可能である。
As described above, according to the rocky groundwater intake facility according to the first aspect, by forming a water collection tunnel in the rock, groundwater flowing in the rock is removed from the wall surface of the water collection tunnel. Can be obtained as natural spring water,
This groundwater can be stored in a collection tunnel and a collection section. In the water collection section, a water collection pit penetrating the high ground surface is formed. By setting the height of the communication space of
It is possible to freely adjust the flow rate of groundwater flowing from the collection tunnel to the water transmission tunnel. In addition, by constructing the facility on the ground with a height difference on the ground surface, forming a water tunnel from the catchment part toward the lower ground surface and opening it to the lower ground surface, as natural spring water The obtained groundwater can be withdrawn without using equipment such as a pumping device. For these reasons, the construction cost and operation cost of the pumping device and the like are not required, and a significant cost reduction can be achieved in constructing and operating the facility.

【0033】請求項2に記載された岩盤地下水取水施設
によれば、外部への送水を行いながらも貯水空洞に地下
水を貯蔵しておき、渇水時等においてこの貯蔵しておい
た地下水を放水することで、集水トンネルから取水され
る地下水の水量以上の利水が可能となり、これによって
安定した水の供給が可能となる。さらに、地下空洞にも
周囲の岩盤から地下水が湧き出すので、この湧水をも取
水して利用することができる。
According to the rock groundwater intake system of the present invention, groundwater is stored in the water storage cavity while water is being supplied to the outside, and the stored groundwater is discharged in the event of drought or the like. As a result, it is possible to use water more than the amount of groundwater taken from the collection tunnel, thereby enabling stable water supply. In addition, groundwater springs out of the surrounding bedrock into the underground cavities, so this spring can be taken and used.

【0034】請求項3に記載された岩盤地下水取水施設
によれば、集水坑が貫通した地表よりも高位の水源から
集水坑に向けて送水路を設けることにより、他の水源か
ら得た水を利用して貯水空洞の貯蔵量を増やすことがで
きる。
According to the rocky groundwater intake facility of the third aspect, a water supply channel is provided from a water source higher than the surface through which the water collection pit penetrates to the water collection pit to obtain water from another water source. Water can be used to increase the storage capacity of the storage cavity.

【0035】請求項4に記載された岩盤地下水取水施設
によれば、送水トンネルを低位の水資源貯水施設に連結
することにより、岩盤地下水取水施設から得られた地下
水を水資源貯水施設に放水することでその貯水量を回復
させることができる。これによって水資源貯水施設の計
画流量を賄い、異常気象等に影響されず安定した水の供
給が可能となる。
According to the fourth aspect of the present invention, groundwater obtained from the rocky groundwater intake facility is discharged to the water resource storage facility by connecting the water supply tunnel to the lower-level water resource storage facility. This can restore the water storage. As a result, the planned flow rate of the water resource storage facility can be covered, and stable water supply can be performed without being affected by abnormal weather or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の岩盤地下水取水施設の第1の実施形
態を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a first embodiment of a rock groundwater intake facility of the present invention.

【図2】 本発明の岩盤地下水取水施設の第2の実施形
態を示す縦断面図である。
FIG. 2 is a longitudinal sectional view illustrating a rock groundwater intake facility according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 地山 2 岩盤 10 集水トンネル 20 立坑(集水坑) 21 集水トンネル側の空間 22 送水トンネル側の空間 23 隔壁 24 バルブ 30 送水トンネル 40 貯水空洞 50 送水路 H 高位の地表 L 低位の地表 R 河川(水源) D ダム貯水池(水資源貯水施設) DESCRIPTION OF SYMBOLS 1 Ground 2 Rock 10 Water collection tunnel 20 Vertical shaft (water collection pit) 21 Space on water collection tunnel side 22 Space on water transmission tunnel side 23 Partition wall 24 Valve 30 Water transmission tunnel 40 Water storage cavity 50 Water channel H High surface L Low surface R River (water source) D Dam reservoir (water resource storage facility)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 誠 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 (72)発明者 西 琢郎 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 (72)発明者 竹中 久 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 (72)発明者 清水 一都 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Makoto Suzuki 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Corporation (72) Inventor Takuro Nishi 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Corporation Co., Ltd. (72) Inventor Hisashi Takenaka 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Construction Co., Ltd. (72) Inventor One Capital Shimiura 1-2-3, Shibaura, Minato-ku, Tokyo Shimizu Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 地表面に高低差を有する地山の岩盤中
に、集水部に向けて下るように形成された集水トンネル
と、 該集水部から低位の地表に向けて下るように形成され、
低位の地表に開口した送水トンネルとを備えてなり、 前記集水部には、高位の地表に向けて形成され、該地表
に貫通した集水坑と、該集水坑を集水トンネル側の空間
と送水トンネル側の空間とに仕切り、且つ集水トンネル
側の空間と送水トンネル側の空間との連通空間の高さを
任意に設定可能な隔壁とが設けられていることを特徴と
する岩盤地下水取水施設。
A water collection tunnel formed in a bedrock of a ground having a height difference on the ground surface so as to descend toward a water collecting portion, and a water collecting tunnel formed to descend from the water collecting portion to a lower surface. Formed,
A water transmission tunnel opened to a lower ground surface, wherein the water collecting portion is formed toward the higher ground surface, and a water collection pit penetrating the ground surface, and the water collection pit is provided on the water collection tunnel side. A bedrock which is divided into a space and a space on the side of the water supply tunnel, and is provided with a partition wall which can arbitrarily set a height of a communication space between the space on the side of the water collection tunnel and the space on the side of the water supply tunnel. Groundwater intake facility.
【請求項2】 請求項1に記載された岩盤地下水取水施
設において、 前記送水トンネルの途中位置に設けられ、集水された地
下水を貯留する貯水空洞と、 該貯水空洞から流出する地下水の流量を制御する送水量
制御装置とを備えていることを特徴とする岩盤地下水取
水施設。
2. A rock groundwater intake facility according to claim 1, wherein the groundwater is provided at an intermediate position of the water supply tunnel and stores the collected groundwater, and the flow rate of the groundwater flowing out of the water storage cavity is reduced. A rock groundwater intake facility, comprising: a water supply control device for controlling the water supply.
【請求項3】 請求項1または2に記載された岩盤地下
水取水施設において、 前記集水坑が貫通した地表よりも高位の水源から取水
し、集水坑に向けて送水する送水路を備えていることを
特徴とする岩盤地下水取水施設。
3. The rocky groundwater intake facility according to claim 1, further comprising a water supply channel that takes in water from a water source higher than the ground surface penetrated by the water collection pit and feeds water to the water collection pit. A rocky groundwater intake facility.
【請求項4】 請求項1、2、3のいずれかに記載され
た岩盤地下水取水施設において、 前記送水トンネルが低位の水資源貯水施設に連結されて
いることを特徴とする岩盤地下水取水施設。
4. The rock groundwater intake facility according to claim 1, wherein the water supply tunnel is connected to a low-level water resource storage facility.
JP23566596A 1996-09-05 1996-09-05 Bedrock groundwater intake facility Expired - Fee Related JP3579809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23566596A JP3579809B2 (en) 1996-09-05 1996-09-05 Bedrock groundwater intake facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23566596A JP3579809B2 (en) 1996-09-05 1996-09-05 Bedrock groundwater intake facility

Publications (2)

Publication Number Publication Date
JPH1082076A true JPH1082076A (en) 1998-03-31
JP3579809B2 JP3579809B2 (en) 2004-10-20

Family

ID=16989392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23566596A Expired - Fee Related JP3579809B2 (en) 1996-09-05 1996-09-05 Bedrock groundwater intake facility

Country Status (1)

Country Link
JP (1) JP3579809B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087554A (en) * 2011-10-20 2013-05-13 Ohbayashi Corp Liquefaction measure structure and liquefaction measure construction method
CN110485508A (en) * 2019-08-12 2019-11-22 中建海峡建设发展有限公司 Seawater jacking area's river water source heat pump water intaking regulation method and system based on prediction
CN110820850A (en) * 2019-11-08 2020-02-21 重庆市二零八工程勘察设计院有限公司 Karst falling cavity side wall water taking system and water taking method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087554A (en) * 2011-10-20 2013-05-13 Ohbayashi Corp Liquefaction measure structure and liquefaction measure construction method
CN110485508A (en) * 2019-08-12 2019-11-22 中建海峡建设发展有限公司 Seawater jacking area's river water source heat pump water intaking regulation method and system based on prediction
CN110820850A (en) * 2019-11-08 2020-02-21 重庆市二零八工程勘察设计院有限公司 Karst falling cavity side wall water taking system and water taking method

Also Published As

Publication number Publication date
JP3579809B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
US10577770B2 (en) Self-starting negative pressure drainage system for draining groundwater in slope and construction method thereof
CN205116250U (en) Sediment removal device of reservoir among hydraulic engineering
JP6505832B2 (en) Tidal power generation and storage system and reservoir construction method of such system
Stevanović Damming underground flow to enhance recharge of karst aquifers in the arid and semi-arid worlds
US9278808B1 (en) System and method of using differential elevation induced energy for the purpose of storing water underground
JP3579809B2 (en) Bedrock groundwater intake facility
EP2725143B1 (en) Pump storage device for energy storage
CN101353892B (en) Three-dimensional space water drainage method and structure of gravitational field
CN105839584B (en) flood control system
KR20190103766A (en) Block construction method of waste mine water
CN210660210U (en) Segment structure based on joint draining and pressure reducing and tunnel lining
DE2712869A1 (en) PROCEDURE FOR PROTECTING UNDERGROUND CAVITIES AGAINST WATER INGREDIENTS
JP5695495B2 (en) Overlay structure
RU2244063C1 (en) Method for protection against landslide
CN206707761U (en) High hydraulic pressure fractured zones tunnel carries the emergent intelligent drainage system of clearing function
Dutta et al. Artificial groundwater recharge: its prospect in West Bengal
CN216552029U (en) A precipitation structure that is used for aquifer and water barrier to slowly incline interbedded
CN216739773U (en) Three-dimensional drainage pressure reducing system for basement civil air defense area
RU114071U1 (en) Borehole water storage tank-sump of a hydraulic unit of a micro-or small hydroelectric power station
CN211113432U (en) Check dam water storage system
CN211057817U (en) Supporting device for reinforcing side slope
JP3555046B2 (en) Bedrock groundwater intake facility
CN113914382A (en) Three-dimensional drainage construction method and drainage pressure reduction system for basement civil air defense area
JPH07303338A (en) Shared system for storing flooding water and pneumatically storing electric power
CN115595942A (en) Low-head underground water diversion structure and construction method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140730

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees