JP2013085658A - 内視鏡スコープ及び内視鏡装置 - Google Patents

内視鏡スコープ及び内視鏡装置 Download PDF

Info

Publication number
JP2013085658A
JP2013085658A JP2011228196A JP2011228196A JP2013085658A JP 2013085658 A JP2013085658 A JP 2013085658A JP 2011228196 A JP2011228196 A JP 2011228196A JP 2011228196 A JP2011228196 A JP 2011228196A JP 2013085658 A JP2013085658 A JP 2013085658A
Authority
JP
Japan
Prior art keywords
scope
endoscope
imaging
pixel
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011228196A
Other languages
English (en)
Inventor
Masaki Takamatsu
正樹 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2011228196A priority Critical patent/JP2013085658A/ja
Publication of JP2013085658A publication Critical patent/JP2013085658A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】高画素数の撮像素子を搭載した内視鏡スコープを、当該高画素数に対応していないプロセッサー装置に接続した場合であっても、良好な画質の画像データを内視鏡スコープからプロセッサー装置に供給することができる内視鏡スコープ及び内視鏡装置を提供する。
【解決手段】内視鏡装置10は、内視鏡スコープ20と、内視鏡スコープ20から入力される画像信号S2に処理を施して映像信号S3を作成するプロセッサー装置30とを備える。内視鏡スコープ20は、撮像データS1を出力する撮像部(CCD、CMOS等)21と、撮像データS1に処理を施して画像信号S2を作成するスコープ側画像処理部22とを有する。スコープ側画像処理部22は、スコープ側制御部24によって制御され、プロセッサー装置30の処理能力に応じた画素制限マスクを利用し、撮像部21の撮像可能領域のうち所定領域(未使用領域等)の画素をカットして画素数が低減された画像信号S2を作成する。
【選択図】図1

Description

本発明は内視鏡スコープ及び内視鏡装置に係り、特に、処理画素数に関して能力の低いプロセッサー装置に対し能力の高い内視鏡スコープを接続するための技術に関する。
電子内視鏡装置では、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子が電子スコープ(電子内視鏡)の先端部に搭載され、この固体撮像素子によって被観察体は撮像される。撮像により得られる撮像信号は、固体撮像素子からプロセッサー装置に出力され、プロセッサー装置において各種の処理が施されて、プロセッサー装置に接続されるモニターでの撮像画像の表示や、記録装置への静止画等の記録に供されることとなる。
近年の高画素CCDや高画素CMOSの開発に伴い、電子内視鏡装置の分野においても内視鏡スコープに搭載される固体撮像素子の高画素化が進み、また撮像データ(撮像信号)の高速処理化も進んでいる。また、モニターにおける映像表示方式としてインターレース方式及びプログレッシブ方式(ノンインターレース方式)が一般に採用されているが、より良好な画質による映像表示のニーズが高まってきており、プログレッシブ方式による映像表示が標準になりつつある。このように、撮像素子の高画素化、画像処理の高速化、及びプログレッシブ方式映像表示の標準化等が進むにつれ、内視鏡スコープから出力される画像情報量が増大している。
内視鏡スコープはこのような多量の画像情報を送信するために広帯域信号を出力するように構成されるが、能力の低い従来のプロセッサー装置では内視鏡スコープから送られてくるそのような広帯域信号を適切に処理することが難しい場合がある。その一方で、プロセッサー装置自体が高価であるため、内視鏡スコープから出力される広帯域信号に対応可能な新しいプロセッサー装置に買い替えるということは、現実的には簡単ではない。
そのため、広帯域信号を出力する内視鏡スコープを従来のプロセッサー装置に接続して使用したいというニーズが存在する。
特許文献1は、高画素数の固体撮像素子を搭載した電子スコープを、高画素数に対応していないプロセッサー装置に接続して使用する技術を開示する。この特許文献1に記載の技術によれば、固体撮像素子から出力される画像信号の画素数をプロセッサー側最大画素数の画像信号へダウンコンバートし、ダウンコンバートされた画像信号が内視鏡スコープからプロセッサーに出力される。このダウンコンバートは、具体的には、水平画素については5ドットの入力に対して4ドットを出力し、垂直画素については5ラインの入力に対して4ラインを出力するようになっている。
特開2005−118158号公報
上述のように特許文献1では、広帯域信号を出力する内視鏡スコープを従来の画像プロセッサー装置に接続して使用するために、固体撮像素子から出力される画像信号の画素を間引くことで、内視鏡スコープを従来のプロセッサー装置に対応させている。
しかしながら特許文献1に記載の方法では、画素が間引かれた画像信号を内視鏡スコープからプロセッサー装置に出力するため、プロセッサー装置はオリジナルの画像と比べて劣化した画質の画像信号に基づき画像処理を行うこととなる。したがって特許文献1に記載の方法では、内視鏡スコープ側において取得される高画素撮像データの恩恵をプロセッサー装置側で十分に享受することができず、比較的低画素な撮像データを取得する従来の内視鏡スコープが接続される場合と同等かそれ以下の画質の画像信号に基づきプロセッサー装置は画像処理を行うこととなる。
本発明はこのような事情に鑑みてなされたものであり、高画素数の撮像素子を搭載した内視鏡スコープを、当該高画素数に対応していないプロセッサー装置に接続した場合であっても、良好な画質の画像データを内視鏡スコープからプロセッサー装置に供給することができる電子内視鏡スコープ及び内視鏡装置を提供することを目的とする。
本発明の一態様は内視鏡装置に関し、撮像データを出力する撮像手段と、前記撮像データに処理を施して画像信号を出力する画像処理手段と、を有する内視鏡スコープと、前記内視鏡スコープに接続され、入力される前記画像信号に処理を施して映像信号を作成するプロセッサー装置と、を備える内視鏡装置であって、前記内視鏡スコープ及び前記プロセッサー装置のうち少なくともいずれかに画像処理制御手段が設けられ、当該画像処理制御手段は、前記内視鏡スコープの処理能力及び前記プロセッサー装置の処理能力に基づいて画素制限マスクを決定し、当該画素制限マスクを利用して前記撮像手段の撮像可能領域のうち所定領域の画素をカットして画素数が低減された前記画像信号が出力されるように前記画像処理手段を制御する。
本態様によれば、プロセッサー装置の処理能力に応じた画素制限マスクによって、撮像手段の撮像可能領域のうち所定領域の画素がカットされ、画素数が低減された画像信号がプロセッサー装置に送られる。したがって、画素制限マスクによってプロセッサー装置が処理可能な画素数に低減された画像信号を内視鏡スコープからプロセッサー装置に出力することが可能であり、高画素対応の内視鏡スコープを能力の低いプロセッサー装置に接続することができる。
ここでいう「画素制限マスク」は、撮像手段の撮像領域の一部領域の画素をカットして構成画素数を低減するための画像処理用マスクであり、カット対象の画素群を特定するデータ(情報)である。また、画像処理制御手段は、内視鏡スコープ及びプロセッサー装置のいずれか一方又は両方に設けられうる。
望ましくは、前記画像処理制御手段は、前記内視鏡スコープが有するスコープ側制御手段であって、前記内視鏡スコープの処理能力を把握して前記画像処理手段を制御するスコープ側制御手段を含み、前記スコープ側制御手段は、前記内視鏡スコープの処理能力と前記プロセッサー装置の処理能力とを比較して前記画素制限マスクを決定する。
また望ましくは、前記画像処理制御手段は、前記プロセッサー装置が有するプロセッサー側制御手段と、前記内視鏡スコープが有する前記スコープ側制御手段と、を含み、前記プロセッサー側制御手段は前記プロセッサー装置の処理能力を把握し、前記スコープ側制御手段は前記内視鏡スコープの処理能力を把握し、前記スコープ側制御手段は、前記プロセッサー装置の処理能力を前記プロセッサー側制御手段から取得し、前記内視鏡スコープの処理能力と前記プロセッサー装置の処理能力とを比較して前記画素制限マスクを決定する。
これらの場合、内視鏡スコープ側(スコープ側制御手段)において、内視鏡スコープの処理能力(処理画素数)とプロセッサー装置の処理能力(処理画素数)とが比較されて前記画素制限マスクが決定される。
望ましくは、前記画像処理制御手段は、前記プロセッサー装置が有するプロセッサー側制御手段と、前記内視鏡スコープが有するスコープ側制御手段と、を含み、前記プロセッサー側制御手段は前記プロセッサー装置の処理能力を把握し、前記スコープ側制御手段は前記内視鏡スコープの処理能力を把握し、前記プロセッサー側制御手段は、前記内視鏡スコープの処理能力を前記スコープ側制御手段から取得し、前記内視鏡スコープの処理能力と前記プロセッサー装置の処理能力とを比較して前記画素制限マスクを決定し、決定した前記画素制限マスクを前記スコープ側制御手段に送る。
この場合、プロセッサー装置側(プロセッサー側制御手段)において、内視鏡スコープの処理能力(処理画素数)とプロセッサー装置の処理能力(処理画素数)とが比較されて画素制限マスクが決定され、決定された画素制限マスクがプロセッサー装置側(プロセッサー側制御手段)から内視鏡スコープ側(スコープ側制御手段)に送られる。
望ましくは、前記画素制限マスクは、カットされる前記所定領域が複数の候補領域のうちから優先順位に従い選択されて決定される。
この場合、複数の候補領域の中から優先順位に従って選定された領域が、画素制限マスクによってカットされる。したがって、カットされても影響の小さい領域ほど高位の優先順位を有するように、使用される画素制限マスクの選定が行われることが好ましい。
望ましくは、前記画素制限マスクによりカットされる前記所定領域は、前記撮像手段の有効撮像領域以外の未使用領域を含む。
この場合、撮像に寄与しない未使用領域が画素制限マスクによってカットされるため、撮像データに実質的に影響を与えることなく、内視鏡スコープからプロセッサー装置に送られる画像信号の画素数を低減することができる。
ここでいう「撮像有効領域」とは、撮像手段を構成する画素のうち、被観察体の撮像に実質的に寄与しうる領域を指し、「未使用領域」とは、被観察体の撮像に寄与しない画素が存在する領域を指す。
望ましくは、前記画素制限マスクによりカットされる前記所定領域は、前記撮像手段の前記有効撮像領域の外周縁領域を含む。
この場合、比較的影響の少ない撮像範囲の外周縁領域が画素制限マスクによってカットされるため、撮像データに与える影響が小さい。
ここでいう「外周縁領域」とは、被観察体の撮像に寄与する撮像手段の画素のうちの縁部を指し、その範囲は特に限定されず、必要に応じた所定範囲にこの外周縁領域が設定されうる。
望ましくは、前記画素制限マスクが適用されてカットされる前記所定領域は限界が定められており、カットされる前記所定領域が当該限界に達した場合、前記内視鏡スコープから出力される前記画像信号のフレームレートが減じられる。
この場合、画素制限マスクの適用によるカットされる領域に限界が定められているため、必要以上の領域が画素制限マスクによってカットされることを防ぐことができる。また、限界に達した場合には画像信号のフレームレートが減じられるため、能力の低い低帯域のプロセッサー装置であっても画像信号を適切に受信及び画像処理することが可能である。例えば画像処理制御手段(スコープ側制御手段)の制御下で、画像信号のフレームレートを減じることが可能である。
望ましくは、前記内視鏡スコープから出力される前記画像信号はプログレッシブ方式の信号であり、前記画素制限マスクが適用されてカットされる前記所定領域は限界が定められており、カットされる前記所定領域が当該限界に達した場合、前記内視鏡スコープはプログレッシブ方式からインターレース方式に切り換えて前記画像信号を出力する。
この場合、画素制限マスクの適用によるカットされる領域に限界が定められているため、必要以上の領域が画素制限マスクによってカットされることを防ぐことができる。また、限界に達した場合にはプログレッシブ方式からインターレース方式に信号出力が切り換えられるため、能力の低い低帯域(狭帯域)のプロセッサー装置であっても画像信号を適切に受信及び画像処理することが可能である。例えば画像処理制御手段(スコープ側制御手段)の制御下で、画像信号の信号出力をプログレッシブ方式からインターレース方式に切り換えることが可能である。
望ましくは、前記撮像手段は、CMOSであり、前記撮像手段から出力される前記撮像データは、前記画素制限マスクが適用されてカットされる前記所定領域以外の領域の画素データによって構成される。
この場合、撮像手段(CMOS)からデータ(電荷)を読み出す時点で画素制限マスクが適用されることとなり、画素制限マスクによるカット対象の所定領域以外の領域の画素データによって撮像データが構成されることとなる。そのため、読み出し速度及び後段の装置の画像処理速度を高速化することができる。
前記撮像手段は、CCDであり、前記内視鏡スコープは、前記撮像手段からの前記撮像データを保持するフレームメモリを備え、前記画像処理手段は、前記画素制限マスクが適用されてカットされる前記所定領域以外の領域の画素データによって構成される前記撮像データを前記フレームメモリから取得する。
この場合、撮像手段(CCD)からの撮像データがフレームメモリに一旦蓄積されるため、このフレームメモリに適宜アクセスすることにより、画像処理手段は必要な領域の撮像データ(前記画素制限マスクが適用されてカットされる所定領域以外の領域の画素データ)を簡便に取得することが可能である。
本発明の別の態様は、プロセッサー装置に接続される内視鏡スコープに関し、撮像データを出力する撮像手段と、前記撮像データに処理を施して画像信号を出力する画像処理手段と、前記内視鏡スコープの処理能力及び前記プロセッサー装置の処理能力に基づいて決定される画素制限マスクを利用して、前記撮像手段の撮像可能領域のうち所定領域の画素をカットして画素数が低減された前記画像信号が出力されるように前記画像処理手段を制御する画像処理制御手段と、を備える内視鏡スコープに関する。
本発明によれば、撮像手段の撮像領域のうち所定領域の画素が画素制限マスクによってカットされ、プロセッサー装置の処理能力に応じて画素数を低減した画像信号を内視鏡スコープ側(画像処理手段)で作成することができる。したがって、高画素数の撮像素子を含む撮像手段が搭載される内視鏡スコープを、当該高画素数に対応していないプロセッサー装置に接続した場合であっても、画素制限マスクによる画素数低減処理により、良好な画質の画像データを内視鏡スコープからプロセッサー装置に供給することができる。
本発明が適用される内視鏡装置の一例を示す機能ブロック図である。 画素制限マスクの適用による撮像部の撮像有効範囲の縮小例を示す図であり、(a)は画素制限マスク適用前のデフォルトの撮像有効範囲を示し、(b)は図3(a)の画素制限マスクの適用時の撮像有効範囲を示し、(c)は図3(b)の画素制限マスクの適用時の撮像有効範囲を示し、(d)は(a)〜(c)の撮像有効範囲を重畳的に示す図である。 画素制限マスクの概念図であり、(a)は第1の画素制限マスクの一例を示し、(b)は第2の画素制限マスクの一例を示す。 他の画素制限マスクが適用された場合の撮像有効範囲を示し、(a)は矩形状の撮像有効範囲を示し、(b)は八角形状の撮像有効範囲を示す。 画素制限マスクを構成するカット候補領域の優先順位テーブルの一例を示す。 画素数低減処理の一例を示すフローチャートである。 画素数低減処理の他の例を示すフローチャートである。 画素制限マスクの適用有効性の判断及び画素制限マスク(優先順位)の選定の一例を示すフローチャートである。 CCDを備える内視鏡スコープの一実施例を示す構成ブロック図である。 内視鏡スコープが接続されるプロセッサー装置の一実施例を示す構成ブロック図である。
以下、添付図面を参照して、本発明の実施形態について説明する。
まず本発明の各実施形態を機能面から総括的に説明し(図1〜8参照)、その後、一例として具体的な装置に本発明を適用した実施例について説明する(図9〜10参照)。
<内視鏡装置全体の機能構成>
図1は、本発明が適用される内視鏡装置の一例を示す機能ブロック図である。図1に示される内視鏡装置10は、画像信号を出力する内視鏡スコープ20と、当該内視鏡スコープ20に接続されるプロセッサー装置30と、当該プロセッサー装置30が接続されるモニター40とを備える。
内視鏡スコープ20は、被観察体を撮像する撮像部21と、撮像部21の撮像によって得られる撮像データSを受信するスコープ側画像処理部22と、撮像部21をコントロールする撮像ドライバー23と、スコープ側画像処理部22及び撮像ドライバー23を制御するスコープ側制御部24とを備える。
撮像部21は、撮像ドライバー23から送られてくる撮像指示信号に応じ、被観察体を撮像して撮像データSを出力する撮像手段である。具体的には、CCDやCMOS等の固体撮像素子によって撮像部21は構成され、フォトダイオード等の受光素子によって構成される画素が2次元に多数配列される。本例の撮像部21は、プロセッサー装置30の対応画素数よりも高画素数の撮像データSを得ることができるようになっている。例えば85万画素までのCCDにしか対応することができないプロセッサー装置30を使用する場合であっても、本発明によれば、例えば130万画素のCCDを内視鏡スコープ20の撮像部21に採用することが可能である。なお、撮像部21の画素数や撮像方式等は特に限定されず、高画素数出力が可能な所望の固体撮像素子を撮像部21において使用することができる。
スコープ側画像処理部22は、スコープ側制御部24の制御下で撮像データSに所定の処理を施して画像信号Sを作成し、当該画像信号Sをプロセッサー装置30に出力する画像処理手段である。特に本例のスコープ側画像処理部22は、プロセッサー装置30の処理能力に応じた画素制限マスク(図3参照)がスコープ側制御部24から与えられるようになっている。スコープ側画像処理部22は、この画素制限マスクを利用して撮像部21の撮像可能領域のうち所定領域の画素をカットし、画像信号Sを作成する。したがって、内視鏡スコープ20に対して処理能力の低い(処理画素数の低い)プロセッサー装置30を使用する場合には、スコープ側画像処理部22からプロセッサー装置30に出力される画像信号Sの構成画素数は撮像部21の撮像可能画素数よりも低くなる。なお、この画素制限マスクの利用による画素数低減処理の詳細については後述する(図2〜4参照)。
なおスコープ側画像処理部22は、撮像データSを記憶するフレームメモリ25を有していてもよく、フレームメモリ25に一旦記憶される撮像データSを参照してスコープ側画像処理部22は各種の画像処理を進めることも可能である。したがって、例えば撮像部21としてCCDを使用する場合であっても、このCCDからの撮像データSをフレームメモリ25に一旦記憶させることで、画像処理に使用する所定の指定画素の撮像データのみをフレームメモリ25から読み出すことも可能である。
撮像ドライバー23は、スコープ側制御部24の制御下で撮像部21を制御するドライバーであり、撮像部21の撮像方式に応じた撮像指示信号を撮像部21に送信する。したがって、撮像部21がCMOSを採用する場合にはCMOS方式の撮像指示信号(Xアドレス回路及びYアドレス回路による画素読み出しスイッチング信号等)が撮像ドライバー23から撮像部21に送られ、また撮像部21がCCDを採用する場合にはCCD方式の撮像指示信号が撮像ドライバー23から撮像部21に送られる(後述の図9及び10参照)。
スコープ側制御部24は、スコープ側画像処理部22及び撮像ドライバー23を統括的に制御し、撮像ドライバー23を介して撮像部21による撮像をコントロールするとともに、スコープ側画像処理部22における画像処理をコントロールする。特に本例のスコープ側制御部24は、内視鏡スコープ20全体の処理能力(処理画素数等)を把握しており、内視鏡スコープ20及びプロセッサー装置30が接続されるとプロセッサー側制御部32との間でデータのやり取りが行われるようになっている。このスコープ側制御部24とプロセッサー側制御部32と間におけるデータ処理によって、プロセッサー装置30の処理能力に応じた画素制限マスクが作成され、この画素制限マスクはスコープ側制御部24からスコープ側画像処理部22及び/又は撮像ドライバー23に与えられる。
一方、プロセッサー装置30は、内視鏡スコープ20(スコープ側画像処理部22)から入力される画像信号Sに所定の画像処理を施して映像信号Sを作成するプロセッサーであり、画像信号Sに画像処理を施すプロセッサー側画像処理部31と、プロセッサー側画像処理部31を制御するプロセッサー側制御部32とを備える。
プロセッサー側画像処理部31は、内視鏡スコープ20から送られてくる画像信号Sの信号レベルの調整、RGB変換、インターレース/プログレッシブ変換、等の所定の画像処理をプロセッサー側制御部32の制御下で実行して映像信号Sを作成し、この映像信号Sをモニター40に出力する。プロセッサー側画像処理部31で行われるこれらの画像処理は特に限定されるものではなく、後段のモニター40で撮影画像を適切に再現するための映像信号Sを、前段の内視鏡スコープ20から送られてくる画像信号Sから適切に作り出すことができる任意の処理をプロセッサー側画像処理部31において実行することが可能である。
プロセッサー側制御部32は、プロセッサー装置30全体の処理能力(処理画素数等)を把握して、プロセッサー側画像処理部31を制御するコントローラーである。本例のプロセッサー側制御部32は、上述のようにスコープ側制御部24との間でデータのやり取りを行うようになっており、プロセッサー装置30の処理能力に応じた画素制限マスクが作成される。
このように内視鏡装置10では、撮像部21の撮像データSがスコープ側画像処理部22において画像処理され、内視鏡スコープ20からプロセッサー装置30に画像信号Sが送られ、プロセッサー側画像処理部31における画像処理後に映像信号Sがモニター40に送られるようになっている。モニター40は、送られてくる映像信号Sに基づき、撮像部21による撮像画像を再現するようになっている。
なお、プロセッサー装置30(プロセッサー側画像処理部31)からモニター40に入力される映像信号Sは、インターレース方式であってもよいしプログレッシブ方式であってもよく、モニター40は任意の映像方式を採用することができる。また、プロセッサー装置30に入力される画像信号Sもインターレース方式であってもよいしプログレッシブ方式であってもよく、インターレース方式の画像信号Sからプログレッシブ方式の映像信号Sを創出する任意の画像処理やプログレッシブ方式の画像信号Sからインターレース方式の映像信号Sを創出する任意の画像処理をプロセッサー装置30(プロセッサー側画像処理部31)において実施可能としてもよい。
<画素制限マスクについて>
次に、撮像部21からの撮像データSの画素数を低減するための画素制限マスクについて説明する。図2は、画素制限マスクの適用による撮像部21の撮像範囲の有効範囲の縮小例を示す図であり、図3は画素制限マスクの概念図である。
図2(a)は、画像制限マスクが適用される前の、撮像部21のデフォルトの撮像範囲riniを示す。本例の撮像部21では、矩形状の撮像範囲riniの全域にわたって多数の画素(受光素子)がn×mのマトリックス状に配置されている。
この撮像部21のデフォルトの撮像範囲riniに対して、まず、複数のカット候補領域のうち第1候補領域に対応する第1の画素制限マスクMが適用され、撮像データSに含まれる画素数が低減化される。図3(a)は、第1の画素制限マスクMの一例を示す。図3(a)に示す例では、撮像部21のうち撮像に寄与しない未使用領域(図3(a)の塗りつぶされた領域)がカット領域の第1候補領域に設定されている。一般に、撮像部21の二次元配列画素の全てが実際の撮像に寄与しているわけではなく、実際には所定範囲(通常は中央部)の画素のみが撮像素子として使用されており、撮像部21の周縁部の画素は実際の撮像に寄与しない未使用領域の画素(未使用画素)を構成する。したがって、これらの未使用領域に含まれる未使用画素のデータを撮像データSから取り除くことで、撮影画像の画質に実質的な影響を与えずにデータ量を減じることが可能である。図2(a)の撮像部21のデフォルト撮像範囲riniに対して図3(a)の第1の画素制限マスクMを適用することで未使用領域の画素がカットされ、図2(b)に示す撮像実効領域rがプロセッサー装置30に送られる画像信号Sの対象領域となる。
また、内視鏡スコープ20及びプロセッサー装置30の処理能力(処理画素数)に照らして、上記の第1の画素制限マスクMの適用のみでは画素数低減が不十分である場合には、撮像データSに含まれる画素数を更に低減化するための第2の画素制限マスクMが適用される。図3(b)は、第2の画素制限マスクMの一例を示す。図3(b)に示す例では、第1の画素制限マスクM適用後の撮像実効領域(撮像範囲)rの外周縁領域がカット領域の第2候補領域に設定されている。したがって、図2(b)の第1の画素制限マスクM適用後の撮像実効領域(撮像範囲)rに対して図3(b)の第2の画素制限マスクMを適用することで、図2(c)に示す撮像実効領域rまで、画像信号Sの対象領域が更に狭められ(図3(b)の矢印参照)、観察範囲が少し狭められる。図2(d)は、図3(a)及び(b)に示される画素制限マスク(第1の画素制限マスクM及び第2の画素制限マスクM)の重畳的適用による撮像実効領域の縮小化を示す図である。
このように、画素制限マスクによりカットされるカット領域には複数の候補領域が設定されており、内視鏡スコープ20及びプロセッサー装置30の処理能力(処理画素数)に照らして、これらの複数の候補領域のうちから優先順位に従って、実際に適用する画素制限マスクが選択されて決定されるようになっている。
なお、画素制限マスクは図3に示される例に限定されるものではなく、画素制限マスクによりカット対象となる領域は適宜決定することが可能である。例えば第2の画素制限マスクMに関し、図3(b)に示す例では撮像実効範囲rが楕円形状となるような画素制限マスクが使用されるが、図4(a)に示すように撮像実効範囲rを矩形状(長方形、正方形)にする画素制限マスク、図4(b)に示すように撮像実効範囲rを八角形状にする画素制限マスク、或いは撮像実効範囲rを他の形状(多角形状、円形状、その他の形状)にする画素制限マスクが使用されてもよい。
また図3では、複数の画素制限マスクが優先順位に従って累積的に適用される例が示されているが、適用する画素制限マスクが複数の画素制限マスク(候補領域)から択一的に選択及び決定されてもよい。例えば、図3(b)の楕円状画素制限マスク、図4(b)の八角形状画素制限マスク、及び図4(a)の矩形状画素制限マスクの順に低減画素数(カット領域)が増える場合(図3(b)の楕円状画素制限マスクによる低減画素数<図4(b)の八角形状画素制限マスクによる低減画素数<図4(a)の矩形状画素制限マスクによる低減画素数)、第2の画素制限マスクMを選定する際に、まず図3(b)の楕円状画素制限マスクの適用が検討される。この場合、内視鏡スコープ20及びプロセッサー装置30の処理能力(処理画素数)に照らして、図3(b)の楕円状画素制限マスクの適用で十分に画素数を低減することができる場合には第2の画素制限マスクMとして図3(b)の楕円状画素制限マスクが選定される。しかしながら、図3(b)の楕円状画素制限マスクの適用では画素数低減が不十分である場合には、代わりに、図4(b)の八角形状画素制限マスクの適用が検討される。同様に、図4(b)の八角形状画素制限マスクの適用で十分に画素数を低減することができる場合には第2の画素制限マスクMとして図4(b)の八角形状画素制限マスクが選定されるが、画素数低減が不十分である場合には代わりに図4(a)の矩形状画素制限マスクの適用が検討される。このように、複数の画素制限マスク(候補領域)の中から最適な画素制限マスクを択一的に選択することによって、撮像データSの画素数を不必要に低減することを効果的に防ぐことができる。
次に、画素制限マスクの選定及び撮像データSの画素数低減に関する具体的な処理について説明する。
上述のように、画素制限マスクは、スコープ側制御部24とプロセッサー側制御部32と間のデータ処理によって、内視鏡スコープ20及びプロセッサー装置30の処理能力に応じて決定される。この画素制限マスクの決定は、スコープ側制御部24において行われてもよいし、プロセッサー側制御部32において行われてもよい。すなわち、スコープ側制御部24で画素制限マスクが決定される場合には、スコープ側制御部24はプロセッサー装置30の処理能力(処理画素数)の情報をプロセッサー側制御部32から取得し、スコープ側制御部24において内視鏡スコープ20の処理能力(処理画素数)とプロセッサー装置30の処理能力(処理画素数)とが比較され、実際に使用する画素制限マスク(優先順位テーブル)が決定される。同様に、プロセッサー側制御部32で画素制限マスクが決定される場合には、プロセッサー側制御部32は内視鏡スコープ20の処理能力(処理画素数)の情報をスコープ側制御部24から取得し、プロセッサー側制御部32において内視鏡スコープ20及びプロセッサー装置30の処理能力(処理画素数)に基づき実際に使用する画素制限マスク(優先順位テーブル)が決定され、決定された画素制限マスクの情報がプロセッサー側制御部32からスコープ側制御部24に送られる。
図5は、複数の画素制限マスクに関する優先順位テーブルを示す。本例では、スコープ側制御部24又はプロセッサー側制御部32において、複数の画素制限マスクが優先順位とともに決定される。すなわち、撮像データSのカット領域として第1候補領域r(図3に示す例では未使用領域)に対して第1優先順位が割り当てられ、第2候補領域r(図3に示す例では外周縁領域)に対して第2優先順位が割り当てられる。カット対象となる複数の領域(画素)を優先順位と対応づけた画素制限マスク情報(優先順位テーブル)を、スコープ側制御部24は最終的に保持する。スコープ側制御部24は、この画素制限マスクの優先順位テーブルに基づき、スコープ側画像処理部22及び撮像ドライバー23を制御する。
なお、上述の例では第1候補領域rとして撮像部21のうち撮像に寄与しない未使用領域に対応する領域を採用しているが、カット対象となる第1候補領域rや第2候補領域rは他の基準に基づいて適宜選定されてもよい。また、画素制限マスク(カット候補領域)の数、優先順位数も特に限定されるものではなく、必要に応じた複数のN候補領域(Nは2以上の整数)をカット対象(画素制限マスク)とすることができる。
一方、このようにして決定される画素制限マスクには限界(上限)が定められており、画素制限マスクの適用によって低減される画素数の上限値(制限値)が予め定められている。したがって、スコープ側制御部24又はプロセッサー側制御部32は、内視鏡スコープ20及びプロセッサー装置30の処理能力(処理画素数)に照らして、画素制限マスクの適用のみによる画素数低減では対応することができないと判断した場合には、他の処理によってデータ量の縮小化を行うように、スコープ側画像処理部22及び撮像ドライバー23を制御する。
図6は、撮像データSの画素数低減処理の一例を示すフローチャートである。以下の例では、スコープ側制御部24において画素数低減処理が行われる例について説明するが、上述のようにプロセッサー側制御部32で画素数低減処理が行われてもよい。
内視鏡スコープ20及びプロセッサー装置30が接続されると、スコープ側制御部24は、内視鏡スコープ20の処理画像帯域(処理画素数)とプロセッサー装置30の処理画像帯域(処理画素数)とを比較する(図6のS10)。ここでいう内視鏡スコープ20の処理画素数は、十分な処理能力を備えるプロセッサー装置に内視鏡スコープ20が接続された場合のような通常時に、撮像部21からスコープ側画像処理部22に送られる撮像データSの画素数である。
スコープ側制御部24は、内視鏡スコープ20の処理画素数とプロセッサー装置30の処理画素数とを比較して、撮像データS(画像データ)の画素数の低減が必要か否かを判断する(S12)。例えば、プロセッサー装置30において対応可能な処理画素数が内視鏡スコープ20の処理画素数以上の場合には、画素数の低減は不要と判断され(S12のN)、通常通りの画像処理(画像信号Sの出力処理)が行われるようにスコープ側制御部24はスコープ側画像処理部22及び撮像ドライバー23を制御する(S20)。一方、プロセッサー装置30において対応可能な処理画素数が内視鏡スコープ20の処理画素数を下回っている場合には、画素数の低減が必要と判断される(S12のY)。
このように撮像データSの画素数の低減が必要と判断された場合、スコープ側制御部24は、画素制限マスクの適用だけで画素数の低減に関して対応することができるか否かを判断する(S14)。例えば、画素制限マスクの適用によって低減可能な画素数が、必要とされる撮像データS(画像データ)の低減画素数以上の場合には、画素制限マスクの適用のみで画素数の低減に関して対応することができると判断される(S14のY)。画素制限マスクの適用のみで画素数の低減に関して対応することができると判断された場合、使用される画素制限マスクが優先順位に従って選択・決定され、選定された画素制限マスクを利用して撮像データS(画像データ)の画素数が低減される(S16)。そして、画素制限マスクの適用により画素数が低減された撮像データS(画像データ)に基づき、通常通りの画像処理(画像信号Sの出力処理)が行われるように、スコープ側制御部24はスコープ側画像処理部22及び撮像ドライバー23を制御する(S20)。
一方、画素制限マスクの適用によって低減可能な画素数が、必要とされる撮像データS(画像データ)の低減画素数を下回っている場合には、画素制限マスクの適用のみで画素数の低減に関して対応することができないと判断される(S14のN)。すなわち、 画素制限マスクの適用によりカットされる所定領域に対して設定される限界(低減画素数の上限値)に達した場合には、画素制限マスクの適用以外の他の所定のデータ量低減処理が行われるように、スコープ側制御部24はスコープ側画像処理部22及び撮像ドライバー23を制御する(S18)。
このとき実施されるデータ量低減処理では、任意の処理を実施することが可能であり、様々な帯域制限方法を用いることができる。例えば撮像データS(画像データ)を構成する画素を所定のルールに従って間引くことでデータ量を低減することが可能である。また、内視鏡スコープ20(スコープ側制御部24)から通常時に出力される画像信号Sがプログレッシブ方式による信号の場合には、信号出力方式をインターレース方式に切り換えて画像信号Sを出力するように(例えば、60フレーム/秒(60p)のプログレッシブ方式出力を60フィールド/秒(60i)のインターレース方式出力にするように)、スコープ側制御部24はスコープ側画像処理部22及び撮像ドライバー23を制御することが可能である。また、内視鏡スコープ20(スコープ側画像処理部22)から出力される画像信号Sのフレームレートが通常時より減じられるように(例えば通常時のフレームレートが60フレーム/秒(60p)の場合に30フレーム/秒(30p)に減じられるように)、スコープ側制御部24はスコープ側画像処理部22及び撮像ドライバー23を制御することも可能である。
上述の処理(図6のS10〜S20)を経て構成画素数/データ量が低減された画像信号は、内視鏡スコープ20(スコープ側画像処理部22)からプロセッサー装置30(プロセッサー側画像処理部31)に適切に送信される。
なお、撮像データSの画素数低減処理は図6に示す例に限定されるものではなく、例えば図7のフローチャートに示される処理によって画素数低減処理を行ってもよい。
図7に示す変形例では、内視鏡スコープ20及びプロセッサー装置30の両者の処理能力(処理画素数)が比較されて(図7のS30)撮像データSの画素数の低減化が必要か否かを判断する処理(S32)、及び撮像データS(画像データ)の画素数の低減化が不要であると判断された場合に通常通りの画像処理が行われること(S40)は、図6に示す例と共通する(図6のS10、S12及びS20参照)。
しかしながら、図7に示す例では、撮像データSの画素数の低減化が必要であると判断された場合(S32のY)、優先順位に従って選定された画素制限マスクが適用されて撮像データS(画像データ)の画素数の低減化処理が行われるように、スコープ側制御部24はスコープ側画像処理部22及び撮像ドライバー23を制御する(S34)。そして、画素制限マスクの適用だけで画素数の低減に関して対応することができるか否かが判断され(S36)、対応可能と判断された場合(S36のY)、通常通りの他の画像処理が行われるよう、スコープ側制御部24はスコープ側画像処理部22及び撮像ドライバー23を制御する(S40)。一方、画素制限マスクの適用だけで画素数低減に対応することができないと判断された場合(S36のN)、図6のS18と同様の他の所定のデータ量低減処理が行われ(S38)、その後通常通りの他の画像処理が行われるよう、スコープ側制御部24はスコープ側画像処理部22及び撮像ドライバー23を制御する(S40)。
上述のように、図6に示す例では、画素制限マスクの適用のみで画素数の低減を十分に行うことができない場合、画素制限マスクは適用されずに他の処理によって、撮像データS(画像データ)のデータ量が低減される(図6のS14及びS18参照)。一方、図7に示す例では、画素制限マスクの適用のみで画素数の低減を十分に行うことができない場合であっても、画素制限マスクの適用による画素数低減化処理は行われ(図7のS34参照)、その後に他の処理が適用されることで(図7のS38参照)、撮像データS(画像データ)のデータ量が更に低減されるようになっている。この図7に示す例のように、画素制限マスクの適用により画素数を低減化しておくことによって、他のデータ低減処理によるデータ低減量を少なくすることができ、撮像データS(画像データ)の劣化を抑えることができる。
なお、画素制限マスクの適用による画像データの画素数を低減する具体的な処理については、種々の方法を採用することが可能である。
例えば撮像部21がCMOSの場合には、スコープ側制御部24は撮像ドライバー23を制御して、CMOSから読み出される画素データ(撮像データS)自体が、画素制限マスクが適用されてカットされる領域以外の領域の画素データによって構成されるようにすることができる。すなわち、CMOSを構成する画素のうち画素制限マスク適用後の撮像実効範囲(図2(c)のr参照)に対応する画素(受光素子)からのみ信号電荷が読み出され、画素制限マスクによりカットされる領域に対応する画素からは信号電荷を読み出されないように、スコープ側制御部24は撮像ドライバー23を制御してもよい。このように電荷読み出し時に使用する画像領域を制限する場合、不必要な領域の画素からの信号電荷の読み出しが行われないため、全体の読み出し速度が高速化するだけではなく、後段のスコープ側画像処理部22における画像処理も高速化することが可能である。
また撮像部21がCCDの場合には、スコープ側画像処理部22のフレームメモリ25にCCDからの撮像データSが一旦保持され、スコープ側画像処理部22は、画素制限マスクが適用されてカットされる領域以外の領域の画素データによって構成される画像データ(撮像データS)をフレームメモリ25から取得するように、スコープ側制御部24はスコープ側画像処理部22及び撮像ドライバー23を制御してもよい。すなわち、画素制限マスク適用後の撮像実効範囲(図2(c)のr参照)に対応する画素(受光素子)の撮像データのみがフレームメモリ25から読み出され、画素制限マスクによりカットされる領域に対応する画素の撮像データがフレームメモリ25から読み出されないように、スコープ側制御部24はスコープ側画像処理部22を制御してもよい。また、CCDを構成する画素のうちV後端画素(垂直方向に関する読み出し後端部分の画素)からの電荷読み出しを制限することでデータ量低減が行われるように、スコープ側制御部24はスコープ側画像処理部22及び撮像ドライバー23を制御してもよい。
次に、画素制限マスクの適用だけで画素数の低減に関して対応することができるか否かの判断フロー(図6のS14及び図7のS36参照)の具体例について、図8を参照して説明する。なお図8に示す例では、「画素制限マスクの適用だけで画素数の低減に関して対応することができるか否かの判断」と「実際に適用する画素制限マスク(優先順位)の選定」とが一緒に行われる(図6のS14及びS16;図7のS34及びS36)。また、スコープ側制御部24において図8に示すフローが行われる例について説明するが、プロセッサー側制御部32において当該フローが行われてもよい。
まず、内視鏡スコープ20(撮像部21)の処理画素数(撮像画素数)N及びプロセッサー装置30の対応可能な処理画素数Nから、必要とされる画素数の低減量Nが算出される(N=N−N)(図8のS50)。このとき参照される「内視鏡スコープ20の処理画素数N」及び「プロセッサー装置30の対応可能な処理画素数N」は、スコープ側画像処理部22とプロセッサー側画像処理部31との間のデータ交換によって適宜取得される。
そして、以下の演算に使用する優先順位Nが初期値(0)にリセットされるとともに、トータル画素削減量Nが初期値(0)にリセットされる(N=0及びN=0)(S52)。
そして、優先順位Nが1だけインクリメントされ(N=N+1)(S54)、このインクリメントされた優先順位Nに対応する画素制限マスクによって低減される画素数が、トータル画素削減量Nに対して累積的に付加される(S56)。このときトータル画素削減量Nに累積的に付加される「画素制限マスクによる低減画素数」は「先行する優先順位の画素制限マスクによる低減画素数」と重畳的にならないようにする。すなわち、例えば第1優先順位の画素制限マスクによるカット対象の画素と第2優先順位の画素制限マスクによるカット対象の画素との間に重複画素があると、その重複画素に関しトータル画素削減量Nにおいて重複カウントされる懸念がある。したがって、画素制限マスク間にカット対象画素の重複がある場合、優先順位の低いほうの画素制限マスクに関するトータル画素削減量Nの低減画素数付加時には、そのような重複画素について重畳的にカウントされないようにする。
そして、S56で算出された「トータル画素削減量N」がS50で算出された「必要とされる画素数の低減量N」以下となったか否かが、スコープ側制御部24において判断される(S58)。このとき、「必要とされる画素数の低減量N」≦「トータル画素削減量N」が満たされると判断される場合には(S58のY)、画素制限マスクの適用だけで画素数の低減に関して対応することができると判断され(図6のS14のY及び図7のS36のY参照)、またその時点における優先順位Nが実際に適用される画素制限マスクの選定基準となる(図5、図6のS16及び図7のS34参照)。
一方、「必要とされる画素数の低減量N」≦「トータル画素削減量N」が満たされないと判断される場合には(S58のN)、優先順位Nが限界優先順位に達したか否かが判断される(S60)。優先順位Nが限界優先順位に達していないと判断される場合には(S60のN)、上述のS54、S56及びS58のステップが再度繰り返される。一方、優先順位Nが限界優先順位に達したと判断される場合には(S60のY)、画素制限マスクの適用だけで画素数の低減に関して対応することができないと判断される(図6のS14のN及び図7のS36のN参照)。
なお、「優先順位テーブル(図5)」や「限界優先順位(図7のS60)」は、内視鏡スコープ20(スコープ側制御部24)又はプロセッサー装置30(プロセッサー側制御部32)において予め保存されていてもよいし、内視鏡スコープ20及びプロセッサー装置30の処理能力(処理画素数)から適宜導出されてもよい。
以上説明したように本例によれば、内視鏡スコープ20からプロセッサー装置30に送られる画像情報量を、内視鏡スコープ20側(スコープ側制御部24)においてプロセッサー装置30の処理能力に応じて適切に制限することができる。したがって、広帯域の内視鏡スコープ20を低帯域のプロセッサー装置30に接続することができ、プロセッサー装置30では制限(低減)された情報量の画像データに基づき所定の画像処理を適宜実施することが可能である。
また特に、画素制限マスクの適用のみで画素数を十分に低減することができる場合には(図6のS14のY、図7のS36のY)、画素間引きやフレーム間引き等の画像劣化処理を行うことなく、撮像データのデータ量(画素数)をプロセッサー装置30において処理可能なレベル(画素数)まで低減することができる。したがって、高画素の撮像部21からの良好な画像データを劣化させることなくプロセッサー装置30に供給することが可能である。
なお上述の実施形態では、スコープ側制御部24とプロセッサー側制御部32との間のデータのやり取りに基づいて、内視鏡スコープ20及びプロセッサー装置30の処理能力(処理画素数)から画素制限マスクが選定される例について説明したが、本発明はこれに限定されない。例えばユーザーが、プロセッサー装置30の処理能力(処理画素数)を、内視鏡スコープ20(スコープ側制御部24)に対して直接的に又は内視鏡スコープ20に接続されるパソコン等の別個の装置を介して入力可能とする構成であってもよい。この場合、ユーザーによってマニュアル入力されたプロセッサー装置30の処理能力と、内視鏡スコープ20の処理能力とに基づき、スコープ側制御部24は画素制限マスクを選定することができる。
<具体的な実施例>
以下に、撮像部21にCCDを使用した内視鏡装置10の一例について説明する。なお、本発明は、以下の例に限定されるものではなく、CCDを用いた他の装置やCCD以外の撮像素子(CMOS等)を用いた他の装置に対しても適用することが可能である。
図9及び図10には、電子内視鏡装置の一実施例の構成が示されており、この電子内視鏡装置は、図10に示されるように、電子スコープ(電子内視鏡)110、この電子スコープ110が着脱自在に接続可能となるプロセッサー装置111、及び電子スコープ110に対して着脱自在に接続可能な光源装置112を含んで構成される。光源装置112から出力される照明光は、電子スコープ110の先端部までライトガイドを介して供給され、先端部から被観察体へ照射される。
図9には、電子スコープ110の構成が示されており、この電子スコープ110の先端部に非TV系(例えばPC系)固体撮像素子であるCCD14が設けられ、このCCD114としては、例えば130万画素CCD等を採用することが可能である。このCCD114には、CCD出力信号をサンプリングするCDS(相関二重サンプリング)回路115、ゲインアンプ116、A/D変換器117が接続され、このA/D変換器117の後段に、スコープ側解像度変換回路として、Y(輝度)信号とC(カラー)信号を形成出力するDSP(デジタル信号プロセッサー)118が設けられる。
また、電子スコープ110には、プロセッサー装置111との間の接続のインターフェース120、CCD114からの信号読出しや各回路での画像処理のために、クロック周波数、水平同期信号及び垂直同期信号等を形成するタイミングジェネレータ(TG)121、スコープ内の統括的な制御をするマイコン122、画素形成のための各種データ及びプログラムを記憶するEEPROM123等が配置される。
本実施例では、例えば、130万画素のCCD114を駆動するためのクロック周波数として49.0908MHz(f1)が用いられ、プロセッサー装置111側では、85万画素の処理のためのクロック周波数として32.7272MHz(f2)が用いられる。
図10には、プロセッサー装置111内の詳細な構成が示されている。このプロセッサー装置111内には、映像信号のレベルを変換するレベル変換回路125、Y(輝度)、C(カラー)の信号をR(赤)、G(緑)、B(青)の信号に変換する色変換回路126、この色変換回路126から出力されたインターレース信号をプログレッシブ(ノンインターレース)信号へ変換する(プログレッシブ信号は通過させる)インターレース/プログレッシブ変換回路127、非TV用モニター(例えばPC用モニタ)の画素数(解像度)に合わせるための非TV用解像度変換回路128、キャラクタ発生回路129で形成されたキャラクタを映像信号へ加えるためのキャラクタ混合回路130、D/A変換器131及び非TV系同期信号発生回路(SSG)132が設けられる。この非TV系同期信号発生回路132は、プロセッサー装置111における画像処理のためのクロック周波数、水平同期信号、垂直同期信号等を発生する。
上記非TV用解像度変換回路128は、85万画素に対応するXGA(Extended Graphics Array−1024×768画素)規格の1フレーム分の画像データを記憶するフレームメモリを有し、XGA用の処理を行っており、85万画素よりも低い画素のTV系のCCDの電子スコープ110が接続される場合等は、XGA画像の1024×768の画素数に拡大する解像度変換を行う。
また、プロセッサー装置111には、上記キャラクタ混合回路130の出力を入力するTV用解像度変換回路135、プログレッシブ信号をインターレース信号へ変換するプログレッシブ/インターレース変換回路136、この変換回路136から出力されたRGBの信号をアナログ信号に変換するD/A変換器137、上記プログレッシブ/インターレース変換回路136から出力されたRGB信号をY(輝度)、C(カラー)信号へ変換するエンコーダ138、D/A変換器139、TV系のCCDで得られる画像を処理するクロック周波数、水平同期信号、垂直同期信号等を発生するTV系同期信号発生回路(SSG)140及びプロセッサー装置111内の回路を統括制御するマイコン141等が設けられる。
上記TV用解像度変換回路135は、VGA(Video Graphics Array−640×480画素)規格の1フレーム分の画像データを記憶するフレームメモリを有し、画素数を減らす解像度変換を行うことにより、XGA画像をVGA画像へ変換する。即ち、TV系CCDで得られた画像は上記非TV用解像度変換回路128で増加させた画素数を減少させて元へ戻し、電子スコープ110のCCD114を含む非TV系CCDで得られた画像についても、画素数を減少させることになる。
XGAの画像信号がプロセッサー装置111へ供給されると、プロセッサー装置111では非TV用解像度変換回路128にて解像度変換を行うことなく、画像信号はD/A変換器131を介して非TV用モニターへ出力され、この非TV用モニターにプログレッシブ方式で動画像が表示される。また、画像信号はTV用解像度変換回路135でTV用の解像度変換を行うことにより、D/A変換器137又は139を介してTV用モニターへ出力されることになり、このTV用モニターにはインターレース方式で動画像が表示される。
本実施例では、CCD114が図1の撮像部21に相当し、タイミングジェネレータ(TG)121を含むCCD駆動ドライバーが図1の撮像ドライバー23に相当し、マイコン122が図1のスコープ側制御部24に相当し、それ以外の電子スコープ110側の画像処理回路(CDS115等)が図1のスコープ側画像処理部22に相当しうる。また、マイコン141が図1のプロセッサー側制御部32に相当し、それ以外のプロセッサー装置111側の画像処理回路(レベル変換回路125等)が図1のプロセッサー側画像処理部31に相当しうる。
なお、上記実施例では、電子スコープ110が130万画素のCCD114を用い、プロセッサー装置111が85万画素対応の場合を説明したが、これに限らず、本発明はプロセッサー装置111の処理画像の画素数(解像度)よりも高い画素数の撮像手段(CCD、CMOS等)を搭載する電子スコープ110を接続する場合には同様に適用することが可能である。
10…内視鏡装置、20…内視鏡スコープ、21…撮像部、22…スコープ側画像処理部、23…撮像ドライバー、24…スコープ側制御部、25…フレームメモリ、30…プロセッサー装置、31…プロセッサー側画像処理部、32…プロセッサー側制御部、40…モニター、110…電子スコープ、111…プロセッサー装置、112…光源装置、115…CDS回路、116…ゲインアンプ、117…A/D変換器、120…インターフェース、122…マイコン、125…レベル変換回路、126…色変換回路、127…プログレッシブ変換回路、128…非TV用解像度変換回路、129…キャラクタ発生回路、130…キャラクタ混合回路、131…D/A変換器、132…非TV系同期信号発生回路、135…TV用解像度変換回路、136…プログレッシブ/インターレース変換回路、137…D/A変換器、138…エンコーダ、139…D/A変換器、141…マイコン、M…第1の画素制限マスク、M…第2の画素制限マスク、S…撮像データ、S…画像信号、S…映像信号

Claims (12)

  1. 撮像データを出力する撮像手段と、前記撮像データに処理を施して画像信号を出力する画像処理手段と、を有する内視鏡スコープと、
    前記内視鏡スコープに接続され、入力される前記画像信号に処理を施して映像信号を作成するプロセッサー装置と、を備える内視鏡装置であって、
    前記内視鏡スコープ及び前記プロセッサー装置のうち少なくともいずれかに画像処理制御手段が設けられ、当該画像処理制御手段は、前記内視鏡スコープの処理能力及び前記プロセッサー装置の処理能力に基づいて画素制限マスクを決定し、当該画素制限マスクを利用して前記撮像手段の撮像可能領域のうち所定領域の画素をカットして画素数が低減された前記画像信号が出力されるように前記画像処理手段を制御する内視鏡装置。
  2. 前記画像処理制御手段は、前記内視鏡スコープが有するスコープ側制御手段であって、前記内視鏡スコープの処理能力を把握して前記画像処理手段を制御するスコープ側制御手段を含み、
    前記スコープ側制御手段は、前記内視鏡スコープの処理能力と前記プロセッサー装置の処理能力とを比較して前記画素制限マスクを決定する請求項1に記載の内視鏡装置。
  3. 前記画像処理制御手段は、前記プロセッサー装置が有するプロセッサー側制御手段と、前記内視鏡スコープが有する前記スコープ側制御手段と、を含み、
    前記プロセッサー側制御手段は前記プロセッサー装置の処理能力を把握し、前記スコープ側制御手段は前記内視鏡スコープの処理能力を把握し、
    前記スコープ側制御手段は、前記プロセッサー装置の処理能力を前記プロセッサー側制御手段から取得し、前記内視鏡スコープの処理能力と前記プロセッサー装置の処理能力とを比較して前記画素制限マスクを決定する請求項2に記載の内視鏡装置。
  4. 前記画像処理制御手段は、前記プロセッサー装置が有するプロセッサー側制御手段と、前記内視鏡スコープが有するスコープ側制御手段と、を含み、
    前記プロセッサー側制御手段は前記プロセッサー装置の処理能力を把握し、前記スコープ側制御手段は前記内視鏡スコープの処理能力を把握し、
    前記プロセッサー側制御手段は、前記内視鏡スコープの処理能力を前記スコープ側制御手段から取得し、前記内視鏡スコープの処理能力と前記プロセッサー装置の処理能力とを比較して前記画素制限マスクを決定し、決定した前記画素制限マスクを前記スコープ側制御手段に送る請求項1に記載の内視鏡装置。
  5. 前記画素制限マスクは、カットされる前記所定領域が複数の候補領域のうちから優先順位に従い選択されて決定される請求項1〜4のいずれかに記載の内視鏡装置。
  6. 前記画素制限マスクによりカットされる前記所定領域は、前記撮像手段の有効撮像領域以外の未使用領域を含む請求項1〜5のいずれかに記載の内視鏡装置。
  7. 前記画素制限マスクによりカットされる前記所定領域は、前記撮像手段の前記有効撮像領域の外周縁領域を含む請求項1〜6のいずれかに記載の内視鏡装置。
  8. 前記画素制限マスクが適用されてカットされる前記所定領域は限界が定められており、
    カットされる前記所定領域が当該限界に達した場合、前記内視鏡スコープから出力される前記画像信号のフレームレートが減じられる請求項1〜7のいずれかに記載の内視鏡装置。
  9. 前記内視鏡スコープから出力される前記画像信号はプログレッシブ方式の信号であり、
    前記画素制限マスクが適用されてカットされる前記所定領域は限界が定められており、
    カットされる前記所定領域が当該限界に達した場合、前記内視鏡スコープはプログレッシブ方式からインターレース方式に切り換えて前記画像信号を出力する請求項1〜7のいずれかに記載の内視鏡装置。
  10. 前記撮像手段は、CMOSであり、
    前記撮像手段から出力される前記撮像データは、前記画素制限マスクが適用されてカットされる前記所定領域以外の領域の画素データによって構成される請求項1〜9のいずれかに記載の内視鏡装置。
  11. 前記撮像手段は、CCDであり、
    前記内視鏡スコープは、前記撮像手段からの前記撮像データを保持するフレームメモリを備え、
    前記画像処理手段は、前記画素制限マスクが適用されてカットされる前記所定領域以外の領域の画素データによって構成される前記撮像データを前記フレームメモリから取得する請求項1〜9のいずれかに記載の内視鏡装置。
  12. プロセッサー装置に接続される内視鏡スコープであって、
    撮像データを出力する撮像手段と、
    前記撮像データに処理を施して画像信号を出力する画像処理手段と、
    前記内視鏡スコープの処理能力及び前記プロセッサー装置の処理能力に基づいて決定される画素制限マスクを利用して、前記撮像手段の撮像可能領域のうち所定領域の画素をカットして画素数が低減された前記画像信号が出力されるように前記画像処理手段を制御する画像処理制御手段と、を備える内視鏡スコープ。
JP2011228196A 2011-10-17 2011-10-17 内視鏡スコープ及び内視鏡装置 Pending JP2013085658A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011228196A JP2013085658A (ja) 2011-10-17 2011-10-17 内視鏡スコープ及び内視鏡装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011228196A JP2013085658A (ja) 2011-10-17 2011-10-17 内視鏡スコープ及び内視鏡装置

Publications (1)

Publication Number Publication Date
JP2013085658A true JP2013085658A (ja) 2013-05-13

Family

ID=48530224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011228196A Pending JP2013085658A (ja) 2011-10-17 2011-10-17 内視鏡スコープ及び内視鏡装置

Country Status (1)

Country Link
JP (1) JP2013085658A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017082381A1 (ja) * 2015-11-13 2018-08-23 株式会社アイカムス・ラボ 液滴測定システム、液滴測定方法、及び液滴測定プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017082381A1 (ja) * 2015-11-13 2018-08-23 株式会社アイカムス・ラボ 液滴測定システム、液滴測定方法、及び液滴測定プログラム

Similar Documents

Publication Publication Date Title
US8797462B2 (en) Image processing apparatus and image processing method
JP3787927B2 (ja) 撮像装置及びカラー画像信号の処理方法
JP4919160B2 (ja) 撮像装置及びそのプログラム
US20070296837A1 (en) Image sensing apparatus having electronic zoom function, and control method therefor
JP4424088B2 (ja) 撮像装置
JP5284013B2 (ja) 撮像装置およびその制御方法、プログラム
JP5107799B2 (ja) 撮像装置
JP4105967B2 (ja) デジタルスチルカメラ
US7589778B2 (en) Digital camera
JP2006334323A (ja) 内視鏡装置
JP2007150439A (ja) 撮像装置、撮像方法、およびプログラム
JP4369263B2 (ja) デジタルカメラ及び画像信号生成方法
JP2013085658A (ja) 内視鏡スコープ及び内視鏡装置
JP2006246148A (ja) 撮像装置
JPH10276973A (ja) 電子内視鏡装置
JP5086904B2 (ja) 撮像装置、撮像装置の制御方法、プログラム及び記録媒体
JP2009038627A (ja) 撮像装置
JP2005118158A (ja) 電子内視鏡装置
US20100194939A1 (en) Imaging device
JP2003153093A (ja) 固体撮像装置、電子スチルカメラ、固体撮像素子の駆動方法及び固体撮像素子を駆動する制御プログラム
JP2006350017A (ja) 撮像装置
JP4133878B2 (ja) デジタルカメラ及び画像信号生成方法
JP2000278677A (ja) 電子内視鏡装置
JP2007049566A (ja) 撮像装置と映像信号生成方法
JP2004254777A (ja) 電子内視鏡装置