JP2013079441A - 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板 - Google Patents

熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板 Download PDF

Info

Publication number
JP2013079441A
JP2013079441A JP2012131419A JP2012131419A JP2013079441A JP 2013079441 A JP2013079441 A JP 2013079441A JP 2012131419 A JP2012131419 A JP 2012131419A JP 2012131419 A JP2012131419 A JP 2012131419A JP 2013079441 A JP2013079441 A JP 2013079441A
Authority
JP
Japan
Prior art keywords
hot press
less
thin steel
molding
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012131419A
Other languages
English (en)
Other versions
JP5873393B2 (ja
Inventor
Junya Naito
純也 内藤
Toshio Murakami
俊夫 村上
Chikayuki Ikeda
周之 池田
Keisuke Okita
圭介 沖田
Original Assignee
Kobe Steel Ltd
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011130635 priority Critical
Priority to JP2011130635 priority
Priority to JP2011208032 priority
Priority to JP2011208032 priority
Application filed by Kobe Steel Ltd, 株式会社神戸製鋼所 filed Critical Kobe Steel Ltd
Priority to JP2012131419A priority patent/JP5873393B2/ja
Publication of JP2013079441A publication Critical patent/JP2013079441A/ja
Application granted granted Critical
Publication of JP5873393B2 publication Critical patent/JP5873393B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/22Deep-drawing with devices for holding the edge of the blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

【課題】強度と伸びのバランスを適切な範囲にコントロールでき、且つ高延性である熱間プレス成形品を提供する。
【解決手段】熱間プレス成形法によって薄鋼板を成形した熱間プレス成形品であって、金属組織が、マルテンサイト:80〜97面積%、残留オーステナイト:3〜20面積%を夫々含み、残部組織:5面積%以下からなるものである。
【選択図】なし

Description

本発明は、自動車部品の構造部材に使用されるような、強度が必要とされる熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板に関し、特に予め加熱された鋼板(ブランク)を所定の形状に成形加工する際に、形状付与と同時に熱処理を施して所定の強度を得る熱間プレス成形品、そのような熱間プレス成形品の製造方法および熱間プレス成形用薄鋼板に関するものである。
地球環境問題に端を発する自動車の燃費向上対策の一つとして、車体の軽量化が進められており、自動車に使用される鋼板をできるだけ高強度化することが必要となる。しかしながら、自動車の軽量化のために鋼板を高強度化していくと、伸びELやr値(ランクフォード値)が低下し、プレス成形性や形状凍結性が劣化することになる。
このような課題を解決するために、鋼板を所定の温度(例えば、オーステナイト相となる温度)に加熱して強度を下げた(即ち、成形を容易にした)後、薄鋼板に比べて低温(例えば室温)の金型で成形することによって、形状の付与と同時に、両者の温度差を利用した急冷熱処理(焼入れ)を行って、成形後の強度を確保する熱間プレス成形法が部品製造に採用されている。
こうした熱間プレス成形法によれば、低強度状態で成形されるので、スプリングバックも小さくなると共に(形状凍結性が良好)、Mn、B等の合金元素を添加した焼入性の良い材料を使用することで、急冷によって引張強度で1500MPa級の強度が得られることになる。尚、このような熱間プレス成形法は、ホットプレス法の他、ホットフォーミング法、ホットスタンピング法、ホットスタンプ法、ダイクエンチ法等、様々な名称で呼ばれている。
図1は、上記のような熱間プレス成形(以下、「ホットスタンプ」で代表することがある)を実施するための金型構成を示す概略説明図であり、図中1はパンチ、2はダイ、3はブランクホルダー、4は鋼板(ブランク)、BHFはしわ押え力、rpはパンチ肩半径、rdはダイ肩半径、CLはパンチ/ダイ間クリアランスを夫々示している。また、これらの部品のうち、パンチ1とダイ2には冷却媒体(例えば水)を通過させることができる通路1a,2aが夫々の内部に形成されており、この通路に冷却媒体を通過させることによってこれらの部材が冷却されるように構成されている。
こうした金型を用いてホットスタンプ(例えば、熱間深絞り加工)するに際しては、鋼板(ブランク)4を、Ac3変態点以上の単相域温度に加熱して軟化させた状態で成形を開始する。即ち、高温状態にある鋼板4をダイ2とブランクホルダー3間に挟んだ状態で、パンチ1によってダイ2の穴内(図1の2,2間)に鋼板4を押し込み、鋼板4の外径を縮めつつパンチ1の外形に対応した形状に成形する。また、成形と並行してパンチ1およびダイ2を冷却することによって、鋼板4から金型(パンチ1およびダイ2)への抜熱を行なうと共に、成形下死点(パンチ先端が最深部に位置した時点:図1に示した状態)で更に保持冷却することによって素材の焼入れを実施する。こうした成形法を実施することによって、寸法精度の良い1500MPa級の成形品を得ることができ、しかも冷間で同じ強度クラスの部品を成形する場合に比較して、成形荷重が低減できることからプレス機の容量が小さくて済むことになる。
現在広く使用されているホットスタンプ用鋼板としては、22MnB5鋼を素材とするものが知られている。この鋼板では、引張強度が1500MPaで伸びが6〜8%程度であり、耐衝撃部材(衝突時に極力変形させず、破断しない部材)に適用されている。また、C含有量を増やし、22MnB5鋼をベースに、更に高強度化(1500MPa以上、1800MPa級)する開発も進められている。
しかしながら、22MnB5鋼以外の鋼種はほとんど適用されておらず、部品の強度、伸びをコントロール(例えば、低強度化:980MPa級、高伸び化:20%等)し、耐衝撃部材以外へ適用範囲を広げる鋼種・工法の検討はほとんどされていないのが現状である。
中型以上の乗用車では、側面衝突時や後方衝突時にコンパチビィリティ(小型車が衝突してきたときに相手側も守る機能)を考慮して、Bピラーやリアサイドメンバの部品内に、耐衝撃性部位とエネルギー吸収部位の両機能を持たせる場合がある。こうした部材を作製するには、これまでは、例えば980MPa級の高強度超ハイテンと、440MPa級の伸びのあるハイテンをレーザー溶接(テーラードウェルドブランク:TWB)して、冷間でプレス成形する方法が主流であった。しかしながら、最近では、ホットスタンプで部品内の強度を作り分ける技術の開発が進められている。
例えば、非特許文献1では、ホットスタンプ用の22MnB5鋼と、金型で焼入れしても高強度とならない材料をレーザー溶接(テーラードウェルドブランク:TWB)して、ホットスタンプする方法が提案されており、高強度側(耐衝撃部位側)で引張強度:1500MPa(伸び6〜8%)、低強度側(エネルギー吸収部位側)で引張強度:440MPa(伸び12%)となる作り分けを行っている。また、部品内で強度を作り分けるための技術として、例えば非特許文献2〜4のような技術も提案されている。
上記非特許文献1,2の技術では、エネルギー吸収部位側で引張強度が600MPa以下、伸びが12〜18%程度であるが、事前にレーザー溶接(テーラードウェルドブランク:TWB)する必要があり、工程が増加すると共に高コストとなる。また、本来、焼入れを行う必要のないエネルギー吸収部位を加熱することになり、熱量消費の観点からも好ましくない。
非特許文献3の技術では、22MnB5鋼をベースとしているが、ボロン添加の影響によって、二相域温度の加熱に対して焼入れ後の強度のロバスト性が悪く、エネルギー吸収部位側の強度コントロールが難しく、更に伸びも15%程度しか得られていない。
非特許文献4の技術では、22MnB5鋼をベースとしており、本来、焼入れ性の良い22MnB5鋼に焼きが入らないように制御する点(金型冷却制御)で合理的ではない。
Klaus Lamprecht, Gunter Deinzer, Anton Stich, Jurgen Lechler, Thomas Stohr, Marion Merklein,"Thermo-Mechanical Properties of Tailor Welded Blanks in Hot Sheet Metal Forming Processes", Proc. IDDRG2010, 2010. Usibor1500P(22MnB5)/1500MPa・8%-Ductibor500/550〜700MPa・17%[平成23年4月27日検索]インターネット〈http://www.arcelormittal.com/tailoredblanks/pre/seifware.pl〉 22MnB5/above AC3/1500MPa・8%-below AC3/Hv190・Ferrite/Cementite Rudiger Erhardt and Johannes Boke, "Industrial application of hot forming process simulation", Proc, of 1st Int. Conf. on Hot Sheet Metal Forming of High-Performance steel, ed. By Steinhoff, K., Oldenburg, M, Steinhoff, and Prakash, B., pp83-88, 2008. Begona Casas, David Latre, Noemi Rodriguez, and Isaac Valls, "Tailor made tool materials for the present and upcoming tooling solutions in hot sheet metal forming", Proc, of 1st Int. Conf. on Hot Sheet Metal Forming of High-Performance steel, ed. By Steinhoff, K., Oldenburg, M, Steinhoff, and Prakash, B., pp23-35, 2008.
本発明は上記事情に鑑みてなされたものであって、その目的は、強度と伸びのバランスを適切な範囲にコントロールでき、且つ高延性である熱間プレス成形品、このような熱間プレス成形品を製造するための有用な方法および熱間プレス成形用薄鋼板を提供することにある。
上記目的を達成することのできた本発明の熱間プレス成形品とは、熱間プレス法によって薄鋼板を成形した熱間プレス成形品であって、金属組織が、マルテンサイト:80〜97面積%、残留オーステナイト:3〜20面積%を夫々含み、残部組織:5面積%以下からなるものである点に要旨を有するものである。
本発明の熱間プレス成形品において、その化学成分組成は限定されないが、代表的なものとして、C:0.15〜0.35%(質量%の意味。以下、化学成分組成について同じ。)、Si:0.5〜3%、Mn:0.5〜2%、P:0.05%以下(0%を含まない)、S:0.05%以下(0%を含まない)、Al:0.01〜0.1%、Cr:0.01〜1%、B:0.0002〜0.01%、Ti:(Nの含有量)×4〜0.1%、およびN:0.001〜0.01%を夫々含有し、残部が鉄および不可避不純物からなるものが挙げられる。
本発明の熱間プレス成形品においては、必要に応じて、更に他の元素として、(a)Cu,NiおよびMoよりなる群から選択される1種以上:合計で1%以下(0%を含まない)、(b)Vおよび/またはNb:合計で0.1%以下(0%を含まない)等を含有させることも有用であり、含有される元素の種類に応じて、熱間プレス成形品の特性が更に改善される。
本発明の熱間プレス成形品を製造するに当たっては、プレス成形金型を用いて薄鋼板をプレス成形するに際して、前記薄鋼板をAc3変態点以上、1000℃以下の温度に加熱した後、成形を開始し、成形中は金型内で20℃/秒以上の平均冷却速度を確保しつつ、(マルテンサイト変態開始温度Ms点−50℃)以下の温度で成形を終了するようにすれば良い。
本発明は上記のような熱間プレス成形品を製造するための熱間プレス成形用薄鋼板をも包含し、この薄鋼板は、上記のよう化学成分組成を有することを特徴とする。
本発明によれば、熱間プレス成形法において、その条件を適切に制御することによって、適正量の残留オーステナイトを存在させて金属組織を調整することができ、従来の22MnB5鋼を用いたときよりも、成形品に内在する延性(残存延性)をより高くした熱間プレス成形品が実現でき、また熱処理条件や成形前鋼板の組織(初期組織)との組み合わせにより、強度および伸びを制御できる。
熱間プレス成形を実施するための金型構成を示す概略説明図である。
本発明者らは、薄鋼板を所定の温度に加熱した後、熱間プレス成形して成形品を製造するに際して、成形後において高強度を確保しつつ良好な延性(伸び)をも示すような熱間プレス成形品を実現すべく、様々な角度から検討した。
その結果、プレス成形金型を用いて薄鋼板をプレス成形して熱間プレス成形品を製造するに際して、加熱温度、および成形時の条件を適切に制御し、残留オーステナイトを3〜20面積%含むように組織を調整すれば、強度−延性バランスに優れた熱間プレス成形品が実現できることを見出し、本発明を完成した。
本発明の熱間プレス成形品における各組織(基本組織)の範囲設定理由は次の通りである。
[マルテンサイト:80〜97面積%]
主要組織を、高強度のマルテンサイトにすることで、熱間プレス成形品の強度を確保することができる。こうした観点から、マルテンサイトの面積分率は、80面積%以上とする必要がある。しかしながら、この分率が97面積%を超えると、残留オーステナイトの分率が不足し、延性(残存延性)が低下する。マルテンサイト分率の好ましい下限は83面積%以上(より好ましくは85面積%以上)であり、好ましい上限は95面積%以下(より好ましくは93面積%以下)である。
[残留オーステナイト:3〜20面積%]
残留オーステナイトは、塑性変形中にマルテンサイトに変態することで、加工硬化率を上昇させ(変態誘起塑性)、成形品の延性を向上させる効果がある。こうした効果を発揮させるためには、残留オーステナイトの分率を3面積%以上とする必要がある。延性に対しては、残留オーステナイト分率が多ければ多いほど良好になるが、自動車用鋼板に用いられる組成では、確保できる残留オーステナイトは限られており、20面積%程度が上限となる。残留オーステナイトの好ましい下限は5面積%以上(より好ましくは7面積%以上)であり、好ましい上限は17面積%以下(より好ましくは15面積%以下、もしくは10面積%以下)である。
[残部組織:5面積%以下]
上記組織の他は、フェライト、パーライト、ベイナイト等を残部組織として含み得るが、これらの組織はマルテンサイトより軟質な組織であり強度に対する寄与が他の組織に比べて低く、できるだけ少ない方が好ましい。但し、5面積%までなら許容できる。残部組織は、より好ましくは3面積%以下であり、更に好ましくは0面積%である。
本発明の熱間プレス成形品を製造するに当たっては、薄鋼板を用い(化学成分組成は成形品と同じ)、この薄鋼板に対してプレス成形金型を用いてプレス成形するに際して、前記薄鋼板をAc3変態点以上、1000℃以下の温度に加熱した後、成形を開始し、成形中は金型内で20℃/秒以上の平均冷却速度を確保しつつ、(マルテンサイト変態開始温度Ms点−50℃)以下の温度で成形を終了するようにすれば良い。この方法における各要件を規定した理由は次の通りである。
[薄鋼板をAc3変態点以上、1000℃以下の温度に加熱した後、成形を開始する]
熱間プレス成形品の組織を適切に調整するためには、加熱温度は所定の範囲に制御する必要がある。この加熱温度を適切に制御することによって、その後の冷却過程で、所定量の残留オーステナイトを確保しつつマルテンサイトを主体とする組織に変態させ、最終的な熱間プレス成形品で所望の組織に作り込むことができる。薄鋼板の加熱温度がAc3変態点未満であると、加熱時に十分な量のオーステナイトが得られず、最終組織(成形品の組織)で所定量の残留オーステナイトを確保できない。また、薄鋼板の加熱温度が1000℃を超えると、加熱時にオーステナイトの粒径が大きくなり、マルテンサイト変態開始温度(Ms点)およびマルテンサイト変態終了温度(Mf点)が上昇し、焼入れ時に残留オーステナイトを確保できず、良好な成形性が達成されない。
[成形中は金型内で20℃/秒以上の平均冷却速度を確保しつつ、(マルテンサイト変態開始温度Ms点−50℃)以下の温度で成形を終了する]
上記加熱工程で形成されたオーステナイトを、フェライト、パーライトおよびベイナイト等の組織の生成を阻止しつつ、所望の組織とするためには、成形中の平均冷却速度および成形終了温度を適切に制御する必要がある。こうした観点から、成形中の平均冷却速度は20℃/秒以上とし、成形終了温度は(マルテンサイト変態開始温度Ms点−50℃:「Ms点−50℃」と略記することがある)以下とする必要がある。特に、Si含有量の多い鋼板を対象とした場合には、こうした条件で冷却することによって、マルテンサイトと残留オーステナイトの混合組織とすることができる。成形中の平均冷却速度は、好ましくは30℃/秒以上(より好ましくは40℃/秒以上)である。
成形終了温度は、上記平均冷却速度で室温まで冷却しながら成形を終了してもよいが、(Ms点−50℃)以下まで(好ましくはMs点−50℃の温度まで)冷却した後、200℃以下までを20℃/秒未満の平均冷却速度で冷却(2段階冷却)するようにしてもよい。こうした冷却工程を付加することによって、マルテンサイト中の炭素が未変態オーステナイトに濃化して、残留オーステナイト量を増加させることができる。こうした2段階冷却するときの、2段階目の冷却時の平均冷却速度は、好ましくは10℃/秒以下(より好ましくは5℃/秒以下)である。尚、成形中の平均冷却速度の制御は、(a)成形金型の温度を制御する(前記図1に示した冷却媒体)、(b)金型の熱伝導率を制御する等の手段によって達成できる。
本発明の熱間プレス成形法では、前記図1に示したような単純な形状の熱間プレス成形品を製造する場合(ダイレクト工法)は勿論のこと、比較的複雑な形状の成形品を製造する場合にも適用できるものである。但し、複雑な部品形状の場合には、1回のプレス成形で製品の最終形状までを作り込むことが難しいことがある。このような場合には、熱間プレス成形の前工程で冷間プレス成形を行う方法(この方法は、「インダイレクト工法」と呼ばれている)を採用することができる。この方法では、成形が難しい部分を冷間加工によって近似形状まで予め成形しておき、その他の部分を熱間プレス成形する方法である。こうした方法と採用すれば、例えば成形品の凹凸部(山部)が3箇所ある様な部品を成形する際に、冷間プレス成形によって、その2箇所まで成形しておき、その後に3箇所目を熱間プレス成形することになる。
本発明では、高強度鋼板からなる熱間プレス成形品を想定してなされたものであり、その鋼種については高強度鋼板としての通常の化学成分組成のものであれば良いが、C、Si、Mn、P、S、Al、Cr、B、TiおよびNについては、適切な範囲に調整するのが良い。こうした観点から、これらの化学成分の好ましい範囲およびその範囲限定理由は下記の通りである。
[C:0.15〜0.35%]
Cは、マルテンサイト組織の強度を支配する上で重要な元素である。C含有量が少なくなると、フルマルテンサイトでも強度が不足することになる。C含有量が0.15%未満では、マルテンサイトの強度が不足するため、熱間プレス成形品の高強度が確保できない。またC含有量が過剰になって0.35%を超えると、強度が高くなり過ぎ、良好な延性が得られない。C含有量のより好ましい下限は0.18%以上(更に好ましくは0.20%以上)であり、より好ましい上限は0.30%以下(更に好ましくは0.27%以下、更により好ましくは0.25%以下)である。
[Si:0.5〜3%]
Siは、焼入れ時に残留オーステナイトを形成させる作用を発揮する。また、固溶強化によって、延性をあまり劣化させずに強度を高める作用も発揮する。Si含有量が0.5%未満では、所定の残留オーステナイト量が確保できず、良好な延性が得られない。またSi含有量が過剰になって3%を超えると、固溶強化量が大きくなり過ぎ、延性が大幅に劣化することになる。Si含有量のより好ましい下限は1.15%以上(更に好ましくは1.20%以上)であり、より好ましい上限は2.7%以下(更に好ましくは2.5%以下)である。
[Mn:0.5〜2%]
Mnは、オーステナイトを安定化させる元素であり、残留オーステナイトの増加に寄与する。また、焼入れ性を高め、加熱後の冷却中に、フェライト、パーライト、ベイナイトの形成を抑制し、残留オーステナイトの確保に寄与する元素である。こうした効果を発揮させるためには、Mnは0.5%以上含有させることが好ましい。特性だけを考慮した場合は、Mn含有量は多い方が好ましいが、合金添加のコストが上昇することから、2%以下とすることが好ましい。また、オーステナイトの強度を大幅に向上させるため、熱間圧延の負荷が大きくなり、鋼板の製造が困難になるため、生産性の上からも、2%を超えて含有させることは好ましくない。Mn含有量のより好ましい下限は0.7%以上(更に好ましくは0.9%以上)であり、より好ましい上限は1.8%以下(更に好ましくは1.6%以下)である。
[P:0.05%以下(0%を含まない)]
Pは、鋼中に不可避的に含まれる元素であるが延性を劣化させるので、Pは極力低減することが好ましい。しかしながら、極端な低減は製鋼コストの増大を招き、0%とすることは製造上困難であるので、0.05%以下(0%を含まない)とすることが好ましい。P含有量のより好ましい上限は0.045%以下(更に好ましくは0.040%以下)である。
[S:0.05%以下(0%を含まない)]
SもPと同様に鋼中に不可避的に含まれる元素であり、延性を劣化させるので、Sは極力低減することが好ましい。しかしながら、極端な低減は製鋼コストの増大を招き、0%とすることは製造上困難であるので、0.05%以下(0%を含まない)とすることが好ましい。S含有量のより好ましい上限は0.045%以下(更に好ましくは0.040%以下)である。
[Al:0.01〜0.1%]
Alは、脱酸元素として有用であると共に、鋼中に存在する固溶NをAlNとして固定し、延性の向上に有用である。こうした効果を有効に発揮させるためには、Al含有量は0.01%以上とすることが好ましい。しかしながら、Al含有量が過剰になって0.1%を超えると、Al23が過剰に生成し、延性を劣化させる。尚、Al含有量のより好ましい下限は0.013%以上(更に好ましくは0.015%以上)であり、より好ましい上限は0.08%以下(更に好ましくは0.06%以下)である。
[Cr:0.01〜1%]
Crは、フェライト変態、パーライト変態およびベイナイト変態を抑制する作用を有するため、加熱後の冷却中に、フェライト、パーライト、ベイナイトの形成を防止し、残留オーステナイトの確保に寄与する元素である。こうした効果を発揮させるためには、Crは0.01%以上含有させることが好ましいが、1%を超えて過剰に含有させてもコストが上昇する。Cr含有量のより好ましい下限は0.02%以上(更に好ましくは0.05%以上)であり、より好ましい上限は0.8%以下(更に好ましくは0.5%以下)である。
[B:0.0002〜0.01%]
Bは、焼入れ性を高め、フェライト変態、パーライト変態およびベイナイト変態を抑制する作用を有するため、加熱後の冷却中に、フェライト、パーライト、ベイナイトの形成を防止し、残留オーステナイトの確保に寄与する元素である。こうした効果を発揮させるためには、Bは0.0002%以上含有させることが好ましいが、0.01%を超えて過剰に含有させても効果が飽和する。B含有量のより好ましい下限は0.0003%以上(更に好ましくは0.0005%以上)であり、より好ましい上限は0.008%以下(更に好ましくは0.005%以下)である。
[Ti:(Nの含有量)×4〜0.1%]
Tiは、Nを固定し、Bを固溶状態で維持させることで焼入れ性の改善効果を発現させる。こうした効果を発揮させるためには、Tiは少なくともNの含有量の4倍以上含有させることが好ましいが、Ti含有量が過剰になって0.1%を超えると、TiCを多量に形成し、析出強化により強度が上昇するが延性が劣化する。Ti含有量のより好ましい下限は0.05%以上(更に好ましくは0.06%以上)であり、より好ましい上限は0.09%以下(更に好ましくは0.08%以下)である。
[N:0.001〜0.01%]
Nは、BをBNとして固定することで、焼入れ性改善効果を低下させる元素であり、できるだけ低減することが好ましいが、実プロセスの中で低減するには限界があるため、0.001%を下限とした。また、N含有量が過剰になると、粗大なTiNを形成し、このTiNが破壊の起点として働き、延性が劣化するので、上限を0.01%とした。N含有量のより好ましい上限は0.008%以下(更に好ましくは0.006%以下)である。
本発明のプレス成形品における基本的な化学成分は、上記の通りであり、残部は実質的に鉄である。尚、「実質的に鉄」とは、鉄以外にも本発明の鋼材の特性を阻害しない程度の微量成分(例えば、Mg,Ca,Sr,Baの他、La等のREM、およびZr,Hf,Ta,W,Mo等の炭化物形成元素等)も許容できる他、P,S以外の不可避不純物(例えば、O,H等)も含み得るものである。
本発明のプレス成形品には、必要によって更に、(a)Cu,NiおよびMoよりなる群から選択される1種以上:合計で1%以下(0%を含まない)、(b)Vおよび/またはNb:合計で0.1%以下(0%を含まない)等を含有させることも有用であり、含有される元素の種類に応じて、熱間プレス成形品の特性が更に改善される。これらの元素を含有するときの好ましい範囲およびその範囲限定理由は下記の通りである。
[Cu,NiおよびMoよりなる群から選択される1種以上:合計で1%以下(0%を含まない)]
Cu,NiおよびMoは、フェライト変態、パーライト変態およびベイナイト変態を抑制するため、加熱後の冷却中に、フェライト、パーライト、ベイナイトの形成を防止し、残留オーステナイトの確保に有効に作用する。こうした効果を発揮させるためには、合計で0.01%以上含有させることが好ましい。特性だけを考慮すると含有量は多いほうが好ましいが、合金添加のコストが上昇することから、合計で1%以下とすることが好ましい。また、オーステナイトの強度を大幅に高める作用を有するため、熱間圧延の負荷が大きくなり、鋼板の製造が困難になるため、製造性の観点からも1%以下とすることが好ましい。これらの元素含有量のより好ましい下限は合計で0.05%以上(更に好ましくは0.06%以上)であり、より好ましい上限は合計で0.9%以下(更に好ましくは0.8%以下)である。
[Vおよび/またはNb:合計で0.1%以下(0%を含まない)]
VおよびNbは、微細な炭化物を形成し、ピン止め効果により組織を微細にする効果がある。こうした効果を発揮させるためには、合計で0.001%以上含有させることが好ましい。しかしながら、これらの元素の含有量が過剰になると、粗大な炭化物が形成され、破壊の起点になることで逆に延性を劣化させるので、合計で0.1%以下とすることが好ましい。これらの元素含有量のより好ましい下限は合計で0.005%以上(更に好ましくは0.008%以上)であり、より好ましい上限は合計で0.08%以下(更に好ましくは0.06%以下)である。
尚、本発明の熱間プレス成形用薄鋼板は、非めっき鋼板、めっき鋼板のいずれでも良い。めっき鋼板である場合、そのめっきの種類としては、一般的な亜鉛系めっき、アルミ系めっき等のいずれでも良い。また、めっきの方法は、溶融めっき、電気めっき等のいずれでも良く、更にめっき後に合金化熱処理を施しても良く、複層めっきを施しても良い。
本発明によれば、プレス成形条件(加熱温度や冷却速度)を適切に調整することによって、成形品の強度や伸び等の特性を制御することができ、しかも高延性(残存延性)の熱間プレス成形品が得られるので、これまでの熱間プレス成形品では適用しにくかった部位(例えば、エネルギー吸収部材)にも適用が可能となり、熱間プレス成形品の適用範囲を拡げる上で極めて有用である。また、本発明で得られる成形品は、冷間プレス成形した後に通常の焼鈍しを施して組織調整した成形品と比べて、残存延性が更に大きなものとなる。
以下、本発明の効果を実施例によって更に具体的に示すが、下記実施例は本発明を限定するものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
下記表1に示した化学成分組成を有する鋼材を真空溶製し、実験用スラブとした後、熱間圧延を行い、その後に冷却して巻き取った。更に、冷間圧延をして薄鋼板とした。尚、表1中のAc3変態点およびMs点は、下記の(1)式および(2)式を用いて求めたものである(例えば、「レスリー鉄鋼材料学」丸善,(1985)参照)。
Ac3変態点(℃)=910−203×[C]1/2+44.7×[Si]−30×[Mn]+700×[P]+400×[Al]+400×[Ti]+104×[V]−11×[Cr]+31.5×[Mo]−20×[Cu]−15.2×[Ni] …(1)
Ms点(℃)=550−361×[C]−39×[Mn]−10×[Cu]−17×[Ni]−20×[Cr]−5×[Mo]+30×[Al] …(2)
但し、[C],[Si],[Mn],[P],[Al],[Ti],[V],[Cr],[Mo],[Cu]および[Ni]は、夫々C,Si,Mn,P,Al,Ti,V,Cr,Mo,CuおよびNiの含有量(質量%)を示す。また、上記(1)式、(2)式の各項に示された元素が含まれない場合は、その項がないものとして計算する。
得られた鋼板を下記表2に示す各条件で加熱した後、平均冷却速度をコントロールできる鉄鋼用高速熱処理試験装置(CASシリーズ アルバック理工製)を用いて、成形・冷却処理を実施した。成形・冷却時の鋼板サイズは、190mm×70mm(板厚:1.4mm)とした。尚、表2に示した冷却速度1は、加熱温度から(Ms点−50℃)以下(成形終了温度)までの平均冷却速度、冷却速度2は、成形終了温度から200℃以下までの平均冷却速度を夫々示す。尚、必要によって溶融させた亜鉛に鋼板を浸漬し、鋼板表面に亜鉛めっきを付着させた(試験No.21)。
上記の処理(加熱、成形、冷却)を行った各鋼板につき、引張強度(TS)、および伸び(全伸びEL)、金属組織の観察(各組織の分率)を下記要領で行った。
[引張強度(TS)、および伸び(全伸びEL)]
JIS5号試験片を用いて引張試験を行い、引張強度(TS)、伸び(EL)を測定した。このとき、引張試験の歪速度:10mm/秒とした。本発明では、(a)引張強度(TS)が1470MPaで伸び(EL)が9%以上を満足するときに合格と評価した。
[金属組織の観察(各組織の分率)]
(1)鋼板中のマルテンサイトおよび他の組織(フェライト、ベイニティックフェライト等)については、鋼板をナイタールで腐食し、SEM(倍率:1000倍または2000倍)観察により、マルテンサイトおよび他の組織の分率(面積率)を測定した。
(2)鋼板中の残留オーステナイト分率(面積率)は、鋼板の1/4の厚さまで研削した後、化学研磨してからX線回折法によって測定した(例えば、ISJJ Int.Vol.33.(1933),No.7,P.776)。
これらの結果を、製造条件(加熱温度、成形終了温度、平均冷却速度)と共に、下記表2に示す。
この結果から、次のように考察できる。試験No.1、2、6、11、12、14〜21のものは、本発明で規定する要件を満足する実施例であり、強度−延性バランスの良好な部品が得られていることが分かる。特に、試験No.6のものは、非常に高い強度であり且つ良好な延性をも示す部品が得られていることが分かる。
これに対し、試験No.3〜5、7〜10、13のものは本発明で規定するいずれかの要件を満足しない比較例であり、いずれかの特性が劣化している。即ち、試験No.3のものは、加熱後の冷却速度が遅くなっており、マルテンサイト分率が確保されておらず(フェライト、ベイニティックフェライトが生成)、強度が確保されていない。試験No.4のものは、加熱温度がAc3変態点よりも低くなっており、マルテンサイト分率が確保されておらず、強度が確保されていない。
試験No.5のものは、Ms点以上で成形を終了したため、マルテンサイト分率が確保されておらず(ベイニティックフェライトが生成)、強度が確保されていない。試験No.7、8のものは、従来の22MnB5相当鋼(表1の鋼種C)を対象としたものであり、高い強度は得られているものの、残留オーステナイトが確保されておらず、低い伸び(EL)しか得られていない。
試験No.9のものは、TiおよびBを含有しない鋼(表1の鋼種D)を用いたものであり、マルテンサイト分率が確保されておらず、強度が確保されていない。試験No.10のものは、Cの含有量が不足する鋼(表1の鋼種E)を用いたものであり、残留オーステナイトが確保されておらず、低い伸び(EL)しか得られていない。
試験No.13のものは、Crを含有しない鋼(表1の鋼種H)を用いたものであり、マルテンサイト分率が確保されておらず、強度が確保されていない。
1 パンチ
2 ダイ
3 ブランクホルダー
4 鋼板(ブランク)

Claims (8)

  1. 熱間プレス成形法によって薄鋼板を成形した熱間プレス成形品であって、金属組織が、マルテンサイト:80〜97面積%、残留オーステナイト:3〜20面積%を夫々含み、残部組織:5面積%以下からなるものであることを特徴とする熱間プレス成形品。
  2. 化学成分組成が、
    C :0.15〜0.35%(質量%の意味。以下、化学成分組成について同じ。)、
    Si:0.5〜3%、
    Mn:0.5〜2%、
    P :0.05%以下(0%を含まない)、
    S :0.05%以下(0%を含まない)、
    Al:0.01〜0.1%、
    Cr:0.01〜1%、
    B:0.0002〜0.01%、
    Ti:(Nの含有量)×4〜0.1%、および
    N:0.001〜0.01%
    を夫々含有し、残部が鉄および不可避不純物からなる請求項1に記載の熱間プレス成形品。
  3. 更に他の元素として、Cu,NiおよびMoよりなる群から選択される1種以上:合計で1%以下(0%を含まない)含有するものである請求項2に記載の熱間プレス成形品。
  4. 更に他の元素として、Vおよび/またはNb:合計で0.1%以下(0%を含まない)含有するものである請求項2または3に記載の熱間プレス成形品。
  5. 請求項1〜4のいずれかに記載の熱間プレス成形品を製造するに当たり、プレス成形金型を用いて薄鋼板をプレス成形するに際して、前記薄鋼板をAc3変態点以上、1000℃以下の温度に加熱した後、成形を開始し、成形中は金型内で20℃/秒以上の平均冷却速度を確保しつつ、(マルテンサイト変態開始温度Ms点−50℃)以下の温度で成形を終了することを特徴とする熱間プレス成形品の製造方法。
  6. 請求項1〜4のいずれかに記載の熱間プレス成形品を製造するための熱間プレス成形用薄鋼板において、化学成分組成が、
    C :0.15〜0.35%、
    Si:0.5〜3%、
    Mn:0.5〜2%、
    P :0.05%以下(0%を含まない)、
    S :0.05%以下(0%を含まない)、
    Al:0.01〜0.1%、
    Cr:0.01〜1%、
    B:0.0002〜0.01%、
    Ti:(Nの含有量)×4〜0.1%、および
    N:0.001〜0.01%
    を夫々含有し、残部が鉄および不可避不純物からなるものであることを特徴とする熱間プレス成形用薄鋼板。
  7. 更に他の元素として、Cu,NiおよびMoよりなる群から選択される1種以上:合計で1%以下(0%を含まない)含有するものである請求項6に記載の熱間プレス成形用薄鋼板。
  8. 更に他の元素として、Vおよび/またはNb:合計で0.1%以下(0%を含まない)含有するものである請求項6または7に記載の熱間プレス成形用薄鋼板。
JP2012131419A 2011-06-10 2012-06-08 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板 Active JP5873393B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011130635 2011-06-10
JP2011130635 2011-06-10
JP2011208032 2011-09-22
JP2011208032 2011-09-22
JP2012131419A JP5873393B2 (ja) 2011-06-10 2012-06-08 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012131419A JP5873393B2 (ja) 2011-06-10 2012-06-08 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板

Publications (2)

Publication Number Publication Date
JP2013079441A true JP2013079441A (ja) 2013-05-02
JP5873393B2 JP5873393B2 (ja) 2016-03-01

Family

ID=47296192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012131419A Active JP5873393B2 (ja) 2011-06-10 2012-06-08 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板

Country Status (7)

Country Link
US (1) US20140065007A1 (ja)
EP (1) EP2719788B1 (ja)
JP (1) JP5873393B2 (ja)
KR (1) KR20140027451A (ja)
CN (1) CN103620075B (ja)
ES (1) ES2603590T3 (ja)
WO (1) WO2012169640A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122398A (ja) * 2012-12-21 2014-07-03 Nippon Steel & Sumitomo Metal 強度と耐水素脆性に優れたホットスタンプ成形体及びホットスタンプ成形体の製造方法
JP2016125099A (ja) * 2015-01-05 2016-07-11 セイコーエプソン株式会社 粉末冶金用金属粉末、コンパウンド、造粒粉末および焼結体
EP3045550A4 (en) * 2013-09-10 2017-05-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing press-molded article, and press-molded article
KR101753016B1 (ko) * 2013-09-18 2017-07-03 신닛테츠스미킨 카부시키카이샤 핫 스탬프 성형체 및 그 제조 방법
JPWO2016163468A1 (ja) * 2015-04-08 2017-12-21 新日鐵住金株式会社 熱処理鋼板部材およびその製造方法
KR20180063304A (ko) 2015-10-19 2018-06-11 제이에프이 스틸 가부시키가이샤 핫 프레스 부재 및 그의 제조 방법
KR20180063303A (ko) 2015-10-19 2018-06-11 제이에프이 스틸 가부시키가이샤 핫 프레스 부재 및 그의 제조 방법
KR20180119616A (ko) 2016-03-29 2018-11-02 제이에프이 스틸 가부시키가이샤 핫 프레스용 강판 및 그 제조 방법, 그리고 핫 프레스 부재 및 그 제조 방법
US10392677B2 (en) 2014-10-24 2019-08-27 Jfe Steel Corporation High-strength hot-pressed part and method for manufacturing the same
EP3564401A1 (en) 2016-03-29 2019-11-06 JFE Steel Corporation Hot-press forming part and method of manufacturing same
JP2019534381A (ja) * 2016-10-03 2019-11-28 エーケー スティール プロパティ−ズ、インク. 高伸長プレス硬化鋼及びその製造

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043837A1 (ja) * 2010-09-30 2012-04-05 株式会社神戸製鋼所 プレス成形品およびその製造方法
KR101108838B1 (ko) * 2011-06-30 2012-01-31 현대하이스코 주식회사 충돌성능이 우수한 열처리 경화강 및 이를 이용한 열처리 경화형 부품 제조 방법
JP6001884B2 (ja) * 2012-03-09 2016-10-05 株式会社神戸製鋼所 プレス成形品の製造方法およびプレス成形品
JP6001883B2 (ja) * 2012-03-09 2016-10-05 株式会社神戸製鋼所 プレス成形品の製造方法およびプレス成形品
JP5890710B2 (ja) 2012-03-15 2016-03-22 株式会社神戸製鋼所 熱間プレス成形品およびその製造方法
JP5890711B2 (ja) * 2012-03-15 2016-03-22 株式会社神戸製鋼所 熱間プレス成形品およびその製造方法
CN104919620B (zh) * 2013-01-11 2017-07-11 双叶产业株式会社 电池盒
JP6073154B2 (ja) * 2013-02-21 2017-02-01 株式会社神戸製鋼所 熱間プレス成形品の製造方法
WO2015037061A1 (ja) * 2013-09-10 2015-03-19 株式会社神戸製鋼所 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
CA2923583A1 (en) * 2013-09-10 2015-03-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
JP6152836B2 (ja) * 2014-09-25 2017-06-28 Jfeスチール株式会社 熱間プレス成形品の製造方法
KR101677351B1 (ko) * 2014-12-26 2016-11-18 주식회사 포스코 재질 편차가 적고, 조관성 및 내식성이 우수한 열간 프레스 성형용 열연강판, 이를 이용한 열간 프레스 성형품 및 이들의 제조방법
MX2017012874A (es) 2015-04-08 2018-01-15 Nippon Steel & Sumitomo Metal Corp Lamina de acero para tratamiento termico.
KR101767773B1 (ko) * 2015-12-23 2017-08-14 주식회사 포스코 연성이 우수한 초고강도 열연강판 및 그 제조방법
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
US20180216205A1 (en) * 2017-01-27 2018-08-02 GM Global Technology Operations LLC Two-step hot forming of steels
JP2019173158A (ja) * 2018-03-27 2019-10-10 株式会社神戸製鋼所 ホットスタンプ用鋼板
CN111332367A (zh) * 2018-12-18 2020-06-26 通用汽车环球科技运作有限责任公司 加压硬化焊接钢合金部件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152427A (ja) * 2004-10-29 2006-06-15 Sumitomo Metal Ind Ltd 熱間プレス鋼板部材、その製造方法および熱間プレス用鋼板
JP2007169679A (ja) * 2005-12-19 2007-07-05 Kobe Steel Ltd スポット溶接部の接合強度および熱間成形性に優れた熱間成形用鋼板並びに熱間成形品
JP2009197253A (ja) * 2008-02-19 2009-09-03 Sumitomo Metal Ind Ltd 熱間プレス部材の製造方法
US20090238715A1 (en) * 2008-03-24 2009-09-24 Posco Steel sheet for hot press forming having low-temperature heat treatment property, method of manufacturing the same, method of manufacturing parts using the same, and parts manufactured by the same
JP2010024551A (ja) * 2004-10-29 2010-02-04 Sumitomo Metal Ind Ltd 熱間プレス用鋼板
WO2011121118A2 (de) * 2010-04-01 2011-10-06 Thyssenkrupp Steel Europe Ag Stahl, stahlflachprodukt, stahlbauteil und verfahren zur herstellung eines stahlbauteils
WO2012091328A2 (ko) * 2010-12-27 2012-07-05 주식회사 포스코 연성이 우수한 성형 부재용 강판, 성형 부재 및 그 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2855392B2 (ja) * 1993-02-22 1999-02-10 新日本製鐵株式会社 冷間圧延板
FR2847270B1 (fr) * 2002-11-19 2004-12-24 Usinor Procede pour fabriquer une tole en acier resistant a l'abrasion et tole obtenue
JP4325277B2 (ja) * 2003-05-28 2009-09-02 住友金属工業株式会社 熱間成形法と熱間成形部材
JP4673558B2 (ja) * 2004-01-26 2011-04-20 新日本製鐵株式会社 生産性に優れた熱間プレス成形方法及び自動車用部材
JP4575799B2 (ja) * 2005-02-02 2010-11-04 新日本製鐵株式会社 成形性に優れたホットプレス高強度鋼製部材の製造方法
BRPI0807565B1 (pt) * 2007-02-23 2017-06-13 Corus Staal Bv Method of termomechanical formating of a final product with very high resistance and a product produced through the same
JP5402007B2 (ja) * 2008-02-08 2014-01-29 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5257062B2 (ja) * 2008-12-25 2013-08-07 新日鐵住金株式会社 靭性及び耐水素脆化特性に優れた高強度ホットスタンピング成形品及びその製造方法
JP5703608B2 (ja) * 2009-07-30 2015-04-22 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5598157B2 (ja) * 2010-08-20 2014-10-01 新日鐵住金株式会社 耐遅れ破壊特性及び衝突安全性に優れたホットプレス用鋼板及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152427A (ja) * 2004-10-29 2006-06-15 Sumitomo Metal Ind Ltd 熱間プレス鋼板部材、その製造方法および熱間プレス用鋼板
JP2010024551A (ja) * 2004-10-29 2010-02-04 Sumitomo Metal Ind Ltd 熱間プレス用鋼板
JP2007169679A (ja) * 2005-12-19 2007-07-05 Kobe Steel Ltd スポット溶接部の接合強度および熱間成形性に優れた熱間成形用鋼板並びに熱間成形品
JP2009197253A (ja) * 2008-02-19 2009-09-03 Sumitomo Metal Ind Ltd 熱間プレス部材の製造方法
US20090238715A1 (en) * 2008-03-24 2009-09-24 Posco Steel sheet for hot press forming having low-temperature heat treatment property, method of manufacturing the same, method of manufacturing parts using the same, and parts manufactured by the same
WO2011121118A2 (de) * 2010-04-01 2011-10-06 Thyssenkrupp Steel Europe Ag Stahl, stahlflachprodukt, stahlbauteil und verfahren zur herstellung eines stahlbauteils
WO2012091328A2 (ko) * 2010-12-27 2012-07-05 주식회사 포스코 연성이 우수한 성형 부재용 강판, 성형 부재 및 그 제조방법

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122398A (ja) * 2012-12-21 2014-07-03 Nippon Steel & Sumitomo Metal 強度と耐水素脆性に優れたホットスタンプ成形体及びホットスタンプ成形体の製造方法
EP3045550A4 (en) * 2013-09-10 2017-05-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing press-molded article, and press-molded article
KR101753016B1 (ko) * 2013-09-18 2017-07-03 신닛테츠스미킨 카부시키카이샤 핫 스탬프 성형체 및 그 제조 방법
US10301699B2 (en) 2013-09-18 2019-05-28 Nippon Steel & Sumitomo Metal Corporation Hot-stamped part and method of manufacturing the same
US10392677B2 (en) 2014-10-24 2019-08-27 Jfe Steel Corporation High-strength hot-pressed part and method for manufacturing the same
JP2016125099A (ja) * 2015-01-05 2016-07-11 セイコーエプソン株式会社 粉末冶金用金属粉末、コンパウンド、造粒粉末および焼結体
JPWO2016163468A1 (ja) * 2015-04-08 2017-12-21 新日鐵住金株式会社 熱処理鋼板部材およびその製造方法
KR20180063304A (ko) 2015-10-19 2018-06-11 제이에프이 스틸 가부시키가이샤 핫 프레스 부재 및 그의 제조 방법
KR20180063303A (ko) 2015-10-19 2018-06-11 제이에프이 스틸 가부시키가이샤 핫 프레스 부재 및 그의 제조 방법
KR20180119616A (ko) 2016-03-29 2018-11-02 제이에프이 스틸 가부시키가이샤 핫 프레스용 강판 및 그 제조 방법, 그리고 핫 프레스 부재 및 그 제조 방법
EP3564401A1 (en) 2016-03-29 2019-11-06 JFE Steel Corporation Hot-press forming part and method of manufacturing same
US10858718B2 (en) 2016-03-29 2020-12-08 Jfe Steel Corporation Steel sheet for hot press and method of manufacturing same, and hot-press forming part and method of manufacturing same
US11293075B2 (en) 2016-03-29 2022-04-05 Jfe Steel Corporation Hot-press forming part and method of manufacturing same
JP2019534381A (ja) * 2016-10-03 2019-11-28 エーケー スティール プロパティ−ズ、インク. 高伸長プレス硬化鋼及びその製造

Also Published As

Publication number Publication date
CN103620075B (zh) 2016-02-17
ES2603590T3 (es) 2017-02-28
CN103620075A (zh) 2014-03-05
KR20140027451A (ko) 2014-03-06
US20140065007A1 (en) 2014-03-06
EP2719788A1 (en) 2014-04-16
EP2719788A4 (en) 2015-10-21
JP5873393B2 (ja) 2016-03-01
EP2719788B1 (en) 2016-11-02
WO2012169640A1 (ja) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5873393B2 (ja) 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板
JP5873385B2 (ja) 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板
JP5883351B2 (ja) 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板
JP5883350B2 (ja) 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板
JP5890710B2 (ja) 熱間プレス成形品およびその製造方法
JP5890711B2 (ja) 熱間プレス成形品およびその製造方法
JP6001883B2 (ja) プレス成形品の製造方法およびプレス成形品
JP6073154B2 (ja) 熱間プレス成形品の製造方法
JP5756773B2 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
JP5756774B2 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
WO2015037061A1 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
JP2013185246A (ja) プレス成形品の製造方法およびプレス成形品
KR101716624B1 (ko) 프레스 성형품의 제조 방법 및 프레스 성형품
KR20160042968A (ko) 열간 프레스용 강판 및 프레스 성형품, 및 프레스 성형품의 제조 방법
JP5894470B2 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
JP5802155B2 (ja) プレス成形品の製造方法およびプレス成形品
JP5894469B2 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160115

R150 Certificate of patent or registration of utility model

Ref document number: 5873393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150