JP2013064665A - 力学量センサ - Google Patents

力学量センサ Download PDF

Info

Publication number
JP2013064665A
JP2013064665A JP2011203971A JP2011203971A JP2013064665A JP 2013064665 A JP2013064665 A JP 2013064665A JP 2011203971 A JP2011203971 A JP 2011203971A JP 2011203971 A JP2011203971 A JP 2011203971A JP 2013064665 A JP2013064665 A JP 2013064665A
Authority
JP
Japan
Prior art keywords
porous film
stretching
stretched porous
joining member
quantity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011203971A
Other languages
English (en)
Inventor
Yuichiro Murata
雄一朗 村田
Yoshimasa Sugimoto
圭正 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011203971A priority Critical patent/JP2013064665A/ja
Publication of JP2013064665A publication Critical patent/JP2013064665A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

【課題】延伸多孔質フィルムを含む接合部材を介してセンサチップを被実装部材に搭載してなる力学量センサにおいて、特性変動を小さくすることができる力学量センサを提供する。
【解決手段】所定方向に延伸方向を有する第1延伸多孔質フィルム3aと、所定方向と垂直方向に延伸方向を有する第2延伸多孔質フィルム3bとを積層して接合部材3を構成する。これにより、接合部材3全体としての収縮を小さくすることができる。このため、接合部材3からセンサチップ1に印加される応力を小さくすることができ、特性変動を抑制することができる。
【選択図】図3

Description

本発明は、物理量を検出するセンサチップを被実装部材に延伸多孔質フィルムを含む接合部材を介して接合してなる力学量センサに関するものである。
従来より、例えば、特許文献1には、加速度を検出するセンサチップが回路チップに接合部材を介して接着され、これらがパッケージ内に収容されてなる力学量センサが提案されている。センサチップは、所定方向の加速度を検出するための第1センシング部と、この所定方向と垂直方向の加速度を検出するための第2センシング部とが形成されており、90°異なる(直交する)2方向の加速度を検出することができるようにされている。
このような力学量センサは、例えば、ウェハの各チップ形成領域に第1、第2センシング部を形成した後、このウェハをダイシングラインに沿ってチップ単位に分割して得られるセンサチップを回路チップに接着してこのものをパッケージ内に収容することにより製造される。しかしながら、各センサチップにそれぞれ接合部材を接着してセンサチップと回路チップとを接着することは製造工程が増加してコストが高くなってしまう。このため、ウェハの各チップ形成領域に第1、第2センシング部を形成した後にウェハの裏面(第1、第2センシング部が形成される面と反対側の面)に接合部材を接着し、このウェハをダイシングラインに沿ってチップ単位に分割することによって裏面に接合部材が接着されているセンサチップを製造することが好ましい。
このようにウェハの裏面に接合部材を接着した状態でダイシング可能な接合部材としては、例えば、特許文献2および3に延伸多孔質フィルムの表裏面に接着剤を配置してなる接合部材を用いることが提案されている。
特開2008−281351号公報 特開平10−22325号公報 特開2004−253476号公報
しかしながら、本発明者が検討したところ、上記延伸多孔質フィルムを有する接合部材を用いてなる力学量センサでは、次の問題が発生することが分かった。すなわち、力学量センサは、はんだを介してプリント基板等に実装されて用いられる。このとき、はんだ接合するために、約260℃の高温でリフロー処理されるが、延伸多孔質フィルムは高温で延伸ストレスが開放されるため、リフロー処理されて常温に戻ると、延伸方向に大きな収縮応力が発生する。このため、リフロー処理後に、センサチップには延伸多孔質フィルム(接合部材)から応力が印加されることになり、特性変動が発生してしまうという問題がある。
図9は、90°異なる加速度を検出する第1、第2センシング部が形成されたセンサチップの特性変動を調べた実験結果である。なお、図9は、延伸方向が第2センシング部の検出方向(y方向)と平行となるように延伸多孔質フィルムを配置してなる力学量センサを用いて調べた実験結果であり、(a)は第1センシング部(図9中x方向)の特性変動、(b)は第2センシング部(図9中y方向)の特性変動を示している。
図9に示されるように、延伸方向と垂直である第1センシング部(検出方向がx方向)の特性変動量はリフロー処理前後で大きく変化しないが、延伸方向と平行である第2センシング部(検出方向がy方向)の特性変動量はリフロー処理前後で大きく変化することが確認される。これは、上記のように、延伸多孔質フィルム(接合部材)からセンサチップにおける第2センシング部の検出方向に応力が印加されたためである。
なお、上記では、センサチップとして加速度を検出するための第1、第2センシング部が形成されたものを例に挙げて説明したが、センサチップとして圧力等を検出するためのセンシング部が形成されたものであっても、一方向のみに大きな応力が印加されると同様の問題が発生する。
本発明は上記点に鑑みて、延伸多孔質フィルムを含む接合部材を介してセンサチップを被実装部材に搭載してなる力学量センサにおいて、特性変動を小さくすることができる力学量センサを提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、物理量を検出するセンサチップ(1)が被実装部材(2)に接合部材(3)を介して接合されてなる力学量センサにおいて、接合部材(3)は、所定方向に延伸方向を有する第1延伸多孔質フィルム(3a)と、所定方向と垂直方向に延伸方向を有する第2延伸多孔質フィルム(3b)とが積層されて構成されていることを特徴としている。
このような力学量センサでは、接合部材(3)は、第1、第2延伸多孔質フィルム(3a、3b)が積層されて構成されている。このため、リフロー処理後、第1延伸多孔質フィルム(3a)が収縮しやすい方向と第2延伸多孔質フィルム(3b)が収縮し難い方向とが平行となり、第1延伸多孔質フィルム(3a)が収縮し難い方向と第2延伸多孔質フィルム(3b)が収縮しやすい方向とが平行となる。つまり、第1延伸多孔質フィルム(3a)が収縮しようとすると第2延伸多孔質フィルム(3b)がその収縮を妨げることになり、第2延伸多孔質フィルム(3b)が収縮しようとすると第1延伸多孔質フィルム(3a)がその収縮を妨げることになるため、接合部材(3)全体としての収縮を小さくすることができる。したがって、接合部材(3)からセンサチップ(1)に印加される応力を小さくすることができ、特性変動を抑制することができる。
また、接合部材(3)が一方向のみに大きく収縮することを抑制することができ、例えば、センサチップ(1)が90°異なる(直交する)2方向の加速度を検出するものである場合には、一方のセンシング部の特性変動のみが大きくなることを抑制することができる。
また、請求項2に記載の発明のように、接合部材(3)は、第1延伸多孔質フィルム(3a)と第2延伸多孔質フィルム(3b)とが同数積層されて構成されていることが好ましい。これによれば、第1延伸多孔質フィルム(3a)の延伸方向と平行な方向に発生する収縮応力と第2延伸多孔質フィルム(3b)の延伸方向と平行な方向に発生する収縮応力との大きさが等しくなり、センサチップ(1)に一方向に大きな応力が印加されることを抑制することができる。
この場合、請求項3に記載の発明のように、接合部材(3)は、第1延伸多孔質フィルム(3a)と第2延伸多孔質フィルム(3b)とが交互に積層されて構成されていることが好ましい。
そして、請求項4に記載の発明のように、接合部材(3)に厚さ方向に貫通する貫通孔(3c)を形成することができる。これによれば、貫通孔(3c)によって第1、第2延伸多孔質フィルム(3a、3b)に発生する収縮応力を緩和することができ、センサチップ(1)に印加される応力を小さくすることができる。また、接合部材(3)とセンサチップ(1)および被実装部材(2)との接触面積が少なくなり、被実装部材(2)からセンサチップ(1)に伝達される応力を小さくすることができる。
この場合、請求項5に記載の発明のように、接合部材(3)に貫通孔(3c)を複数形成することが好ましい。
また、請求項6に記載の発明のように、センサチップ(1)は、所定方向を検出方向とし、当該検出方向に作用する加速度を検出する第1センシング部(10a)と、当該所定方向と垂直方向を検出方向とし、当該検出方向に作用する加速度を検出する第2センシング部(10b)とが形成されたものとすることができる。そして、接合部材(3)は、第1延伸多孔質フィルム(3a)の延伸方向が第1センシング部(10a)の検出方向と平行とされ、第2延伸多孔質フィルム(3a)の延伸方向が第2センシング部(10b)の検出方向と平行とされているものとすることができる。
これによれば、センサチップ(1)には第1、第2センシング部(10a、10b)の検出方向に同じ大きさの応力が印加されるため、一方のセンシング部のみの特性変動が大きくなることを抑制することができる。このため、第1、第2センシング部(10a、10b)からの検出信号に対して補正を行う場合には同じ補正を行えるようになり、処理回路を簡略化することができる。
そして、請求項7に記載の発明のように、被実装部材(2)を回路チップとし、当該回路チップを接合部材(3)を介して被収容部材(4a)に接合することができる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
本発明の第1実施形態における力学量センサの断面図である。 図1に示すセンサチップの平面図である。 接合部材の斜視図である。 (a)は延伸方向が紙面上下方向である第1延伸多孔質フィルムの平面図、(b)は延伸方向が紙面左右方向である第2延伸多孔質フィルムの平面図である。 本発明の第2実施形態における接合部材の斜視断面図である。 図5に示す第1延伸多孔質フィルムの平面拡大図である。 ウェハの裏面に接合部材を接着したときの平面図である。 ウェハをチップ単位に分割する工程を示す模式図である。 センサチップの特性変動を調べた結果を示す図である。
(第1実施形態)
本発明の第1実施形態について図面を参照しつつ説明する。図1は、本実施形態における力学量センサの断面図である。なお、本実施形態の力学量センサは、プリント基板等の被搭載部材にはんだ接合により実装されて用いられると好適である。
図1に示されるように、本実施形態の力学量センサは、センサチップ1が回路チップ2に接合部材3を介して接着され、これらがパッケージ4内に収容されて構成されている。センサチップ1は、本実施形態では加速度を検出するセンシング部が形成されたものであり、以下にその構成について説明する。なお、本実施形態では、回路チップ2が本発明の被実装部材に相当している。
図2は、センサチップ1の平面図である。なお、図2では、紙面上下方向をx方向、紙面左右方向をy方向としている。センサチップ1は、支持基板、埋込絶縁膜、半導体層を有する矩形板状のSOI(Silicon on Insulator)基板を用いて構成されており、図2に示されるように、半導体層に90°異なる(直交する)2方向の加速度を検出することができるように第1、第2センシング部10a、10bが形成された従来(特許文献1)と同様のものである。
第1、第2センシング部10a、10bは、それぞれ、溝部11によって区画された可動部20および固定部30を有している。各可動部20は、矩形状の錘部21の両端が弾性変形可能な梁部22を介してアンカー部23a、23bに支持されており、錘部21の長手方向に変位可能とされている。すなわち、第1センシング部10aはx方向に可動部20が変位可能とされており、第2センシング部10bはy方向に可動部20が変位可能とされている。なお、可動部20のうちアンカー部23a、23bを除く部分の下側に位置する埋込絶縁膜は除去されて開口部とされている。
また、各可動部20は、錘部21の長手方向と直交した方向において、錘部21の両面に互いに反対方向へ突出形成された複数個の可動電極24を備えている。これら各可動電極24は錘部21および梁部22と一体的に形成され、錘部21および梁部22と共に錘部21(梁部22)の変位方向へ変位可能とされている。
また、第1、第2センシング部10a、19bには、それぞれ錘部21を挟んで2個ずつ固定部30が設けられており、両固定部30は互いに電気的に独立している。そして、各固定部30は、可動電極24の側面と所定の検出間隔を有するように平行した状態で対向配置され、可動電極24における櫛歯の隙間に噛み合うように形成された複数個の固定電極31と、埋込絶縁膜に形成された開口部の開口縁部に固定されて支持基板に支持される配線部32とを有している。
そして、可動部20におけるアンカー部23a上および固定部30の各配線部32上の所定位置にはそれぞれワイヤボンディング用のパッド25、33が形成されている。このパッド25、33は、例えば、アルミニウムをスパッタや蒸着すること等により形成される。
このようなセンサチップ1は、加速度が印加されると梁部22によって錘部21が長手方向に変位し、可動電極24と固定電極31との間隔が変化することによってキャパシタの容量が変化する。このため、この容量変化を検出信号として出力する。
また、本実施形態では、第1センシング部10aの錘部21がセンサチップ1の短辺(図2中x方向)と平行となるように形成され、第2センシング部10bの錘部21がセンサチップ1の長辺(図2中y方向)と平行となるように形成されている。つまり、第1センシング部10aの検出方向がx方向、第2センシング部10bの検出方向がy方向となるようにしている。これにより、センサチップ1は、第1、第2センシング部10a、10bによって90°異なる(直交する)2方向から作用する加速度を検出することができるようになっている。
以上が本実施形態のセンサチップ1の構成である。そして、図1に示されるように、センサチップ1が回路チップ2に設けられたボンディング部に接合部材3を介して接着されている。図3は接合部材3の斜視図である。なお、図3では収縮応力を示す矢印にハッチングを付してあり、矢印が大きいほど収縮応力が大きいことを示している。
図3に示されるように、本実施形態の接合部材3は、4枚の延伸多孔質フィルム3a、3bが図示しないエポキシ樹脂等の接着剤を介して積層され、最表面および最裏面にも図示しないエポキシ樹脂等の接着剤が配置されて構成されている。図4(a)は延伸方向が紙面上下方向である第1延伸多孔質フィルム3aの平面図、図4(b)は延伸方向が紙面左右方向である第2延伸多孔質フィルム3bの平面図である。
図4および上記のように、第1、第2延伸多孔質フィルム3a、3bは、高温環境から常温環境になると、延伸方向に大きな収縮応力が発生する。このため、接合部材3は、図3に示されるように、第1延伸多孔質フィルム3aの延伸方向と、第2延伸多孔質フィルム3bの延伸方向とが直交するように積層されており、リフロー処理後に接合部材3が一方向のみに収縮することを抑制することができるようになっている。本実施形態では、第1延伸多孔質フィルム3aと第2延伸多孔質フィルム3bとが交互に積層されて接合部材3が構成されている。なお、第1、第2延伸多孔質フィルム3a、3bとしては、例えば、延伸多孔質ポリテトラフルオロエチレン(PTFE)フィルムが用いられる。
そして、このような接合部材3は、第1センシング部10aの検出方向(図2中x方向)と第1延伸多孔質フィルム3aの延伸方向とが平行となり、第2センシング部10bの検出方向(図2中y方向)と第2延伸多孔質フィルム3bの延伸方向とが平行となるように、センサチップ1と回路チップ2との間に配置されている。
また、図1に示されるように、回路チップ2は、センサチップ1から出力された検出信号に所定の処理を行って外部へ出力するものであり、センサチップ1とボンディングワイヤ5により結線されて電気的に接続されている。そして、パッケージ4にポリイミド系樹脂等からなる接着剤6等を介して搭載されている。
パッケージ4は、開口部を有するケース4aおよび蓋4bを有する構成とされている。具体的には、ケース4aは、例えば、アルミナ等のセラミック層が複数積層された積層基板を用いて構成されている。また、内部もしくは表面に図示しない配線が形成され、この配線は各層の間に形成されたスルーホール等によって互いに電気的に接続されている。そして、ケース4aに形成された配線と回路チップ2とが金やアルミニウム等よりなるボンディングワイヤ7により結線されて電気的に接続されている。すなわち、回路チップ2からの電気信号がボンディングワイヤ7および配線を介して外部に出力されるようになっている。
また、蓋4bは、例えば、金属や樹脂、セラミック等を用いて構成され、ケース4aに接着やロウ付け等により接合されている。すなわち、この蓋4bによってパッケージ4の内部が封止されている。以上が本実施形態における力学量センサの構成である。
次に、このような力学量センサの製造方法について説明する。
まず、各チップ形成領域に上記第1、第2センシング部10a、10bが形成されたウェハを用意し、ウェハのうち第1、第2センシング部10a、10bが形成された表面と反対側の裏面全面に上記接合部材3を接着する。例えば、ウェハとしてSOIウェハを用いる場合には、半導体層に第1、第2センシング部10a、10bが形成されるため、支持基板の裏面全面に接合部材3を接着する。その後、この状態で両面アライメント等を行って位置合わせをし、ダイシングラインに沿ってウェハをチップ単位に分割することにより、センサチップ1の裏面に接合部材3が接着されたものを用意する。
続いて、センサチップ1を回路チップ2のボンディング部に接合部材3を介して接着した後、このものを回路チップ2とケース4aの底面とが対向するようにケース4aの底面に接着剤6を介して接着する。その後、センサチップ1と回路チップ2、回路チップ2とケース4aに形成された配線とをそれぞれボンディングワイヤ5、7を介して結線する。次に、ケース4aに蓋4bを接合することによってパッケージ4内を封止することにより、上記力学量センサが製造される。
以上説明したように、本実施形態では、接合部材3は、延伸方向が所定方向である第1延伸多孔質フィルム3aと、延伸方向が所定方向に垂直方向である第2延伸多孔質フィルム3bとが交互に積層されて構成されている。このため、リフロー処理後、第1延伸多孔質フィルム3aが収縮しやすい方向と第2延伸多孔質フィルム3bが収縮し難い方向とが平行となり、第1延伸多孔質フィルム3aが収縮し難い方向と第2延伸多孔質フィルム3bが収縮しやすい方向とが平行となる。つまり、第1延伸多孔質フィルム3aが収縮しようとすると第2延伸多孔質フィルム3bがその収縮を妨げることになり、第2延伸多孔質フィルム3bが収縮しようとすると第1延伸多孔質フィルム3aがその収縮を妨げることになるため、接合部材3全体としての収縮を小さくすることができる。したがって、接合部材3からセンサチップ1に印加される応力を小さくすることができ、特性変動を抑制することができる。
また、接合部材3が一方向のみに大きく収縮することを抑制することができ、本実施形態のように、センサチップ1に90°異なる(直交する)2方向の加速度を検出するための第1、第2センシング部10a、10bが形成されている場合には、一方のセンシング部の特性変動のみが大きくなることを抑制することができる。
また、本実施形態では、第1、第2延伸多孔質フィルム3a、3bが同数積層されているため、第1延伸多孔質フィルム3aの延伸方向に発生する収縮応力と第2延伸多孔質フィルム3bの延伸方向に発生する収縮応力の大きさが等しくなる。したがって、センサチップ1に一方向に大きな応力が印加されることを抑制することができる。
(第2実施形態)
本発明の第2実施形態について説明する。本実施形態の力学量センサは、接合部材3の厚さ方向に貫通孔3cを形成したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。図5は、本実施形態における接合部材3の斜視断面図である。
図5に示されるように、本実施形態では、接合部材3に厚さ方向に貫通する貫通孔3cが複数形成されている。具体的には、各貫通孔3cは円形状とされている。そして、各貫通孔3cの大きさは等しくされていると共に各貫通孔3c同士の最短距離も等しくされており、本実施形態では、各貫通孔3cの大きさ、および各貫通孔3c同士の最短距離はダイシングラインの半分以下とされている。このような貫通孔3cは、例えば、レーザ等によって形成される。
このような接合部材3を用いた力学量センサでは、以下の効果を得ることができる。図6は、第1延伸多孔質フィルム3aの平面拡大図であり、延伸方向が紙面上下方向である第1延伸多孔質フィルム3aを示している。図6に示されるように、各貫通孔3cによって第1延伸多孔質フィルム3aに発生する収縮応力を緩和することができる。また、特に図示しないが、各貫通孔3cによって第2延伸多孔質フィルム3bに発生する収縮応力を緩和することができる。これにより、センサチップ1に印加される応力を小さくすることができる。さらに、各貫通孔3cが形成されていることにより、接合部材3とセンサチップ1および回路チップ2との接着面積が少なくなる。このため、回路チップ2からセンサチップ1に伝達される応力を小さくすることができる。
また、上記接合部材3を用いることにより、ウェハと接合部材3との接着を容易にすることができる。図7は、ウェハの裏面に接合部材3を接着したときの平面図である。図7および上記のように、ウェハの裏面全面には接合部材3が接着されるが、接合部材3はレーザ等によって貫通孔3cが形成された後にウェハに接着される。このため、各貫通孔3cの大きさ、および各貫通孔3c同士の最短距離がダイシングライン12の半分以下とされていることにより、ウェハと接合部材3との位置合わせを特に行わなくても、接合部材3のうちチップ形成領域に接着される部分に貫通孔3cが形成された部分を配置することができる。このため、ウェハと接合部材3との接着を容易にすることができる。
さらに、上記接合部材3を用いることにより、ウェハをチップ単位に分割する工程を容易にすることができる。図8は、ウェハをチップ単位に分割する工程を示す模式図である。
図8に示されるように、ステージ40上に配置されたメタルマスク41には保護シート42が接着されている。この保護シート42は、ウェハ10の表面に接着可能なものであればよく、保護シート42の接着面そのものが粘着性を有するものであってもよいし、保護シート42とウェハ10とを接着剤により接着するものであってもよい。また、保護シート42のうちウェハ10が接着された際に第1、第2センシング部10a、10bと対向する部分は、ウェハ10(第1、第2センシング部10a、10b)に接着されないようになっている。
例えば、保護シート42としてUV硬化性粘着シートを用いた場合には、第1、第2センシング部10a、10bに対向する領域にUV光を照射することにより、この領域の粘着性を無くすことができる。そして、このような保護シート42には、裏面に接合部材3が接着されたウェハ10が位置合わせをされて接着されるが、ウェハ10は以下のように保護シート42に接着される。
すなわち、接合部材3に複数の貫通孔3cが形成されており、貫通孔3cから赤外線が通過することができるようになっている。このため、保護シート42側に赤外線光源43を配置して赤外線をウェハ10に照射し、赤外線カメラ44でウェハ10の状況(画像)、つまり、第1、第2センシング部1a0、10bやダイシングライン12の位置を把握して保護シート42にウェハ10が接着される。このように、一方から赤外線を照射するのみでウェハ10と保護シート42とを接着することができ、この際にダイシングライン12の位置も把握されるため、ダイシングライン12を検出するためのみの工程を行う必要がない。したがって、ウェハ10をチップ単位に分割する工程を容易にすることができる。
(他の実施形態)
上記各実施形態では、センサチップ1に第1、第2センシング部10a、10bが形成された例を説明したが、センサチップ1に1つのセンシング部のみが形成されていてもよい。また、センサチップ1に圧力を検出するセンシング部が形成されていてもよいし、角速度を検出するセンシング部が形成されていてもよい。
また、上記各実施形態では、回路チップ2が接着剤6を介してケース4aに接着されているものを説明したが、回路チップ2が接合部材3を介してケース4aに接着されていてもよい。この場合は、ケース4aが本発明の被収容部材に相当する。
そして、上記各実施形態では、センサチップ1を回路チップ2に接合部材3を介して接着した後にこのものをケース4aに接着剤6を介して接着する例について説明したが、ケース4aに回路チップ2を接着した後にセンサチップ1を回路チップ2に接着してもよい。
また、上記第2実施形態では、接合部材3に複数の貫通孔3cが形成されているものを説明したが、接合部材3に貫通孔3cが1つのみ形成されていてもよい。この場合は、接合部材3のうちセンサチップ1の中央部と対向する領域に1つの貫通孔3cが形成されていることが好ましい。これにより、接合部材3からセンサチップ1に印加される応力が貫通孔3cを介して対称となり、検出精度が低下することを抑制することができる。
さらに、上記第2実施形態において、複数の貫通孔3cを千鳥状に形成することもできる。
1 センサチップ
2 回路チップ
3 接合部材
3a 第1延伸多孔質フィルム
3b 第2延伸多孔質フィルム
3c 貫通孔
4 パッケージ
5 ボンディングワイヤ
6 接着剤
7 ボンディングワイヤ

Claims (7)

  1. 物理量を検出するセンサチップ(1)が被実装部材(2)に接合部材(3)を介して接合されてなる力学量センサにおいて、
    前記接合部材(3)は、所定方向に延伸方向を有する第1延伸多孔質フィルム(3a)と、前記所定方向と垂直方向に延伸方向を有する第2延伸多孔質フィルム(3b)とが積層されて構成されていることを特徴とする力学量センサ。
  2. 前記接合部材(3)は、前記第1延伸多孔質フィルム(3a)と前記第2延伸多孔質フィルム(3b)とが同数積層されて構成されていることを特徴とする請求項1に記載の力学量センサ。
  3. 前記接合部材(3)は、前記第1延伸多孔質フィルム(3a)と前記第2延伸多孔質フィルム(3b)とが交互に積層されて構成されていることを特徴とする請求項1または2に記載の力学量センサ。
  4. 前記接合部材(3)には、厚さ方向に貫通する貫通孔(3c)が形成されていることを特徴とする請求項1ないし3のいずれか1つに記載の力学量センサ。
  5. 前記接合部材(3)には、前記貫通孔(3c)が複数形成されていることを特徴とする請求項4に記載の力学量センサ。
  6. 前記センサチップ(1)は、所定方向を検出方向とし、当該検出方向に作用する加速度を検出する第1センシング部(10a)と、当該所定方向と垂直方向を検出方向とし、当該検出方向に作用する加速度を検出する第2センシング部(10b)とが形成されたものであり、
    前記接合部材(3)は、前記第1延伸多孔質フィルム(3a)の延伸方向が前記第1センシング部(10a)の検出方向と平行とされ、前記第2延伸多孔質フィルム(3a)の延伸方向が前記第2センシング部(10b)の検出方向と平行とされていることを特徴とする請求項1ないし5のいずれか1つに記載の力学量センサ。
  7. 前記被実装部材(2)は、回路チップであり、当該回路チップは前記接合部材(3)を介して被収容部材(4a)に接合されていることを特徴とする請求項1ないし6のいずれか1つに記載の力学量センサ。
JP2011203971A 2011-09-19 2011-09-19 力学量センサ Pending JP2013064665A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011203971A JP2013064665A (ja) 2011-09-19 2011-09-19 力学量センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011203971A JP2013064665A (ja) 2011-09-19 2011-09-19 力学量センサ

Publications (1)

Publication Number Publication Date
JP2013064665A true JP2013064665A (ja) 2013-04-11

Family

ID=48188295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203971A Pending JP2013064665A (ja) 2011-09-19 2011-09-19 力学量センサ

Country Status (1)

Country Link
JP (1) JP2013064665A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327165A (ja) * 2001-04-20 2002-11-15 Three M Innovative Properties Co 熱硬化性の接着剤フィルム及びそれを用いた接着構造
JP2003234360A (ja) * 2002-02-12 2003-08-22 Mitsubishi Electric Corp 電子部品用接着シート及びそれを用いた半導体装置
JP2006220453A (ja) * 2005-02-08 2006-08-24 Denso Corp 加速度センサ装置
JP2007163215A (ja) * 2005-12-12 2007-06-28 Denso Corp 半導体力学量センサ装置およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327165A (ja) * 2001-04-20 2002-11-15 Three M Innovative Properties Co 熱硬化性の接着剤フィルム及びそれを用いた接着構造
JP2003234360A (ja) * 2002-02-12 2003-08-22 Mitsubishi Electric Corp 電子部品用接着シート及びそれを用いた半導体装置
JP2006220453A (ja) * 2005-02-08 2006-08-24 Denso Corp 加速度センサ装置
JP2007163215A (ja) * 2005-12-12 2007-06-28 Denso Corp 半導体力学量センサ装置およびその製造方法

Similar Documents

Publication Publication Date Title
JP2009074979A (ja) 半導体装置
JP2009241164A (ja) 半導体センサー装置およびその製造方法
JP2006220453A (ja) 加速度センサ装置
JP2010019693A (ja) 加速度センサー装置
WO2017056697A1 (ja) 慣性力センサ
JP2011180146A (ja) 半導体装置
JP2007043017A (ja) 半導体センサ装置
JP2010085143A (ja) 加速度センサー
JP2016070670A (ja) センサ装置
JP2013064665A (ja) 力学量センサ
JP2006078249A (ja) 容量型半導体センサ
JP5859133B2 (ja) 半導体装置
JP2005227089A (ja) 力学量センサ装置
JP2008122304A (ja) 静電容量式加速度センサ
JP2010251365A (ja) 半導体装置およびその製造方法
JP2010181243A (ja) 容量式力学量センサ装置の製造方法
JP5135824B2 (ja) 慣性力センサ素子の製造方法
JP2008209163A (ja) センサ装置
JP5884667B2 (ja) 半導体装置の製造方法
JP2012164771A (ja) 半導体装置の製造方法及び半導体装置
JP2015059831A (ja) 電子装置
JP5723739B2 (ja) Memsセンサ
JP2013036829A (ja) シリコン埋込ガラス基板とその製造方法、シリコン埋込ガラス多層基板とその製造方法、静電式加速度センサ
JP7406947B2 (ja) センサチップ
JP2006332576A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150707