JP2013062473A - Wiring board and manufacturing method therefor - Google Patents

Wiring board and manufacturing method therefor Download PDF

Info

Publication number
JP2013062473A
JP2013062473A JP2011201697A JP2011201697A JP2013062473A JP 2013062473 A JP2013062473 A JP 2013062473A JP 2011201697 A JP2011201697 A JP 2011201697A JP 2011201697 A JP2011201697 A JP 2011201697A JP 2013062473 A JP2013062473 A JP 2013062473A
Authority
JP
Japan
Prior art keywords
wiring board
wiring
manufacturing
glass
stripes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011201697A
Other languages
Japanese (ja)
Inventor
Akira Warikashi
亮 割栢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2011201697A priority Critical patent/JP2013062473A/en
Publication of JP2013062473A publication Critical patent/JP2013062473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a novel wiring board having a high density wiring pattern, suitable for solving such a problem that it is difficult to form through electrodes (VIA) at fine intervals of several tens μm, and to apply the method especially to a wiring board using glass as the base material.SOLUTION: The manufacturing method of a wiring board includes a step for forming, on at least one surface of a glass plate, a wiring pattern of parallel stripes composed of a conductive material by photolithography or a printing method, and then laminating and pressing other similar glass plate, and a step for laminating a plurality of glass plates so that the stripe arrangement direction of wiring pattern is arranged between the glass plates and no gap is generated between the glass plates, and then mechanically slicing the glass plates thus laminated along two cross-sectional lines extending in a direction perpendicular to the lamination direction and adjoining in parallel with the parallel direction of the stripes thus producing planar members.

Description

本発明は、配線基板およびその製造方法に関するものであり、特にビア間隔の狭いガラス配線基板,ガラスインターポーザ基板の製造に好適な製造方法およびそれにより得られる配線基板を提供するものである。   The present invention relates to a wiring board and a method for manufacturing the wiring board, and in particular, provides a manufacturing method suitable for manufacturing a glass wiring board and a glass interposer board having a narrow via interval, and a wiring board obtained thereby.

高度情報化時代を迎え、情報通信技術が急速に発達し、それに伴って各種半導体素子の高密度化が図られている。
それに伴い、半導体パッケージにおいて、半導体素子を実装するためのインターポーザ基板や半導体素子を含む電子部品を実装するプリント基板を総称するプリント配線板には、高密度化と高速対応が要求されている。
一方、エレクトロ二クス機器には,小型・薄型化・軽量化が要求されることが多いため、高密度化,高速対応,小型化,薄型化をバランスよく併存させることが必要となっている。
With the advent of advanced information technology, information communication technology has been rapidly developed, and various semiconductor elements have been increased in density accordingly.
Accordingly, in a semiconductor package, an interposer substrate for mounting a semiconductor element and a printed wiring board generically including a printed circuit board on which an electronic component including the semiconductor element is mounted are required to have high density and high-speed response.
On the other hand, since electronic devices are often required to be small, thin, and light, it is necessary to balance high density, high speed, miniaturization, and thinning in a balanced manner.

これらの実現のために、プリント配線板に対しては、配線ルールの微細化や、配線層の多層化,さらには、高速対応のための物性を有する絶縁材料の採用,絶縁層の層間を接続する接続ビアホールの微細化,絶縁層の薄型化などが要求されている。 In order to realize these, for printed wiring boards, miniaturization of wiring rules, multilayering of wiring layers, use of insulating materials with physical properties for high-speed response, and connection between layers of insulating layers There are demands for miniaturization of connecting via holes and thinning of insulating layers.

チップサイズパッケージやインターポーザの分野において、シリコンを基材とし、配線長を短くすることが可能になるといわれているシリコン貫通電極に関する研究開発が盛んに行われている。これは、基材がシリコンであるためにプロセスが比較的容易であることがひとつの要因である。   In the field of chip size packages and interposers, research and development on through silicon vias, which are said to be able to shorten the wiring length using silicon as a base material, are being actively conducted. This is due in part to the fact that the process is relatively easy because the substrate is silicon.

しかし、研究が進むにつれて、基材がシリコンであることにより、従来の有機基板に比べて電気特性が悪いことが明るみになっている。
これは、一般的に使用されるシリコン基材は導電性をもつため配線との絶縁を得るためにシリコン基板表面にごく薄い絶縁層(例えば、ポリイミド樹脂やSiO)を付与することによって絶縁性を保っている。
このため、導体である配線とシリコン基板の間にごく薄い絶縁層が挟まれるという構造からなるコンデンサが形成され、これが高周波信号に対して悪影響をおよぼすことに起因している。
この問題を解決する方法の一つとして、高抵抗シリコンを基材にするという方法もあるが、高抵抗シリコンを使用するとコスト高になってしまうという問題があった。
However, as research progresses, it has become clear that the electrical properties are worse than conventional organic substrates due to the fact that the base material is silicon.
This is because the silicon base material that is generally used has conductivity, so that a very thin insulating layer (for example, polyimide resin or SiO 2 ) is applied to the surface of the silicon substrate in order to obtain insulation from the wiring. Keep.
For this reason, a capacitor having a structure in which a very thin insulating layer is sandwiched between a wiring which is a conductor and a silicon substrate is formed, which is caused by having an adverse effect on a high-frequency signal.
One method of solving this problem is to use high-resistance silicon as a base material, but there is a problem that the cost increases when high-resistance silicon is used.

また、複数枚のセラミックグリーンシートを積層圧着して多層化した後、グリーンシートを焼成して、多層構造のセラミック基板を得る各種手法も公知であるが、セラミックを基材とする場合には、セラミック基板はポーラスな素材であるので、気密性を要求される電子部品の搭載には、気密性の点で信頼性が十分でないという問題が生じている。
そこで、緻密で絶縁性の十分な素材であり、電気特性の面で非常に有利なガラスを基材とするガラス基板の開発が始まっている。
In addition, various methods for obtaining a multilayer ceramic substrate by firing a green sheet after laminating and pressing multiple ceramic green sheets to form a multilayer structure are also known. Since the ceramic substrate is a porous material, there is a problem that reliability is not sufficient in terms of airtightness when mounting electronic components that require airtightness.
Therefore, development of a glass substrate based on glass, which is a dense and sufficiently insulating material and very advantageous in terms of electrical characteristics, has begun.

ガラス基板に貫通電極を設ける方法として、ガラス基板にドリルや乾式ブラスト法などで物理的に穴を開け、金属柱を埋め込む方法や、感光性ガラスを用いてガラス基板に貫通孔を設ける方法が提案されている。
しかし、これらの方法では、例えば乾式ブラストを用いる場合は機械的精度による限界、さらに貫通電極の表裏で開口径が異なる問題や、感光性ガラスを用いた場合はその形状による限界によって貫通電極の間隔を狭めることができず、せいぜい数百μm間隔が限界であった。
硼珪酸ガラスなどからなるガラス基板にアルミナや炭化珪素などの細粒状メディアを用いた乾式ブラスト法、或いはエッチング法などによりスルーホールを形成する手法が開示された先行技術文献は、特許文献1,2などに例示される。
As a method of providing a through electrode on a glass substrate, a method of physically drilling a glass substrate by a drill or a dry blast method and embedding a metal column, or a method of providing a through hole in a glass substrate using photosensitive glass is proposed. Has been.
However, in these methods, for example, when dry blasting is used, there is a limit due to mechanical accuracy, and there is a problem that the opening diameter differs between the front and back of the through electrode, and when photosensitive glass is used, the distance between the through electrodes depends on the shape. Cannot be narrowed, and at most a few hundred μm intervals was the limit.
Prior art documents disclosing methods for forming through holes on a glass substrate made of borosilicate glass by a dry blasting method using fine granular media such as alumina or silicon carbide or an etching method are disclosed in Patent Documents 1 and 2. Etc.

特許4214068号Japanese Patent No. 4214068 特許4702794号Japanese Patent No. 4702794

一方で、レーザーやガスエッチングを使用したガラスの穴あけ方法も提案されているが、エッチングレートが遅すぎたり、異方性エッチングが行なえないなど課題が多く、実用にはまだまだ時間がかかると考えられる。
このような現状から、シリコン配線基板では既に実現されている数十μm間隔の貫通電極がガラス基板では実現できず、微細配線化・小型化が困難とされインターポーザ用途などでのガラス基板の採用については、報告例が殆ど見られていない。
本発明では、微細な間隔で貫通電極(VIA)を形成することが困難であるという課題を解決する上で好適な新規な製造方法を提案することを目的とし、特にガラスを基材とする配線基板への適用を主たる目的とする。
On the other hand, glass drilling methods using laser and gas etching have also been proposed, but there are many problems such as the etching rate being too slow and anisotropic etching not being possible, and it is thought that it will still take time to put it into practical use. .
From the current situation, through electrodes with an interval of several tens of μm that have already been realized in silicon wiring substrates cannot be realized in glass substrates, and it is difficult to make fine wiring and miniaturization, so adoption of glass substrates for interposer applications etc. There are almost no reported cases.
An object of the present invention is to propose a novel manufacturing method suitable for solving the problem that it is difficult to form through electrodes (VIA) at fine intervals, and in particular, wiring based on glass. Its main purpose is application to substrates.

本発明による製造方法では、ガラス板に対して厚さ方向に貫通孔を形成する手法ではなく、最終的に貫通電極(VIA)となる導電パターンをガラス板の表面に形成する手法を採用する。 In the manufacturing method according to the present invention, a method of forming a conductive pattern that finally becomes a through electrode (VIA) on the surface of the glass plate is employed instead of a method of forming a through hole in the thickness direction with respect to the glass plate.

即ち、本発明による配線基板の製造方法は、
ガラス板の少なくとも片面に、フォトリソグラフィーあるいは印刷手法などにより、導電性材料からなるストライプが並列する配線パターンを形成して、同様な他のガラス板を積層圧着する工程を、ガラス板同士での配線パターンのストライプ並列方向が揃うように、且つ、ガラス板同士の間で空隙が発生しないように、複数枚積層した後、
積層されたガラス板を、積層方向に対して垂直方向であり、かつ前記ストライプの並列方向に平行して隣接する2本の断面線で機械的にスライスして、板状の部材とする工程を具備することを特徴とする。
That is, the method for manufacturing a wiring board according to the present invention includes:
Wiring between glass plates is the process of forming a wiring pattern in which stripes made of conductive material are arranged in parallel on at least one side of a glass plate by photolithography or printing, and laminating and bonding other similar glass plates. After laminating multiple sheets so that the stripe parallel direction of the pattern is aligned and so that no gap is generated between the glass plates,
A step of mechanically slicing the laminated glass plates along two cross-sectional lines adjacent to each other in a direction perpendicular to the lamination direction and parallel to the parallel direction of the stripes to form a plate-like member It is characterized by comprising.

得られたスライス体(板状の部材)は、表裏面まで貫通するように、前記ストライプの断面がスライス面に点在する構成である。
前記スライス面に半導体素子などを搭載し、新たな配線パターンを形成するなどして、スライス体が配線基板となる。
The obtained sliced body (plate-like member) has a configuration in which cross sections of the stripes are scattered on the slice surface so as to penetrate to the front and back surfaces.
A semiconductor element or the like is mounted on the slice surface, and a new wiring pattern is formed, so that the slice body becomes a wiring board.

上記方法により得られる配線基板は、スリット状のガラスが隙間なく一方向に連結され、結果的に、板状のガラス基板と同様な構造となり、板状部材の表面に点在する前記ストライプにあたる部分は、板状部材を貫通するVIA(貫通電極)として機能することになる。
更に、上記で得られた配線基板を、必要に応じて複数枚積層することにより、多層構成の配線板が得られる。
The wiring board obtained by the above method has slit-like glass connected in one direction without a gap, resulting in a structure similar to that of a plate-like glass substrate and corresponding to the stripes scattered on the surface of the plate-like member Will function as a VIA (through electrode) that penetrates the plate-like member.
Furthermore, a wiring board having a multilayer structure can be obtained by laminating a plurality of wiring boards obtained as described above as necessary.

本発明の手法によれば、ドリル,乾式ブラスト,レーザー,ガスエッチングなどによりガラス板に貫通孔を形成する従来
0.手法では実現できなかった数十μm前後の微細な間隔の貫通電極を有する配線基板向けガラス基板を安定して製造することが可能となる。
本発明の配線基板では、気密性,電気特性に優れ、多層化により高密度の配線パターンの形成された配線基板が実現される。
According to the method of the present invention, a conventional method for forming a through hole in a glass plate by drilling, dry blasting, laser, gas etching, or the like.
0. It is possible to stably manufacture a glass substrate for a wiring board having through electrodes with a fine interval of about several tens of μm that could not be realized by the method.
In the wiring board of the present invention, a wiring board having excellent airtightness and electrical characteristics and having a high density wiring pattern formed by multilayering is realized.

絶縁体(ガラス)1の表面に導体層2(ストライプパターン)を形成してなる積層体100を示す説明図。Explanatory drawing which shows the laminated body 100 formed by forming the conductor layer 2 (stripe pattern) on the surface of the insulator (glass) 1. FIG. 図1の積層体100に、同様に絶縁体1に導体層2が形成されてなる他の積層体100を、接着剤を介して積層圧着してなる積層構造を示す説明図。Explanatory drawing which shows the laminated structure formed by carrying out the lamination | stacking crimping | compression-bonding of the other laminated body 100 by which the conductor layer 2 is similarly formed in the laminated body 100 of FIG. 1 through the adhesive agent. 図2の積層構造を、A−A’線およびB−B’線でスライスしてなる配線基板用部材200を示す説明図。FIG. 3 is an explanatory view showing a wiring board member 200 obtained by slicing the laminated structure of FIG. 2 along A-A ′ and B-B ′ lines. 図3の配線基板用部材200のC−C’における断面図。Sectional drawing in C-C 'of the member 200 for wiring boards of FIG. 図4の配線基板用部材200の表裏に、配線パターンを形成してなる配線基盤300を示す説明図。Explanatory drawing which shows the wiring board | substrate 300 formed by forming a wiring pattern in the front and back of the member 200 for wiring boards of FIG. 図5の配線基板300をインターポーザ基板として、外部回路基板や機器に接続実装した状態を示す説明図。FIG. 6 is an explanatory diagram showing a state in which the wiring board 300 of FIG. 5 is connected and mounted to an external circuit board or a device as an interposer board.

以下、本発明の実施形態に係わるガラス配線基板を、図面を参照して詳細に説明する。   Hereinafter, a glass wiring board according to an embodiment of the present invention will be described in detail with reference to the drawings.

<第1実施形態>
第1工程:複数枚の積層体の積層構造
積層体100は、絶縁体1と導体層2を積層することで得られる。
絶縁体1としては、主に酸化シリコン,ガラス,有機物を材料とするもの使用でき、これらを板状に加工したものや、他の絶縁性材料からなるシート表面に気相蒸着法やコーティング法等によって成膜したものが使用できるが、これらに限定されるものではない。
導体層2(ストライプが並列した配線層)の材料では、銅,ニッケル,タングステン,アルミニウムなどが使用でき、蒸着法やめっき法,接着剤を用いて箔を貼り合わせる方法などが選択できるが、これに限定されるものではない。
導体層2(配線パターン)は、湿式/乾式を問わず、一般的なフォトリソグラフィー技術を用いて配線パターン形成を行なうことで、最終的には微細な間隔で配置されたVIA(貫通電極)となる。
導体層2の形成にあたっては、導電性インキを用いた印刷手法により、絶縁体1表面に配線パターンを形成しても良い。(図1)
<First Embodiment>
1st process: The laminated structure laminated body 100 of several laminated body is obtained by laminating | stacking the insulator 1 and the conductor layer 2. FIG.
The insulator 1 can be mainly made of silicon oxide, glass, or an organic material, processed into a plate shape, or a vapor deposition method or coating method on the surface of a sheet made of another insulating material. However, it is not limited to these.
For the material of the conductor layer 2 (wiring layer in which stripes are arranged in parallel), copper, nickel, tungsten, aluminum and the like can be used, and a vapor deposition method, a plating method, and a method of bonding foils using an adhesive can be selected. It is not limited to.
The conductor layer 2 (wiring pattern) is formed by forming a wiring pattern using a general photolithography technique regardless of whether it is wet or dry, and finally the VIA (through electrode) arranged at fine intervals. Become.
In forming the conductor layer 2, a wiring pattern may be formed on the surface of the insulator 1 by a printing method using conductive ink. (Figure 1)

図1に示す積層体100に、上記と同様に絶縁体1に導体層2が形成されてなる積層体100を、接着剤を介して積層圧着することにより、図2に示す積層構造を得る。
図2では、同図下から1層目の積層体,2層目の積層体,導体層2の形成されていない絶縁体1のみからなる3層目の複数枚が積層圧着されている。
また、同図では、図1で確認されるストライプ間の隙間にあたる凹部が存在せず埋められたように図示されているが、接着剤を介しての積層体100の積層圧着にあたり、絶縁性基板間での空隙が発生しないように、前記凹部を接着剤で充填する。
あるいは、接着剤を介しての積層体100の積層圧着に先駆けて、前記ストライプ間の凹部をCVD法によりSiO2で充填する工程を行なっても良い。
A laminated structure shown in FIG. 2 is obtained by laminating and bonding a laminated body 100 in which the conductor layer 2 is formed on the insulator 1 to the laminated body 100 shown in FIG. 1 with an adhesive.
In FIG. 2, a plurality of third layers consisting of only the first layered body, the second layered body, and the insulator 1 where the conductor layer 2 is not formed are laminated and pressure-bonded.
Further, in the same figure, the concave portions corresponding to the gaps between the stripes confirmed in FIG. 1 are not filled, but are illustrated as being filled. The recesses are filled with an adhesive so that no gaps are generated between them.
Alternatively, a step of filling the recesses between the stripes with SiO 2 by a CVD method may be performed prior to the lamination pressure bonding of the laminate 100 via an adhesive.

CVD法によるSiO2の供給は、ストライプ間の凹部を十分に充填するように行なっても良いし、ストライプ(導体層2)の全面を覆うように行なっても良い。
後者の場合、ストライプ(導体層2)の表面にSiO2が直接的に接触した状態となるため、接着剤が接触した状態よりも、電気特性上の優位性が確保される。
The supply of SiO 2 by the CVD method may be performed so as to sufficiently fill the recesses between the stripes, or may be performed so as to cover the entire surface of the stripes (conductor layer 2).
In the latter case, since SiO 2 is in direct contact with the surface of the stripe (conductor layer 2), superiority in electrical characteristics is ensured over the state in which the adhesive is in contact.

積層体100の積層圧着は、図2の構成に限らず、それを多数回繰り返して良い。
ただし、積層体に形成されるストライプ(導体層2)が、積層体間で直接的に接触してはならない点と、ストライプの並列方向がほぼ揃うようにしなければならない点に注意を要することになる。
以上により、単位構造である積層体を複数枚組み合わせてなる積層構造が得られる。
The laminated pressure bonding of the laminated body 100 is not limited to the configuration shown in FIG. 2 and may be repeated many times.
However, it should be noted that the stripes (conductor layer 2) formed in the laminate must not be in direct contact between the laminates and that the parallel direction of the stripes must be substantially aligned. Become.
As described above, a laminated structure formed by combining a plurality of laminated bodies as unit structures is obtained.

第2工程:機械的スライス
図2に示される積層構造を、同図に示すA−A’およびB−B’の断面線でスライスすることにより、図3に示す配線基板用部材200が得られる。(図2では右側側面の断面を、図3では正面に図示している。)
A−B間およびA’−B’間の幅は任意で設定することが可能であるが、後に配線基板となる板厚に相当するため、平行度・間隔を適切に設定する必要がある。
Second Step: Mechanical Slicing By slicing the laminated structure shown in FIG. 2 along the cross-sectional lines AA ′ and BB ′ shown in FIG. 2, a wiring board member 200 shown in FIG. 3 is obtained. . (FIG. 2 shows a cross section of the right side surface and FIG. 3 shows the front side.)
The widths between A and B and between A 'and B' can be set arbitrarily, but correspond to the plate thickness that will later become a wiring board, and therefore it is necessary to set the parallelism and interval appropriately.

切断(スライス)方法としては、絶縁体がガラスや酸化シリコンであった場合は、一般的なウエハの切削方法,積層体が薄ければダイシングを使用することができる。
また、有機絶縁体の場合は、ルーターによる切断方法を使うことが可能である。
切断後は、必要に応じて断面に化学的機械研磨を行なうことで、半導体素子の搭載箇所あるいは配線パターンの形成箇所となる切断面を平滑にする。
切断(スライス)を繰り返すことによって、1つの積層構造から複数の配線基板用部材200を得ることができる。
As a cutting (slicing) method, when the insulator is glass or silicon oxide, a general wafer cutting method or dicing can be used if the laminate is thin.
In the case of organic insulators, it is possible to use a router cutting method.
After cutting, chemical cross-sectional polishing is performed on the cross section as necessary to smooth the cut surface that becomes the mounting portion of the semiconductor element or the wiring pattern forming portion.
By repeating cutting (slicing), a plurality of wiring board members 200 can be obtained from one laminated structure.

第3工程:配線パターンの形成→配線基板の作製
図4は、図3のC−C’における断面図である。
配線基板用部材200の少なくとも片面(同図中で、上面と下面の少なくとも何れか)に一般的に用いられているめっき法やフォトリソグラフィー法を用いて配線パターン3を形成することで、図5に示す配線基板300が作製される。
図5に示すように、配線パターンを上下両面に形成した場合は、導体層2は上下の配線パターンを接続するVIAとして機能する。
配線パターンを上面のみに形成した場合は、導体層2の下側は外部回路基板や機器との接続のためのVIAとして機能する。
Third Step: Formation of Wiring Pattern → Production of Wiring Substrate FIG. 4 is a cross-sectional view taken along the line CC ′ of FIG.
By forming the wiring pattern 3 using at least one surface (at least one of the upper surface and the lower surface in the figure) of the wiring board member 200 using a plating method or a photolithography method generally used, FIG. A wiring substrate 300 shown in FIG.
As shown in FIG. 5, when the wiring patterns are formed on both upper and lower surfaces, the conductor layer 2 functions as a VIA that connects the upper and lower wiring patterns.
When the wiring pattern is formed only on the upper surface, the lower side of the conductor layer 2 functions as a VIA for connection to an external circuit board or equipment.

第4工程:インターポーザ基板の作製
第3工程で得られた配線基板300に半導体素子5を実装し、半導体素子5の接続端子と配線基板300の上面に形成された配線パターンの接続部と電気的に接続し、樹脂封止などその他の各種処理を施すことにより、インターポーザ基板として外部回路基板や機器に接続実装することが可能になる。(図6)
同図は、半導体素子5をフリップチップ実装した場合の図示であるが、ワイヤボンディング実装する方式での実装にも、本発明は適用可能である。
Fourth Step: Fabrication of Interposer Substrate The semiconductor element 5 is mounted on the wiring substrate 300 obtained in the third step, and the connection terminals of the wiring pattern formed on the connection terminals of the semiconductor element 5 and the upper surface of the wiring substrate 300 are electrically connected. It is possible to connect and mount to an external circuit board or equipment as an interposer board by performing various other processes such as resin sealing. (Fig. 6)
This figure is an illustration when the semiconductor element 5 is flip-chip mounted, but the present invention can also be applied to mounting by a wire bonding mounting method.

<第2実施形態>
また、第1実施形態の第1工程において、導体層をサブトラクティブ法によって形成することも可能である。
Second Embodiment
In the first step of the first embodiment, the conductor layer can be formed by a subtractive method.

<第3実施形態>
また、第1実施形態の第1工程において、導体層を導電性ペーストを用いた印刷法により形成することも可能である。
導電性ペーストとしては銀ペーストや銅ペースト,カーボンペーストが使用できるが、これらに限定されるものではない。
<Third Embodiment>
In the first step of the first embodiment, the conductor layer can be formed by a printing method using a conductive paste.
As the conductive paste, silver paste, copper paste, and carbon paste can be used, but are not limited thereto.

以上の方法により、ガラス基板に既存のフォトリソグラフィー法によって形成できる配線間隔と同等の間隔をもつ貫通電極の製造が可能となる。
これは、例えばサブトラクティブ法であれば20μm程度の間隙から、ガスエッチング法を用いれば1μmの間隙も可能となる。
By the above method, it is possible to manufacture a through electrode having a distance equivalent to a wiring distance that can be formed on a glass substrate by an existing photolithography method.
For example, a gap of about 20 μm can be formed by the subtractive method, and a gap of 1 μm can be formed by using the gas etching method.

厚さ1mmのガラス基材に化学気相蒸着法によって銅皮膜を100nm厚で形成し、これをシード層として電解銅めっきによって厚さ30μmの銅による導体層を形成した。
この導体層に、フォトリソグラフィー法を用いてレジストのパターニングを行い、塩化鉄溶液を用いて銅のエッチングを行い、配線幅30μm,配線間隔60μmの縞状の配線パターンを形成した。
A copper film having a thickness of 100 nm was formed on a glass substrate having a thickness of 1 mm by chemical vapor deposition, and a conductor layer of copper having a thickness of 30 μm was formed by electrolytic copper plating using this as a seed layer.
A resist pattern was formed on the conductor layer using a photolithography method, and copper was etched using an iron chloride solution to form a striped wiring pattern having a wiring width of 30 μm and a wiring interval of 60 μm.

配線パターン上に、化学気相蒸着法によって二酸化ケイ素膜を形成し、平坦化後に厚さ100μmのガラス板を張り合わせることで絶縁層を形成した。 A silicon dioxide film was formed on the wiring pattern by chemical vapor deposition, and an insulating layer was formed by laminating a glass plate having a thickness of 100 μm after planarization.

再び、銅による導体層を形成し、パターニングを行って再度に酸化ケイ素膜、ガラス基板の積層をことをくりかえし、これを23回繰り返したところで最後に厚さ1mmのガラス基材を積層し、総厚さ5mmの積層体を完成させた。 Again, a copper conductor layer was formed, patterned, and repeated the lamination of the silicon oxide film and the glass substrate. When this was repeated 23 times, a glass substrate having a thickness of 1 mm was finally laminated. A laminate having a thickness of 5 mm was completed.

完成した積層体をダイシングを行い、配線層の縞状のパターンに対して直角方向で幅1ミリメートルに切り出し、両面を化学的機械研磨により厚さが750μmになるまで表面研磨をおこなった。 The completed laminate was diced, cut into a width of 1 mm in a direction perpendicular to the stripe pattern of the wiring layer, and both surfaces were polished by chemical mechanical polishing to a thickness of 750 μm.

切り出した基板に、めっきによって銅を析出させ、フォトリソグラフィー法によって、断面部分に配線形成を行った。 Copper was deposited on the cut out substrate by plating, and wiring was formed on the cross-sectional portion by photolithography.

配線形成を行った基板をさらに一辺を5mmのチップ状に切り出して、配線基板とした。これによって、配線間隙が、30μmの貫通電極を有するガラス配線基板を作製することができた。 The substrate on which the wiring was formed was further cut into a 5 mm chip shape to form a wiring substrate. As a result, a glass wiring board having a through electrode having a wiring gap of 30 μm could be produced.

完成した貫通電極を有するガラス配線基板の表裏の導通試験を実施したところ、貫通電極によって表裏を接続されている電極間では導通を、配線間で接続されていない部分は絶縁を示した。 When a continuity test of the front and back surfaces of the glass wiring board having the completed through electrode was performed, continuity was exhibited between the electrodes connected to the front and back by the through electrode, and insulation was exhibited in the portion not connected between the wires.

上記実施形態によれば、貫通電極の間隔を狭く、微細配線可能な、ガラス配線基板を提供することが出来る。 According to the embodiment, it is possible to provide a glass wiring substrate in which the interval between the through electrodes is narrow and fine wiring is possible.

この基板を片面に半導体装置を実装して、もう一方の面を別の配線基板に実装することで、インターポーザ基板として使用することが可能になる。 By mounting this substrate on one side and mounting the semiconductor device on the other side, it can be used as an interposer substrate.

1…絶縁層
2…導体層、貫通電極
3…配線
4…配線基板
5…半導体装置
6…はんだ
100…積層体
200…配線基板用部材
300…配線基板
A−A’…基板切断面
B−B’…基板切断面
C−C’…基板断面
DESCRIPTION OF SYMBOLS 1 ... Insulating layer 2 ... Conductor layer, penetration electrode 3 ... Wiring 4 ... Wiring board 5 ... Semiconductor device 6 ... Solder 100 ... Laminate 200 ... Wiring board member 300 ... Wiring board AA '... Board | substrate cut surface BB '... Substrate cutting plane CC' ... Substrate cross section

Claims (6)

絶縁性基板の少なくとも片面に、フォトリソグラフィーあるいは印刷手法などにより、導電性材料からなるストライプが並列する配線パターンを形成する工程と、
同様に配線パターンの形成された他の絶縁性基板を、接着剤を介して圧着することにより、絶縁性基板間での空隙が発生しないように、複数枚積層する工程と、
得られた積層体を、積層方向に対して垂直方向であり、かつ前記ストライプの並列方向に沿う方向の断面線で機械的にスライスする工程と、
前記スライス工程を、断面線が平行して隣接する間隔で繰り返す工程、
を具備することを特徴とする配線基板の製造方法。
Forming a wiring pattern in which stripes made of a conductive material are arranged in parallel on at least one surface of an insulating substrate by photolithography or printing;
Similarly, a process of laminating a plurality of other insulating substrates on which wiring patterns are formed so as not to generate a gap between the insulating substrates by pressure bonding with an adhesive,
Mechanically slicing the obtained laminate in a direction perpendicular to the lamination direction and in a direction along the parallel direction of the stripes;
Repeating the slicing step at intervals adjacent to each other in parallel with the cross-sectional line;
A method for manufacturing a wiring board, comprising:
機械的にスライスされた板状部材の断面に、搭載する半導体素子との電気信号の入出力を行なうための回路を構成する配線パターンを形成する工程、
を更に具備することを特徴とする請求項1記載の配線基板の製造方法。
Forming a wiring pattern constituting a circuit for inputting / outputting an electric signal to / from a semiconductor element to be mounted on a cross section of a plate member mechanically sliced;
The method for manufacturing a wiring board according to claim 1, further comprising:
配線パターンの形成された複数枚の板状部材を積層圧着する工程、
を更に具備することを特徴とする請求項2記載の配線基板の製造方法。
A step of laminating and pressing a plurality of plate-like members on which wiring patterns are formed;
The method for manufacturing a wiring board according to claim 2, further comprising:
導電性材料からなるストライプが並列する配線パターンを形成した絶縁性基板における前記ストライプ間の凹部を、CVD法によりSiO2で充填する工程、
を更に具備することを特徴とする請求項1〜3の何れかに記載の配線基板の製造方法。
A step of filling the recesses between the stripes in the insulating substrate formed with the wiring pattern in which the stripes made of the conductive material are arranged in parallel with SiO 2 by a CVD method;
The method for manufacturing a wiring board according to claim 1, further comprising:
絶縁性基板がガラスであることを特徴とする請求項1〜4の何れかに記載の配線基板の製造方法。   The method for manufacturing a wiring substrate according to claim 1, wherein the insulating substrate is glass. 請求項5に記載の配線基板の製造方法により得られる配線基板であって、
スリット状のガラス部材が隙間なく一方向に連結されてなる板状のガラス基板の少なくとも片面に、搭載される半導体素子との電気信号の入出力を行なうための回路を構成する配線パターンを形成してなる配線基板であり、
配線基板の表裏面には、板状部材を貫通するVIA(貫通電極)となる導電部が点在する構成の配線基板。
A wiring board obtained by the method of manufacturing a wiring board according to claim 5,
A wiring pattern constituting a circuit for inputting / outputting electric signals to / from a semiconductor element to be mounted is formed on at least one surface of a plate-like glass substrate formed by connecting slit-like glass members in one direction without gaps. A wiring board,
A wiring board having a configuration in which conductive portions to be VIA (penetrating electrodes) penetrating a plate-like member are scattered on the front and back surfaces of the wiring board.
JP2011201697A 2011-09-15 2011-09-15 Wiring board and manufacturing method therefor Pending JP2013062473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011201697A JP2013062473A (en) 2011-09-15 2011-09-15 Wiring board and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011201697A JP2013062473A (en) 2011-09-15 2011-09-15 Wiring board and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2013062473A true JP2013062473A (en) 2013-04-04

Family

ID=48186863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011201697A Pending JP2013062473A (en) 2011-09-15 2011-09-15 Wiring board and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2013062473A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108235592A (en) * 2018-01-30 2018-06-29 深圳市精诚达电路科技股份有限公司 A kind of process for monitoring FPC golden finger overlay coatings
US10806033B2 (en) 2017-10-03 2020-10-13 Murata Manufacturing Co., Ltd. Interposer and electronic device
US11076489B2 (en) 2018-04-10 2021-07-27 3D Glass Solutions, Inc. RF integrated power condition capacitor
US11101532B2 (en) 2017-04-28 2021-08-24 3D Glass Solutions, Inc. RF circulator
US11139582B2 (en) 2018-09-17 2021-10-05 3D Glass Solutions, Inc. High efficiency compact slotted antenna with a ground plane
US11161773B2 (en) 2016-04-08 2021-11-02 3D Glass Solutions, Inc. Methods of fabricating photosensitive substrates suitable for optical coupler
US11264167B2 (en) 2016-02-25 2022-03-01 3D Glass Solutions, Inc. 3D capacitor and capacitor array fabricating photoactive substrates
US11270843B2 (en) 2018-12-28 2022-03-08 3D Glass Solutions, Inc. Annular capacitor RF, microwave and MM wave systems
US11342896B2 (en) 2017-07-07 2022-05-24 3D Glass Solutions, Inc. 2D and 3D RF lumped element devices for RF system in a package photoactive glass substrates
US11367939B2 (en) 2017-12-15 2022-06-21 3D Glass Solutions, Inc. Coupled transmission line resonate RF filter
US11373908B2 (en) 2019-04-18 2022-06-28 3D Glass Solutions, Inc. High efficiency die dicing and release
US11677373B2 (en) 2018-01-04 2023-06-13 3D Glass Solutions, Inc. Impedence matching conductive structure for high efficiency RF circuits
US11908617B2 (en) 2020-04-17 2024-02-20 3D Glass Solutions, Inc. Broadband induction
US11929199B2 (en) 2014-05-05 2024-03-12 3D Glass Solutions, Inc. 2D and 3D inductors fabricating photoactive substrates
US11962057B2 (en) 2019-04-05 2024-04-16 3D Glass Solutions, Inc. Glass based empty substrate integrated waveguide devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261981A (en) * 1975-11-18 1977-05-21 Toshiba Corp Production of semiconductor device
JP2001111195A (en) * 1999-10-13 2001-04-20 Eastern Co Ltd Method of manufacturing circuit board
WO2006129848A1 (en) * 2005-06-03 2006-12-07 Intelligent Cosmos Research Institute Production method of glass penetrating wiring board, glass penetrating wiring board, and probe card and packaging element using glass penetrating wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261981A (en) * 1975-11-18 1977-05-21 Toshiba Corp Production of semiconductor device
JP2001111195A (en) * 1999-10-13 2001-04-20 Eastern Co Ltd Method of manufacturing circuit board
WO2006129848A1 (en) * 2005-06-03 2006-12-07 Intelligent Cosmos Research Institute Production method of glass penetrating wiring board, glass penetrating wiring board, and probe card and packaging element using glass penetrating wiring board

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11929199B2 (en) 2014-05-05 2024-03-12 3D Glass Solutions, Inc. 2D and 3D inductors fabricating photoactive substrates
US11264167B2 (en) 2016-02-25 2022-03-01 3D Glass Solutions, Inc. 3D capacitor and capacitor array fabricating photoactive substrates
US11161773B2 (en) 2016-04-08 2021-11-02 3D Glass Solutions, Inc. Methods of fabricating photosensitive substrates suitable for optical coupler
US11101532B2 (en) 2017-04-28 2021-08-24 3D Glass Solutions, Inc. RF circulator
US11342896B2 (en) 2017-07-07 2022-05-24 3D Glass Solutions, Inc. 2D and 3D RF lumped element devices for RF system in a package photoactive glass substrates
US10806033B2 (en) 2017-10-03 2020-10-13 Murata Manufacturing Co., Ltd. Interposer and electronic device
US11894594B2 (en) 2017-12-15 2024-02-06 3D Glass Solutions, Inc. Coupled transmission line resonate RF filter
US11367939B2 (en) 2017-12-15 2022-06-21 3D Glass Solutions, Inc. Coupled transmission line resonate RF filter
US11677373B2 (en) 2018-01-04 2023-06-13 3D Glass Solutions, Inc. Impedence matching conductive structure for high efficiency RF circuits
CN108235592A (en) * 2018-01-30 2018-06-29 深圳市精诚达电路科技股份有限公司 A kind of process for monitoring FPC golden finger overlay coatings
US11076489B2 (en) 2018-04-10 2021-07-27 3D Glass Solutions, Inc. RF integrated power condition capacitor
US11139582B2 (en) 2018-09-17 2021-10-05 3D Glass Solutions, Inc. High efficiency compact slotted antenna with a ground plane
US11270843B2 (en) 2018-12-28 2022-03-08 3D Glass Solutions, Inc. Annular capacitor RF, microwave and MM wave systems
US11962057B2 (en) 2019-04-05 2024-04-16 3D Glass Solutions, Inc. Glass based empty substrate integrated waveguide devices
US11373908B2 (en) 2019-04-18 2022-06-28 3D Glass Solutions, Inc. High efficiency die dicing and release
US11908617B2 (en) 2020-04-17 2024-02-20 3D Glass Solutions, Inc. Broadband induction

Similar Documents

Publication Publication Date Title
JP2013062473A (en) Wiring board and manufacturing method therefor
JP2007059452A (en) Interposer, its manufacturing method, and electronic device
JP2009521116A (en) Method for manufacturing 3D electronic modules in an integrated manner
JP6531845B2 (en) Multilayer wiring board and probe card provided with the same
US10690716B2 (en) Multilayer wiring board for inspection of electronic components
JP5744210B2 (en) Thin film wiring board and probe card board
CN106548985A (en) Package carrier and method for manufacturing the same
TW201637522A (en) Printed circuit boards having profiled conductive layer and methods of manufacturing same
WO2016114133A1 (en) Interposer, semiconductor device, and method for manufacture thereof
CN105122449A (en) Low cost interposer comprising an oxidation layer
JP2017005081A (en) Interposer, semiconductor device, and method of manufacturing them
JP6099902B2 (en) Wiring board manufacturing method
JP6324669B2 (en) Multilayer wiring board and manufacturing method thereof
TWI477214B (en) Printed circuit board having buried component and method for manufacturing same
JP6058321B2 (en) Wiring board manufacturing method
JP6512366B2 (en) Circuit board, method of manufacturing circuit board and electronic device
JP6258810B2 (en) Wiring board manufacturing method
JP2009289789A (en) Printed wiring board with built-in component and its manufacturing method
JP2015159242A (en) Wiring board, and multilayer wiring board including the same
KR102575741B1 (en) Space transformer having common through via and method of fabricating the same
JP2013191678A (en) Multilayer wiring board
JP2006278996A (en) Wiring board, laminated circuit board and its manufacturing method
JP2005136266A (en) Ceramic multilayer wiring circuit board, method for manufacturing the same, and semiconductor device
JP6139856B2 (en) Wiring board and manufacturing method thereof
JP2014049701A (en) Wiring board and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105