JP2006278996A - Wiring board, laminated circuit board and its manufacturing method - Google Patents

Wiring board, laminated circuit board and its manufacturing method Download PDF

Info

Publication number
JP2006278996A
JP2006278996A JP2005100205A JP2005100205A JP2006278996A JP 2006278996 A JP2006278996 A JP 2006278996A JP 2005100205 A JP2005100205 A JP 2005100205A JP 2005100205 A JP2005100205 A JP 2005100205A JP 2006278996 A JP2006278996 A JP 2006278996A
Authority
JP
Japan
Prior art keywords
substrate
wiring
board
circuit board
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005100205A
Other languages
Japanese (ja)
Inventor
Kazuhisa Okamoto
和久 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2005100205A priority Critical patent/JP2006278996A/en
Publication of JP2006278996A publication Critical patent/JP2006278996A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To supply a construction method in which laminating-bonding is easily performed even a circuit board having a high-density and fine wiring pattern, and a build-up circuit board, by resolving connection failure caused by dimensional position accuracy generated by connection between circuit boards in the case of building up, even when a wiring width is narrow and wiring density increases on a substrate. <P>SOLUTION: A wiring board for building up comprises a wiring layer which is formed on the surface of the substrate and buried in a groove acting as the wiring pattern so that not protruded from the substrate surface, a conductive protrusion which is formed on a part of the wiring layer and so protruded from the substrate surface as to be electrically connected to another substrate, and a positioning protrusion for laminating substrates formed on one surface of the substrate and/or a positioning recess for laminating substrates formed on the rear surface of the one surface of the substrate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、精密な位置合わせ精度を持つ貼り合せ機を必要としないビルドアップ回路基板およびその製造方法に関するものである。 The present invention relates to a build-up circuit board that does not require a bonding machine having a precise alignment accuracy and a method for manufacturing the same.

従来の積層工法は、コア基板の上にファインパターンが形成された回路基板を構築してゆく。もともとアデイテイブやサブトラといった既存のファインパターン工法はアスペクト(配線厚/配線幅)が大きく取れないため大電流が流せない。そのため、大電流が流せる配線幅が大きい基板の上に、ファインパターンと呼ばれる配線幅の小さい回路基板を積層構築してゆく。   The conventional lamination method constructs a circuit board in which a fine pattern is formed on a core substrate. Originally, existing fine pattern methods such as additive and sub-trailer cannot provide a large current because the aspect (wiring thickness / wiring width) cannot be made large. For this reason, a circuit board having a small wiring width called a fine pattern is laminated on a substrate having a large wiring width through which a large current can flow.

その工法は、図5にみられるように、導電層のラフパターン1が形成されたコア材2を用意し(図5a)、この上に基板材料となる銅箔3の付いたプリブレブ(絶縁材)4を熱プレスにより貼り合せ(図5(b))、銅箔3をレーザやエッチングで配線をパターニングした後(図5(c))、ビア、スルーホールといった、下基板との接続孔5をドリルやレーザで加工して形成し(図5(d))、出来た孔に銅めっきを施して貼り合せた基板間の導通を取る(図5(e))。   As shown in FIG. 5, the method is prepared by preparing a core material 2 on which a rough pattern 1 of a conductive layer is formed (FIG. 5a), and a prepreg (insulating material) with a copper foil 3 as a substrate material thereon. ) 4 is bonded by hot pressing (FIG. 5 (b)), the copper foil 3 is patterned by laser or etching (FIG. 5 (c)), and then a connection hole 5 to the lower substrate such as a via or a through hole is formed. Is formed by machining with a drill or a laser (FIG. 5 (d)), and the resulting holes are plated with copper to establish conduction between the substrates (FIG. 5 (e)).

再度、銅箔7付きプリブレブ(絶縁材)6を貼り付け(図5(f))、銅箔をレーザやエッチングで配線をファインパターニングした後(図5(g))、ビア8a、スルーホール8bといった、下基板との接続孔をドリルやレーザで加工し(図5(h))、出来た孔に銅めっきを施す(図5(i))。この工程を繰り返し、積層して徐々に微細な線幅の配線を積層してゆく。例えば配線幅200μmのものから、1/10の配線幅20μmへとファインパターン化したければ、200μmの配線基板、次に100μmの配線基板、次に50μmの配線基板、次に25μm前後(20μm)の配線基板と積層してゆくので、積層する基板の枚数も増える。例えば携帯電話用のマザーボードなら4枚、デジタルカメラ用のマザーボードなら6枚といった積層枚数が必要である。   Once again, a pre-bleb (insulating material) 6 with copper foil 7 was attached (FIG. 5 (f)), and the copper foil was finely patterned by laser or etching (FIG. 5 (g)), then via 8a and through hole 8b. The connection hole with the lower substrate is processed with a drill or a laser (FIG. 5 (h)), and the resulting hole is plated with copper (FIG. 5 (i)). This process is repeated and laminated, and wirings with fine line widths are gradually laminated. For example, if it is desired to make a fine pattern from a wiring width of 200 μm to a 1/10 wiring width of 20 μm, a 200 μm wiring board, then a 100 μm wiring board, then a 50 μm wiring board, and then about 25 μm (20 μm) Since it is laminated with the wiring board, the number of boards to be laminated also increases. For example, a stack of 4 motherboards is required for mobile phone motherboards and 6 for digital camera motherboards.

また近年、積層基板枚数は増えるが、コア基板をファインパターンで製作、積層し、これをコア材として、ファインパターン上に更にファインパターンを積層しようというコアレス基板のビルドアップ工法が存在する。どちらの方法も積層の際はプレスでカシメ、各層の導通をとるため位置決めを施した後、フォトエッチング、レーザ加工等でファインパターニング後、ドリル、レーザ加工による基板への孔あけを実施し、孔側面への銅めっきが施され、下の基板との導通をとって基板を積層構築(ビルドアップ)する。   In recent years, the number of laminated substrates has increased, but there is a coreless substrate build-up method in which a core substrate is manufactured and laminated in a fine pattern, and this is used as a core material to further laminate a fine pattern on the fine pattern. In both methods, crimping is performed with a press and positioning is performed in order to make each layer conductive, then fine patterning is performed by photoetching, laser processing, etc., and drilling is performed on the substrate by laser processing. Copper plating is applied to the side surface, and electrical connection with the lower substrate is taken to build up (build up) the substrate.

このような上下基板で導通をとる配線接続の場合、配線幅や接続する導通孔が100μm程度に大きいと接続貼り合せは厳しくないが、10μm単位のおおきさ、特に配線幅が40μm以下となると、接続貼り合せは途端に厳しくなる。   In the case of such a wiring connection that conducts on the upper and lower substrates, the connection bonding is not strict if the wiring width and the conductive hole to be connected are as large as about 100 μm, but when the wiring width is 40 μm or less, the wiring width is 10 μm or less. Connection bonding becomes severe as soon as possible.

これは貼り合せという工程そのものに問題があるからで、コストの関係上、基板自身がメートル単位の大面積のものを用意してこの面積の中に同じ回路基板をコピーしたものを大量製作し、これらを大面積のまま貼って積層し、その後ダイシングしてビルドアップ基板を1個ずつ得るという工法をとるためである。一般的な貼り合せ機の一般的な公差は10μm以上で、貼り合せをすると、基板と基板の接続しようとする配線間にズレが生じ、1メートル四方の基板を用いた場合に両端間では1mm以上ずれて接続され断線等が生じる。   This is because there is a problem in the process of bonding itself, because of the cost, the board itself prepared a large area of a meter unit, and mass produced what copied the same circuit board in this area, This is because a method is adopted in which these are pasted and stacked in a large area, and then diced to obtain one build-up substrate. The general tolerance of a general laminating machine is 10 μm or more, and when laminating, there will be a gap between the wiring to be connected between the board and the board, 1 mm between both ends when using a 1 meter square board. As a result, the connection is shifted and disconnection occurs.

逆に貼り合せ機の公差を上げると、LSIをパッケージに実装するチップボンダのような1cm角の貼り合せ機しかなく、大面積化での貼り合せができない。そうすると、面積的に広い回路基板で高密度微細な回路を形成しようとしても、それに合った製造設備などのインフラが無い限り難しい。(特許文献1,2 非特許文献1,2)
特開平6−21649号公報 特開2001−102749号公報 社団法人 エレクトロニクス実装学会 教育講座「PWB製造入門コース:プリント配線板の基礎からモバイル機器対応技術まで」2004年 独立行政法人 工業所有権情報・研修館 流通部 「特許流通支援チャート 電気4 ビルドアップ多層配線板」平成13年度
Conversely, if the tolerance of the laminating machine is increased, there is only a 1 cm square laminating machine such as a chip bonder for mounting an LSI on a package, and bonding with a large area cannot be performed. Then, even if an attempt is made to form a high-density and fine circuit on a circuit board having a large area, it is difficult unless there is an infrastructure such as a manufacturing facility. (Patent Documents 1 and 2 Non-Patent Documents 1 and 2)
JP-A-6-21649 JP 2001-102749 A Japan Institute of Electronics Packaging Education Course “Introduction to PWB Manufacturing: From the Basics of Printed Wiring Board to Technology for Mobile Devices” 2004 Independent Administrative Institution Industrial Property Information and Training Center Distribution Department “Patent Distribution Support Chart Electric 4 Build-up Multilayer Wiring Board” 2001

本発明は上記のような、配線幅が細くなり、基板上の配線密度がアップしても、ビルドアップの際の回路基板間の接続にて必ず発生する寸法位置精度から生じる接続不良を解消し、高密度微細な配線パターンを持つ回路基板でも容易に積層貼りあわせが可能である工法とビルドアップ回路基板を供給するものである。   The present invention eliminates the above-mentioned connection failure caused by the dimensional position accuracy that always occurs in connection between circuit boards even when the wiring width on the board is increased and the wiring density on the board is increased. The present invention also provides a construction method and a build-up circuit board that can be easily laminated and laminated even on a circuit board having a high-density fine wiring pattern.

本発明は、ビルドアップ用回路基板であって、基板表面に形成され配線パターンとなる溝内に埋め込まれ基板面から突出しない配線層、配線層の一部に形成され他基板との電気接続をとるため基板面から突出した導電突起、基板の一面に形成された基板積層時の位置合わせ用突起および/または基板の一面の裏面に形成された基板積層時の位置合わせ用凹部とを備えた配線基板である。
位置あわせ用突起の高さは基板面より30μm以上70μm以下、前記導電突起の高さは回路基板表面より1μm以上3μm以下である事が好ましい。
The present invention relates to a circuit board for build-up, which is formed in a part of a wiring layer that is embedded in a groove that is formed on the surface of the board and forms a wiring pattern, and that does not protrude from the board surface. Wiring provided with conductive protrusions protruding from the substrate surface, alignment protrusions formed on one surface of the substrate when stacked, and / or concave portions for alignment when stacked on the back surface of the substrate It is a substrate.
The height of the alignment protrusion is preferably 30 μm or more and 70 μm or less from the substrate surface, and the height of the conductive protrusion is preferably 1 μm or more and 3 μm or less from the circuit board surface.

また本発明は、この配線基板が複数枚積層された積層回路基板であり、各配線基板の前記位置合わせ用凹凸が上下の基板間で勘合しており、各基板間には異方性導電接着剤が充填されている積層回路基板である。   Further, the present invention is a laminated circuit board in which a plurality of wiring boards are laminated, and the alignment unevenness of each wiring board is fitted between the upper and lower boards, and anisotropic conductive adhesion is provided between the boards. It is a laminated circuit board filled with an agent.

さらに本発明は、これらの配線基板の製造方法であり、前記配線パターン、前記導電突起および前記位置あわせ用突起および/または位置あわせ用穴に対応する凹凸を備えた金型を用い樹脂を該金型内で成形することを特徴する配線基板の製造方法である。   Furthermore, the present invention is a method for manufacturing these wiring boards, wherein a resin having a metal mold provided with irregularities corresponding to the wiring pattern, the conductive protrusion, the alignment protrusion, and / or the alignment hole is used for the resin. It is a manufacturing method of a wiring board characterized by forming in a mold.

本発明の製造方法によれば、回路基板の表面の凹凸は従来のように後加工するのではなく、成形によって回路基板を製作しそのときに基板面の凹凸形状も同時に形成されるので、基板同士をカシメ合う凹凸はあらかじめ金型の寸法精度により決定される。更に回路基板製作用にメートル単位の大きな設備を必要とせず,成形時のタクト時間を短縮して量産に対応できる。金型がキズつけば金型を交換すれば、同じ物を何万個と成形することでコピーでき、基板を何枚積層しようとも、位置合わせ用の凹凸は同じ位置に形成される。   According to the manufacturing method of the present invention, the unevenness of the surface of the circuit board is not post-processed as in the prior art, but the circuit board is manufactured by molding, and the uneven shape of the substrate surface is simultaneously formed at that time. The unevenness that caulks each other is determined in advance by the dimensional accuracy of the mold. In addition, it does not require a large metric unit for circuit board production, and the tact time at the time of molding can be shortened to support mass production. If the mold is scratched, if the mold is replaced, it can be copied by forming tens of thousands of the same thing, and the alignment irregularities are formed at the same position no matter how many substrates are stacked.

従来は、銅箔材料の厚みが一般的な12μmの場合、配線が向かい合って積層される場合最低でも24μm以上の接着剤を兼ねた絶縁材を積層される基板間にコーテイングしなくてはならない。これに対して本発明の配線基板では、配線が基板面から突出していないため、従来では基板を積層した際に各配線厚み分から形成されてしまう接着層の厚さが無くなり、貼り合せた基板の総厚みは、各層の配線厚みを差し引いた分薄くすることが可能となる。   Conventionally, when the thickness of the copper foil material is generally 12 μm, when the wirings are laminated facing each other, it is necessary to coat between the substrates on which the insulating material serving as an adhesive of 24 μm or more is laminated at least. On the other hand, in the wiring substrate of the present invention, since the wiring does not protrude from the substrate surface, the thickness of the adhesive layer formed from the thickness of each wiring when the substrates are laminated is eliminated, and the bonded substrate The total thickness can be reduced by subtracting the wiring thickness of each layer.

そのため異方性導電ペースト(ACP)を接着剤として、また局所部では導電体として用いる場合、その局所部で導電体を挟む距離は、最低ACPに含まれる金属粒子の粒径(例えば4μm)となるが、導電体を挟む局所部の突起の高さを3μm以下にすれば基板を2枚貼り合せた際の基板間のスペースは7μm以下にすることができ、ビルドアップ基板の枚数が増えれば、増えるほど、積層基板の厚みの増加を抑えることが可能となる。限られた空間への実装を強いられるアプリケーション、例えば携帯電話用のマザーボードなら、基板厚みを100μmとして、4枚貼り合せただけで最低72μmの接着層が必要だった基板が、最低21μmの接着層ですみ、従来より51μm以上薄くすることが可能となり、空いた空間に他の機能性基板を追加したり、チップ部品を実装し、付加価値を高めることが可能となる。   Therefore, when using anisotropic conductive paste (ACP) as an adhesive and as a conductor in a local portion, the distance between the conductors in the local portion is the minimum particle size (for example, 4 μm) of metal particles contained in the ACP. However, if the height of the local protrusions sandwiching the conductor is 3 μm or less, the space between the two substrates can be reduced to 7 μm or less when the number of build-up substrates is increased. As the number increases, the increase in the thickness of the laminated substrate can be suppressed. For applications that are forced to be mounted in a limited space, for example, a mother board for a mobile phone, the substrate thickness is 100 μm, and a substrate that requires a minimum of 72 μm adhesive layer by simply laminating four substrates is a minimum 21 μm adhesive layer As a result, it is possible to reduce the thickness by 51 μm or more than before, and it is possible to add another functional substrate to the vacant space or mount chip parts to increase added value.

さらに積層する基板間のスペースがこのように小さくなるので、位置合わせ用の突起の高さを大きくする必要がなく、基板と一体となる突起の形成が極めて容易になる。また基板間の導通をとる導電突起の高さを配線層の厚さよりも小さくすることが好ましい。こうすると基板面から配線層が突出する従来の基板を積層したときの基板間距離よりも小さくなることができる。必要とする配線層の厚さは従来と変わらないからである。   Further, since the space between the substrates to be laminated becomes small in this way, it is not necessary to increase the height of the alignment protrusion, and it becomes extremely easy to form the protrusion integrated with the substrate. Moreover, it is preferable to make the height of the conductive projections for conducting between the substrates smaller than the thickness of the wiring layer. If it carries out like this, it can become smaller than the distance between board | substrates when the conventional board | substrate which a wiring layer protrudes from a board | substrate surface is laminated | stacked. This is because the required thickness of the wiring layer is not different from the conventional one.

そして積層される配線基板には位置あわせ用の突起および/またはその裏面に凹部を有しているので位置あわせが容易に行え、特に位置あわせ時に横ずれが生じないので基板間の導通をとるための突起が、横ずれによる損傷を蒙ることを防ぐことができる。積層される最上部の配線基板には位置あわせ用の突起がなくてもよく、最下部の配線基板には位置あわせ用の凹部がなくてもよい。   And since the wiring board to be laminated has a protrusion for alignment and / or a recess on its back surface, it can be easily aligned, and in particular, there is no lateral shift at the time of alignment. It is possible to prevent the protrusion from being damaged due to the lateral displacement. The uppermost wiring board to be laminated may not have an alignment protrusion, and the lowermost wiring board may not have an alignment recess.

また従来は、配線幅と間隔がL/S=10μm/10μmクラスの高密度微細配線基板で一番の問題点は、積層の工法もさることながら、配線間のショートであった。たとえば、銅箔を張ったポリイミドのフィルムにエキシマレーザでL/S=10μm/10μmで加工を施し、その場で加工した信号線同士を測定して抵抗が無限大になっていても、ハンドリング等で基板を移動して再度測定すると、抵抗値が100Ωから0Ωと低い値になることがある。これは、レーザ照射などで除去した間隔S=10μmの部分に何らかのゴミが付着して通電(ショート)していることが原因である。そのためL=10μmクラスの高密度微細な回路基板を積層するにはクラス10〜100の半導体を製造するクリーンルーム並の設備が必要となる。   Conventionally, the most serious problem with a high-density fine wiring board having a wiring width and interval of L / S = 10 μm / 10 μm class is a short circuit between wirings as well as a lamination method. For example, even if polyimide film with copper foil is processed with an excimer laser at L / S = 10μm / 10μm, and the signal lines processed on the spot are measured to make the resistance infinite, handling, etc. When the substrate is moved and measured again, the resistance value may be as low as 100Ω to 0Ω. This is because some kind of dust adheres to the portion of the interval S = 10 μm removed by laser irradiation or the like and is energized (short-circuited). Therefore, in order to stack a high-density fine circuit board of L = 10 μm class, a facility equivalent to a clean room for manufacturing a semiconductor of class 10 to 100 is required.

これに対して本発明の回路基板はフラッシュボードすなわち配線層が基板表面から突出しないので、配線パターンの間が凹むことなくフラットであるから、基板表面をふき取ったりブロー等により配線間のショートを容易に防ぎ、積層が可能となるので、ビルドアップのためにわざわざ半導体を製造するクリーンルーム並の巨額な設備投資の必要もなくなる。   On the other hand, the circuit board of the present invention has no flash board, i.e., a wiring layer protruding from the surface of the board, and is flat without being recessed between wiring patterns. Therefore, there is no need for huge capital investment as in a clean room where a semiconductor is purposely manufactured for build-up.

本発明の回路基板では位置合わせ用突起や穴を基板と一体で設けたので、回路基板同士を積層するのに、精密な貼り合せ機が無くても高密度微細な回路基板を積層できる。さらに、配線層が基板表面から突出してないので、位置合わせ用の突起の高さや位置合わせ用穴の深さを小さくできるので製造が容易となる。またこの回路基板を積層した積層基板では、異方性導電剤を接着剤として用いても配線層が各基板表面から突出しないため、接着剤層の厚さを薄くでき、結果積層基板の厚さを薄くできる。この効果は基板間の導通をとる導電突起の高さを配線層の厚さよりも小さくすることにより、基板面から配線層が突出する従来の基板を積層したときの基板間距離よりも小さくなることで顕著となる。   In the circuit board according to the present invention, the alignment protrusions and holes are provided integrally with the board, so that the circuit boards can be laminated with high density and fine circuit boards without a precise bonding machine. Further, since the wiring layer does not protrude from the substrate surface, the height of the alignment protrusion and the depth of the alignment hole can be reduced, which facilitates manufacture. In addition, in the multilayer substrate in which this circuit board is laminated, the thickness of the adhesive layer can be reduced because the wiring layer does not protrude from the surface of each substrate even when an anisotropic conductive agent is used as the adhesive. Can be thinned. This effect is achieved by making the height of the conductive protrusions that conduct electricity between the substrates smaller than the thickness of the wiring layer, so that it becomes smaller than the distance between the substrates when a conventional substrate in which the wiring layer protrudes from the substrate surface is laminated. Becomes noticeable.

あらかじめそれぞれの基板の表面の任意の位置に公差3μm単位の凸を有し、更に基板のウラ面の任意の位置に公差3μm単位の凹を有した基板を2枚成形して用意し、配線となる成形溝に銅めっきを施して、エッチングしフラッシュボードの形状に仕上げ、接続材料として接着効果も兼ねたACP(異方性導電ペースト)を用いてそれぞれの基板同士を重ねて熱プレスで接着して、ビルドアップ基板を得る。   Prepare two pre-formed substrates with a tolerance of 3 μm at any position on the surface of each substrate, and a recess with a tolerance of 3 μm at any position on the back surface of the substrate. The formed grooves are plated with copper, etched and finished to the shape of a flash board, and each substrate is overlapped with a hot press using ACP (anisotropic conductive paste) that also has an adhesive effect as a connection material. Get the build-up board.

用いた回路基板のサイズは、回路基板のa面隅に設ける突起11を除いて、4cm×2cm、厚み0.1mmとした。
積層する基板を2種類用意した。図1に基板成形品Aの外観斜視図を示す。
回路基板の中に形成されるテストパターンの配線部10は配線最小幅10μm、配線の高さを20μm、接続用孔(図示せず)はφ20μmとし、基板Aに2箇所1cmの間隔で設けた。回路パターンは基板の1つの面(a面)のみに形成し、その裏面(b面)には特にパターンを設けなかった。
The size of the circuit board used was 4 cm × 2 cm and the thickness was 0.1 mm, excluding the protrusions 11 provided at the corners of the a-plane of the circuit board.
Two types of substrates to be laminated were prepared. FIG. 1 shows an external perspective view of the substrate molded product A. FIG.
The wiring portion 10 of the test pattern formed in the circuit board has a minimum wiring width of 10 μm, a wiring height of 20 μm, a connection hole (not shown) of φ20 μm, and is provided on the substrate A at intervals of 1 cm. . The circuit pattern was formed only on one surface (a surface) of the substrate, and no pattern was provided on the back surface (b surface).

回路基板のa面隅に設ける突起11は一辺3mm+0/-0.01mm、高さ0.03mmの直方形とし、これを4箇所に設置した。  The protrusions 11 provided at the corners of the a-plane of the circuit board were rectangular with a side of 3 mm + 0 / −0.01 mm and a height of 0.03 mm, and were installed at four locations.

また、裏面であるb面に形成する凹面は、一辺3mm+0.01mm/-0mm、深さ0.03mmで4箇所に形成されるようにした。   In addition, the concave surface formed on the b-surface, which is the back surface, was formed at four locations with a side of 3 mm + 0.01 mm / -0 mm and a depth of 0.03 mm.

使用した成形材料は平均粒径2μm以下のSiO2球状フィラー70質量%以上を含有するエポキシコンパウンド品を用い、成形後の銅めっきで、アンカー効果を持たせるために1ミクロン以下の平均粒径を持つ炭酸カルシウムを3.5質量%以上配合した。成形材料の線膨張率は20ppm、成形収縮率は0.319%である。成形材料を20g以上使ってタブレットを作り、10トントランスファー成形機で150℃〜170℃の温度で金型を加熱、射出圧力1MPa以上で成形し基板Aを得た。α−α’での断面を図1(b)に示す。 The molding material used is an epoxy compound product containing 70% by mass or more of SiO 2 spherical filler with an average particle size of 2 μm or less, and copper plating after molding has an average particle size of 1 micron or less in order to give an anchor effect. 3.5% by mass or more of calcium carbonate having was blended. The linear expansion coefficient of the molding material is 20 ppm, and the molding shrinkage ratio is 0.319%. A tablet was prepared using 20 g or more of the molding material, and the mold was heated at a temperature of 150 ° C. to 170 ° C. with a 10-ton transfer molding machine and molded at an injection pressure of 1 MPa or more to obtain a substrate A. A cross section at α-α ′ is shown in FIG.

基板の表裏を電気接続するための穴を金型でショートさせて得ようとすると、基板厚み100μmの場合、穴径がφ40μmまでなら容易に金型製作可能である。今回は穴径φ20μmを基板成形後にエキシマレーザで穴をあけた。よって基板のb面側には接続用の直径20μmのビア、またはスルーホールが開口している。   If a hole for electrically connecting the front and back of the substrate is shorted with a mold, the mold can be easily manufactured if the hole diameter is up to φ40 μm when the substrate thickness is 100 μm. This time, a hole diameter of 20 μm was formed with an excimer laser after forming the substrate. Therefore, vias or through holes having a diameter of 20 μm are opened on the b-plane side of the substrate.

成形後、基板成形品を180℃でオーブンで1時間焼き、その後、銅めっきプロセスを用いて無電解銅層、電解銅層を形成する。基板のa面は厚さ30μm以上銅めっきを施すが、基板のb面側は例えば無電解銅の厚み3μmのままになるようにシール剤等でマスキングしておいてもよい。次に回路基板の側面やa面で配線パターン以外の必要のない銅層をケミカルまたは物理的な研磨で除去した。銅めっきを施して配線基板になった基板Aを図2に示す。これにより導体層が基板面の配線パターンに埋め込まれて、配線が基板面から突出しない配線基板が得られた。ちなみに図2では配線20とアース部21が形成されている(導通孔は図示せず)。
得られたテストパターンにテスターをあて、基板の表裏間が、抵抗値で0Ωから10Ωと導通していることを確認した。
After molding, the substrate molded product is baked in an oven at 180 ° C. for 1 hour, and then an electroless copper layer and an electrolytic copper layer are formed using a copper plating process. The a-side of the substrate is plated with copper of 30 μm or more, but the b-side of the substrate may be masked with a sealant or the like so that the thickness of electroless copper remains 3 μm, for example. Next, the unnecessary copper layer other than the wiring pattern on the side surface or the a surface of the circuit board was removed by chemical or physical polishing. FIG. 2 shows a substrate A that has been subjected to copper plating to become a wiring substrate. As a result, the conductor layer was embedded in the wiring pattern on the board surface, and a wiring board in which the wiring did not protrude from the board surface was obtained. Incidentally, the wiring 20 and the earthing part 21 are formed in FIG. 2 (conduction holes are not shown).
A tester was applied to the obtained test pattern, and it was confirmed that the resistance between the front and back of the substrate was 0Ω to 10Ω.

次に基板Aのb面に他基板との電気接続のための突起(いわゆるスタンドオフ)を形成する。図3で基板A;36にはa面からb面にφ20μmの接続用孔30が形成されていてそこに銅めっきが層が埋め込まれている。この接続用孔の上にマスキング剤をスポット的に塗ってこの部分をマスキング後、b面上の銅層の必要のない部分をケミカルエッチングで除去し、最後にマスキング剤を除去すると、φ20μmのところだけ無電解銅で形成された高さ3μmの銅の凸部32(いわゆるスタンドオフ)が形成された。   Next, a protrusion (so-called standoff) for electrical connection with another substrate is formed on the b surface of the substrate A. In FIG. 3, a substrate A; 36 has a connecting hole 30 of φ20 μm formed from the a-plane to the b-plane, and a copper plating layer is embedded therein. After masking this part by spotting a masking agent on the hole for connection, the unnecessary part of the copper layer on the b surface is removed by chemical etching, and finally the masking agent is removed. As a result, a copper protrusion 32 (so-called standoff) having a height of 3 μm and formed of electroless copper was formed.

このように配線基板が出来たところで、次のビルドアップ工程に入る。
図4(a)のように、貼り合せる基板B;35のa面にACP;37を常温で塗布する。このACPには、平均粒径が4μmのNi、Au粒子がポリマーコーテイングされている。次に、b面にスタンドオフを形成した基板Aの凹部38をACPの載った基板の凸部39と嵌め合わせる。貼り合せた基板をプレス機に乗せ、2MPaの圧力で200℃の温度で20秒以上プレスし、その後取り出した(図4(b))。
When the wiring board is completed in this way, the next build-up process is started.
As shown in FIG. 4 (a), ACP; 37 is applied to the a surface of the substrate B; In this ACP, Ni and Au particles having an average particle diameter of 4 μm are polymer coated. Next, the concave portion 38 of the substrate A in which the stand-off is formed on the b surface is fitted with the convex portion 39 of the substrate on which the ACP is placed. The bonded substrate was placed on a press machine and pressed at a pressure of 2 MPa at a temperature of 200 ° C. for 20 seconds or more, and then taken out (FIG. 4B).

スタンドオフが作られた部分は、3μmの出っ張りがあるので、基板間に挟まれるACPの粒径はスタンドオフの部分だけがつぶされ、金属がポリマーから露出して導電状態となる。スタンドオフが形成されてない部分には、Ni、Au粒子の粒径4μmとスタンドオフの高さ3μmの合計から最大7μmのクリアランスができ、この部分の粒径はつぶれないため基板間の絶縁と接着剤の役目を果す。   Since the portion where the standoff is made has a protrusion of 3 μm, the particle size of the ACP sandwiched between the substrates is crushed only by the portion of the standoff, and the metal is exposed from the polymer and becomes conductive. In the part where the standoff is not formed, a clearance of a maximum of 7 μm can be made from the sum of the particle diameter of Ni and Au particles of 4 μm and the height of the standoff of 3 μm. Serves as an adhesive.

貼り付けた両基板の所定の導電部間をテスターで測定したところ、抵抗0Ω〜10Ωで導通確認がとれた。このように、積層された基板間のスペースが小さく、かつ位置合わせが容易でかつ位置合わせ精度の高い積層基板が得られた。   When the distance between the predetermined conductive portions of the two substrates pasted was measured with a tester, conduction was confirmed with a resistance of 0Ω to 10Ω. As described above, a laminated substrate having a small space between the laminated substrates, easy alignment, and high alignment accuracy was obtained.

本発明の回路基板及びその積層基板は小型化が著しい各種電気電子機器の回路搭載基板として用いることができる。 The circuit board and the laminated board of the present invention can be used as circuit mounting boards for various electric and electronic devices that are remarkably miniaturized.

本発明の基板成形品Aの(a)概略図と(b)α-α’での断面図のイメージ図である。It is an image figure of (a) schematic and (b) sectional drawing in (b) (alpha)-(alpha) of the board | substrate molded product A of this invention. 銅めっきとエッチングによりフラッシュボードとなった基板Aの(a)概略図、(b)α-α’での断面図である。FIG. 4A is a schematic view of a substrate A that has become a flash board by copper plating and etching, and FIG. 本発明の配線基板をビルドアップした際のフローチャート図である。It is a flowchart figure at the time of building up the wiring board of this invention. 本発明の積層回路基板の一例の断面図である。It is sectional drawing of an example of the laminated circuit board of this invention. 従来のビルドアップ工法のフローチャート図である。It is a flowchart figure of the conventional buildup construction method.

符号の説明Explanation of symbols

1:ラフパターン 2:コア材 3:銅箔
4:プリプレグ 5:接続孔 6:プリプレグ
7:銅箔 8a:ビア 8b:スルーホール
10:配線部 11:突起 20:配線部
21:アース部 30:接続用孔 32:凸部
35:基板B 36:基板A 37:ACP(異方性導電ペースト)

1: Rough pattern 2: Core material 3: Copper foil
4: Pre-preg 5: Connection hole 6: Pre-preg 7: Copper foil 8a: Via 8b: Through hole
10: Wiring part 11: Protrusion 20: Wiring part
21: Earth part 30: Connection hole 32: Convex part
35: Substrate B 36: Substrate A 37: ACP (anisotropic conductive paste)

Claims (4)

ビルドアップ用配線基板であって、基板表面に形成され配線パターンとなる溝内に埋め込まれ基板面から突出しない配線層、配線層の一部に形成され他基板との電気接続をとるため基板面から突出した導電突起、基板の一面に形成された基板積層時の位置合わせ用突起および/または基板の一面の裏面に形成された基板積層時の位置合わせ用凹部とを備えたことを特徴とする配線基板。     A wiring board for build-up, which is embedded in a groove which is formed on the surface of the board and forms a wiring pattern, and does not protrude from the board surface, and is formed on a part of the wiring layer to be electrically connected to another board surface. A conductive protrusion protruding from the substrate, an alignment protrusion formed on one surface of the substrate when stacked, and / or a positioning recess formed on the back surface of the substrate when stacked. Wiring board. 位置あわせ用突起の高さは回路基板表面より30μm以上50μm以下、前記導電突起の高さは基板面より1μm以上3μm以下である請求項1に記載の配線基板。 2. The wiring board according to claim 1, wherein the height of the alignment protrusion is from 30 μm to 50 μm from the surface of the circuit board, and the height of the conductive protrusion is from 1 μm to 3 μm from the substrate surface. 請求項1または請求項2に記載の配線基板が複数積層された積層回路基板であり、各配線基板の前記位置合わせ用突起および凹部が上下の基板間で勘合しており、各基板間には異方性導電接着剤が充填されていることを特徴とする積層回路基板。     A laminated circuit board in which a plurality of wiring boards according to claim 1 or 2 are laminated, wherein the alignment protrusions and recesses of each wiring board are fitted between upper and lower boards, and between each board, A laminated circuit board, which is filled with an anisotropic conductive adhesive. 請求項1または請求項2の配線基板の製造方法であり、前記配線パターン、前記導電突起および前記位置あわせ用突起および/または位置あわせ用穴に対応する凹凸を備えた金型を用い樹脂を該金型内で成形することを特徴する配線基板の製造方法。
3. The method of manufacturing a wiring board according to claim 1 or 2, wherein a resin is used by using a mold having irregularities corresponding to the wiring pattern, the conductive protrusion, the alignment protrusion, and / or the alignment hole. A method of manufacturing a wiring board, characterized by molding in a mold.
JP2005100205A 2005-03-30 2005-03-30 Wiring board, laminated circuit board and its manufacturing method Pending JP2006278996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100205A JP2006278996A (en) 2005-03-30 2005-03-30 Wiring board, laminated circuit board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100205A JP2006278996A (en) 2005-03-30 2005-03-30 Wiring board, laminated circuit board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006278996A true JP2006278996A (en) 2006-10-12

Family

ID=37213371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100205A Pending JP2006278996A (en) 2005-03-30 2005-03-30 Wiring board, laminated circuit board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006278996A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153445A1 (en) * 2022-02-09 2023-08-17 株式会社レゾナック Member for forming wiring, method for forming wiring layer using member for forming wiring, and formed wiring member
WO2023152838A1 (en) * 2022-02-09 2023-08-17 株式会社レゾナック Member for forming wiring, method for forming wiring layer using member for forming wiring, and wiring forming member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153445A1 (en) * 2022-02-09 2023-08-17 株式会社レゾナック Member for forming wiring, method for forming wiring layer using member for forming wiring, and formed wiring member
WO2023152838A1 (en) * 2022-02-09 2023-08-17 株式会社レゾナック Member for forming wiring, method for forming wiring layer using member for forming wiring, and wiring forming member

Similar Documents

Publication Publication Date Title
EP2954760B1 (en) Fusion bonded liquid crystal polymer circuit structure
US8893380B2 (en) Method of manufacturing a chip embedded printed circuit board
JP4181778B2 (en) Wiring board manufacturing method
CN102293069B (en) Wiring board and method for manufacturing the same
TW530377B (en) Structure of laminated substrate with high integration and method of production thereof
US8099865B2 (en) Method for manufacturing a circuit board having an embedded component therein
EP3582593B1 (en) Method of manufacturing a component carrier with a stepped cavity and a stepped component assembly being embedded within the stepped cavity
US11324126B2 (en) Mechanically robust component carrier with rigid and flexible portions
US10159154B2 (en) Fusion bonded liquid crystal polymer circuit structure
US10506722B2 (en) Fusion bonded liquid crystal polymer electrical circuit structure
KR100820633B1 (en) Printed circuit board having embedded electronic component and manufacturing method thereof
US20090242238A1 (en) Buried pattern substrate
US10064292B2 (en) Recessed cavity in printed circuit board protected by LPI
JP2010016339A (en) Module using multilayer flexible printed circuit board and method of manufacturing the same
JP2018078133A (en) Built-in coil glass substrate and build-up substrate
US7728234B2 (en) Coreless thin substrate with embedded circuits in dielectric layers and method for manufacturing the same
JPWO2009037833A1 (en) Three-dimensional printed wiring board, method for manufacturing the same, and electronic component module
US20110089138A1 (en) Method of manufacturing printed circuit board
US11570905B2 (en) Method of manufacturing component carrier and component carrier
KR100752017B1 (en) Manufacturing Method of Printed Circuit Board
CN102577642A (en) Printed circuit board and manufacturing method thereof
KR101713640B1 (en) Substrate with built-in components
JP2006278996A (en) Wiring board, laminated circuit board and its manufacturing method
JP2005268378A (en) Method of manufacturing substrate with incorporated components
JP2009016806A (en) Embedded pattern board and its manufacturing method