JP2005268378A - Method of manufacturing substrate with incorporated components - Google Patents

Method of manufacturing substrate with incorporated components Download PDF

Info

Publication number
JP2005268378A
JP2005268378A JP2004075910A JP2004075910A JP2005268378A JP 2005268378 A JP2005268378 A JP 2005268378A JP 2004075910 A JP2004075910 A JP 2004075910A JP 2004075910 A JP2004075910 A JP 2004075910A JP 2005268378 A JP2005268378 A JP 2005268378A
Authority
JP
Japan
Prior art keywords
double
sided wiring
base material
substrate
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004075910A
Other languages
Japanese (ja)
Inventor
Hitoshi Motoyoshi
仁志 元吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP2004075910A priority Critical patent/JP2005268378A/en
Publication of JP2005268378A publication Critical patent/JP2005268378A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a substrate with incorporated components with which a via diameter can be reduced and a via pitch can be made narrow. <P>SOLUTION: There are prepared first and second double-coated wiring boards 10 and 20 with predetermined electrical components 6, 7 packaged thereon, and a connecting substrate 13 wherein a connecting pin 12 comprised of a predetermined metal is fixed through the predetermined portion of a sheet-like insulated base material 11 by implanting so that its both terminals are protruded from the front surface of the insulated base material 11. The first and second double coated wiring boards 10 and 20 are disposed to each other while confronting their sides where the electrical components 6, 7 are packaged, and the connecting substrate 13 is disposed between the first and second double coated wiring boards 10 and 20. The first and second double coated wiring boards are then adhered with each other using an anisotropic conductive adhesion film 8, and the first and second double coated wiring boards 10 and 20 are electrically connected with each other by the connecting pin 12 of the connecting substrate 13. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、所定の部品を内蔵する部品内蔵型の多層配線基板の製造方法に関する。   The present invention relates to a method of manufacturing a component-embedded multilayer wiring board that incorporates predetermined components.

従来、この種の部品内蔵基板は、種々の方法によって作成されている。
例えば、B2it法を用いた方法においては、両面配線基板を作成してこの両面配線基板上に所定の部品を実装する。
Conventionally, this type of component-embedded substrate is produced by various methods.
For example, in the method using the B 2 it method, a double-sided wiring board is created and predetermined components are mounted on the double-sided wiring board.

そして、この部品を実装した基板の両面側からB2it基板を積層して各層の接続を行った後、外層の回路形成を行う。
さらに、外層の回路パターン上にソルダーレジスト層を形成した後、接続用の金めっき処理を行う。
Then, a B 2 it substrate is laminated from both sides of the substrate on which this component is mounted, and the layers are connected to each other, and then the outer layer circuit is formed.
Furthermore, after forming a solder resist layer on the circuit pattern of the outer layer, a gold plating process for connection is performed.

一方、ビルドアップ法の場合は、B2it法と同様、両面配線基板を作成してこの両面配線基板上に所定の部品を実装する。
そして、この基板の両側から樹脂付き銅箔を積層し、レーザーによる孔あけを行った後、ビアめっきを施す。
さらに、外層の回路形成を行い、その回路パターン上にソルダーレジスト層を形成した後、接続用の金めっき処理を行う。
On the other hand, in the case of the build-up method, a double-sided wiring board is created and predetermined components are mounted on the double-sided wiring board as in the B 2 it method.
And after laminating | stacking the copper foil with resin from the both sides of this board | substrate and drilling with a laser, via plating is given.
Further, after forming an outer layer circuit and forming a solder resist layer on the circuit pattern, a gold plating process for connection is performed.

しかし、上述した従来技術においては、種々の問題がある。
例えば、B2it法の場合は、バンプの径が大きく狭ピッチ化への対応が困難である。
また、逐次積層によって積層するので完成するまでに時間がかかり、また、最外層の金めっきやソルダーレジスト層に不良が発生した場合には、内蔵部品も含めて全ての部分が使用できなくなってしまう。
However, the above-described prior art has various problems.
For example, in the case of the B 2 it method, the bump diameter is large and it is difficult to cope with a narrow pitch.
In addition, since it is laminated by sequential lamination, it takes time to complete, and if a defect occurs in the outermost gold plating or solder resist layer, all parts including built-in parts can not be used. .

さらに、成形時の位置合わせの困難さ、またPP材の硬化収縮によってビルドアップ層のビアホールの狭ピッチ化が困難である。
加えて、ペーストによってパターン間の接続を行うため導通抵抗が大きく、また熱伝導率も低いという問題がある。
さらにまた、実装部品に対する配線長が長いため、信号の高速化が困難である。
Furthermore, it is difficult to align the position during molding, and it is difficult to narrow the pitch of the via holes in the build-up layer due to the curing shrinkage of the PP material.
In addition, since the patterns are connected by paste, there is a problem that the conduction resistance is large and the thermal conductivity is low.
Furthermore, since the wiring length for the mounted component is long, it is difficult to increase the signal speed.

一方、ビルドアップ法の場合は、レーザー光によるビアホールのピッチが大きく狭ピッチ化への対応が困難である。
また、ビルドアップ法は、部品内蔵後にビアホール、デスミア、めっきを行わなければならず、B2it法以上に工程数が多い。
On the other hand, in the case of the build-up method, the via hole pitch by the laser beam is large and it is difficult to cope with the narrow pitch.
The build-up method requires via holes, desmearing, and plating after the components are built in, and has more steps than the B 2 it method.

さらに、樹脂付き銅箔は、部品上に積層した場合に部品の高さを吸収できないため、最外層の表面が平滑にならない。
さらにまた、B2it法と同様に、部品実装と同時にシートサイズとなるため、以降の基板工程が困難であるとともに、実装部品に対する配線長が長いため、信号の高速化が困難である。
Further, since the copper foil with resin cannot absorb the height of the component when laminated on the component, the surface of the outermost layer does not become smooth.
Furthermore, as with the B 2 it method, since the sheet size becomes the same as the component mounting, the subsequent board process is difficult, and the wiring length for the mounted component is long, so that it is difficult to increase the signal speed.

本発明は、このような従来の技術の課題を解決するためになされたもので、その目的とするところは、ビア径の小径化及びビアピッチの狭ピッチ化が可能な部品内蔵基板の製造方法を提供することにある。   The present invention has been made in order to solve the above-described problems of the prior art, and an object of the present invention is to provide a method for manufacturing a component-embedded substrate capable of reducing the via diameter and the via pitch. It is to provide.

また、本発明の他の目的は、工程数が少なく効率良く短期間で製造でき、しかも最外層部の処理不良に対する損失の少ない部品内蔵基板の製造方法を提供することにある。   Another object of the present invention is to provide a method for manufacturing a component-embedded substrate that can be manufactured efficiently and in a short period of time with a small number of processes and that has little loss due to processing failure of the outermost layer portion.

さらに、本発明の他の目的は、導通抵抗が小さく、かつ、熱伝導率の大きい部品内蔵基板の製造方法を提供することにある。   Furthermore, another object of the present invention is to provide a method for manufacturing a component-embedded substrate having a low conduction resistance and a high thermal conductivity.

さらにまた、本発明の他の目的は、実装部品に対する配線長を短くして信号の高速化が可能な部品内蔵基板の製造方法を提供することにある。   Still another object of the present invention is to provide a method of manufacturing a component-embedded substrate that can shorten the wiring length for a mounted component and increase the signal speed.

上記目的を達成するためになされた請求項1記載の発明は、所定の電気部品を実装した複数の両面配線基板と、シート状の絶縁性基材の所定の部位に所定の金属からなる接続用ピンをその両端が前記絶縁性基材の表面から突出するように貫通固定した接続用基板とを用意し、前記複数の両面配線基板を前記電気部品を実装した側を対向させて配置し、前記複数の両面配線基板の間に前記接続用基板を配置し、所定の接着剤を用いて当該両面配線基板同士を接着するとともに、当該接続用基板の接続用ピンによって当該両面配線基板同士を電気的に接続する工程を有する部品内蔵基板の製造方法である。
請求項2記載の発明は、請求項1記載の発明において、前記両面配線基板が、シート状の絶縁性接着基材の所定の部位に所定の金属からなる接続用ピンをその両端が前記絶縁性接着基材の表面から突出するように貫通固定し、所定の金属箔を前記絶縁性接着基材の両面側から押圧積層して当該金属箔と当該接続用ピンとを電気的に接続し、前記金属箔をパターン処理し、当該基板上に所定の電気部品を実装する工程を含む工程によって形成されたものである。
請求項3記載の発明は、請求項1又は2のいずれか1項記載の発明において、前記接続用基板の絶縁性基材に、当該電気部品を収容するための収容切欠部が設けられているものである。
請求項4記載の発明は、請求項1乃至3のいずれか1項記載の発明において、前記接続用基板の接続用ピンをインプラント法によって当該絶縁性基材に貫通固定させるものである。
請求項5記載の発明は、請求項2乃至4のいずれか1項記載の発明において、前記両面配線基板の接続用ピンをインプラント法によって当該絶縁性接着基材に貫通固定させるものである。
請求項6記載の発明は、請求項1乃至5のいずれか1項記載の発明において、前記両面配線基板の絶縁性接着基材がリジッド基板用の材料からなるものである。
請求項7記載の発明は、請求項1乃至6のいずれか1項記載の発明において、前記両面配線基板の絶縁性接着基材がフレキシブル基板用の材料からなるものである。
請求項8記載の発明は、請求項1乃至7のいずれか1項記載の発明において、前記接続用基板の絶縁性基材が硬化済みの材料からなるものである。
請求項9記載の発明は、請求項1乃至8のいずれか1項記載の発明において、前記所定の接着剤が、絶縁性接着剤中に導電粒子を分散させた異方導電性接着フィルムであるものである。
In order to achieve the above object, the invention according to claim 1 is for connecting a plurality of double-sided wiring boards on which predetermined electrical components are mounted, and a predetermined portion of a sheet-like insulating substrate made of a predetermined metal. Preparing a connection board through which pins are fixed so that both ends thereof protrude from the surface of the insulating base, and arranging the plurality of double-sided wiring boards facing the side on which the electrical component is mounted, The connection boards are arranged between a plurality of double-sided wiring boards, and the double-sided wiring boards are bonded together using a predetermined adhesive, and the double-sided wiring boards are electrically connected to each other by connection pins of the connecting board. It is a manufacturing method of the component built-in board | substrate which has the process connected to.
According to a second aspect of the present invention, in the first aspect of the invention, the double-sided wiring board has a connecting pin made of a predetermined metal at a predetermined portion of a sheet-like insulating adhesive base, and both ends thereof are the insulating properties. The metal foil and the connection pins are electrically connected by pressing and laminating a predetermined metal foil from both sides of the insulating adhesive base material so as to protrude from the surface of the adhesive base material, and the metal It is formed by a process including a process of patterning a foil and mounting a predetermined electrical component on the substrate.
According to a third aspect of the present invention, in the first or second aspect of the present invention, the insulating base of the connection board is provided with a housing notch for housing the electrical component. Is.
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the connection pins of the connection substrate are fixed to the insulating base material by an implant method.
The invention according to claim 5 is the invention according to any one of claims 2 to 4, wherein the connection pin of the double-sided wiring board is fixed to the insulating adhesive base material by an implant method.
The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the insulating adhesive base material of the double-sided wiring board is made of a material for a rigid board.
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the insulating adhesive base material of the double-sided wiring board is made of a material for a flexible substrate.
The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the insulating substrate of the connection substrate is made of a cured material.
The invention according to claim 9 is the anisotropic conductive adhesive film according to any one of claims 1 to 8, wherein the predetermined adhesive is an anisotropic conductive adhesive film in which conductive particles are dispersed in an insulating adhesive. Is.

本発明の場合、所定の電気部品を実装した複数の両面配線基板をその電気部品を実装した側を対向させて配置し、シート状の絶縁性基材の所定の部位に所定の金属からなる接続用ピンをその両端が絶縁性基材の表面から突出するように貫通固定した接続用基板を、複数の両面配線基板の間に前記接続用基板を配置し、所定の接着剤を用いて当該両面配線基板同士を接着するとともに、当該接続用基板の接続用ピンによって当該両面配線基板同士を電気的に接続するようにしたことから、当該電気部品の実装まで各層の配線パターンを並行して形成することができ、効率良く短期間で部品内蔵基板を製造することが可能になる。   In the case of the present invention, a plurality of double-sided wiring boards on which predetermined electrical components are mounted are arranged so that the sides on which the electrical components are mounted face each other, and a connection made of a predetermined metal on a predetermined portion of a sheet-like insulating substrate A connection board having through holes fixed so that both ends of the pins protrude from the surface of the insulating base material, the connection board is arranged between a plurality of double-sided wiring boards, and a predetermined adhesive is used to Since the double-sided wiring boards are electrically connected to each other by the connection pins of the connection boards, the wiring patterns of the respective layers are formed in parallel until the electrical parts are mounted. Therefore, the component-embedded substrate can be manufactured efficiently and in a short period of time.

また、本発明によれば、部品実装後の良品の両面配線基板のみを接着及び接続することにより、歩留まりを大幅に向上させることが可能になる。   Further, according to the present invention, it is possible to significantly improve the yield by bonding and connecting only good double-sided wiring boards after component mounting.

さらに、本発明においては、接続用のペーストを使用していないので、導通抵抗を小さくすることができ、また熱伝導率を大きくすることができる。   Furthermore, in the present invention, since no connection paste is used, the conduction resistance can be reduced and the thermal conductivity can be increased.

さらにまた、本発明は、接続用ピンを絶縁性接着基材に貫通固定させるものであるから、工数が少なく、また特殊な材料を必要とせず、しかもリジッド基板、フレキシブル基板のいずれにも適用することができる。   Furthermore, since the present invention is to fix the connecting pin to the insulating adhesive base material, the number of steps is small, no special material is required, and the present invention is applicable to both a rigid substrate and a flexible substrate. be able to.

加えて、本発明によれば、基板成形プロセスではなく、接着(ボンディング)によって多層化を行うことから、高精度の位置合わせを行うことができ、狭ビアピッチ化が可能になる。   In addition, according to the present invention, multilayering is performed not by a substrate molding process but by adhesion (bonding), so that highly accurate alignment can be performed and a narrow via pitch can be achieved.

さらにまた、本発明によれば、部品内蔵以降はシートサイズになるため、基板作成が容易であるという効果もある。   Furthermore, according to the present invention, since the sheet size is obtained after the component is built in, there is an effect that the board can be easily created.

本発明において、両面配線基板が、シート状の絶縁性接着基材の所定の部位に所定の金属からなる接続用ピンをその両端が前記絶縁性接着基材の表面から突出するように貫通固定し、所定の金属箔を前記絶縁性接着基材の両面側から押圧積層して当該金属箔と当該接続用ピンとを電気的に接続し、前記金属箔をパターン処理し、当該基板上に所定の電気部品を実装する工程を含む工程によって形成されたものである場合には、従来技術のようなバンプの径やビアホールのピッチ等に依存することなく、ビア径及びビアピッチをより小さくすることができる。   In the present invention, the double-sided wiring board is fixed by penetrating a connecting pin made of a predetermined metal at a predetermined portion of the sheet-like insulating adhesive base so that both ends thereof protrude from the surface of the insulating adhesive base. , Pressing and laminating a predetermined metal foil from both sides of the insulating adhesive base material to electrically connect the metal foil and the connection pin, patterning the metal foil, and predetermined electric power on the substrate In the case of being formed by a process including a part mounting process, the via diameter and via pitch can be made smaller without depending on the bump diameter, via hole pitch, and the like as in the prior art.

また、本発明によれば、内蔵する電気部品の直下又は直上にビアを形成することができるので、配線長を短くして信号の高速化を図ることが可能になる。   In addition, according to the present invention, since a via can be formed immediately below or directly above an embedded electrical component, it is possible to shorten the wiring length and increase the signal speed.

一方、本発明において、接続用基板の絶縁性基材に、当該電気部品を収容するための収容切欠部が設けられている場合には、絶縁性基材の厚さを厚くすることによって、高さの高い電気部品を確実に内蔵することが可能になる。   On the other hand, in the present invention, when the insulating base of the connection substrate is provided with a housing cutout for housing the electrical component, the thickness of the insulating base is increased to increase the thickness. It is possible to reliably incorporate high-quality electrical components.

また、本発明において、両面配線基板又は接続用基板の接続用ピンをインプラント法によって絶縁性接着基材に貫通固定させるようにすれば、精度良く確実に絶縁性接着基材の所定の部位に配置することが可能になる。   Further, in the present invention, if the connection pins of the double-sided wiring board or connection board are penetrated and fixed to the insulating adhesive base material by an implant method, the pin is accurately and surely disposed at a predetermined portion of the insulating adhesive base material. It becomes possible to do.

さらに、本発明において、接続用基板の絶縁性基材が硬化済みの材料からなる場合には、ボンディング時における硬化収縮がなく、更なる狭ビアピッチ化が可能になる。   Furthermore, in the present invention, when the insulating substrate of the connection substrate is made of a cured material, there is no curing shrinkage during bonding, and a further narrower via pitch can be achieved.

さらにまた、本発明において、所定の接着剤として、絶縁性接着剤中に導電粒子を分散させた異方導電性接着フィルムを用いる場合には、両面配線基板の接続における低導通抵抗及び高接着信頼性を確保することが可能になる。   Furthermore, in the present invention, when an anisotropic conductive adhesive film in which conductive particles are dispersed in an insulating adhesive is used as the predetermined adhesive, a low conduction resistance and a high adhesion reliability in connecting double-sided wiring boards are used. It becomes possible to ensure the sex.

以下、本発明に係る部品内蔵基板の製造方法の実施形態を図面を参照して詳細に説明する。
本実施の形態においては、4層の配線パターンを有する部品内蔵基板を製造する場合を例にとって説明する。
Embodiments of a method for manufacturing a component-embedded substrate according to the present invention will be described below in detail with reference to the drawings.
In the present embodiment, a case where a component-embedded substrate having a four-layer wiring pattern is manufactured will be described as an example.

図1(a)〜(g)は、本実施の形態の第1層及び第2層に対応する第1の両面基板を作成する工程を示す断面図である。
ここでは、まず、図1(a)に示すように、シート状の絶縁性接着基材1を用意する。
FIGS. 1A to 1G are cross-sectional views showing a process of creating a first double-sided substrate corresponding to the first layer and the second layer of the present embodiment.
Here, first, as shown in FIG. 1A, a sheet-like insulating adhesive substrate 1 is prepared.

本発明の場合、絶縁性接着基材1としては、リジッド基板用のプリプレグ又はフレキシブル基板用の樹脂基板のいずれも使用することができる。   In the case of the present invention, as the insulating adhesive substrate 1, either a prepreg for a rigid substrate or a resin substrate for a flexible substrate can be used.

この場合、フレキシブル基板としては、未硬化又は接着剤付き樹脂基板のいずれも使用することができ、例えば、熱可塑性ポリイミド、熱可塑性液晶ポリエステル等からなるものを好適に使用することができる。   In this case, as the flexible substrate, either an uncured or a resin substrate with an adhesive can be used. For example, a substrate made of thermoplastic polyimide, thermoplastic liquid crystal polyester, or the like can be suitably used.

本発明の場合、絶縁性接着基材1の厚さは特に限定されることはないが、10μm〜5mmのものを用いることが好ましい。   In the present invention, the thickness of the insulating adhesive substrate 1 is not particularly limited, but it is preferable to use a thickness of 10 μm to 5 mm.

次いで、図1(b)に示すように、絶縁性接着基材1の所定の部位に金属製の接続用ピン2を配置固定して接続部材3を作成する。   Next, as shown in FIG. 1 (b), the connection member 3 is created by arranging and fixing a metal connection pin 2 at a predetermined portion of the insulating adhesive substrate 1.

この場合、公知のインプラント法(例えば、特開2003−197692号公報参照)によって、円柱状の接続用ピン2を絶縁性接着基材1の厚さ方向に貫通させ、接続用ピン2の両端が絶縁性接着基材1の表面から突出するようにする。   In this case, the cylindrical connection pin 2 is penetrated in the thickness direction of the insulating adhesive base material 1 by a known implant method (for example, see Japanese Patent Application Laid-Open No. 2003-197692), and both ends of the connection pin 2 are It protrudes from the surface of the insulating adhesive substrate 1.

本発明の場合、接続用ピン2の材料は特に限定されることはないが、導通信頼性確保の観点からは、後述する電解銅箔より軟らかい材料を用いることが好ましく、特に好ましい材料は、無酸素圧延銅(圧延によって加工した無酸素銅)からなるものである。   In the case of the present invention, the material of the connecting pin 2 is not particularly limited, but from the viewpoint of ensuring conduction reliability, it is preferable to use a material softer than the electrolytic copper foil described later, and a particularly preferable material is none. It consists of oxygen-rolled copper (oxygen-free copper processed by rolling).

本明細書において、「無酸素銅」とは、JIS C1011、JIS C1020に規定するもの(OFC、化学成分→Cu:99.995wt% O2:0.0003wt%)のほか、JIS C1100に規定するタフピッチ銅(TPC、化学成分→Cu:99.95wt% O2:0.035wt%)も含まれるものとする。 In this specification, “oxygen-free copper” is defined in JIS C1011 and JIS C1020 (OFC, chemical component → Cu: 99.995 wt% O 2 : 0.0003 wt%) and JIS C1100. Tough pitch copper (TPC, chemical component → Cu: 99.95 wt% O 2 : 0.035 wt%) is also included.

この場合、導通信頼性を向上させる観点からは、JIS C1011、JIS C1020に規定するものを使用することが好ましい。   In this case, from the viewpoint of improving the conduction reliability, it is preferable to use those specified in JIS C1011 and JIS C1020.

また、接続用ピン2の両端が絶縁性接着基材1の表面から突出する高さについては特に限定されることはないが、導通信頼性確保の観点からは、後述する金属箔4の厚さより薄いことが好ましく、具体的には、3〜10μmとすることが好ましい。   Moreover, although it does not specifically limit about the height which the both ends of the pin 2 for a connection protrudes from the surface of the insulating adhesive base material 1, From a viewpoint of ensuring conduction | electrical_connection reliability, from the thickness of the metal foil 4 mentioned later It is preferable that the thickness is thin, and specifically, 3 to 10 μm is preferable.

そして、図1(c)(d)に示すように、金属箔4を接続部材3の絶縁性接着基材1の両面側から位置決めして積層し、所定の圧力及び温度で熱圧着を行うことによって、対向する金属箔4と接続用ピン2をそれぞれ電気的に接続する。   And as shown in FIG.1 (c) (d), metal foil 4 is positioned and laminated | stacked from the both surfaces side of the insulating adhesive base material 1 of the connection member 3, and thermocompression bonding is performed with a predetermined pressure and temperature. Thus, the opposing metal foil 4 and the connection pin 2 are electrically connected to each other.

本発明の場合、金属箔4の種類は特に限定されることはないが、導通信頼性確保の観点からは、上述した無酸素銅以外の材料、例えば電解銅箔を用いることが好ましい。   In the case of the present invention, the type of the metal foil 4 is not particularly limited, but from the viewpoint of ensuring conduction reliability, it is preferable to use a material other than the oxygen-free copper described above, for example, an electrolytic copper foil.

また、金属箔4の厚さは特に限定されることはないが、導通信頼性確保の観点からは、8〜70μmのものを用いることが好ましい。   The thickness of the metal foil 4 is not particularly limited, but it is preferable to use a metal foil having a thickness of 8 to 70 μm from the viewpoint of ensuring conduction reliability.

さらに、図1(e)に示すように、公知のリソグラフィ法によって各金属箔4のパターン処理を行い、第1及び第2の配線(回路)パターン41、42を形成する。   Further, as shown in FIG. 1E, pattern processing of each metal foil 4 is performed by a known lithography method to form first and second wiring (circuit) patterns 41 and.

その後、図1(f)に示すように、所定のプロセスによってソルダーレジスト層を形成した後、外層となる第1の配線パターン41の表面に金めっき処理を行う。   Thereafter, as shown in FIG. 1F, a solder resist layer is formed by a predetermined process, and then a gold plating process is performed on the surface of the first wiring pattern 41 as an outer layer.

さらに、図1(g)に示すように、第2の配線パターン42の接続端子部に所定の電気部品6を実装する。これにより、目的とする第1の両面配線基板10を得る。   Furthermore, as shown in FIG. 1G, a predetermined electrical component 6 is mounted on the connection terminal portion of the second wiring pattern 42. As a result, the intended first double-sided wiring board 10 is obtained.

図2(a)〜(g)は、本実施の形態における第3層及び第4層に対応する第2の両面配線基板を作成する工程を示す断面図である。   FIGS. 2A to 2G are cross-sectional views showing a process of creating a second double-sided wiring board corresponding to the third layer and the fourth layer in the present embodiment.

図2(a)〜(g)に示すように、本実施の形態においては、上記第1の両面配線基板と同様の材料を用い、同様の工程を行うことにより、所定の電気部品7を実装した第2の配線基板素片20を得る。   As shown in FIGS. 2A to 2G, in the present embodiment, a predetermined electrical component 7 is mounted by performing the same process using the same material as that of the first double-sided wiring board. The obtained second wiring board piece 20 is obtained.

図3(a)〜(c)は、本実施の形態における接続用基板を作成する工程を示す断面図である。
図3(a)に示すように、まず、シート状の絶縁性基材11を用意する。
本発明の場合、孔明け等における加工精度を確保する観点から、絶縁性基材11として、硬化済みの基材を用いることが好ましい。
FIGS. 3A to 3C are cross-sectional views showing a process of creating a connection substrate in the present embodiment.
As shown in FIG. 3A, first, a sheet-like insulating substrate 11 is prepared.
In the case of the present invention, it is preferable to use a cured base material as the insulating base material 11 from the viewpoint of ensuring processing accuracy in drilling or the like.

また、絶縁性基材11の厚さは特に限定されることはないが、内蔵する電子部品の収容スペースを確保する観点からは、100μm〜2mmのものを用いることが好ましい。   In addition, the thickness of the insulating base material 11 is not particularly limited, but it is preferable to use a material having a thickness of 100 μm to 2 mm from the viewpoint of securing a storage space for the built-in electronic component.

そして、図3(b)に示すように、上述のインプラント法によって、絶縁性接着基材11の所定の部位に金属製の接続用ピン12を配置固定して接続部材13を作成する。   And as shown in FIG.3 (b), the metal connection pin 12 is arrange | positioned and fixed to the predetermined site | part of the insulating adhesive base material 11 by the above-mentioned implant method, and the connection member 13 is created.

本発明の場合、接続用ピン12の両端が絶縁性基材1の表面から突出する高さについては特に限定されることはないが、導通信頼性及び内蔵する電子部品の収容スペースを確保する観点からは、3〜100μmとすることが好ましい。   In the case of the present invention, the height at which both ends of the connecting pin 12 protrude from the surface of the insulating base material 1 is not particularly limited. However, the viewpoint of ensuring conduction reliability and a space for housing the built-in electronic component. Is preferably 3 to 100 μm.

さらに、図3(c)に示すように、絶縁性基材11の例えば接続用ピン12の間の部分を部分的に切り抜いて収容切欠部11aを形成し、これにより目的とする接続用基板13を得る。   Further, as shown in FIG. 3 (c), for example, a portion between the connection pins 12 of the insulating base material 11 is partially cut out to form an accommodation cut-out portion 11a, whereby a target connection substrate 13 is formed. Get.

図4(a)(b)は、本実施の形態の最終工程を示す断面図である。
図4(a)に示すように、本実施の形態においては、上記図1(a)〜(g)に示す方法によって得られた第1の両面配線基板10と、上記図2(a)〜(g)に示す方法によって得られた第2の両面配線基板20と、上記図3(a)〜(c)によって得られた接続用基板13と、絶縁性接着剤中に導電粒子を含有する異方導電性接着フィルム8を用意する。
4A and 4B are cross-sectional views illustrating the final process of the present embodiment.
As shown in FIG. 4A, in the present embodiment, the first double-sided wiring board 10 obtained by the method shown in FIGS. 1A to 1G and the above-described FIGS. The second double-sided wiring board 20 obtained by the method shown in (g), the connection board 13 obtained by the above-described FIGS. 3A to 3C, and conductive particles are contained in the insulating adhesive. An anisotropic conductive adhesive film 8 is prepared.

そして、図4(b)に示すように、第1の両面配線基板10と接続用基板13及び第2の両面配線基板20と接続用基板13の間にそれぞれ異方導電性接着フィルム8を挟んでこれらを積層し、所定の圧力及び温度で熱圧着を行うことによって、第1の両面配線基板10の第2の配線パターン42と、第2の両面配線基板20の第3の配線パターン43とを接着固定するとともに、接続用基板13の接続用ピン2及び異方導電性接着フィルム8の導電粒子を介してそれぞれ電気的に接続する。これにより、目的とする部品内蔵基板50を得る。   4B, the anisotropic conductive adhesive film 8 is sandwiched between the first double-sided wiring board 10 and the connection board 13 and between the second double-sided wiring board 20 and the connection board 13, respectively. These are stacked and thermocompression bonded at a predetermined pressure and temperature, whereby the second wiring pattern 42 of the first double-sided wiring board 10 and the third wiring pattern 43 of the second double-sided wiring board 20 are Are bonded and fixed, and are electrically connected through the connection pins 2 of the connection substrate 13 and the conductive particles of the anisotropic conductive adhesive film 8, respectively. Thereby, the target component-embedded substrate 50 is obtained.

以上述べたように本実施の形態によれば、インプラント法によって作成した第1及び第2の両面配線基板10、20をその電気部品6、7を実装した側を対向させて配置し、これら第1及び第2の両面配線基板10、20の間にインプラント法によって作成した接続用基板13を配置して異方導電性接着フィルム8を用いて接着するとともに電気的に接続するようにしたことから、従来技術のようなバンプの径やビアホールのピッチ等に依存することなく、ビア径及びビアピッチの小さな部品内蔵基板を提供することができる(ビア径60μm程度、ビアピッチ200μm程度)。   As described above, according to the present embodiment, the first and second double-sided wiring boards 10 and 20 created by the implant method are arranged so that the sides on which the electrical components 6 and 7 are mounted face each other. Because the connection substrate 13 created by the implant method is disposed between the first and second double-sided wiring substrates 10 and 20 and is bonded using the anisotropic conductive adhesive film 8 and is electrically connected. Thus, a component-embedded substrate having a small via diameter and via pitch can be provided without depending on the bump diameter or via hole pitch as in the prior art (via diameter of about 60 μm, via pitch of about 200 μm).

特に本実施の形態においては、基板成形プロセスではなく、接着(ボンディング)によって多層化を行うことから、高精度の位置合わせを行うことができ、狭ビアピッチ化が可能になる。   In particular, in the present embodiment, multilayering is performed by bonding (bonding) instead of the substrate molding process, so that highly accurate alignment can be performed and a narrow via pitch can be achieved.

また、本実施の形態によれば、電気部品6、7の実装まで各層の配線パターン41〜44を並行して形成することができるので、効率良く短期間で部品内蔵基板50を作成することができる。   Further, according to the present embodiment, since the wiring patterns 41 to 44 of each layer can be formed in parallel until the electrical components 6 and 7 are mounted, the component built-in substrate 50 can be efficiently created in a short period of time. it can.

また、本実施の形態によれば、部品実装後の良品の第1及び第2の両面配線基板10、20のみを接着及び接続することができるので、歩留まりを大幅に向上させることができる。   In addition, according to the present embodiment, since only the good first and second double-sided wiring boards 10 and 20 after component mounting can be bonded and connected, the yield can be greatly improved.

さらに、本実施の形態においては、接続用のペーストを使用していないので、導通抵抗を小さく、また熱伝導率が大きいものである。   Furthermore, in this embodiment, since no connection paste is used, the conduction resistance is low and the thermal conductivity is high.

さらにまた、本実施の形態によれば、部品内蔵以降はシートサイズになるため、基板作成が容易であるという効果もある。   Furthermore, according to the present embodiment, since the sheet size is obtained after the components are built in, there is an effect that the board can be easily created.

また、本実施の形態によれば、内蔵する電気部品6、7の直下又は直上にビアを形成することができるので、配線長を短くして信号の高速化を図ることが可能になる。   In addition, according to the present embodiment, a via can be formed immediately below or directly above the built-in electrical components 6 and 7, so that the wiring length can be shortened to increase the signal speed.

一方、本実施の形態においては、接続用基板13の絶縁性基材11に収容切欠部11aが設けられていることから、絶縁性基材11の厚さを厚くすることによって、高さの高い電気部品6、7であっても、確実に内蔵することができる。   On the other hand, in this embodiment, since the accommodation notch 11a is provided in the insulating base material 11 of the connection substrate 13, the height of the insulating base material 11 is increased by increasing the thickness. Even the electrical components 6 and 7 can be reliably incorporated.

さらに、本実施の形態において、接続用基板13の絶縁性基材11が硬化済みの材料からなる場合には、ボンディング時における硬化収縮がほとんどないので、位置合わせ精度が高く更なる狭ビアピッチ化が可能になる。   Furthermore, in this embodiment, when the insulating base material 11 of the connection substrate 13 is made of a cured material, there is almost no curing shrinkage at the time of bonding. It becomes possible.

さらにまた、本実施の形態では、異方導電性接着フィルム8を用いて第1及び第2の両面配線基板10、20及び接続用基板13を接続及び固定することから、第1及び第2の両面配線基板10、20の接続における低導通抵抗及び高接着信頼性を確保することができる。   Furthermore, in the present embodiment, the first and second double-sided wiring boards 10 and 20 and the connection board 13 are connected and fixed using the anisotropic conductive adhesive film 8, so that the first and second Low conduction resistance and high adhesion reliability in the connection of the double-sided wiring boards 10 and 20 can be ensured.

なお、本発明は上述の実施の形態に限られることなく、種々の変更を行うことができる。
例えば、上述の実施の形態においては2つの両面配線基板を用いて4層の部品内蔵基板を作成するようにしたが、本発明はこれに限られず、3つ以上の両面配線基板を用いて6層以上の部品内蔵基板を作成するすることも可能である。
この場合、各両面配線基板を一括して接続固定することも可能である。
The present invention is not limited to the above-described embodiment, and various changes can be made.
For example, in the above-described embodiment, a four-layer component-embedded board is created using two double-sided wiring boards, but the present invention is not limited to this, and six or more double-sided wiring boards are used. It is also possible to create a component-embedded substrate having more than one layer.
In this case, each double-sided wiring board can be connected and fixed together.

また、上述の実施の形態においては、各両面配線基板に電気部品を実装するようにしたが、電気部品を実装しない両面配線基板が含まれていてもよい。   Further, in the above-described embodiment, the electrical component is mounted on each double-sided wiring board, but a double-sided wiring board on which no electrical component is mounted may be included.

さらに、本発明は、リジッド基板又はフレキシブル基板のみならず、リジッド基板及びフレキシブル基板を混在させた多層配線基板にも適用することができる。   Furthermore, the present invention can be applied not only to a rigid substrate or a flexible substrate, but also to a multilayer wiring substrate in which a rigid substrate and a flexible substrate are mixed.

さらに、上述したインプラント法による両面配線基板の代わりに、通常のプロセスによる両面配線基板を用いることも可能である。   Furthermore, it is also possible to use a double-sided wiring board by a normal process instead of the double-sided wiring board by the above-described implant method.

さらにまた、異方導電性接着フィルムの代わりに、ペースト状の異方導電性接着剤や、絶縁性接着剤中に導電粒子を含有しない絶縁性接着剤(フィルム)を用いることも可能である。   Furthermore, instead of the anisotropic conductive adhesive film, a paste-like anisotropic conductive adhesive or an insulating adhesive (film) containing no conductive particles in the insulating adhesive can be used.

(a)〜(g):本発明の実施の形態の第1層及び第2層に対応する第1の両面基板を作成する工程を示す断面図である。(A)-(g): It is sectional drawing which shows the process of producing the 1st double-sided board | substrate corresponding to the 1st layer and 2nd layer of embodiment of this invention. (a)〜(g):同実施の形態における第3層及び第4層に対応する第2の両面配線基板を作成する工程を示す断面図である。(A)-(g): It is sectional drawing which shows the process of producing the 2nd double-sided wiring board corresponding to the 3rd layer and 4th layer in the embodiment. (a)〜(c):同実施の形態における接続用基板を作成する工程を示す断面図である。(A)-(c): It is sectional drawing which shows the process of producing the board | substrate for a connection in the embodiment. (a)(b):同実施の形態の最終工程を示す断面図である。(A) (b): It is sectional drawing which shows the last process of the embodiment.

符号の説明Explanation of symbols

1…絶縁性接着基材 2…接続用ピン 3…接続部材 4…金属箔 6、7 電気部品 8…異方導電性接着フィルム 10…第1の両面配線基板 11…絶縁性基材 12…接続用ピン 20…第2の両面配線基板 41、42、43、44…配線パターン DESCRIPTION OF SYMBOLS 1 ... Insulating adhesive base material 2 ... Connection pin 3 ... Connection member 4 ... Metal foil 6, 7 Electrical component 8 ... Anisotropic conductive adhesive film 10 ... 1st double-sided wiring board 11 ... Insulating base material 12 ... Connection Pin 20 ... Second double-sided wiring board 41, 42, 43, 44 ... Wiring pattern

Claims (9)

所定の電気部品を実装した複数の両面配線基板と、シート状の絶縁性基材の所定の部位に所定の金属からなる接続用ピンをその両端が前記絶縁性基材の表面から突出するように貫通固定した接続用基板とを用意し、
前記複数の両面配線基板を前記電気部品を実装した側を対向させて配置し、
前記複数の両面配線基板の間に前記接続用基板を配置し、所定の接着剤を用いて当該両面配線基板同士を接着するとともに、当該接続用基板の接続用ピンによって当該両面配線基板同士を電気的に接続する工程を有する部品内蔵基板の製造方法。
A plurality of double-sided wiring boards on which predetermined electrical components are mounted, and a connecting pin made of a predetermined metal at a predetermined portion of the sheet-like insulating base so that both ends thereof protrude from the surface of the insulating base Prepare the connection board fixed through,
The plurality of double-sided wiring boards are arranged with the side on which the electrical component is mounted facing each other,
The connection boards are arranged between the plurality of double-sided wiring boards, and the double-sided wiring boards are bonded together using a predetermined adhesive, and the double-sided wiring boards are electrically connected to each other by connection pins of the connecting board. Of manufacturing a component-embedded substrate, which includes a step of automatically connecting.
前記両面配線基板は、シート状の絶縁性接着基材の所定の部位に所定の金属からなる接続用ピンをその両端が前記絶縁性接着基材の表面から突出するように貫通固定し、所定の金属箔を前記絶縁性接着基材の両面側から押圧積層して当該金属箔と当該接続用ピンとを電気的に接続し、前記金属箔をパターン処理し、当該基板上に所定の電気部品を実装する工程を含む工程によって形成されたものであることを特徴とする請求項1記載の部品内蔵基板の製造方法。   The double-sided wiring board is fixed to a predetermined portion of a sheet-like insulating adhesive base material by connecting and fixing a connecting pin made of a predetermined metal so that both ends protrude from the surface of the insulating adhesive base material. A metal foil is pressed and laminated from both sides of the insulating adhesive base material, the metal foil and the connection pins are electrically connected, the metal foil is patterned, and predetermined electrical components are mounted on the substrate 2. The method for manufacturing a component-embedded board according to claim 1, wherein the component-embedded board is formed by a process including a process of performing the process. 前記接続用基板の絶縁性基材に、当該電気部品を収容するための収容切欠部が設けられている請求項1又は2のいずれか1項記載の両面配線基板の製造方法。   The manufacturing method of the double-sided wiring board of any one of Claim 1 or 2 with which the accommodation notch part for accommodating the said electrical component is provided in the insulating base material of the said board | substrate for a connection. 前記接続用基板の接続用ピンをインプラント法によって当該絶縁性基材に貫通固定させる請求項1乃至3のいずれか1項記載の両面配線基板の製造方法。   The method for manufacturing a double-sided wiring board according to any one of claims 1 to 3, wherein the connection pins of the connection board are fixed to the insulating base material by an implant method. 前記両面配線基板の接続用ピンをインプラント法によって当該絶縁性接着基材に貫通固定させることを特徴とする請求項2乃至4のいずれか1項記載の部品内蔵基板の製造方法。   5. The method for manufacturing a component-embedded board according to claim 2, wherein the connection pins of the double-sided wiring board are fixed to the insulating adhesive base material by an implant method. 前記両面配線基板の絶縁性接着基材がリジッド基板用の材料からなる請求項1乃至5のいずれか1項記載の両面配線基板の製造方法。   The method for manufacturing a double-sided wiring board according to claim 1, wherein the insulating adhesive base material of the double-sided wiring board is made of a material for a rigid board. 前記両面配線基板の絶縁性接着基材がフレキシブル基板用の材料からなる請求項1乃至6のいずれか1項記載の両面配線基板の製造方法。   The method for manufacturing a double-sided wiring board according to claim 1, wherein the insulating adhesive base material of the double-sided wiring board is made of a material for a flexible board. 前記接続用基板の絶縁性基材が硬化済みの材料からなる請求項1乃至7のいずれか1項記載の両面配線基板の製造方法。   The method for manufacturing a double-sided wiring board according to claim 1, wherein the insulating base material of the connection board is made of a cured material. 前記所定の接着剤が、絶縁性接着剤中に導電粒子を分散させた異方導電性接着フィルムである請求項1乃至8のいずれか1項記載の両面配線基板の製造方法。   The method for producing a double-sided wiring board according to any one of claims 1 to 8, wherein the predetermined adhesive is an anisotropic conductive adhesive film in which conductive particles are dispersed in an insulating adhesive.
JP2004075910A 2004-03-17 2004-03-17 Method of manufacturing substrate with incorporated components Withdrawn JP2005268378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075910A JP2005268378A (en) 2004-03-17 2004-03-17 Method of manufacturing substrate with incorporated components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075910A JP2005268378A (en) 2004-03-17 2004-03-17 Method of manufacturing substrate with incorporated components

Publications (1)

Publication Number Publication Date
JP2005268378A true JP2005268378A (en) 2005-09-29

Family

ID=35092641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075910A Withdrawn JP2005268378A (en) 2004-03-17 2004-03-17 Method of manufacturing substrate with incorporated components

Country Status (1)

Country Link
JP (1) JP2005268378A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100752956B1 (en) * 2006-10-13 2007-08-30 주식회사 영은전자 The printed circuit board for the electric connection of the hole and the manufacturing method
JP2008047917A (en) * 2006-08-17 2008-02-28 Samsung Electro Mech Co Ltd Multilayer printed circuit board with electronic components built-in and its manufacturing method
JP2008166534A (en) * 2006-12-28 2008-07-17 Matsushita Electric Ind Co Ltd Thermal press method
JP2009135398A (en) * 2007-11-29 2009-06-18 Ibiden Co Ltd Combination substrate
WO2011132274A1 (en) * 2010-04-21 2011-10-27 株式会社メイコー Substrate with built-in component, multilayer substrate using same, and method for manufacturing substrate with built-in component
JP2012129363A (en) * 2010-12-15 2012-07-05 Fujitsu Ltd Substrate with built-in electronic component and method of manufacturing the same
KR101228320B1 (en) 2008-04-07 2013-01-31 삼성테크윈 주식회사 Embedded substrate and method for manufacturing the embedded substrate
JP2013059015A (en) * 2011-08-12 2013-03-28 Sharp Corp Structure and manufacturing method of the same
WO2013172071A1 (en) * 2012-05-17 2013-11-21 株式会社村田製作所 Substrate with built-in electronic component, and method for manufacturing substrate with built-in electronic component
JP5526276B1 (en) * 2013-02-19 2014-06-18 株式会社フジクラ Component-embedded substrate, manufacturing method thereof, and mounting body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047917A (en) * 2006-08-17 2008-02-28 Samsung Electro Mech Co Ltd Multilayer printed circuit board with electronic components built-in and its manufacturing method
KR100752956B1 (en) * 2006-10-13 2007-08-30 주식회사 영은전자 The printed circuit board for the electric connection of the hole and the manufacturing method
JP2008166534A (en) * 2006-12-28 2008-07-17 Matsushita Electric Ind Co Ltd Thermal press method
JP2009135398A (en) * 2007-11-29 2009-06-18 Ibiden Co Ltd Combination substrate
KR101228320B1 (en) 2008-04-07 2013-01-31 삼성테크윈 주식회사 Embedded substrate and method for manufacturing the embedded substrate
WO2011132274A1 (en) * 2010-04-21 2011-10-27 株式会社メイコー Substrate with built-in component, multilayer substrate using same, and method for manufacturing substrate with built-in component
JP2012129363A (en) * 2010-12-15 2012-07-05 Fujitsu Ltd Substrate with built-in electronic component and method of manufacturing the same
JP2013059015A (en) * 2011-08-12 2013-03-28 Sharp Corp Structure and manufacturing method of the same
WO2013172071A1 (en) * 2012-05-17 2013-11-21 株式会社村田製作所 Substrate with built-in electronic component, and method for manufacturing substrate with built-in electronic component
JP5526276B1 (en) * 2013-02-19 2014-06-18 株式会社フジクラ Component-embedded substrate, manufacturing method thereof, and mounting body
US9560770B2 (en) 2013-02-19 2017-01-31 Fujikura Ltd. Component built-in board and method of manufacturing the same, and mounting body

Similar Documents

Publication Publication Date Title
US7737367B2 (en) Multilayer circuit board and manufacturing method thereof
US8419884B2 (en) Method for manufacturing multilayer wiring substrate
WO2010007704A1 (en) Flex-rigid wiring board and electronic device
WO2010013366A1 (en) Flex-rigid wiring board and method for manufacturing the same
JP5093353B2 (en) Manufacturing method of component built-in module and component built-in module
JP2000101245A (en) Multilayer resin wiring board and its manufacture
JP2006165496A (en) Parallel multi-layer printed board having inter-layer conductivity through via post
JP2007129124A (en) Multilayer printed circuit board and method of manufacturing same
JP2005243911A (en) Multilayer laminated wiring board
JP2008124398A (en) Semiconductor package and its manufacturing method
JP2005268378A (en) Method of manufacturing substrate with incorporated components
JP4899409B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2007208229A (en) Manufacturing method of multilayer wiring board
JP2005302991A (en) Manufacturing method of multi-layered wiring substrate
JP2008016651A (en) Component built-in wiring board and its manufacturing method
JP2006049536A (en) Multilayer circuit board
JP2005260012A (en) Method for manufacturing double-sided wiring board and multilayer wiring board
WO2006016474A1 (en) Method for manufacturing multilayer flex rigid wiring board
KR100658972B1 (en) Pcb and method of manufacturing thereof
JP2007335631A (en) Manufacturing method of laminated wiring board
JP2004072125A (en) Manufacturing method of printed wiring board, and printed wiring board
JP2007115952A (en) Interposer substrate and manufacturing method thereof
JPS6372193A (en) Circuit board
JP2000357857A (en) Manufacture of printed wiring board
JPH09283931A (en) Multilayer wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090805