JP2005260012A - Method for manufacturing double-sided wiring board and multilayer wiring board - Google Patents

Method for manufacturing double-sided wiring board and multilayer wiring board Download PDF

Info

Publication number
JP2005260012A
JP2005260012A JP2004069942A JP2004069942A JP2005260012A JP 2005260012 A JP2005260012 A JP 2005260012A JP 2004069942 A JP2004069942 A JP 2004069942A JP 2004069942 A JP2004069942 A JP 2004069942A JP 2005260012 A JP2005260012 A JP 2005260012A
Authority
JP
Japan
Prior art keywords
wiring board
connection
manufacturing
metal foil
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004069942A
Other languages
Japanese (ja)
Inventor
Toru Odajima
徹 小田島
Hitoshi Motoyoshi
仁志 元吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP2004069942A priority Critical patent/JP2005260012A/en
Publication of JP2005260012A publication Critical patent/JP2005260012A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a double-sided wiring board and a multilayer wiring board which can cope with turning into fine pitch, and in which conduction resistance is small and thermal conductivity is large. <P>SOLUTION: The manufacturing method is provided with a process, wherein penetration fixing of a pin 2 for connection which is formed of oxygen-free rolling cooper is performed on a predetermined portion of an insulating adhesion substrate 1 of sheet-like, by using an in plant method so that both ends project from surfaces of the insulating adhesion substrate 1; a process, wherein pushing lamination of a metal foil 4, which consists of a rolling copper foil is performed from both surface sides of the insulating adhesion substrate 1 and the metal foil 4 and the pin 2 for connection are connected electrically; and a process of pattern-treating the metal foil 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、両面配線基板及び多層配線基板の製造方法に関する。   The present invention relates to a method for manufacturing a double-sided wiring board and a multilayer wiring board.

近年、以下のような種々のビルドアップ方法によって多層基板が作成されている。
例えば、B2it法においては、銅箔上に導電ペーストのバンプを印刷により形成し、このバンプを絶縁性基材を貫通させた後に銅箔を積層させて銅箔同士を電気的に接続する。そして、銅箔のパターン処理を行った後に、上述した工程を繰り返すことによって多層化する。
In recent years, multilayer substrates have been created by various build-up methods as described below.
For example, in the B 2 it method, a conductive paste bump is formed on a copper foil by printing, and the bump is passed through an insulating substrate, and then the copper foil is laminated to electrically connect the copper foils. . And after performing the pattern process of copper foil, it multilayers by repeating the process mentioned above.

また、ALIVH法においては、レーザー光によって絶縁性基材に形成したビアホールに導電ペーストを充填した後、銅箔を絶縁性基材の両面から積層させて銅箔同士を電気的に接続する。そして、銅箔のパターン処理を行った後に、上述した工程を繰り返すことによって多層化する。   In the ALIVH method, a conductive paste is filled in via holes formed in an insulating base material by laser light, and then copper foils are laminated from both surfaces of the insulating base material to electrically connect the copper foils. And after performing the pattern process of copper foil, it multilayers by repeating the process mentioned above.

さらに、NMBI法においては、銅−ニッケル−銅を積層させた基材をエッチングして銅バンプを形成した後、露出したニッケルを剥離し、銅バンプを絶縁性基材を貫通させる。そして、銅バンプの頭出し研磨を行った後に銅箔を積層させて銅箔同士を電気的に接続する。さらに、銅箔のパターン処理を行った後に、上述した工程を繰り返すことによって多層化する。   Further, in the NMBI method, after a copper-nickel-copper laminated substrate is etched to form a copper bump, the exposed nickel is peeled off and the copper bump is penetrated through the insulating substrate. Then, after crushing the copper bumps, the copper foils are laminated to electrically connect the copper foils. Furthermore, after performing the pattern process of copper foil, it repeats and multi-layers by repeating the process mentioned above.

しかし、上述した従来技術においては、種々の問題がある。
例えば、B2it法の場合は、バンプの径が大きくファインピッチ化への対応が困難であるとともに、バンプのポリイミドの貫通が困難であるためフレキシブル基板に適用できず、加えて、ペーストによってパターン間の接続を行うため導通抵抗が大きく、また熱伝導率も低いという問題がある。
However, the above-described prior art has various problems.
For example, in the case of the B 2 it method, the bump diameter is large and it is difficult to cope with a fine pitch, and it is difficult to penetrate the polyimide of the bump, so it cannot be applied to a flexible substrate. There is a problem that the conduction resistance is large and the thermal conductivity is low because of the connection between them.

一方、ALIVH法の場合は、レーザー光によるビアホールのピッチが大きくファインピッチ化への対応が困難であるとともに、ペーストの充填の困難さからフレキシブル基板への適用が難しいと予測され、しかもB2it法と同様に導通抵抗及び熱伝導率の問題がある。さらに、ALIVH法は工程が多くレーザーを使用するためコスト高になるという課題もある。 On the other hand, in the case of the ALIVH method, the pitch of the via holes by the laser beam is large and it is difficult to cope with the fine pitch, and it is predicted that it is difficult to apply to the flexible substrate due to the difficulty of filling the paste, and B 2 it Like the method, there are problems of conduction resistance and thermal conductivity. Furthermore, the ALIVH method has a problem that the number of steps is high and the cost is high because a laser is used.

NMBI法の場合は、エッチングによるバンプのピッチが大きくファインピッチ化への対応が困難であるとともに、バンプの研磨が困難であるため歩留まりが悪く、特にフレキシブル基板には適用が難しい。さらに、NMBI法は工程が多く基材自体も高価であるためコスト高になるという問題もある。   In the case of the NMBI method, the pitch of the bumps by etching is large and it is difficult to cope with the fine pitch, and it is difficult to polish the bumps, so the yield is low, and it is difficult to apply to a flexible substrate. Furthermore, the NMBI method has a problem in that the cost is high because the number of steps is large and the base material itself is expensive.

本発明は、このような従来の技術の課題を解決するためになされたもので、その目的とするところは、ファインピッチ化への対応が可能で、導通抵抗が小さく、かつ、熱伝導率の大きい両面配線基板及び多層配線基板の製造方法を提供することにある。   The present invention has been made in order to solve the problems of the prior art, and the object of the present invention is to cope with fine pitch, low conduction resistance, and low thermal conductivity. An object of the present invention is to provide a method for manufacturing a large double-sided wiring board and a multilayer wiring board.

また、本発明の他の目的は、工程数が少なく、しかも特殊な材料を必要することなく、更にはフレキシブル基板にも適用可能な両面配線基板及び多層配線基板の製造方法を提供することにある。   Another object of the present invention is to provide a method for manufacturing a double-sided wiring board and a multilayer wiring board that can be applied to a flexible substrate without requiring a special material and having a small number of steps. .

上記目的を達成するためになされた請求項1記載の発明は、シート状の絶縁性接着基材の所定の部位に所定の金属からなる接続用ピンをその両端が前記絶縁性接着基材の表面から突出するように貫通固定する工程と、所定の金属箔を前記絶縁性接着基材の両面側から押圧積層して当該金属箔と当該接続用ピンとを電気的に接続する工程と、前記金属箔をパターン処理する工程とを有する両面配線基板の製造方法である。
請求項2記載の発明は、請求項1記載の発明において、前記接続用ピンが前記金属箔より軟らかい材料からなることを特徴とするものである。
請求項3記載の発明は、請求項1又は2のいずれか1項記載の発明において、前記接続用ピンが無酸素圧延銅からなることを特徴とするものである。
請求項4記載の発明は、請求項1乃至3のいずれか1項記載の発明において、前記絶縁性接着基材がリジッド基板用の材料からなることを特徴とするものである。
請求項5記載の発明は、請求項1乃至3のいずれか1項記載の発明において、前記絶縁性接着基材がフレキシブル基板用の材料からなることを特徴とするものである。
請求項6記載の発明は、請求項1乃至5のいずれか1項記載の発明において、前記接続用ピンをインプラント法によって前記絶縁性接着基材に貫通固定させることを特徴とするものである。
請求項7記載の発明は、所定の配線パターンが形成されたコアとなる配線基板と、シート状の絶縁性接着基材の所定の部位に金属製の接続用ピンがその両端が前記絶縁性接着基材の表面から突出するように配置固定された接続部材と、所定の金属箔とを積層押圧し、前記配線基板の配線パターンと前記接続部材の接続用ピンとを電気的に接続するとともに前記金属箔と前記接続部材の接続用ピンとを電気的に接続する工程と、前記金属箔をパターン処理する工程とを所定の回数行うことを特徴とする多層配線基板の製造方法である。
請求項8記載の発明は、請求項7記載の発明において、前記コアとなる配線基板として、請求項1乃至6のいずれかによって製造された両面配線基板を用いることを特徴とするものである。
請求項9記載の発明は、請求項7又は8のいずれか1項記載の発明において、前記接続部材と、前記金属箔とを前記コアとなる配線基板の両面側から順次押圧積層し、当該配線基板の配線パターンと当該接続部材の接続用ピンとを電気的に接続するとともに当該金属箔と当該接続部材の接続用ピンとを電気的に接続する工程と、前記金属箔をパターン処理する工程とを所定の回数行うことを特徴とするものである。
請求項10記載の発明は、所定の配線パターンが形成された複数の配線基板の間に、シート状の絶縁性接着基材の所定の部位に金属製の接続用ピンがその両端が前記絶縁性接着基材の表面から突出するように配置固定された接続部材を介在させて積層押圧し、当該配線基板の配線パターンと当該接続部材の接続用ピンとを電気的に接続する工程を有することを特徴とする多層配線基板の製造方法である。
請求項11記載の発明は、所定の配線パターンが形成された複数の配線基板の間に、シート状の絶縁性基材の所定の部位に金属製の接続用ピンがその両端が前記絶縁性基材の表面から突出するように配置固定された接続部材を介在させ、所定の接着剤を用いて前記配線基板と前記接続部材を積層接着し、当該配線基板の配線パターンと当該接続部材の接続用ピンとを電気的に接続する工程を有することを特徴とする多層配線基板の製造方法である。
請求項12記載の発明は、請求項11記載の発明において、前記配線接着剤として、絶縁性接着中に導電粒子を含有する異方導電性接着剤を用いることを特徴とするものである。
請求項13記載の発明は、請求項9乃至12のいずれか1項記載の発明において、前記配線基板として、請求項1乃至6のいずれかによって製造された両面配線基板を用いることを特徴とするものである。
In order to achieve the above object, the invention according to claim 1 is characterized in that a connecting pin made of a predetermined metal is provided at a predetermined portion of a sheet-like insulating adhesive base at both ends thereof. A step of penetrating and fixing so as to protrude from the surface, a step of pressing and laminating a predetermined metal foil from both sides of the insulating adhesive base material, and electrically connecting the metal foil and the connection pin, and the metal foil The method of manufacturing a double-sided wiring board having a pattern processing step.
According to a second aspect of the invention, in the first aspect of the invention, the connecting pin is made of a material softer than the metal foil.
According to a third aspect of the present invention, in the first or second aspect of the present invention, the connection pin is made of oxygen-free rolled copper.
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the insulating adhesive base material is made of a material for a rigid substrate.
The invention according to claim 5 is the invention according to any one of claims 1 to 3, wherein the insulating adhesive base material is made of a material for a flexible substrate.
A sixth aspect of the invention is characterized in that, in the invention of any one of the first to fifth aspects, the connecting pin is fixed by penetration to the insulating adhesive base material by an implant method.
According to a seventh aspect of the present invention, there is provided a wiring board serving as a core on which a predetermined wiring pattern is formed, and a metal connection pin at a predetermined portion of a sheet-like insulating adhesive base, the both ends of which are insulatively bonded. The connection member arranged and fixed so as to protrude from the surface of the base material and a predetermined metal foil are stacked and pressed to electrically connect the wiring pattern of the wiring board and the connection pin of the connection member and the metal. A method for manufacturing a multilayer wiring board, wherein the step of electrically connecting a foil and a connection pin of the connection member and the step of patterning the metal foil are performed a predetermined number of times.
The invention according to claim 8 is the invention according to claim 7, characterized in that the double-sided wiring board manufactured according to any one of claims 1 to 6 is used as the wiring board to be the core.
The invention according to claim 9 is the invention according to any one of claims 7 or 8, wherein the connection member and the metal foil are sequentially pressed and laminated from both sides of the wiring substrate serving as the core. A step of electrically connecting the wiring pattern of the substrate and the connection pin of the connection member and electrically connecting the metal foil and the connection pin of the connection member, and a step of patterning the metal foil are predetermined. It is characterized by performing the number of times.
According to a tenth aspect of the present invention, between the plurality of wiring boards on which a predetermined wiring pattern is formed, a metal connecting pin is provided at a predetermined portion of a sheet-like insulating adhesive base material, and both ends thereof are insulative. It is characterized by having a step of electrically connecting the wiring pattern of the wiring board and the connection pins of the connection member by interposing and pressing the connection member arranged and fixed so as to protrude from the surface of the adhesive substrate. A method for manufacturing a multilayer wiring board.
According to an eleventh aspect of the present invention, a metal connection pin is provided at a predetermined portion of a sheet-like insulating base between a plurality of wiring boards on which a predetermined wiring pattern is formed, and both ends of the insulating base A connection member arranged and fixed so as to protrude from the surface of the material is interposed, the wiring board and the connection member are laminated and bonded using a predetermined adhesive, and the wiring pattern of the wiring board and the connection member are connected. A method for manufacturing a multilayer wiring board, comprising the step of electrically connecting pins.
The invention described in claim 12 is characterized in that, in the invention described in claim 11, an anisotropic conductive adhesive containing conductive particles during the insulating bonding is used as the wiring adhesive.
A thirteenth aspect of the present invention is the invention according to any one of the ninth to twelfth aspects, wherein the double-sided wiring board manufactured according to any one of the first to sixth aspects is used as the wiring board. Is.

本発明の両面配線基板の場合、シート状の絶縁性接着基材の所定の部位に所定の金属からなる接続用ピンを両端が絶縁性接着基材の表面から突出するように貫通固定し、所定の金属箔を絶縁性接着基材の両面に押圧積層して当該金属箔と接続用ピンとを電気的に接続するようにしたことから、従来技術のようなバンプの径やビアホールのピッチ等に起因するファインピッチ化への困難さを解決することができる。   In the case of the double-sided wiring board of the present invention, a connecting pin made of a predetermined metal is penetrated and fixed so that both ends protrude from the surface of the insulating adhesive base material in a predetermined part of the sheet-like insulating adhesive base material, Because the metal foil was pressed and laminated on both sides of the insulating adhesive base material to electrically connect the metal foil and the connecting pins, it was caused by the bump diameter and via hole pitch as in the prior art. The difficulty in making fine pitch can be solved.

また、本発明においては、接続用のペーストを使用していないので、導通抵抗を小さくすることができ、また熱伝導率を大きくすることができる。   In the present invention, since no connection paste is used, the conduction resistance can be reduced and the thermal conductivity can be increased.

さらに、本発明は、接続用ピンを絶縁性接着基材に貫通固定させるものであるから、工数が少なく、また特殊な材料を必要とせず、しかもリジッド基板、フレキシブル基板のいずれにも適用することができる。   Furthermore, since the present invention penetrates and fixes the connecting pin to the insulating adhesive base material, the number of steps is small, no special material is required, and it can be applied to either a rigid board or a flexible board. Can do.

一方、本発明において、接続用ピンをインプラント法によって絶縁性接着基材に貫通固定させるようにすれば、精度良く確実に絶縁性接着基材の所定の部位に配置することが可能になる。   On the other hand, in the present invention, if the connecting pin is penetrated and fixed to the insulating adhesive base material by an implant method, it can be accurately and surely disposed at a predetermined portion of the insulating adhesive base material.

また、本発明において、接続用ピンが金属箔より軟らかい材料からなる場合には、接続の際に接続用ピンが変形して金属箔に密着するため、金属結合による接合がより強固なものとなる。   Further, in the present invention, when the connecting pin is made of a material softer than the metal foil, the connecting pin is deformed and closely adhered to the metal foil at the time of connection, so that the bonding by metal bonding becomes stronger. .

特に、金属箔として銅箔を用いる場合に、接続用ピンとして無酸素圧延銅からなるものを用いることにより、接続後の導通信頼性を一層高めることが可能になる。   In particular, when a copper foil is used as the metal foil, the connection reliability after connection can be further enhanced by using a connection pin made of oxygen-free rolled copper.

そして、所定の配線パターンが形成されたコアとなる配線基板(特に上述の方法によって製造された両面配線基板)と、シート状の絶縁性接着基材の所定の部位に金属製の接続用ピンがその両端が絶縁性接着基材の表面から突出するように配置固定された接続部材と、所定の金属箔とを積層押圧し、当該配線基板の接続用ピンと接続部材の接続用ピンとを電気的に接続するとともに前記金属箔と前記接続部材の接続用ピンとを電気的に接続する工程と、前述の金属箔をパターン処理する工程とを所定の回数行うようにすれば、ファインピッチ化への対応が可能で、導通抵抗が小さく、かつ、熱伝導率の大きいリジッド及びフレキシブル多層配線基板を効率良く製造することが可能になる。   Then, a wiring board (particularly a double-sided wiring board manufactured by the above-described method) serving as a core on which a predetermined wiring pattern is formed, and a metal connection pin at a predetermined portion of the sheet-like insulating adhesive base material A connection member arranged and fixed so that both ends thereof protrude from the surface of the insulating adhesive base material and a predetermined metal foil are stacked and pressed, and the connection pin of the wiring board and the connection pin of the connection member are electrically connected. By connecting the metal foil and the connecting pin of the connecting member electrically and the process of patterning the metal foil a predetermined number of times, it is possible to cope with a fine pitch. It is possible to efficiently manufacture rigid and flexible multilayer wiring boards that have low conduction resistance and high thermal conductivity.

また、この場合、接続部材と、金属箔とをコアとなる配線基板の両面側から順次押圧積層し、当該配線基板の配線パターンと当該接続部材の接続用ピンとを電気的に接続するとともに当該金属箔と当該接続部材の接続用ピンとを電気的に接続する工程と、金属箔をパターン処理する工程とを所定の回数行うようにすれば、ファインピッチ化への対応が可能で、導通抵抗が小さく、かつ、熱伝導率の大きいリジッド及びフレキシブル多層配線基板をより効率良く製造することが可能になる。   Further, in this case, the connection member and the metal foil are sequentially pressed and laminated from both sides of the wiring board serving as the core, and the wiring pattern of the wiring board and the connection pins of the connection member are electrically connected and the metal If the process of electrically connecting the foil and the connection pin of the connection member and the process of patterning the metal foil are performed a predetermined number of times, it is possible to cope with fine pitch and the conduction resistance is small. In addition, a rigid and flexible multilayer wiring board having a high thermal conductivity can be manufactured more efficiently.

さらに、本発明においては、所定の配線パターンが形成された複数の配線基板(特に上述の方法によって製造された両面配線基板)の間に、シート状の絶縁性接着基材の所定の部位に金属製の接続用ピンがその両端が前記絶縁性接着基材の表面から突出するように配置固定された接続部材を介在させて積層押圧し、当該配線基板の配線パターンと当該接続部材の接続用ピンとを電気的に接続することにより、各層の配線パターンをそれぞれ平行して形成することができるため、より効率良く多層化を行うことができるとともに、良品配線基板のみを用いることによって歩留まりを向上させることが可能になる。   Furthermore, in the present invention, a metal is applied to a predetermined portion of a sheet-like insulating adhesive base material between a plurality of wiring boards (particularly, a double-sided wiring board manufactured by the above-described method) on which a predetermined wiring pattern is formed. A connection pin made of metal is laminated and pressed with a connection member arranged and fixed so that both ends thereof protrude from the surface of the insulating adhesive base, and a wiring pattern of the wiring board and a connection pin of the connection member Since the wiring patterns of each layer can be formed in parallel by electrically connecting each other, it is possible to increase the number of layers more efficiently and to improve the yield by using only non-defective wiring boards. Is possible.

一方、所定の配線パターンが形成された複数の配線基板(特に上述の方法によって製造された両面配線基板)の間に、シート状の絶縁性基材の所定の部位に金属製の接続用ピンがその両端が絶縁性基材の表面から突出するように配置固定された接続部材を介在させ、例えば異方性導電接着剤を用いて配線基板と接続部材を積層接着し、当該配線基板の配線パターンと当該接続部材の接続用ピンとを電気的に接続する場合においても、各層の配線パターンをそれぞれ平行して形成することができるため、より効率良く多層化を行うことができるとともに、良品配線基板のみを用いることによって歩留まりを向上させることが可能になる。   On the other hand, a metal connection pin is provided at a predetermined portion of a sheet-like insulating base material between a plurality of wiring boards (in particular, a double-sided wiring board manufactured by the above-described method) on which a predetermined wiring pattern is formed. A connection member arranged and fixed so that both ends protrude from the surface of the insulating base material are interposed, and for example, the wiring substrate and the connection member are laminated and bonded using an anisotropic conductive adhesive, and the wiring pattern of the wiring substrate Even when the connection pins of the connection members are electrically connected to each other, the wiring patterns of the respective layers can be formed in parallel, so that multilayering can be performed more efficiently and only non-defective wiring boards can be formed. The yield can be improved by using.

本発明によれば、ファインピッチ化への対応が可能で、導通抵抗が小さく、かつ、熱伝導率の大きい両面配線基板及び多層配線基板の製造することができる。
また、本発明によれば、工程数が少なく、しかも特殊な材料を必要することなく、更にはフレキシブル基板にも適用可能な両面配線基板及び多層配線基板を製造することができる。
According to the present invention, it is possible to manufacture a double-sided wiring board and a multilayer wiring board that can cope with a fine pitch, have low conduction resistance, and high thermal conductivity.
Further, according to the present invention, it is possible to manufacture a double-sided wiring board and a multilayer wiring board that have a small number of steps and do not require a special material and can be applied to a flexible board.

以下、本発明に係る両面配線基板及び多層配線基板の製造方法の実施形態を図面を参照して詳細に説明する。
図1(a)〜(e)は、本発明に係る両面配線基板の製造方法の実施の形態の工程を示す断面図である。
Hereinafter, embodiments of a method for manufacturing a double-sided wiring board and a multilayer wiring board according to the present invention will be described in detail with reference to the drawings.
1A to 1E are cross-sectional views showing the steps of an embodiment of a method for manufacturing a double-sided wiring board according to the present invention.

本実施の形態においては、図1(a)に示すように、まず、シート状の絶縁性接着基材1を用意する。   In the present embodiment, as shown in FIG. 1A, first, a sheet-like insulating adhesive substrate 1 is prepared.

本発明の場合、絶縁性接着基材1としては、リジッド基板用のプリプレグ又はフレキシブル基板用の樹脂基板のいずれも使用することができる。   In the case of the present invention, as the insulating adhesive substrate 1, either a prepreg for a rigid substrate or a resin substrate for a flexible substrate can be used.

この場合、フレキシブル基板としては、未硬化又は接着剤付き樹脂基板のいずれも使用することができ、例えば、熱可塑性ポリイミド、熱可塑性液晶ポリエステル等からなるものを好適に使用することができる。   In this case, as the flexible substrate, either an uncured or a resin substrate with an adhesive can be used. For example, a substrate made of thermoplastic polyimide, thermoplastic liquid crystal polyester, or the like can be suitably used.

本発明の場合、絶縁性接着基材1の厚さは特に限定されることはないが、10μm〜5mmのものを用いることが好ましい。   In the present invention, the thickness of the insulating adhesive substrate 1 is not particularly limited, but it is preferable to use a thickness of 10 μm to 5 mm.

次いで、図1(b)に示すように、絶縁性接着基材1の所定の部位に金属製の接続用ピン2を配置固定して接続部材3を作成する。   Next, as shown in FIG. 1 (b), the connection member 3 is created by arranging and fixing a metal connection pin 2 at a predetermined portion of the insulating adhesive substrate 1.

この場合、公知のインプラント法(例えば、特開2003−197692号公報参照)によって、円柱状の接続用ピン2を絶縁性接着基材1の厚さ方向に貫通させ、接続用ピン2の両端が絶縁性接着基材1の表面から突出するようにする。   In this case, the cylindrical connection pin 2 is penetrated in the thickness direction of the insulating adhesive base material 1 by a known implant method (for example, see Japanese Patent Application Laid-Open No. 2003-197692), and both ends of the connection pin 2 are It protrudes from the surface of the insulating adhesive substrate 1.

本発明の場合、接続用ピン2の材料は特に限定されることはないが、導通信頼性確保の観点からは、後述する電解銅箔より軟らかい材料を用いることが好ましく、特に好ましい材料は、無酸素圧延銅(圧延によって加工した無酸素銅)からなるものである。   In the case of the present invention, the material of the connecting pin 2 is not particularly limited, but from the viewpoint of ensuring conduction reliability, it is preferable to use a material softer than the electrolytic copper foil described later, and a particularly preferable material is none. It consists of oxygen-rolled copper (oxygen-free copper processed by rolling).

本明細書において、「無酸素銅」とは、JIS C1011、JIS C1020に規定するもの(OFC、化学成分→Cu:99.995wt% O2:0.0003wt%)のほか、JIS C1100に規定するタフピッチ銅(TPC、化学成分→Cu:99.95wt% O2:0.035wt%)も含まれるものとする。 In this specification, “oxygen-free copper” is defined in JIS C1011 and JIS C1020 (OFC, chemical component → Cu: 99.995 wt% O 2 : 0.0003 wt%) and JIS C1100. Tough pitch copper (TPC, chemical component → Cu: 99.95 wt% O 2 : 0.035 wt%) is also included.

この場合、導通信頼性を向上させる観点からは、JIS C1011、JIS C1020に規定するものを使用することが好ましい。   In this case, from the viewpoint of improving the conduction reliability, it is preferable to use those specified in JIS C1011 and JIS C1020.

また、接続用ピン2の両端が絶縁性接着基材1の表面から突出する高さについては特に限定されることはないが、導通信頼性確保の観点からは、後述する金属箔4の厚さより薄いことが好ましく、具体的には、3〜10μmとすることが好ましい。   Moreover, although it does not specifically limit about the height which the both ends of the pin 2 for a connection protrudes from the surface of the insulating adhesive base material 1, From a viewpoint of ensuring conduction | electrical_connection reliability, from the thickness of the metal foil 4 mentioned later It is preferable that the thickness is thin, and specifically, 3 to 10 μm is preferable.

そして、図1(c)(d)に示すように、金属箔4を接続部材3の絶縁性接着基材1の両面側から位置決めして積層し、所定の圧力及び温度で熱圧着を行うことによって、対向する金属箔4と接続用ピン2をそれぞれ電気的に接続する。   And as shown in FIG.1 (c) (d), metal foil 4 is positioned and laminated | stacked from the both surfaces side of the insulating adhesive base material 1 of the connection member 3, and thermocompression bonding is performed with a predetermined pressure and temperature. Thus, the opposing metal foil 4 and the connection pin 2 are electrically connected to each other.

本発明の場合、金属箔4の種類は特に限定されることはないが、導通信頼性確保の観点からは、上述した無酸素銅以外の材料、例えば電解銅箔を用いることが好ましい。   In the case of the present invention, the type of the metal foil 4 is not particularly limited, but from the viewpoint of ensuring conduction reliability, it is preferable to use a material other than the oxygen-free copper described above, for example, an electrolytic copper foil.

本発明の場合、金属箔4の厚さは特に限定されることはないが、導通信頼性確保の観点からは、8〜70μmのものを用いることが好ましい。   In the present invention, the thickness of the metal foil 4 is not particularly limited, but from the viewpoint of ensuring conduction reliability, it is preferable to use a metal foil having a thickness of 8 to 70 μm.

さらに、図1(e)に示すように、公知のリソグラフィ法によって各金属箔4のパターン処理を行い、それぞれ所定の配線(回路)パターン4aを形成する。これにより目的とする両面配線基板10を得る。   Further, as shown in FIG. 1E, each metal foil 4 is subjected to pattern processing by a known lithography method to form predetermined wiring (circuit) patterns 4a. Thereby, the intended double-sided wiring board 10 is obtained.

以上述べたように本実施の形態の両面配線基板10によれば、シート状の絶縁性接着基材1の所定の部位に例えば無酸素圧延銅からなる接続用ピン2を両端が絶縁性接着基材1の表面から突出するように貫通固定し、金属箔4を接続部材3の絶縁性接着基材1の両面に押圧積層して金属箔4と接続用ピン2とを電気的に接続するようにしたことから、従来技術のようなバンプの径やビアホールのピッチ等に起因するファインピッチ化への困難さを解決することができる。   As described above, according to the double-sided wiring board 10 of the present embodiment, the connection pins 2 made of, for example, oxygen-free rolled copper are provided at predetermined portions of the sheet-like insulating adhesive base 1 at both ends. The metal foil 4 is pressed and laminated on both surfaces of the insulating adhesive base material 1 of the connection member 3 so as to protrude from the surface of the material 1 so as to electrically connect the metal foil 4 and the connection pin 2. Therefore, it is possible to solve the difficulty in achieving a fine pitch due to the bump diameter and via hole pitch as in the prior art.

また、本実施の形態においては、接続用のペーストを使用していないので、導通抵抗を小さくすることができ、また熱伝導率を大きくすることができる。   In the present embodiment, since no connection paste is used, the conduction resistance can be reduced and the thermal conductivity can be increased.

さらに、本実施の形態は、接続用ピン2を絶縁性接着基材1に貫通固定させるだけのものであるから、工数が少なく、また特殊な材料を必要とせず、しかもリジッド基板、フレキシブル基板のいずれにも適用することができる。   Further, since the present embodiment is merely for fixing the connecting pin 2 to the insulating adhesive base material 1 through a small number of steps, no special material is required, and a rigid substrate and a flexible substrate can be used. It can be applied to both.

また、本実施の形態においては、接続用ピン2をインプラント法によって絶縁性接着基材1に貫通固定することから、精度良く確実に絶縁性接着基材1の所定の部位に配置することができる。   Further, in the present embodiment, since the connecting pin 2 is fixed to the insulating adhesive base material 1 by the implant method, the connecting pin 2 can be accurately and surely disposed at a predetermined portion of the insulating adhesive base material 1. .

特に、上記実施の形態のように、接続用ピン2として電解銅箔より軟らかい無酸素圧延銅からなるものを用いることによって、接続の際に接続用ピン2が変形して金属箔4に密着して金属結合による強固な接合が行われ、これにより接続後における高い導通信頼性を達成することができる。   In particular, as in the above-described embodiment, the connection pin 2 is made of oxygen-free rolled copper, which is softer than the electrolytic copper foil, so that the connection pin 2 is deformed and closely adhered to the metal foil 4 at the time of connection. Thus, strong bonding by metal bonding is performed, and thereby high conduction reliability after connection can be achieved.

図2(a)〜(d)は、本発明に係る多層配線基板の製造方法の実施の形態の工程を示す断面図である。
図2(a)に示すように、本実施の形態においては、上記図1(a)〜(e)に示す方法によって得られた両面配線基板10を用意する。
2A to 2D are cross-sectional views showing the steps of an embodiment of a method for manufacturing a multilayer wiring board according to the present invention.
As shown in FIG. 2A, in the present embodiment, a double-sided wiring board 10 obtained by the method shown in FIGS. 1A to 1E is prepared.

そして、図2(b)(c)に示すように、上述のインプラント法によって得られた接続部材3と、絶縁性接着基材4とを、両面配線基板10の両面側から順次位置決めして積層し、所定の圧力及び温度で熱圧着を行うことによって、接続用ピン2と対向する配線パターン42、43をそれぞれ電気的に接続する。   2B and 2C, the connection member 3 obtained by the above-described implant method and the insulating adhesive base material 4 are sequentially positioned and laminated from both sides of the double-sided wiring board 10. Then, by performing thermocompression bonding at a predetermined pressure and temperature, the wiring patterns 42 and 43 facing the connection pins 2 are electrically connected to each other.

さらに、図2(d)に示すように、公知のリソグラフィ法によって上部及び下部の金属箔4のパターン処理を行い、それぞれ所定の配線パターン41、44を形成する。これにより目的とする多層配線基板20を得る。   Further, as shown in FIG. 2D, pattern processing of the upper and lower metal foils 4 is performed by a known lithography method to form predetermined wiring patterns 41 and 44, respectively. As a result, the target multilayer wiring board 20 is obtained.

なお、上述した工程を所定の回数行うことにより、更に多層の配線基板を得ることができる。   In addition, a multilayer wiring board can be obtained by performing the above-mentioned process a predetermined number of times.

以上述べたように本実施の形態によれば、ファインピッチ化への対応が可能で、導通抵抗が小さく、かつ、熱伝導率の大きいリジッド及びフレキシブル多層配線基板を効率良く製造することが可能になる。   As described above, according to the present embodiment, it is possible to cope with fine pitches, and it is possible to efficiently manufacture rigid and flexible multilayer wiring boards with low conduction resistance and high thermal conductivity. Become.

図3(a)(b)は、本発明に係る多層配線基板の製造方法の他の実施の形態の工程を示す断面図であり、以下、上記実施の形態と対応する部分には同一の符号を付しその詳細な説明を省略する。   FIGS. 3A and 3B are cross-sectional views showing the steps of another embodiment of the method for manufacturing a multilayer wiring board according to the present invention. And detailed description thereof is omitted.

図3(a)に示すように、本実施の形態においては、上記図1(a)〜(e)に示す方法によって得られた2枚の両面配線基板10A、10Bと、上述のインプラント法によって得られた接続部材3を用意する。   As shown in FIG. 3A, in the present embodiment, two double-sided wiring boards 10A and 10B obtained by the method shown in FIGS. 1A to 1E and the above-described implant method are used. The obtained connecting member 3 is prepared.

そして、図3(b)に示すように、2枚の両面配線基板10A、10Bの間に接続部材3を挟んで積層し、所定の圧力及び温度で熱圧着を行うことによって、配線パターン42、43と対向する接続用ピン2をそれぞれ電気的に接続する。   And as shown in FIG.3 (b), by laminating | stacking the connection member 3 between the two double-sided wiring boards 10A and 10B, and performing thermocompression bonding with a predetermined pressure and temperature, the wiring pattern 42, The connection pins 2 facing the terminal 43 are electrically connected to each other.

このような工程を有する本実施の形態によれば、上述した効果に加え、各層の配線パターン41、42及び配線パターン43、44をそれぞれ並行して形成することができるため、より効率良く多層化を行うことができるとともに、良品配線基板のみを用いることによって歩留まりを向上させることが可能になる。その他の構成及び作用効果については上述の実施の形態と同一であるのでその詳細な説明を省略する。   According to the present embodiment having such a process, in addition to the above-described effects, the wiring patterns 41 and 42 and the wiring patterns 43 and 44 of the respective layers can be formed in parallel, so that multilayering can be performed more efficiently. In addition, the yield can be improved by using only the non-defective wiring board. Since other configurations and operational effects are the same as those of the above-described embodiment, detailed description thereof is omitted.

図4(a)(b)は、本発明に係る多層配線基板の製造方法の更に他の実施の形態の工程を示す断面図であり、以下、上記実施の形態と対応する部分には同一の符号を付しその詳細な説明を省略する。   4 (a) and 4 (b) are cross-sectional views showing steps of still another embodiment of the method for manufacturing a multilayer wiring board according to the present invention. Reference numerals are assigned and detailed description thereof is omitted.

図4(a)に示すように、本実施の形態においては、上記図1(a)〜(e)に示す方法によって得られた2枚の両面配線基板10A、10Bと、上述のインプラント法によって得られた接続部材3と、絶縁性接着剤中に導電粒子を含有する異方導電性接着フィルム5を用意する。   As shown in FIG. 4A, in the present embodiment, two double-sided wiring boards 10A and 10B obtained by the method shown in FIGS. 1A to 1E and the above-described implant method are used. An anisotropic conductive adhesive film 5 containing conductive particles in the obtained connecting member 3 and an insulating adhesive is prepared.

本実施の形態の場合、接続部材3を構成する絶縁性基材3aとしては、孔明け等における加工精度を確保する観点から、硬化済みの基材を用いることが好ましい。   In the case of the present embodiment, it is preferable to use a cured base material as the insulating base material 3a constituting the connection member 3 from the viewpoint of ensuring processing accuracy in drilling or the like.

そして、図4(b)に示すように、両面配線基板10Aと接続部材3及び両面配線基板10Bと接続部材3の間にそれぞれ異方導電性接着フィルム5を挟んでこれらを積層し、所定の圧力及び温度で熱圧着を行うことによって、配線パターン42、43と対向する接続用ピン2を導電粒子を介してそれぞれ電気的に接続する。   And as shown in FIG.4 (b), these are laminated | stacked on both sides of the anisotropic conductive adhesive film 5 between the double-sided wiring board 10A and the connection member 3, and the double-sided wiring board 10B and the connection member 3, respectively. By performing thermocompression bonding with pressure and temperature, the connection pins 2 facing the wiring patterns 42 and 43 are electrically connected to each other through conductive particles.

このような工程を有する本実施の形態によれば、上述した効果に加え、各層の配線パターン41、42及び配線パターン43、44をそれぞれ並行して形成することができるため、より効率良く多層化を行うことができるとともに、良品配線基板のみを用いることによって歩留まりを向上させることが可能になる。   According to the present embodiment having such a process, in addition to the above-described effects, the wiring patterns 41 and 42 and the wiring patterns 43 and 44 of the respective layers can be formed in parallel, so that multilayering can be performed more efficiently. In addition, the yield can be improved by using only the non-defective wiring board.

また、異方導電性接着フィルム5によって多層化を行うので、接続信頼性を向上させるという効果もある。その他の構成及び作用効果については上述の実施の形態と同一であるのでその詳細な説明を省略する。   Moreover, since multilayering is performed by the anisotropic conductive adhesive film 5, there is also an effect of improving connection reliability. Since other configurations and operational effects are the same as those of the above-described embodiment, detailed description thereof is omitted.

なお、本発明は上述の実施の形態に限られることなく、種々の変更を行うことができる。
例えば、図1に示す実施の形態においては、コアとなる配線基板の両面側にビルドアップするようにしたが、本発明はこれに限られず、コアとなる配線基板の片面側にビルドアップすることも可能である。
The present invention is not limited to the above-described embodiment, and various changes can be made.
For example, in the embodiment shown in FIG. 1, build-up is performed on both sides of the wiring board serving as the core, but the present invention is not limited to this, and build-up is performed on one side of the wiring board serving as the core. Is also possible.

また、本発明は、リジッド基板又はフレキシブル基板のみならず、リジッド基板及びフレキシブル基板を混在させた多層配線基板にも適用することができる。   Further, the present invention can be applied not only to a rigid substrate or a flexible substrate, but also to a multilayer wiring substrate in which a rigid substrate and a flexible substrate are mixed.

さらに、図3及び図4に示す実施の形態においては、本発明による両面配線基板の代わりに、通常のプロセスによる配線基板を用いることも可能である。   Further, in the embodiment shown in FIG. 3 and FIG. 4, it is possible to use a wiring board by a normal process instead of the double-sided wiring board according to the present invention.

さらにまた、図4に示す実施の形態においては、異方導電性接着フィルムの代わりに、絶縁性接着剤中に導電粒子を含有しない絶縁性接着剤(フィルム)を用いることも可能である。   Furthermore, in the embodiment shown in FIG. 4, it is also possible to use an insulating adhesive (film) that does not contain conductive particles in the insulating adhesive, instead of the anisotropic conductive adhesive film.

加えて、上述の実施の形態においては、接続用ピンとして一体的に形成したものを用いたが、本発明はこれに限られず、例えば、中心部分が金属箔より硬く先端部分が金属箔より軟らかくなるように積層させた接続用ピンを用いることも可能である。   In addition, in the above-described embodiment, an integrally formed connection pin is used. However, the present invention is not limited to this. For example, the center portion is harder than the metal foil and the tip portion is softer than the metal foil. It is also possible to use connection pins laminated in such a manner.

(a)〜(e):本発明に係る両面配線基板の製造方法の実施の形態の工程を示す断面図である。(A)-(e): It is sectional drawing which shows the process of embodiment of the manufacturing method of the double-sided wiring board based on this invention. (a)〜(d):本発明に係る多層配線基板の製造方法の実施の形態の工程を示す断面図である。(A)-(d): It is sectional drawing which shows the process of embodiment of the manufacturing method of the multilayer wiring board based on this invention. (a)(b):本発明に係る多層配線基板の製造方法の他の実施の形態の工程を示す断面図である。(A) (b): It is sectional drawing which shows the process of other embodiment of the manufacturing method of the multilayer wiring board based on this invention. (a)(b):本発明に係る多層配線基板の製造方法の更に他の実施の形態の工程を示す断面図である。(A) (b): It is sectional drawing which shows the process of other embodiment of the manufacturing method of the multilayer wiring board based on this invention.

符号の説明Explanation of symbols

1…絶縁性接着基材 2…接続用ピン 3…接続部材 3a…絶縁性基材 4…金属箔 5…異方導電性接着フィルム 10…両面配線基板 41、42、43、44…配線パターン DESCRIPTION OF SYMBOLS 1 ... Insulating adhesive base material 2 ... Connection pin 3 ... Connection member 3a ... Insulating base material 4 ... Metal foil 5 ... Anisotropic conductive adhesive film 10 ... Double-sided wiring board 41, 42, 43, 44 ... Wiring pattern

Claims (13)

シート状の絶縁性接着基材の所定の部位に所定の金属からなる接続用ピンをその両端が前記絶縁性接着基材の表面から突出するように貫通固定する工程と、
所定の金属箔を前記絶縁性接着基材の両面側から押圧積層して当該金属箔と当該接続用ピンとを電気的に接続する工程と、
前記金属箔をパターン処理する工程とを有することを特徴とする両面配線基板の製造方法。
A step of fixing the connecting pins made of a predetermined metal to predetermined portions of the sheet-like insulating adhesive base so that both ends thereof protrude from the surface of the insulating adhesive base, and
A step of pressing and laminating a predetermined metal foil from both sides of the insulating adhesive base material to electrically connect the metal foil and the connection pin;
And a step of patterning the metal foil. A method for manufacturing a double-sided wiring board.
前記接続用ピンが前記金属箔より軟らかい材料からなることを特徴とする請求項1記載の両面配線基板の製造方法。   The method for manufacturing a double-sided wiring board according to claim 1, wherein the connection pin is made of a material softer than the metal foil. 前記接続用ピンが無酸素圧延銅からなることを特徴とする請求項1又は2のいずれか1項記載の両面配線基板の製造方法。   The method for manufacturing a double-sided wiring board according to claim 1, wherein the connection pin is made of oxygen-free rolled copper. 前記絶縁性接着基材がリジッド基板用の材料からなることを特徴とする請求項1乃至3のいずれか1項記載の両面配線基板の製造方法。   The method for manufacturing a double-sided wiring board according to any one of claims 1 to 3, wherein the insulating adhesive base is made of a material for a rigid board. 前記絶縁性接着基材がフレキシブル基板用の材料からなることを特徴とする請求項1乃至3のいずれか1項記載の両面配線基板の製造方法。   The method for manufacturing a double-sided wiring board according to any one of claims 1 to 3, wherein the insulating adhesive base material is made of a material for a flexible substrate. 前記接続用ピンをインプラント法によって前記絶縁性接着基材に貫通固定させることを特徴とする請求項1乃至5のいずれか1項記載の両面配線基板の製造方法。   6. The method for manufacturing a double-sided wiring board according to claim 1, wherein the connecting pin is fixed to the insulating adhesive base material by an implant method. 所定の配線パターンが形成されたコアとなる配線基板と、シート状の絶縁性接着基材の所定の部位に金属製の接続用ピンがその両端が前記絶縁性接着基材の表面から突出するように配置固定された接続部材と、所定の金属箔とを積層押圧し、前記配線基板の配線パターンと前記接続部材の接続用ピンとを電気的に接続するとともに前記金属箔と前記接続部材の接続用ピンとを電気的に接続する工程と、
前記金属箔をパターン処理する工程とを所定の回数行うことを特徴とする多層配線基板の製造方法。
A wiring board serving as a core on which a predetermined wiring pattern is formed, and metal connection pins at predetermined portions of the sheet-like insulating adhesive base so that both ends thereof protrude from the surface of the insulating adhesive base And connecting and fixing the connection member arranged and fixed to the predetermined metal foil to electrically connect the wiring pattern of the wiring board and the connection pin of the connection member and for connecting the metal foil and the connection member Electrically connecting the pins;
A method of manufacturing a multilayer wiring board, wherein the step of patterning the metal foil is performed a predetermined number of times.
前記コアとなる配線基板として、請求項1乃至6のいずれかによって製造された両面配線基板を用いることを特徴とする請求項7記載の多層配線基板の製造方法。   8. The method of manufacturing a multilayer wiring board according to claim 7, wherein the double-sided wiring board manufactured according to any one of claims 1 to 6 is used as the core wiring board. 前記接続部材と、前記金属箔とを前記コアとなる配線基板の両面側から順次押圧積層し、当該配線基板の配線パターンと当該接続部材の接続用ピンとを電気的に接続するとともに当該金属箔と当該接続部材の接続用ピンとを電気的に接続する工程と、
前記金属箔をパターン処理する工程とを所定の回数行うことを特徴とする請求項7又は8のいずれか1項記載の多層配線基板の製造方法。
The connection member and the metal foil are sequentially pressed and laminated from both sides of the wiring board serving as the core, and the wiring pattern of the wiring board and the connection pins of the connection member are electrically connected and the metal foil and Electrically connecting the connection pins of the connection member;
9. The method of manufacturing a multilayer wiring board according to claim 7, wherein the step of patterning the metal foil is performed a predetermined number of times.
所定の配線パターンが形成された複数の配線基板の間に、シート状の絶縁性接着基材の所定の部位に金属製の接続用ピンがその両端が前記絶縁性接着基材の表面から突出するように配置固定された接続部材を介在させて積層押圧し、当該配線基板の配線パターンと当該接続部材の接続用ピンとを電気的に接続する工程を有することを特徴とする多層配線基板の製造方法。   Between a plurality of wiring boards on which a predetermined wiring pattern is formed, metal connection pins protrude from the surface of the insulating adhesive base at predetermined portions of the sheet-like insulating adhesive base. A method of manufacturing a multilayer wiring board, comprising the steps of laminating and pressing the connection members arranged and fixed in this manner to electrically connect the wiring pattern of the wiring board and the connection pins of the connection member . 所定の配線パターンが形成された複数の配線基板の間に、シート状の絶縁性基材の所定の部位に金属製の接続用ピンがその両端が前記絶縁性基材の表面から突出するように配置固定された接続部材を介在させ、所定の接着剤を用いて前記配線基板と前記接続部材を積層接着し、当該配線基板の配線パターンと当該接続部材の接続用ピンとを電気的に接続する工程を有することを特徴とする多層配線基板の製造方法。   Between a plurality of wiring boards on which a predetermined wiring pattern is formed, metal connection pins are protruded from the surface of the insulating base material at predetermined portions of the sheet-like insulating base material. A step of interposing a connection member fixedly arranged, laminating and bonding the wiring board and the connection member using a predetermined adhesive, and electrically connecting a wiring pattern of the wiring board and a connection pin of the connection member A method for producing a multilayer wiring board, comprising: 前記配線接着剤として、絶縁性接着中に導電粒子を含有する異方導電性接着剤を用いることを特徴とする請求項11記載の多層配線基板の製造方法。   The method for manufacturing a multilayer wiring board according to claim 11, wherein an anisotropic conductive adhesive containing conductive particles during insulating bonding is used as the wiring adhesive. 前記配線基板として、請求項1乃至6のいずれかによって製造された両面配線基板を用いることを特徴とする請求項9乃至12のいずれか1項記載の多層配線基板の製造方法。   The method for manufacturing a multilayer wiring board according to any one of claims 9 to 12, wherein the double-sided wiring board manufactured according to any one of claims 1 to 6 is used as the wiring board.
JP2004069942A 2004-03-12 2004-03-12 Method for manufacturing double-sided wiring board and multilayer wiring board Pending JP2005260012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004069942A JP2005260012A (en) 2004-03-12 2004-03-12 Method for manufacturing double-sided wiring board and multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004069942A JP2005260012A (en) 2004-03-12 2004-03-12 Method for manufacturing double-sided wiring board and multilayer wiring board

Publications (1)

Publication Number Publication Date
JP2005260012A true JP2005260012A (en) 2005-09-22

Family

ID=35085443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004069942A Pending JP2005260012A (en) 2004-03-12 2004-03-12 Method for manufacturing double-sided wiring board and multilayer wiring board

Country Status (1)

Country Link
JP (1) JP2005260012A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096122A (en) * 2005-09-29 2007-04-12 Mitsubishi Plastics Ind Ltd Connection bonding sheet for multilayer wiring board
JP2008258357A (en) * 2007-04-04 2008-10-23 Fujikura Ltd Rigid flexible board and manufacturing method thereof
JP2009038191A (en) * 2007-08-01 2009-02-19 Fujikura Ltd Multilayer wiring board and its manufacturing method
JP2009135398A (en) * 2007-11-29 2009-06-18 Ibiden Co Ltd Combination substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096122A (en) * 2005-09-29 2007-04-12 Mitsubishi Plastics Ind Ltd Connection bonding sheet for multilayer wiring board
JP2008258357A (en) * 2007-04-04 2008-10-23 Fujikura Ltd Rigid flexible board and manufacturing method thereof
JP2009038191A (en) * 2007-08-01 2009-02-19 Fujikura Ltd Multilayer wiring board and its manufacturing method
JP2009135398A (en) * 2007-11-29 2009-06-18 Ibiden Co Ltd Combination substrate

Similar Documents

Publication Publication Date Title
US8419884B2 (en) Method for manufacturing multilayer wiring substrate
JP4291279B2 (en) Flexible multilayer circuit board
US7870663B2 (en) Method for manufacturing multilayer wiring board
US8609991B2 (en) Flex-rigid wiring board and method for manufacturing the same
JP5010737B2 (en) Printed wiring board
JP4529978B2 (en) WIRING BOARD, WIRING MATERIAL, COPPER-CLAD LAMINATE, AND WIRING BOARD MANUFACTURING METHOD
JP2008124398A (en) Semiconductor package and its manufacturing method
JP2006114621A (en) Wiring plate with built-in component and manufacturing method thereof
JP5007164B2 (en) Multilayer wiring board and multilayer wiring board manufacturing method
JP4449975B2 (en) Connection board, multilayer wiring board using the connection board, and methods of manufacturing the same
JP5095952B2 (en) Multilayer wiring board and manufacturing method thereof
JP2005268378A (en) Method of manufacturing substrate with incorporated components
JP2005260012A (en) Method for manufacturing double-sided wiring board and multilayer wiring board
JP2002151853A (en) Multilayer printed wiring board and manufacturing method thereof
JP2008016651A (en) Component built-in wiring board and its manufacturing method
JP2006049536A (en) Multilayer circuit board
JP5515210B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP4821276B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
JP4824972B2 (en) Circuit wiring board and manufacturing method thereof
KR100796981B1 (en) Method for manufacturing printed circuit board
US9673063B2 (en) Terminations
JP4308032B2 (en) Rigid flex board, manufacturing method and repair method thereof
JP2007115951A (en) Interposer substrate and manufacturing method thereof
JP4968616B2 (en) Manufacturing method of multilayer printed wiring board
JP2006054331A (en) Multilayer flex and rigid wiring board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Effective date: 20090520

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Effective date: 20091020

Free format text: JAPANESE INTERMEDIATE CODE: A02