JP2013057408A - 磁気冷暖房装置 - Google Patents

磁気冷暖房装置 Download PDF

Info

Publication number
JP2013057408A
JP2013057408A JP2011194434A JP2011194434A JP2013057408A JP 2013057408 A JP2013057408 A JP 2013057408A JP 2011194434 A JP2011194434 A JP 2011194434A JP 2011194434 A JP2011194434 A JP 2011194434A JP 2013057408 A JP2013057408 A JP 2013057408A
Authority
JP
Japan
Prior art keywords
heat
magnetic
temperature side
unit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011194434A
Other languages
English (en)
Other versions
JP5857553B2 (ja
Inventor
Yutaka Tazaki
豊 田崎
Hidekazu Takahashi
秀和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011194434A priority Critical patent/JP5857553B2/ja
Publication of JP2013057408A publication Critical patent/JP2013057408A/ja
Application granted granted Critical
Publication of JP5857553B2 publication Critical patent/JP5857553B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

【課題】耐久性を備え機械的および熱的な損失を小さくし熱輸送能力及び熱輸送効率を向上させる。
【解決手段】磁気熱量効果を有する磁性体10A−10Fと磁性体10A−10Fの熱を輸送する熱伝導部30A−30Gとを交互に配置する熱輸送器と、熱輸送器の一端に熱伝導部30Aを介して配置する低温側熱交換部40Aと、熱輸送器の他端に熱伝導部30Gを介して配置する高温側熱交換部40Bと、熱輸送器の各磁性体10A−10Fに選択的に磁気を印加し除去する磁気印加除去部20A−20Fと、を有し、各熱伝導部30A−30Gは、電圧を印加すると各磁性体10A−10Fとの並び方向の寸法が小さくなって各磁性体10A−10F間の熱伝導を遮断し、電圧を除去すると各磁性体10A−10Fとの並び方向の寸法が元の寸法に戻って各磁性体10A−10F間の熱伝導を可能にする。
【選択図】図3

Description

本発明は、磁気冷暖房装置に係り、特に、磁気熱量効果を発現する磁性体の熱を、電気的に熱の伝導が制御できる熱伝導部を利用して輸送する磁気冷暖房装置に関する。
従来用いられている室温域の冷凍機、例えば、冷蔵庫、冷凍庫、エアコンなどの冷凍機の大半は、フロンガスや代替フロンガスなどの気体冷媒の相変化を利用している。最近では、フロンガスの排出に伴うオゾン層破壊の問題が露呈し、さらに、代替フロンガスの排出に伴う地球温暖化への影響も懸念されている。このため、フロンガスや代替フロンガスなどの気体冷媒を用いた冷凍機に代わる、クリーンでかつ熱輸送能力の高い、革新的な冷凍機の開発が強く望まれている。
このような背景から、最近になって注目されるようになった冷凍技術が磁気冷凍技術である。磁性体の中には、その磁性体に印加する磁界の大きさが変化すると、その変化に応じて自身の温度を変化させる、いわゆる磁気熱量効果を発現するものがある。この磁気熱量効果を発現する磁性体を利用して熱を輸送する冷凍技術が磁気冷凍技術である。
磁気冷凍技術を応用した冷凍機としては、例えば、下記特許文献1に記載されているような、固体物質の熱伝導を利用して熱を輸送する磁気冷凍機がある。この磁気冷凍機は以下のような構成によって熱を伝導させる。
磁気を印加すると温度が上昇する正の磁性体と、磁気を印加すると温度が下降する負の磁性体とを、所定の間隔で交互に複数一方向に並べて配置する。正負一対の磁性体で1つの磁性体ブロックを形成する。一方向に並ぶ複数の磁性体ブロックを環状に複数配置して磁性体ユニットを形成する。この磁性体ユニットと同心で内径と外径が略等しいハブ状の回転体に永久磁石を配置して磁気印加除去部を形成する。正負の磁性体との間を挿脱する熱伝導部材を正負の磁性体との間で摺動自在となるように配置する。
永久磁石が配置されている回転体を磁性体ユニットと対向するように配置して磁性体ユニットに対し相対的に回転させる。正負の磁性体との間で挿脱される熱伝導部材を磁性体ユニットに対し相対的に回転させる。この回転体の回転によって正負の磁性体に同時に磁気が印加されまた除去される。また、熱伝導部材が回転方向に並ぶ正負の磁性体との間で挿脱される。永久磁石と熱伝導部材が回転することで、磁気熱量効果により磁性体が発生する熱を磁性体が配置される一方向に熱伝導部材を介して輸送する。
特開2007−147209号公報
しかしながら、上記特許文献1に記載されている発明の場合、磁性体が発生する熱を輸送するときに、熱伝導部材が正負の磁性体との間で挿脱される。熱伝導部材は正負の磁性体との間で摺動を繰り返すことから、熱伝導部材に耐久性を持たせる必要がある。また、熱伝導部材の摺動に伴い、磁性体との間で生じる摩擦により機械的な損失が発生する。
さらに、熱伝導部材は正負の磁性体との間で摺動を繰り返すことから、実際には、構造上一方向にのみ熱を輸送することはできず、熱の輸送に際して熱的な損失が発生する。
熱的な損失は次のような理由から発生する。
熱伝導部材が熱伝導部材を挟む磁性体間にあるときには、熱伝導部材を挟む磁性体間でのみ熱が輸送される。ところが熱伝導部材が回転方向に隣り合う磁性体とまたがる位置にあるときには、熱伝導部材を挟む磁性体間だけでなく、回転方向に隣り合う磁性体間にも熱が輸送される。回転方向に隣り合う磁性体に輸送される熱は損失となり、磁気冷凍機の熱輸送能力及び熱輸送効率の低下を招く。
本発明は、上記の問題を解決するために成されたものであり、摺動の耐久性を持たせる必要がなく、機械的および熱的な損失が極めて小さく、熱輸送能力及び熱輸送効率を向上させることができる、磁気冷暖房装置の提供を目的とする。
上記目的を達成するための本発明に係る磁気冷暖房装置は、熱輸送器、低温側熱交換部、高温側熱交換部及び磁気印加除去部を有する。
熱輸送器は、磁気熱量効果を有する磁性体と当該磁性体の熱を輸送する熱伝導部とを交互に配置する。低温側熱交換部は、前記熱輸送器の一端に前記熱伝導部を介して配置する。高温側熱交換部は、前記熱輸送器の他端に前記熱伝導部を介して配置する。磁気印加除去部は、前記熱輸送器の各磁性体に選択的に磁気を印加し除去する。各熱伝導部は、電圧を印加すると前記各磁性体との並び方向の寸法が小さくなって各磁性体との熱伝導を遮断し、電圧を除去すると前記各磁性体との並び方向の寸法が元の寸法に戻って各磁性体との熱伝導を可能にする。
本発明に係る磁気冷暖房装置によれば、各熱伝導部は、電圧の印加、除去に応じて伸縮するので、磁性体、低温側熱交換部、高温側熱交換部に対して摺動させずに熱を輸送させることができる。このため、各熱伝導部に摺動の耐久性を持たせる必要がなく、各熱伝導部の信頼性が向上する。また、摩擦による機械的な損失をなくすことができる。
また、各熱伝導部は各磁性体との並び方向にのみ熱を輸送できるので、熱の輸送に際して熱的な損失が小さくできる。
さらに、各熱伝導部は、電圧の印加、除去に応じて、磁性体間、磁性体と低温側熱交換部との間、磁性体と高温側熱交換部との間を、全ての接触面を使って接続するので、熱輸送能力及び熱輸送効率を向上させることができる。
本発明に適用する磁気冷暖房の原理図である。 本発明の磁気冷暖房の効果を示すグラフである。 図1の原理図において熱が移動していく様子を説明するための図である。 本実施形態に係る熱伝導部の構造図である。 本実施形態に係る磁気冷暖房装置の固定部の構成図である。 本実施形態に係る磁気冷暖房装置の回転部の構成図である。 本実施形態に係る磁気冷暖房装置の断面図である。 本実施形態に係る磁気冷暖房装置の制御系のブロック図である。 図8の空調制御部と空調情報入力部のさらに具体的な制御系のブロック図である。 本実施形態に係る磁気冷暖房装置の動作フローチャートである。 本実施形態に係る磁気冷暖房装置のサブルーチンフローチャートである。 熱伝導の態様(ステップ0から4)と熱伝導部の位置関係(aからg)を示す図である。 位置bにおける熱伝導部とそれに隣接する磁性体から構成される一組のユニット(破線で囲まれた部分)について熱伝導の態様(ステップ1から4)と磁気の印加状態、熱伝導部の電圧、熱流束の関係を示す図である。 図9のスイッチングパターン記憶部が記憶するスイッチングパターンの一例である。 図9のスイッチングパターン記憶部が記憶するスイッチングパターンの他の例である。
まず、本発明の実施形態の説明をする前に、本発明に適用する磁気冷暖房の原理を図面に基づいて詳細に説明する。
(磁気冷暖房の原理)
図1は、本発明に適用する磁気冷暖房の原理図である。磁性体10A−10Fには、発現される磁気熱量効果の種類が同じ同一材料の磁性体として正の磁性体を用いる。
磁気印加除去部20A、20B、磁気印加除去部20C、20D、磁気印加除去部20E、20Fは、磁性体10A−10Fを挟むようにして、磁性体10A−10Fの間で往復移動する。つまり、図1Aの状態から、磁気印加除去部20A、20Bが磁性体10Aから10Bに、磁気印加除去部20C、20Dが磁性体10Cから10Dに、磁気印加除去部20E、20Fが磁性体10Eから10Fに、一斉に移動して、図1Bの状態になる。
次に、図1Bの状態から、磁気印加除去部20A、20Bが磁性体10Bから10Aに、磁気印加除去部20C、20Dが磁性体10Dから10Cに、磁気印加除去部20E、20Fが磁性体10Fから10Eに、一斉に移動して、磁気印加除去部と磁性体の位置関係が図1Aの状態に戻る。したがって、磁気印加除去部が往復移動すると、図1Aと図1Bの状態が交互に繰り返される。
本実施形態では、磁性体10A−10Fには正の磁性体を用いている。しかし、負の磁性体を用いても良い。正の磁性体は磁気印加除去部20A−20Fで磁気を印加すると発熱し除去すると吸熱する。一方、負の磁性体は磁気印加除去部20A−20Fで磁気を印加すると吸熱し除去すると発熱する。このように、正の磁性体と負の磁性体とでは、発現される磁気熱量効果が正反対であり、磁気熱量効果の種類が異なる。本実施形態の場合、負の磁性体に比較して安価で発熱量が大きい正の磁性体を用いる。負の磁性体は希少な磁性材料から製造しなければならないのでコスト高になり、また、負の磁性体の磁気熱量効果の大きさが正の磁性体の磁気熱量効果の大きさよりも小さいからである。
磁気印加除去部20A−20Fには永久磁石を用いる。磁気印加除去部20A、20B、磁気印加除去部20C、20D、磁気印加除去部20E、20Fは、それぞれが一体となって、図示左右方向に往復移動する。したがって、磁気印加除去部20A−20Fは磁性体10A−10Fに個別に磁気を印加する。
熱伝導部30A−30Gは、磁性体10A−10Fが磁気熱量効果により発生した熱を低温側熱交換部40Aから高温側熱交換部40Bに向けて伝達する。熱伝導部30A−30Gは、電圧のON、OFFによって伸縮する特性を持つ高分子エラストマーを用いて形成する。熱伝導部30A−30Gは、図1A、Bに示すように、電圧を印加(ON)すると収縮して寸法が小さくなり、電圧を除去(OFF)すると伸張して元の寸法に戻る。このため、熱伝導部30A−30Gは、電圧の印加、除去を制御することで磁性体10A−10Fに接触させたりさせなかったりすることができ、磁性体の並び方向に向けて効率的に熱を伝達させることができる。
熱伝導部30Aは、低温側熱交換部40Aとこれと隣り合う磁性体10Aとの間で伸縮して両者を機械的に断続する。熱伝導部30Bは、磁性体10Aと10Bとの間で伸縮して両者を機械的に断続する。同様に、熱伝導部30C、30D、30E、30Fは、磁性体10Bと10Cとの間、磁性体10Cと10Dとの間、磁性体10Dと10Eとの間、磁性体10Eと10Fとの間で伸縮して両者を機械的に断続する。熱伝導部30Gは、磁性体10Fと高温側熱交換部40Bとの間で伸縮して両者を機械的に断続する。
熱伝導部30B、30D、30Fは、同じタイミングで、磁性体10Aと10Bとの間、磁性体10Cと10Dとの間、磁性体10Eと10Fとの間で伸縮し両者を機械的に断続する。また、熱伝導部30A、30C、30E、30Gも、同じタイミングで、低温側熱交換部40Aと磁性体10Aとの間、磁性体10Bと10Cとの間、磁性体10Dと10Eとの間、磁性体10Fと高温側熱交換部40Bとの間で伸縮し両者を機械的に断続する。熱伝導部30B、30D、30Fと熱伝導部30A、30C、30E、30Gとは交互に伸縮を繰り返す。
図1Aに示すように、磁気印加除去部20A、20Bが磁性体10Aに、磁気印加除去部20C、20Dが磁性体10Cに、磁気印加除去部20E、20Fが磁性体10Eに、それぞれ位置する。このときには、磁性体10A、10C、10Eに対して磁気が印加され、磁性体10B、10D、10Fには磁気が印加されておらず磁気が除去されている。したがって、磁性体10A、10C、10Eは発熱する。そして同時に、熱伝導部30Bが磁性体10Aと10Bとの間を、熱伝導部30Dが磁性体10Cと10Dとの間を、熱伝導部30Fが磁性体10Eと10Fとの間を、それぞれ接続する。
したがって、磁性体10A、10C、10Eが磁気熱量効果により発生した熱は磁性体10B、10D、10Fにそれぞれ移動する。このときには、熱伝導部30B、30D、30Fには電圧を印加せず、磁性体10Aと10Bとの間、磁性体10Cと10Dとの間、磁性体10Eと10Fとの間を接続する。一方、熱伝導部30Aと30Gには電圧を印加し低温側熱交換部40Aと磁性体10Aとの間及び高温側熱交換部40Bと磁性体10Fとの間を遮断する。また、熱伝導部30C、30Eにも電圧を印加し磁性体10B、10Cとの間及び磁性体10D、10Eとの間を遮断する。
次に、図1Bに示すように、磁気印加除去部20A、20Bが磁性体10Bに、磁気印加除去部20C、20Dが磁性体10Dに、磁気印加除去部20E、20Fが磁性体10Fに、それぞれ位置する。このときには、磁性体10B、10D、10Fに対して磁気が印加され、磁性体10A、10C、10Eには磁気が印加されておらず磁気が除去されている。したがって、磁性体10B、10D、10Fは発熱する。そして同時に、熱伝導部30Aが低温側熱交換部40Aと磁性体10Aとの間を、熱伝導部30Cが磁性体10Bと10Cとの間を、熱伝導部30Eが磁性体10Dと10Eとの間を、熱伝導部30Gが磁性体10Fと高温側熱交換部40Bとの間を、それぞれ接続する。
このときには、磁性体10A、10C、10Eが磁気熱量効果により吸熱され、磁性体10B、10D、10Fが磁気熱量効果により発熱する。したがって、低温側熱交換部40Aから磁性体10Aに、磁性体10Bから磁性体10Cに、磁性体10Dから磁性体10Eに、磁性体10Fから高温側熱交換部40Bに熱が移動する。このときには、熱伝導部30A、30C、30E、30Gには電圧を印加せず、低温側熱交換部40Aと磁性体10Aとの間、磁性体10Bと10Cとの間、磁性体10Dと10Eとの間、磁性体10Fと高温側熱交換部40Bとの間を接続する。一方、熱伝導部30B、30D、30Fには電圧を印加し磁性体10Aと10Bとの間、磁性体10Cと10Dとの間、及び磁性体10Eと10Fとの間を遮断する。
以上のように、磁気印加除去部を図示左右方向に連動して往復移動させることによって、磁性体は発熱と吸熱を交互に繰り返す。さらに、磁気印加除去部の移動に連動して、熱伝導部30A−30Gは、低温側熱交換部40A、磁性体10A−10F、高温側熱交換部40Bそれぞれの間で断続を繰り返す。このため、磁気熱量効果により得られた磁性体の熱が低温側熱交換部40Aから高温側熱交換部40Bに移動する。
図2は、本発明の磁気冷暖房の効果を示すグラフである。このグラフに示すように、磁気冷凍機が動作を開始した後の比較的初期時には、低温側熱交換部40Aと高温側熱交換部40Bとの間の温度差は小さい。時間が経過するにしたがって低温側熱交換部40Aと高温側熱交換部40Bとの間の温度差が次第に大きくなっていき、最終的には、長時間経過後の直線で示すように、低温側熱交換部40Aと高温側熱交換部40Bとの間の温度差が最大になる。この状態で、低温側熱交換部40Aの熱を利用して、たとえば室内の温度を下げることができ、高温側熱交換部40Bの熱を利用して、たとえば室内の温度を上げることができる。
次に、図1のように、各磁性体ブロックに対応して設けた磁気印加除去部を図示左右方向に連動して往復移動させたときに熱が移動していく様子を図3の模式図に基づいて説明する。
まず前提として、全ての磁性体は同一材料で形成されており、全ての磁性体の磁気熱量効果が同一の種類であって、温度変化量が5℃のものを用いた場合を想定する。具体的には、全ての磁性体は、磁気を印加されると5℃温度が上昇し、磁気が除去されると5℃温度が下降する特性を持っていると想定する。
まず、図3の(1)に示すように、初期の状態では全ての磁性体10A−10Fが室温の20℃になっている。このときには、図示のように全ての熱伝導部30A−30Gに電圧は印加せず(OFF)、低温側熱交換部40Aと高温側熱交換部40Bとの間で全ての磁性体10A−10Fを熱伝導部30A−30Gで接続する。なお、低温側熱交換部40Aと高温側熱交換部40Bとの間で、交互に配置する磁性体と熱伝導部は熱輸送器を形成する。
次に、図3の(2)に示すように、この状態で磁気印加除去部20A−20Fを一斉に右側に移動させ、右隣に位置する磁性体10B、10D、10Fに磁気を印加する。これと同時に、図3の(2)に示すように、熱伝導部30B、30D、30Fに電圧を印加し、低温側熱交換部40Aと磁性体10Aとの間、磁性体10Bと10Cとの間、磁性体10Dと10Eとの間、磁性体10Fと高温側熱交換部40Bとの間で熱伝導ができるようにする。
図3の(2)の状態では、磁気が除去された磁性体10A、10C、10Eの温度が15℃に低下し、磁気が印加された磁性体10B、10D、10Fの温度が25℃に上昇する。このため、図に示すように、熱伝導部を介して温度の高い方から温度の低いほうに熱が移動する。
この熱の移動によって、図3の(2)´に示すように、磁性体10Aと低温側熱交換部40Aの温度が17.5℃になり、磁性体10Fと高温側熱交換部40Bの温度が22.5℃になる。
次に、図3の(3)に示すように、磁気印加除去部20A−20Fを一斉に左側に移動させ、左隣に位置する磁性体10A、10C、10Eに磁気を印加する。これと同時に、図3の(3)に示すように、熱伝導部30A、30C、30E、30Gに電圧を印加し、磁性体10Aと10Bとの間、磁性体10Cと10Dとの間、磁性体10Eと10Fとの間で熱伝導ができるようにする。一方、熱伝導部30B、30D、30Fには電圧を印加せず、低温側熱交換部40Aと磁性体10Aとの間、磁性体10Bと10Cとの間、磁性体10Dと10Eとの間、磁性体10Fと高温側熱交換部40Bとの間の熱伝導を遮断する。
図3の(3)の状態では、磁気が印加された磁性体10A、10C、10Eの温度が図3の(2)´の状態の温度から5℃上昇し、磁気が除去された磁性体10B、10D、10Fの温度が図3の(2)´の状態の温度から5℃低下する。このため、図に示すように、熱伝導部を介し隣接する磁性体との間で温度の高い方から温度の低いほうに熱が移動する。
この熱の移動によって、図3の(3)´に示すように、低温側熱交換部40Aの温度が17.5℃になり、磁性体10A、10Bの温度が18.75℃になる。また、磁性体10C、10Dの温度が20℃になり、磁性体10E、10Fの温度が21.25℃になる。そして、高温側熱交換部40Bの温度が22.5℃になる。
以上のように、磁気印加除去部を磁性体に沿って左右に往復移動させ、磁気印加除去部の移動に同期させて熱伝導部に印加する電圧をON、OFFさせることによって、低温側熱交換部40Aから高温側熱交換部40Bに熱が移動していく。時間が経過するにしたがって、図2に示したように、低温側熱交換部40Aと高温側熱交換部40Bとの間の温度差が大きくなっていく。最終的には、低温側熱交換部40Aと高温側熱交換部40Bとの間の温度差が安定する。この状態で、低温側熱交換部40Aの熱を利用して、たとえば室内の温度を下げることができ、高温側熱交換部40Bの熱を利用して、たとえば室内の温度を上げることができる。
なお、図1及び図3の説明は、発現される磁気熱量効果の種類が同じ同一材料の磁性体として正の磁性体を用いた場合に当てはまる。発現される磁気熱量効果の種類が同じ同一材料の磁性体として負の磁性体を用いた場合には、熱の移動方向は図1及び図3に示した方向とは逆になる。したがって、負の磁性体を用いた場合、低温側熱交換部40Aと高温側熱交換部40Bの位置が図1及び図3とは逆になる。
以上が、本発明に適用する磁気冷暖房の原理である。以上では、2つの磁性体を1組として磁性体ブロックを形成し、この磁性体ブロックをさらに3つ一列に配列して磁性体ユニットを形成する形態について述べた。
しかし、本発明は、この形態には限られず、さらに多くの磁性体を一列に配列して磁性体ブロックを形成し、さらに多くの磁性体ブロックを一列に配列して磁性体ユニットを形成する形態にも適用できる。さらに、本発明は、磁性体ユニットを複数並列に環状に配置する形態にも適用できる。これらの形態の場合にも、磁性体ブロックごとに磁気印加除去部を設けるのは、上記の形態の場合と同一である。
(熱伝導部の構造)
次に、本実施形態に係る磁気冷暖房装置が採用する熱伝導部の具体的な構造について説明する。図4は本実施形態に係る熱伝導部の構造図である。
図1に示したように、熱伝導部30Aと30Bは磁性体10Aの対向する両面に、熱伝導部30Cと30Dは磁性体10Cの対向する両面に、熱伝導部30Eと30Fは磁性体10Eの対向する両面に、それぞれ設ける。熱伝導部30Gは磁性体10Fの高温側熱交換部40B側の片面に設ける。
図4では、磁性体10Aの対向する両面に取り付ける熱伝導部30Aと30Bを例示する。熱伝導部30A、30Bは、磁性体10Aの対向する両面に取り付ける。熱伝導部30Aには、高分子エラストマー32Aの対向する両面に伸縮性電極34A1、34A2を取り付けてある。また、熱伝導部30Bには、高分子エラストマー32Bの対向する両面に伸縮性電極34B1、34B2を取り付けてある。熱伝導部30A、30Bは、磁性体10Aに効率的に熱を伝達させなければならないので、高分子エラストマー32A、32B、伸縮性電極34A1、34A2、34B1、34B2は熱伝達率の高い材料を選定している。
高分子エラストマー32A、32Bを形成する材料としては、架橋点の動く高分子化合物、より具体的には、ポリロタキサンを用いる。ポリロタキサンは、環状分子の開口部が直鎖状分子によって串刺し状に包接された擬ポリロタキサンの両端末に環状分子が遊離しないように封鎖基を配置している。環状分子としては、α−シクロデキストリン、直鎖状分子としては、ポリエチレングリコールを用いたものがあげられる。ポリロタキサンは、低ひずみ領域のヤング率Eが高ひずみ領域のヤング率Eよりも小さい。換言すれば、作用する応力ρの変化に対するひずみεの変化が、高ひずみ領域よりも低ひずみ領域で大きくなるという特性を有する。
高分子エラストマー32Aの両面には伸縮性電極34A1、34A2を、高分子エラストマー32Bの両面には伸縮性電極34B1、34B2を、それぞれ接着剤を極薄く塗って貼り付ける。接着剤は、高分子エラストマー32A、32Bと伸縮性電極34A1、34A2、34B1、34B2との間の熱伝導性を阻害しないように、熱伝導性の接着剤を用いるか、熱伝導性の良好な銅やアルミなどの金属粉を接着性が保持される程度に混入した接着剤を用いる。
磁性体10Aの対向する両面に、高分子エラストマー32A、32Bの伸縮性電極34A2、34B2を、それぞれ接着剤を極薄く塗って貼り付ける。接着剤は、磁性体10Aと伸縮性電極34A2、34B2との間の熱伝導性を阻害しないように、高分子エラストマー32A、32Bと伸縮性電極34A1、34A2、34B1、34B2とを接着する接着剤と同一の接着剤を用いる。
したがって、磁性体10Aの一方の面に熱伝導部30Aが、磁性体10Aの他方の面に熱伝導部30Bが取り付けられる。熱伝導部30Aの伸縮性電極34A1と34A2との間に電圧を印加すると、高分子エラストマー32Aの磁性体10Aとの並び方向の寸法(厚み)が10%程度小さくなる。これによって、隣接する磁性体との間に空気層を形成することができる。隣接する磁性体との間の断熱性は20−30μmの空気層が確保できれば十分である。一方、伸縮性電極34A1と34A2との間の電圧を取り除くと、高分子エラストマー32Aの磁性体10Aとの並び方向の寸法(厚み)が元の寸法に戻る。これによって、熱伝導部30A、30Bを、隣接する磁性体と機械的に接続することができ、電圧が印加されているときには断熱部材として機能させ、電圧が印加されていないときには熱伝導部材として機能させることができる。なお、磁性体10Aと高分子エラストマー32A、32Bとの間の伸縮性電極34A2、34B2は省略しても良い。この場合には、磁性体10Aと高分子エラストマー32A、32Bとを直接上記の接着剤で貼り付ける。
高分子エラストマー32Aは、厳密には、伸縮性電極34A1と34A2との間に電圧を印加すると磁性体10Aとの並び方向の寸法が変化するだけではなく、磁性体10Aとの並び方向に直交する方向の寸法もわずかではあるが変化する。このため、熱伝導部30Aに貼り付ける電極には伸縮性のある電極を用い、電極が高分子エラストマー32Aの変形に無理なく追従できるようにしている。これによって、熱伝導部30Aの耐久性を向上させることができる。なお、以上では、熱伝導部30Aに高分子エラストマーを用いたが、高分子エラストマーの代わりに、圧電素子(ピエゾアクチュエータ)を用いても良い。
このように、電圧の印加、除去によって伸縮する高分子エラストマー32A、32Bを熱伝導部30A、30Bに用いると、隣接する磁性体に伸縮性電極34A1、34B1が接触しまた離れるという動作だけで熱伝導を断続させることができる。このため、従来のように、熱伝導を断続させるために熱伝導部を磁性体間で摺動させる必要がなく、熱伝導部の耐久性が向上し、同時に信頼性も向上する。磁気冷暖房装置を車載するためには小型化が要求され、小型化するためには磁気冷暖房装置の高周波化が必要である。高周波化するためには、磁性体間の熱伝達を高速(例えば0.1秒程度)で行う必要がある。本実施形態の熱伝導部30A−30Gは、電圧をON、OFFする周期を短くすることで高周波化できる。これには、高分子エラストマー32A、32Bの伸縮の周波数応答性と耐久性、伸縮性電極の伸縮の周波数応答性と磁性体への接触の耐久性を確保すればよい。これは磁性体間での摺動の耐久性を確保することに比較したら非常にたやすいことである。
次に、図5−図7を参照して本実施形態に係る磁気冷暖房装置の構成について説明する。本実施形態に係る磁気冷暖房装置は、図1に示した磁気冷暖房と同一の原理を用いる。図5は、本実施形態に係る磁気冷暖房装置の固定部の構成図である。図6は、本実施形態に係る磁気冷暖房装置の回転部の構成図である。図7は、本実施形態に係る磁気冷暖房装置の断面図である。
(磁気冷暖房装置の構成)
図5及び図7に示すように、磁気冷暖房装置の固定部100は円形状に形成する。固定部100の中心部分には円筒状の高温側熱交換部40Bを設け、高温側熱交換部40Bを取り囲むように円形状の低温側熱交換部40Aを設ける。低温側熱交換部40Aと高温側熱交換部40Bとの間の空間に1mm程度の厚みの熱輸送器配置板150(図7参照)をはめ込み、低温側熱交換部40Aと高温側熱交換部40Bとで固定する。
熱輸送器配置板150上の中心角30度の扇状の空間に、図5及び図7に示すように、磁気熱量効果を有する磁性体10A−10Fとこれらの磁性体の熱を輸送する熱伝導部30A−30Gとを交互に配置する。交互に配置した磁性体10A−10Fと熱伝導部30A−30Gで1つの熱輸送器50を構成する。したがって、図5に示すように、熱輸送器配置板150上には、中心角30度ごとに1つの扇状の熱輸送器50が配置され、熱輸送器配置板150上には、並列に合計12個の扇状の熱輸送器50が形成される。なお、12個の扇状の熱輸送器50のそれぞれの間には熱絶縁を図るための空間を形成してある。また、低温側熱交換部40Aは熱輸送器50の一端に熱伝導部30Aを介して配置される。さらに、高温側熱交換部40B熱輸送器50の他端に熱伝導部30Gを介して配置される。低温側熱交換部40Aと高温側熱交換部40Bの内部には、熱交換効率を向上させるためフィン41(図7参照)と42(図5参照)を設けている。
熱輸送器配置板150は、互いに独立して分離された12個の熱輸送器50を配置しているので、熱輸送器50が輸送している熱を奪わないように、熱輸送器配置板150は断熱性の高い材料で形成するか、熱輸送器配置板150と熱輸送器50との間に断熱性の高い材料を挟む。また、図が複雑になるので省略したが、熱輸送器配置板150上には、全ての熱輸送器50の全ての熱伝導部の伸縮性電極を接続するプリント配線を形成してある。1つの熱伝導部は2つの伸縮性電極を有するので、熱輸送器配置板150上には2×7×12=168個の伸縮性電極を繋げるプリント配線を形成する。このプリント配線は後述する電圧印加制御部(図8参照)に接続する。なお、熱輸送器配置板150は磁性体に印加される磁束を減少させてはならないので、透磁率の非常に高い鉄などの材料で形成することが好ましい。また、熱輸送器50は熱輸送器配置板150の上側に設けたが、熱輸送器配置板150の下側に設けても良い。また、熱輸送器配置板150は上下の熱輸送器配置板150に挟まれるように設けても良い。
磁性体10A−10Fは、本実施形態では同一材料で形成しており、同一材料として正の磁性体を用いる。正の磁性体は、磁気を印加していないときには常磁性状態(磁気スピンが無秩序の状態)となり、磁気を印加すると強磁性状態(磁気スピンが一方向に揃う状態)となる、常磁性状態と強磁性状態が可逆的に生じる材料を用いて製造する。
正の磁性体の材料としては、GdやGdをベースとした合金である、Gd−Y系、Gd−Dy系、Gd−Er系、Gd−Ho系、La(Fe,Si)13やLa(Fe,Al)13などの磁性材料を用いることができる。
一方、本実施形態では用いていないが、磁性体10A−10Fに同一材料として負の磁性材料を用いることもできる。負の磁性体は、磁気を印加していないときには強磁性状態(磁気スピンが一方向に揃う状態)となり、磁気を印加すると常磁性状態(磁気スピンが無秩序の状態)となる、強磁性状態と常磁性状態が可逆的に生じる材料を用いて製造される。
負の磁性体の材料としては、FeRh合金、CoMnSiGe系、NiMnSn系などの磁性材料を用いることができる。
一般的に、正の磁性体と負の磁性体は、磁気の印加に対して、熱発生が、発熱するか、吸熱するか反対なので、正の磁性体と負の磁性体の磁気熱量効果による温度変化の大きさは相違する。したがって、本実施形態のように、正か負のどちらか一方の磁性体を用いた場合には、全ての磁性体の磁気熱量効果による温度変化の大きさが同一になる。したがって、磁気冷暖房装置全体として安定した熱伝達特性が得られ熱輸送効率が向上する。また、正の磁性体の磁気熱量効果に比較して負の磁性体の磁気熱量効果の方が小さいので、熱輸送効率を考慮すると、正の磁性体を用いることが好ましい。さらに、負の磁性体の材料は正の磁性体の材料に比較して希少な材料を用いることになるので、コストの面でも正の磁性体を用いることが好ましい。
本実施形態では、磁性体10A−10F及び熱伝導部30A−30Gの形状を、扇を径方向に一定の幅で切り取ったような形状とした。しかし、これ以外の形状、例えば、球状、楕円体状、立方体状、円柱状、楕円柱状などの形状を採用しても良い。
熱輸送器50の各磁性体10A−10Fに選択的に磁気を印加し除去する磁気印加除去部20A−20Fは、図6、図7に示す回転部200A、200Bに形成する。
回転部200A、200Bはその中心部が開口し、その中心部にはベアリング210A、210Bを設けてある。また、回転部200A、200Bの外周部にはベアリング220A、220Bを設けてある。ベアリング210A、210B、ベアリング220A、220Bは、回転部200A、200Bを固定部100の上下面で回転自在に支持する。したがって、回転部200A、200Bは高温側熱交換部40Bを回転軸として図示矢印方向(図6参照)に回転する。
回転部200A、200Bの一方の面の外周にはリングギア230A、230Bを取り付ける。リングギア230A、230Bは、サーボモータ300A、300Bのギア310A、310Bに噛み合う。サーボモータ300Aが回転すると、ギア310Aと噛み合うリングギア230Aが自転して回転部200Aが回転する。また、サーボモータ300Bが回転すると、ギア310Aと噛み合うリングギア230Aが自転して回転部200Aが回転する。サーボモータ300Aと300Bを同期して回転させると、回転部200Aと200Bが一体となって回転する。
本実施形態では、サーボモータ300A、300Bを同期して回転させる。したがって、回転部200Aと200Bは高温側熱交換部40Bを中心に、固定部100を挟むようにして同一の回転速度で回転する。回転部200Aと200Bを同期させて回転するには、回転部200Aと200Bの基準位置とサーボモータ300A、300Bの回転位置を検出することが必要である。そのため、図7に示すように、回転部200Aと200Bの基準位置を検出するための基準位置検出センサ250A、250Bを設けてある。また、サーボモータ300Aと300Bの回転位置を検出するための回転位置検出センサをサーボモータ300Aと300Bに内蔵してある。
図6及び図7に示すように、回転部200Aの片面とその面に対向する回転部200Bの片面に、環状かつ放射状に永久磁石を配置する。回転部200Aと回転部200Bの永久磁石はN極とS極とが対峙するように極性を考慮して配置する。回転部200Aの片面に配置した永久磁石と回転部200Bの片面に配置した永久磁石は、常に対峙した状態となるように、回転部200Aと200Bは同期して回転させる。図7に示すように、回転部200Aの永久磁石20A、20C、20Eと回転部200Bの永久磁石20B、20D、20Fは、回転部200Aと200Bが回転中または停止中にかかわらず常に対峙した状態である。なお、本実施形態では、磁気印加除去部に永久磁石を用いたが、電磁石を用いても良い。電磁石を用いた場合には、回転部200A及び200Bの構造が複雑になる。回転した状態で、電磁石への給電ができるようにしなければならないからである。したがって、本実施形態では、永久磁石を用いている。
なお、図7に示すように、固定部100に回転部200Aと回転部200Bを取り付けた状態で、固定部100、回転部200A、回転部200Bで囲まれた内部空間は減圧または真空に近い環境にする。内部空間を減圧または真空に近い環境にすれば、各熱輸送器50は、真空内、または減圧下の環境内で設置されることになって、内部の空気への放熱が防止され、また、永久磁石が回転することによる空気抵抗が減少されるからである。
回転部200Aと200Bが回転すると、30度回転するごとに、固定部100の各熱輸送器50の磁性体は、1つおきに交互に磁気が印加または除去される。つまり、各熱輸器50において、図1Aのように磁性体10A、10C、10Eに磁気が印加される状態と図1Bのように磁性体10B、10D、10Fに磁気が印加される状態とが交互に起こる。このため、回転部200Aと200Bが30度回転するごとに、各熱輸器50の磁性体が発熱と吸熱を繰り返す。磁性体の単位時間当たりの発熱量は、回転部200Aと200Bの回転速度によって変化する。発熱量を大きくしたければ回転部200Aと200Bの回転速度を速くする。大きな発熱量が必要なければ200Aと200Bの回転速度を遅くする。
各熱輸送器50の磁性体が発熱しまた吸熱するときの熱を、低温側熱交換器40Aから高温側熱交換器40Bに伝達させるには、最適なタイミングで各熱伝導部に電圧を印加または除去しなければならない。熱伝導部の電圧の印加または除去のタイミングを制御するものが、図8以降に示す制御系である。
図8は、本実施形態に係る磁気冷暖房装置の制御系のブロック図である。また、図9は、図8の空調制御部と空調情報入力部のさらに具体的な制御系のブロック図である。
図8に示すように、本実施形態に係る磁気冷暖房装置の制御系は、基準位置検出センサ250A、基準位置検出センサ250B、空調情報入力部260、サーボモータ300A、サーボモータ300B、サーボモータ制御部350、熱伝導部30A−30G、電圧印加制御部35、空調制御部400を有する。サーボモータ300A、サーボモータ300Bは、自身の回転位置を検出する回転位置検出センサ320A、320Bを備えている。
基準位置検出センサ250Aは回転部200A(図7参照)に設定した原位置を検出する。原位置は回転部200Aの外周に設ける。例えば、光を反射する反射体を回転部200Aの外周に取り付けた場合には、その反射体の取り付け位置が原位置となる。この場合、基準位置検出センサ250Aには受発光素子を用い、反射体が受発光素子からの光を反射すると、原位置が検出される。
基準位置検出センサ250Bは回転部200Bに設定した原位置を検出する。その他は基準位置検出センサ250Aと同一である。
回転部200Aと回転部200Bに設ける原位置は、回転部200Aと回転部200Bの永久磁石が固定部100を介して正しく向き合うように(図7に示すように)、正確な位置に設定する。したがって、回転部200Aと回転部200Bは、基準位置検出センサ250Aと基準位置検出センサ250Bが、原位置を常に同時に検出するように、同一の速度で同期して回転する。
空調情報入力部260は空調に必要な情報を入力する。空調に必要な情報は、設定温度、低温側熱交換部入口温度、低温側熱交換部出口温度、高温側熱交換部入口温度、高温側熱交換部出口温度である。空調情報入力部260の具体的な説明については、後述の図8に基づいて行う。
サーボモータ300A、サーボモータ300Bは、熱輸送器50の各磁性体に選択的に磁気を印加し除去するため磁気印加除去部を駆動するモータである。具体的には、サーボモータ300Aは、図6に示したように永久磁石が配置してある回転部200Aを回転させる。また、サーボモータ300Bは、図6に示したように永久磁石が配置してある回転部200Bを回転させる。サーボモータ300A、サーボモータ300Bには、それぞれのサーボモータの回転位置を検出する回転位置検出センサ320A、320Bを設けてある。回転位置検出センサ320A、320Bで検出した回転位置は、サーボモータ300A、サーボモータ300Bの回転速度を同期させるために用いる。
サーボモータ制御部350は、回転位置検出センサ320A、320Bで検出した回転位置と、基準位置検出センサ250A、250Bで検出した原位置を用いて、サーボモータ300A、300Bの回転を制御する。
熱伝導部30A−30Gは、上述の通り、それぞれの伸縮性電極に電圧が印加されるとその寸法が小さくなり、電圧が除去されるとその寸法が元の寸法に戻る。熱輸送器50の磁性体間の熱伝導を断続させるものである。
電圧印加制御部35は、サーボモータ300A、サーボモータ300Bの回転位置に応じて各熱伝導部30A−30Gに選択的に電圧を印加し除去する。サーボモータ300A、サーボモータ300Bの回転位置は、回転位置検出センサ320A、320Bで検出した回転位置と、基準位置検出センサ250A、250Bで検出した原位置によって判別できる。つまり、各永久磁石の位置が、各熱輸送器50の磁性体に対してどの位置にあるのかが認識できる。電圧印加制御部35は、各永久磁石の位置が各熱輸送器50の磁性体の位置に対して最適な位置となったときに、各熱伝導部30A−30Gに選択的に電圧を印加し除去する。このように、電圧印加制御部35は、磁気印加除去部が各磁性体に選択的に磁気を印加し除去するタイミングと同期させて各熱伝導部に電圧を印加し除去することにより、低温側熱交換部から高温側熱交換部に熱を輸送させる。
電圧印加制御部35は、運転条件ごとに定めた、電圧の印加、除去のタイミングを用いて各熱伝導部30A−30Gに電圧を印加し除去する。運転条件ごとに定めた、電圧の印加、除去のタイミングは、磁気冷暖房装置の運転に伴って、最適なタイミングに書き換える。運転条件は、熱輸送器50の要求熱量、低温側熱交換部40Aと高温側熱交換部40Bとの間の温度差または磁気印加除去部の駆動パターンの少なくともいずれかである。駆動パターンは、磁気印加除去部を図14のように一定の速度で駆動するか、図15のように一定ではない速度で駆動するか、のいずれかである。
空調制御部400は、本実施形態に係る磁気冷暖房装置の動作を総括的に制御する。空調制御部400の具体的な説明については、後述の図8に基づいて行う。
図9に示すように、空調情報入力部260は、温度設定部262、低温側熱交換部入口温度センサ264、低温側熱交換部出口温度センサ266、高温側熱交換部入口温度センサ268、高温側熱交換部出口温度センサ270を有する。
温度設定部262は、磁気冷暖房装置が空調する車室内の温度を設定するコントローラである。低温側熱交換部入口温度センサ264は、図5に示した固定部100の低温側熱交換部40Aに供給される冷媒の温度を検出する。低温側熱交換部入口温度センサ264は、低温側熱交換部40Aの冷媒入口部分に設ける。
低温側熱交換部出口温度センサ266は、図5に示した固定部100の低温側熱交換部40Aから排出される冷媒の温度を検出する。低温側熱交換部出口温度センサ266は、低温側熱交換部40Aの冷媒出口部分に設ける。高温側熱交換部入口温度センサ268は、図5または図7に示した高温側熱交換部40Bに供給される冷媒の温度を検出する。高温側熱交換部入口温度センサ268は、高温側熱交換部40Bの冷媒入口部分に設ける。高温側熱交換部出口温度センサ270は、高温側熱交換部40Bから排出される冷媒の温度を検出する。高温側熱交換部出口温度センサ270は、高温側熱交換部40Bの冷媒出口部分に設ける。
温度設定部262、低温側熱交換部入口温度センサ264、低温側熱交換部出口温度センサ266、高温側熱交換部入口温度センサ268、高温側熱交換部出口温度センサ270を設けるのは、固定部100でどの程度の熱量を低温側熱交換部40Aから高温側熱交換部40Bに移動させなければならないかを知るためである。移動させなければならない熱量がわかれば、サーボモータ300A、300Bの回転速度や、熱伝達部の電圧のON、OFFのタイミングを調整することができる。
空調制御部400は、スイッチング制御部410とスイッチングパターン記憶部420を有する。スイッチング制御部410は、設定温度、低温側熱交換部入口温度、低温側熱交換部出口温度、高温側熱交換部入口温度、高温側熱交換部出口温度を用いて、各熱伝導部30A−30Gに供給する電圧のON、OFFのスイッチングを制御する。スイッチングパターン記憶部420は、例えば、図14及び図15に示すような、各熱伝導部30A−30Gに供給する電圧のON、OFFのスイッチングのパターンを記憶する。
図12は、熱伝導の態様(ステップ0から4)と熱伝導部の位置関係(aからg)を示す図である。また、図13は、位置bにおける熱伝導部とそれに隣接する磁性体から構成される一組のユニット(破線で囲まれた部分)について熱伝導の態様(ステップ1から4)と磁気の印加状態、熱伝導部の電圧、熱流束の関係を示す図である。
図12に示すように、熱伝導におけるステップ1の態様では、b、d、fの位置にある熱伝導部に電圧が印加される。そのため、b、d、fの位置にある熱伝導部は熱の伝導を遮断する。一方、a、c、e、gの位置にある熱伝導部には電圧が印加されない。そのため、a、c、e、gの位置にある熱伝導部は熱を伝導させる。ステップ2の態様もステップ1と同じである。熱伝導におけるステップ3の態様では、a、c、e、gの位置にある熱伝導部に電圧が印加される。そのため、a、c、e、gの位置にある熱伝導部は熱の伝導を遮断する。一方、b、d、fの位置にある熱伝導部には電圧が印加されない。そのため、b、d、fの位置にある熱伝導部は熱を伝導させる。ステップ4の態様もステップ3と同じである。
図13に示すように、図12のbの位置にある熱伝導部に着目すると、熱伝導におけるステップ1の態様では、磁性体に磁気は印加されておらず、熱伝導部による熱の伝導が遮断(電圧ON)されているので、熱流束は0である。ステップ2の態様に移行しても、ステップ1と同じである。次に、熱伝導におけるステップ3の態様では、磁性体に磁束密度B0の磁気が印加されて、熱伝導部により熱が伝導(電圧OFF)されるので、qの熱流束が生じる。ステップ4の態様に移行すると、熱流束の大きさがステップ3の態様のときよりも低下する。熱の移動によりbの位置にある熱伝導部の両側に位置する磁性体の温度差が小さくなっていくからである。
図14のスイッチングパターンは、永久磁石(PM)が磁性体(MCM)に対して定速度移動する場合のパターンを示す。
図12のb、c、d、e、f、gの位置にある各熱伝導部は、図中のイ−ハに示すように、永久磁石が磁性体とオーバーラップする少し前までまたは完全にオーバーラップしてから少し後までは、熱伝導部には電圧が印加されない。一方、図中のハ−イに示すように、永久磁石が磁性体と完全にオーバーラップして少し後からオーバーラップが開始する少し前までは、熱伝導部に電圧が印加される。したがって、永久磁石と磁性体との位置関係がイ−ハにある熱伝導部は、隣接する磁性体などとの間で熱伝導を行い、二、ホにある熱伝導部は、隣接する磁性体などとの間で熱伝導を行わない。
図12のaの位置にある各熱伝導部において、図中のイ−ハに示すように、永久磁石が磁性体とオーバーラップを開始する少し前から完全にオーバーラップする少し前までは、熱伝導部に電圧が印加される。一方、図中のハ−イに示すように、永久磁石が磁性体と完全にオーバーラップする少し前から完全にオーバーラップした後オーバーラップを開始するする少し前までは、熱伝導部には電圧が印加されない。したがって、永久磁石と磁性体との位置関係がイ−ハにある熱伝導部は、隣接する磁性体などとの間で熱伝導を行なわず、二、ホにある熱伝導部は、隣接する磁性体などとの間で熱伝導を行なう。
図15のスイッチングパターンは、永久磁石(PM)が磁性体(MCM)に対して不定速度移動する場合のパターンを示す。
図12のb、c、d、e、f、gの位置にある各熱伝導部は、図中のイ−ホに示すように、永久磁石が磁性体とオーバーラップを開始する少し前からオーバーラップしなくなる少し前までは、熱伝導部には電圧が印加されない。一方、図中のホ−イに示すように、永久磁石が磁性体とオーバーラップしていないときには、熱伝導部には電圧が印加される。したがって、永久磁石と磁性体との位置関係がイ−ホにある熱伝導部は、隣接する磁性体などとの間で熱伝導を行い、ホ−イにある熱伝導部は、隣接する磁性体などとの間で熱伝導を行わない。
図12のaの位置にある各熱伝導部において、図中のイ−ニに示すように、永久磁石が磁性体とオーバーラップを開始する少し前からオーバーラップしなくなる少し前までは熱伝導部に電圧が印加される。一方、図中のホ−イに示すように、永久磁石が磁性体とオーバーラップしていないときには、熱伝導部には電圧が印加されない。したがって、永久磁石と磁性体との位置関係がイ−ニにある熱伝導部は、隣接する磁性体などとの間で熱伝導を行なわず、ホ−イにある熱伝導部は、隣接する磁性体などとの間で熱伝導を行なう。
次に、本実施形態に係る磁気冷暖房装置の動作を、図10及び図11のフローチャート、及び図14、図15のスイッチングパターンに基づいて詳細に説明する。図10は、本実施形態に係る磁気冷暖房装置の動作フローチャートである。図11は、本実施形態に係る磁気冷暖房装置のサブルーチンフローチャートである。図14は、図9のスイッチングパターン記憶部が記憶するスイッチングパターンの一例である。図15は、図9のスイッチングパターン記憶部が記憶するスイッチングパターンの他の例である。
(磁気冷暖房装置の動作)
まず、操作者は、温度設定部262から車室内の設定温度を入力する。設定温度が入力されると、空調制御部400は、要求熱量と要求温度差を入力する(S1)。空調制御部400は、車室内の空間容量、現在の車室内の温度、車室内の設定温度を参照して、車室内を設定温度にするために必要な要求熱量を求める。また、低温側熱交換部40Aと高温側熱交換部40Bとの温度差を求める。この求めた値を、要求熱量、要求温度差として入力する。
次に、空調制御部400は、入力した要求熱量と要求温度差をあらかじめ記憶しているマップと照合して磁気印加周波数fを求め、熱伝導部30A−30GのON、OFFのスイッチングパターンをスイッチングパターン記憶部420から取得する(S2)。スイッチングパターンのTSsは、熱伝導部30A−30GをONさせるタイミング、換言すれば熱伝導部30A−30Gから電圧を除去するタイミングである。一方、スイッチングパターンのTSeは、熱伝導部30A−30Gによる熱伝導をOFFさせるタイミング、換言すれば熱伝導部30A−30Gに電圧を印加するタイミングである。
空調制御部400は磁気冷暖房装置を運転する(S3)。つまり、空調制御部400は、求めた磁気印加周波数fを実現するために、サーボモータ制御部350に回転数の指示を出す。磁気印加周波数は、1つの磁性体に対して1秒間に何回磁気の印加除去をするかを示すものである。例えば、磁気印加周波数fが6Hzであったとすると、図5から図7に示す構成の磁気冷暖房装置の場合、回転部200A、200Bが1秒間に1回転すると6回磁気の印加除去が行われるので、回転部200A、200Bに要求される回転数は60rpmである。サーボモータ制御部350には、回転部200A、200Bが60rpmで回転するために必要なサーボモータ300A、300Bの回転数を指示する。また、空調制御部400は、スイッチングパターン記憶部420から取得したスイッチングパターンを再現するために、電圧印加制御部35にスイッチングパターンを送る。例えば、図14、図15に示すようなスイッチングパターンである。
空調制御部400はステップS3の運転が規定のサイクル行われたか否かを判断する(S4)。図2に示したように、磁気冷暖房装置の運転が開始された直後から、低温側熱交換部40Aと高温側熱交換部40Bとの間にだんだんと温度差が拡大していく。この温度差が要求温度差に達するまでには、あらかじめ規定してあるサイクルだけ磁気の印加、除去を繰り返さなければならない。本実施形態の磁気冷暖房装置の場合、回転部200A、200Bが1回転すると各熱輸送器50に磁気の印加、除去が6回繰り返される。したがって、例えば、規定サイクルが1200サイクルに設定されていたとすると、回転部200A、200Bが200回転したか否かが判断される。
空調制御部400はステップS3の運転が規定のサイクルまで達していなければ(S4:NO)、S3のステップの処理を繰り返す。一方、ステップS3の運転が規定のサイクルに達したら(S4:YES)次のステップの処理に進む。
次に、空調制御部400は、出力熱量と出力温度差を演算する(S5)。出力熱量は、低温側熱交換部入口温度センサ264が検出した冷媒の低温側熱交換部入口温度Tciと低温側熱交換部出口温度センサ266が検出した低温側熱交換部出口冷媒の温度Tcoとの温度差を求め、その温度差に冷媒の質量mcと比熱Cpを掛けることによって求める。また、出力温度差は、高温側熱交換部出口温度センサ268が検出した冷媒の高温側熱交換部出口温度Thoと低温側熱交換部出口温度センサ266が検出した冷媒の温度低温側熱交換部出口Tcoとの温度差である。
次に、空調制御部400は、ステップS1で入力した要求熱量とステップS5で求めた出力熱量との差を演算する。また、ステップS1で入力した要求温度差とステップS5で求めた出力温度差との差を演算する(S6)。
空調制御部400は、要求熱量と出力熱量との差と、要求温度差と出力温度差との差が規定範囲以内であるかを判断する(S7)。
空調制御部400は、要求熱量と出力熱量との差と、要求温度差と出力温度差との差が規定範囲以内であれば(S7:YES)、ステップS2で求めた磁気印加周波数fと、熱伝導部30A−30GのON、OFFのスイッチングパターンを更新してスイッチングパターン記憶部420に記憶させる。ステップS2で求めた磁気印加周波数fと、熱伝導部30A−30GのON、OFFのスイッチングパターンを用いて、磁気冷暖房装置の運転を継続する(S8)。
空調制御部400は、要求熱量と出力熱量との差と、要求温度差と出力温度差との差が規定範囲以内でなければ、ステップS2で求めた磁気印加周波数fをf+Δfにし、熱伝導部30A−30GのON、OFFのスイッチングパターンのTSsをTSs+ΔTSsに、TSeをTSe+ΔTSeに、それぞれ設定する(S9)。そして、ステップS3からステップS7までの処理を繰り返す。このようにして、最適な磁気印加周波数f及び最適なスイッチングパターンを学習させると、磁性体ごとに異なる熱発生特性及び熱伝導部ごとに異なる熱伝達特性のばらつきを補正することができる。
次に、図10のフローチャートのステップS3の詳しい処理を図11のサブルーチンフローチャートで説明する。
空調制御部400は、サーボモータ300A、300Bの回転位置検出センサ320A,320B、および基準位置検出センサ250A、250Bの検出信号から、回転部200A、200Bの回転位置を検出する(S11)。回転位置を検出することによって、図14および図15のイ−ホに示すように、回転部200A、200Bの永久磁石(PM)と固定部100の磁性体(MCM)との位置関係を知ることができる。
空調制御部400は、スイッチングパターン記憶部420に記憶されているスイッチングパターンから、永久磁石の位置が該当する熱伝導部をONさせなければならない区間(熱伝達をさせる区間)であるか否かを判断する(S12)。永久磁石の位置が該当する熱伝導部をONしなければならない区間であれば(S12:YES)、空調制御部400のスイッチング制御部410は、電圧印加制御部35を介して該当する熱伝導部をONする(S13)。熱伝導部のONは磁性体との間で熱伝導を可能にすることであるので、該当する熱伝導部に電圧は印加されない。一方、永久磁石の位置が該当する熱伝導部をONしなくても良い区間であれば(S12:NO)、空調制御部400のスイッチング制御部410は、電圧印加制御部を介して該当する熱伝導部をOFFする(S14)。
例えば、スイッチングパターン記憶部420に図14に示すようなスイッチングパターンが記憶されていたとする。この場合、空調制御部400のスイッチング制御部410は、ステップS11で検出した永久磁石の位置が、例えば、各熱輸送器50の磁性体に対して図14のイ−ハの位置にあるときには、図3のb、c、d、e、f、gの位置にある熱伝導部には電圧を印加しない。一方、イ−ハの位置以外の位置にあるときには図3のaの位置にある熱伝導部のみには電圧を印加せず、他のb、c、d、e、f、gの位置にある熱伝導部には電圧を印加する。
また、スイッチングパターン記憶部420に図15に示すようなスイッチングパターンが記憶されていたとする。この場合には、空調制御部400のスイッチング制御部410は、ステップS11で検出した永久磁石の位置が、例えば、各熱輸送器50の磁性体に対して図15のイ−ホの位置にあるときには、図3のb、c、d、e、f、gの位置にある熱伝導部には電圧を印加しない。一方、イ−ホの位置以外の位置にあるときにはb、c、d、e、f、gの位置にある熱伝導部には電圧を印加する。また、図3のaの位置にある熱伝導部は、イの位置の少し手前の位置からホの位置の少し手前の位置まで電圧を印加しない。
図14のスイッチングパターンと図15のスイッチングパターンは若干異なる。図14のスイッチングパターンは、永久磁石を有する回転体200A、200Bが一定の速度で回転する場合を想定している。熱伝導部に電圧が印加されていない期間は、aの位置にある熱伝導部を除いて、磁性体に永久磁石がオーバーラップし始めてから完全にオーバーラップするまでの間である。この間に磁性体と熱伝導部との間で熱伝導が行われる。
図15のスイッチングパターンは、永久磁石を有する回転体200A、200Bが一定の速度ではなく、磁性体との間に生じる吸引力の影響でコギングを起こす場合を想定している。実機では、図14のように定速で回転させることは難しく、永久磁石が磁性体とオーバーラップしている間回転速度が一時的に落ちる。この場合には、熱伝導部に電圧が印加されていない期間は、aの位置にある熱伝導部を除いて、磁性体に永久磁石がオーバーラップし始めてからオーバーラップが終わるまでの間である。この間に磁性体と熱伝導部との間で熱伝導が行われる。図14のスイッチングパターンに比較して、図15のスイッチングパターンの方が、熱の移動時間が長くなる。したがって、磁性体が発生する熱を効率的に移動させることができる。
最後に、空調制御部400は、空調動作を終了する指示が成されたか否かを判断する(S15)。空調動作の終了が指示されなければ(S15:NO)、ステップS11に戻り、空調動作の終了が指示されると(S15:YES)、S4のステップに戻る。
以上のように、本実施形態に係る磁気冷暖房装置では、永久磁石が配置されている回転体200A、200Bを回転させ、スイッチングパターンに沿って熱伝導部に電圧を印加するだけで、低温側熱交換器から高温側熱交換器に向けて熱を移動させることができる。
本実施形態に係る磁気冷暖房装置では、以下のような効果を得ることができる。
各熱伝導部30A−30Gは、電圧の印加、除去に応じて伸縮するので、磁性体10A−10F、低温側熱交換部40A、高温側熱交換部40Bに対して摺動させずに熱を輸送させることができる。このため、各熱伝導部30A−30Gに摺動の耐久性を持たせる必要がなく、各熱伝導部30A−30Gの信頼性が向上する。また、摩擦による機械的な損失をなくすことができる。
また、各熱伝導部30A−30Gは各磁性体10A−10Fとの並び方向にのみ熱を輸送できるので、熱の輸送に際して熱的な損失が小さくできる。
さらに、各熱伝導部30A−30Gは、電圧の印加、除去に応じて、磁性体間10B−10E、磁性体10Aと低温側熱交換部40Aとの間、磁性体10Fと高温側熱交換部40Bとの間を、全ての接触面を使って接続するので、熱輸送能力及び熱輸送効率を向上させることができる。
磁気印加除去部の永久磁石20A−20Fを駆動することで各磁性体10A−10Fに連続的に熱を発生させることができ、各熱伝導部30A−30Gに選択的に電圧を印加し除去することで、各磁性体10A−10Fが発生した熱を熱輸送器50の一端から他端に輸送させることができる。
各磁性体10A−10Fに選択的に磁気を印加し除去するタイミングと同期させて各熱伝導部30A−30Gに電圧を印加し除去するようにしたので、低温側熱交換部40Aから高温側熱交換部40Bに熱を効率的に輸送させることができる。
運転条件ごとに定めた、電圧の印加、除去のタイミングを用いて各熱伝導部30A−30Gに電圧を印加し除去するようにしたので、運転条件に適合させて、最大限の効率で低温側熱交換部40Aから高温側熱交換部40Bに熱を輸送させることができる。
運転条件ごとに定めた、電圧の印加、除去のタイミングは、磁気冷暖房装置の運転に伴って、最適なタイミングに書き換えるようにしたので、磁性体10A−10Fごとに異なる熱発生特性及び熱伝導部30A−30Gごとに異なる熱伝達特性のばらつきを補正することができる。そのため、最大限の効率で低温側熱交換部40Aから高温側熱交換部40Bに熱を輸送させることができ、磁気冷暖房装置の高出力化及びコンパクト化を達成することができる。
熱輸送器50の要求熱量、低温側熱交換部40Aと高温側熱交換部40Bとの間の温度差または磁気印加除去部の駆動パターンごとに、電圧の印加、除去のタイミングを定めているので、それぞれの運転条件ごとに最大限の効率で低温側熱交換部40Aから高温側熱交換部40Bに熱を輸送させることができる。そのため、磁気冷暖房装置の高出力化及びコンパクト化を達成することができる。
磁気印加除去部を一定の速度で駆動するか、一定ではない速度で駆動するかの駆動パターンごとに、電圧の印加、除去のタイミングを定めているので、それぞれの運転条件ごとに最大限の効率で低温側熱交換部40Aから高温側熱交換部40Bに熱を輸送させることができる。そのため、磁気冷暖房装置の高出力化及びコンパクト化を達成することができる。
真空内、または減圧下の環境内に熱輸送器50を設置すると、熱輸送器50を構成する磁性体10A−10Fと熱伝導部30A−30Gの断熱性を向上させることができる。そのため、低温側熱交換部40Aから高温側熱交換部40Bに効率的に熱を輸送させることができ磁気冷暖房装置の高出力化及びコンパクト化を達成することができる。
10A−10F 磁性体、
20A−20F 永久磁石、
30A−30G 熱伝導部、
40A 低温側熱交換部、
40B 高温側熱交換部、
50 熱輸送器、
32A、32B 高分子エラストマー、
34A1、34A2、34B1、34B2 伸縮性電極、
100 固定部、
200A、200B 回転部(磁気印加除去部)、
300A、300B サーボモータ(モータ)、
250A、250B 基準位置検出センサ、
35 電圧印加制御部、
400 空調制御部、
420 スイッチングパターン記憶部。

Claims (8)

  1. 磁気熱量効果を有する磁性体と当該磁性体の熱を輸送する熱伝導部とを交互に配置する熱輸送器と、
    前記熱輸送器の一端に前記熱伝導部を介して配置する低温側熱交換部と、
    前記熱輸送器の他端に前記熱伝導部を介して配置する高温側熱交換部と、
    前記熱輸送器の各磁性体に選択的に磁気を印加し除去する磁気印加除去部と、を有し、
    各熱伝導部は、電圧を印加すると前記各磁性体との並び方向の寸法が小さくなって各磁性体との熱伝導を遮断し、電圧を除去すると前記各磁性体との並び方向の寸法が元の寸法に戻って各磁性体との熱伝導を可能にすることを特徴とする磁気冷暖房装置。
  2. 前記熱輸送器の各磁性体に選択的に磁気を印加し除去するため前記磁気印加除去部を駆動するモータと、
    前記モータの回転位置に応じて前記各熱伝導部に選択的に電圧を印加し除去する電圧印加制御部と、
    を有することを特徴とする請求項1に記載の磁気冷暖房装置。
  3. 前記電圧印加制御部は、前記磁気印加除去部が前記各磁性体に選択的に磁気を印加し除去するタイミングと同期させて前記各熱伝導部に電圧を印加し除去することにより、前記低温側熱交換部から前記高温側熱交換部に熱を輸送させることを特徴とする請求項2に記載の磁気冷暖房装置。
  4. 前記電圧印加制御部は、運転条件ごとに定めた、電圧の印加、除去のタイミングを用いて前記各熱伝導部に電圧を印加し除去することを特徴とする請求項2または3に記載の磁気冷暖房装置。
  5. 前記運転条件ごとに定めた、電圧の印加、除去のタイミングは、前記磁気冷暖房装置の運転に伴って、最適なタイミングに書き換えることを特徴とする請求項4に記載の磁気冷暖房装置。
  6. 前記運転条件は、前記熱輸送器の要求熱量、前記低温側熱交換部と前記高温側熱交換部との間の温度差または前記磁気印加除去部の駆動パターンの少なくともいずれかであることを特徴とする請求項4または5に記載の磁気冷暖房装置。
  7. 前記駆動パターンは、前記磁気印加除去部を一定の速度で駆動するか、一定ではない速度で駆動するか、のいずれかであることを特徴とする請求項6に記載の磁気冷暖房装置。
  8. 少なくとも前記熱輸送器は、真空内、または減圧下の環境内で設置されることを特徴とする請求項1〜7のいずれかに記載の磁気冷暖房装置。
JP2011194434A 2011-09-06 2011-09-06 磁気冷暖房装置 Expired - Fee Related JP5857553B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011194434A JP5857553B2 (ja) 2011-09-06 2011-09-06 磁気冷暖房装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011194434A JP5857553B2 (ja) 2011-09-06 2011-09-06 磁気冷暖房装置

Publications (2)

Publication Number Publication Date
JP2013057408A true JP2013057408A (ja) 2013-03-28
JP5857553B2 JP5857553B2 (ja) 2016-02-10

Family

ID=48133446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194434A Expired - Fee Related JP5857553B2 (ja) 2011-09-06 2011-09-06 磁気冷暖房装置

Country Status (1)

Country Link
JP (1) JP5857553B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214943A (ja) * 2013-04-24 2014-11-17 日産自動車株式会社 磁気冷暖房装置および冷暖房システム
JP2014228216A (ja) * 2013-05-23 2014-12-08 日産自動車株式会社 磁気冷暖房装置
JP2014228169A (ja) * 2013-05-20 2014-12-08 日産自動車株式会社 磁気冷暖房装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259870A (ja) * 1984-06-05 1985-12-21 株式会社東芝 磁気冷凍装置
JP2007147209A (ja) * 2005-11-30 2007-06-14 Toshiba Corp 磁気冷凍機
JP2008082663A (ja) * 2006-09-28 2008-04-10 Toshiba Corp 磁気冷凍デバイスおよび磁気冷凍方法
JP2010025435A (ja) * 2008-07-18 2010-02-04 Toshiba Corp 磁気冷凍デバイス、磁気冷凍システムおよび磁気冷凍方法
JP2010177571A (ja) * 2009-01-30 2010-08-12 Tokai Rubber Ind Ltd 誘電材料の製造方法およびそれにより製造された誘電膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259870A (ja) * 1984-06-05 1985-12-21 株式会社東芝 磁気冷凍装置
JP2007147209A (ja) * 2005-11-30 2007-06-14 Toshiba Corp 磁気冷凍機
JP2008082663A (ja) * 2006-09-28 2008-04-10 Toshiba Corp 磁気冷凍デバイスおよび磁気冷凍方法
JP2010025435A (ja) * 2008-07-18 2010-02-04 Toshiba Corp 磁気冷凍デバイス、磁気冷凍システムおよび磁気冷凍方法
JP2010177571A (ja) * 2009-01-30 2010-08-12 Tokai Rubber Ind Ltd 誘電材料の製造方法およびそれにより製造された誘電膜

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214943A (ja) * 2013-04-24 2014-11-17 日産自動車株式会社 磁気冷暖房装置および冷暖房システム
JP2014228169A (ja) * 2013-05-20 2014-12-08 日産自動車株式会社 磁気冷暖房装置
JP2014228216A (ja) * 2013-05-23 2014-12-08 日産自動車株式会社 磁気冷暖房装置

Also Published As

Publication number Publication date
JP5857553B2 (ja) 2016-02-10

Similar Documents

Publication Publication Date Title
US9400126B2 (en) Magnetic heating/cooling apparatus
US9273886B2 (en) Magnetic refrigerator utilizing a permanent magnet to create movement between plates comprising high and low temperature side heat exchangers
JP4557874B2 (ja) 磁気冷凍機
TWI425177B (zh) 在使用磁熱材料的熱產生器中增加溫度梯度的方法和裝置
US6668560B2 (en) Rotating magnet magnetic refrigerator
KR101887917B1 (ko) 자기 냉각 장치 및 그 제어 방법
JP2017537291A (ja) 磁気熱量熱機器
US20100146989A1 (en) Continuously rotary magnetic refrigerator or heat pump
JP2013253725A (ja) 磁気ヒートポンプシステム及び該システムを用いた空気調和装置
JP4567609B2 (ja) 磁気作業物質回転型磁気冷凍機
JP5857553B2 (ja) 磁気冷暖房装置
JP5857554B2 (ja) 磁気冷暖房装置
JP5817353B2 (ja) 磁気冷暖房装置
US9322579B2 (en) Thermo-magnetic cycle apparatus
JP5796682B2 (ja) 磁気冷暖房装置
JP5884431B2 (ja) 磁気冷暖房装置
JP5884432B2 (ja) 磁気冷暖房装置
JP6155840B2 (ja) 磁気冷暖房装置
JP2012167881A (ja) 磁気式温度調整装置の熱交換器
JP2023141836A (ja) 固体冷媒による冷凍装置
JP2021134950A (ja) 磁気冷凍装置
BR102012012824B1 (pt) Dispositivo termomagnético rotativo e uso do mesmo

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R151 Written notification of patent or utility model registration

Ref document number: 5857553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees