JP2013049623A - Phosphate-based glass and thermal head using phosphate-based glass - Google Patents

Phosphate-based glass and thermal head using phosphate-based glass Download PDF

Info

Publication number
JP2013049623A
JP2013049623A JP2012230681A JP2012230681A JP2013049623A JP 2013049623 A JP2013049623 A JP 2013049623A JP 2012230681 A JP2012230681 A JP 2012230681A JP 2012230681 A JP2012230681 A JP 2012230681A JP 2013049623 A JP2013049623 A JP 2013049623A
Authority
JP
Japan
Prior art keywords
glass
phosphate
ceo
mol
thermal head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012230681A
Other languages
Japanese (ja)
Other versions
JP5587379B2 (en
Inventor
Toru Michimata
融 道又
Daishi Numata
大志 沼田
Shigeru Hanada
成 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2012230681A priority Critical patent/JP5587379B2/en
Publication of JP2013049623A publication Critical patent/JP2013049623A/en
Application granted granted Critical
Publication of JP5587379B2 publication Critical patent/JP5587379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/3355Structure of thermal heads characterised by materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Electronic Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem wherein a conventional silicate-based glass has a high thermal conductivity, and therefor the power consumption of a thermal head cannot be reduced.SOLUTION: A phosphate-based glass containing, in terms of mole%, 50-68% PO, 15-39% CeO, 2-7% BOand 0.2-0.5% PrO, wherein the molar ratio of POto CeOsatisfies the following relationship: 1≤PO/CeO<4, or a phosphate-based glass containing 50-65% PO, 5-15% CeO, 3-8% BO, 0-10% AlO, 0-9% BaO and PrO, wherein the molar ratio of POto CeOsatisfies the following relationship: 4≤PO/CeOhas a low thermal conductivity, and therefor when used as a glaze layer in a thermal head, the power consumption can be reduced. Further, because of having the same thermal expansion coefficient as that of a ceramic substrate, each of the phosphate-based glasses hardly causes the detachment from a ceramic substrate and has excellent heat resistance.

Description

本発明は、リン酸塩系ガラスに係り、特に、熱伝導率が低いリン酸塩系ガラス、および前記リン酸塩系ガラスを用いたサーマルヘッドに関する。   The present invention relates to a phosphate glass, and more particularly to a phosphate glass having a low thermal conductivity and a thermal head using the phosphate glass.

図1に、サーマルプリンター用ヘッド(サーマルヘッド)1の断面図の一例を示す。
サーマルヘッドは、例えばアルミナ(Al)などのセラミック基板11上に、グレーズ層12、発熱抵抗体層13、導体層14、および保護層15を形成した積層構造からなる。前記発熱抵抗体層13に電流が流れる際に発生する熱を、感熱紙やインクリボンなどの媒体に伝えることにより、印刷が行なわれる。なお、導体層14は形成されなくてもよい。
FIG. 1 shows an example of a sectional view of a thermal printer head (thermal head) 1.
The thermal head has a laminated structure in which a glaze layer 12, a heating resistor layer 13, a conductor layer 14, and a protective layer 15 are formed on a ceramic substrate 11 such as alumina (Al 2 O 3 ). Printing is performed by transferring heat generated when a current flows through the heating resistor layer 13 to a medium such as thermal paper or an ink ribbon. The conductor layer 14 may not be formed.

電気抵抗体層13で発生した熱は、保護層15を通して媒体に伝えられるが、一部がグレーズ層12に伝えられる。前記グレーズ層12は、熱をセラミック基板11に逃がすと共に、発生した熱を自身に蓄熱する蓄熱層および保温層の機能を有している。そして、グレーズ層12の高さや形状を変えることで様々な用途や素材に印刷可能なサーマルヘッドとすることができる。   The heat generated in the electrical resistor layer 13 is transferred to the medium through the protective layer 15, but part of the heat is transferred to the glaze layer 12. The glaze layer 12 has the functions of a heat storage layer and a heat insulation layer for releasing heat to the ceramic substrate 11 and storing the generated heat in itself. And it can be set as the thermal head which can be printed on various uses and a raw material by changing the height and shape of the glaze layer 12. FIG.

下記特許文献1には、ケイ酸塩系ガラスのグレーズ組成物が開示されている。また、下記特許文献2および3には、リン酸塩系ガラスが開示されている。   Patent Document 1 below discloses a silicate glass glaze composition. Patent Documents 2 and 3 listed below disclose phosphate glass.

特開平11―130461号公報Japanese Patent Laid-Open No. 11-130461 特開2000−1332号公報JP 2000-1332 A 特開平8−277141号公報JP-A-8-277141

サーマルプリンターの高速化に伴い、サーマルヘッドには耐熱性が要求されているが、近年、耐熱性と共にサーマルヘッドの低消費電力化が求められている。   With the increase in the speed of thermal printers, thermal heads are required to have heat resistance. In recent years, thermal heads are required to have low power consumption as well as heat resistance.

グレーズ層は蓄熱層の機能を有しているが、グレーズ層の熱伝導率が高いと、電気抵抗層で発生した熱がグレーズ層で蓄熱されずにセラミック基板に速やかに伝えられるため、印刷のためにより多くの熱を電気抵抗層で発生させなければならない。そのため、サーマルヘッドの低消費電力化のためにはグレーズ層を熱伝導率の低い材料で形成する必要がある。   The glaze layer has the function of a heat storage layer, but if the thermal conductivity of the glaze layer is high, the heat generated in the electrical resistance layer is not stored in the glaze layer but is quickly transferred to the ceramic substrate. Therefore, more heat must be generated in the electrical resistance layer. Therefore, in order to reduce the power consumption of the thermal head, it is necessary to form the glaze layer with a material having low thermal conductivity.

熱伝導率の低い材料として、例えば、ポリイミドなど有機高分子化合物が挙げられるが、これら有機高分子化合物は耐熱性が低いため、サーマルヘッドのグレーズ層に用いることができなかった。   Examples of the material having low thermal conductivity include organic polymer compounds such as polyimide, but these organic polymer compounds have low heat resistance, and thus cannot be used for the glaze layer of the thermal head.

また、ガラスに鉛を含有させると熱伝導率の低いガラスを得ることができるが、ガラス転移点が低く、サーマルヘッドとして耐熱性が不十分であった。また環境負荷の観点から、鉛含有ガラスの使用は好ましくない。   Moreover, when lead is contained in the glass, a glass having low thermal conductivity can be obtained, but the glass transition point is low and the heat resistance as a thermal head is insufficient. From the viewpoint of environmental impact, the use of lead-containing glass is not preferable.

特許文献1には、酸化マグネシウム(MgO)および酸化タンタル(Ta)を添加した、耐熱性の高いケイ酸塩系ガラスのグレーズ組成物が開示されている。しかしながら、ケイ酸塩系ガラスは熱伝導率が高いため、ケイ酸塩系ガラスをグレーズ層に用いても電力効率を向上させることができなかった。 Patent Document 1 discloses a glazed composition of silicate glass having high heat resistance to which magnesium oxide (MgO) and tantalum oxide (Ta 2 O 5 ) are added. However, since silicate glass has high thermal conductivity, power efficiency cannot be improved even when silicate glass is used for the glaze layer.

特許文献2には、リン酸塩系ガラスが開示されている。しかしながら、リン酸塩系ガラスの熱伝導率について記載されていない。また、特許文献2に記載のリン酸塩系ガラスは配線基板材料に適したものであるため、サーマルヘッドのグレーズ層として用いるには耐熱性が不十分である。さらに、熱膨張係数が大きく、例えばアルミナのセラミック基板の上に形成すると、剥離などが生じ好ましくない。   Patent Document 2 discloses a phosphate glass. However, it does not describe the thermal conductivity of phosphate glass. Moreover, since the phosphate glass described in Patent Document 2 is suitable for a wiring board material, its heat resistance is insufficient for use as a glaze layer of a thermal head. Furthermore, the thermal expansion coefficient is large, and, for example, if it is formed on an alumina ceramic substrate, peeling or the like is not preferable.

特許文献3には、酸化カルシウム(CaO)および酸化ストロンチウム(SrO)を含有する成形性のよいリン酸塩系ガラスが開示されている。しかしながら、熱伝導率について記載されていない。   Patent Document 3 discloses a phosphate glass having good moldability, which contains calcium oxide (CaO) and strontium oxide (SrO). However, it does not describe thermal conductivity.

そこで本発明は、上記従来の課題を解決するためのものであり、特に、従来に比べて、熱伝導率が低く、かつ耐熱性に優れたリン酸塩系ガラス、およびリン酸塩系ガラスを用いたサーマルヘッドを提供することを目的としている。   Therefore, the present invention is to solve the above-described conventional problems, and in particular, phosphate glass and phosphate glass having low thermal conductivity and excellent heat resistance as compared with the prior art. It aims at providing the used thermal head.

本発明のリン酸塩系ガラスは、モル%で、Pを50〜68%、CeOを15〜39%、Bを2〜7%、Pr11を0.2〜0.5%含み、CeOに対するPのモル比が1≦P/CeO<4の関係を満たすことを特徴とする。 The phosphate-based glass of the present invention is mol%, P 2 O 5 is 50 to 68%, CeO 2 is 15 to 39%, B 2 O 3 is 2 to 7%, and Pr 6 O 11 is 0.2. wherein 0.5%, the molar ratio of P 2 O 5 with respect to CeO 2 is characterized by satisfying the relation of 1 ≦ P 2 O 5 / CeO 2 <4.

本発明のリン酸塩系ガラスは、P、CeO、B、Pr11を上記組成範囲で含むことにより、熱伝導率の小さいガラスを得ることができる。従って、例えば本発明のリン酸塩系ガラスでグレーズ層を形成することにより、サーマルヘッドの消費電力を低減することができる。また、熱膨張係数が所定の範囲内にあるため、セラミックス基板の熱膨張係数とほぼ等しくすることができる。従って、本発明のリン酸塩系ガラスでグレーズ層を形成したとき、セラミックス基板との剥離が起こりにくい。さらに、ガラス転移温度が高いので耐熱性にも優れている。 Phosphate type glass of the present invention includes the P 2 O 5, CeO 2, B 2 O 3, Pr 6 O 11 in the above composition range, it is possible to obtain a glass having a small thermal conductivity. Therefore, for example, by forming the glaze layer with the phosphate glass of the present invention, the power consumption of the thermal head can be reduced. Moreover, since the thermal expansion coefficient is within a predetermined range, it can be made substantially equal to the thermal expansion coefficient of the ceramic substrate. Therefore, when the glaze layer is formed with the phosphate glass of the present invention, peeling from the ceramic substrate hardly occurs. Furthermore, since the glass transition temperature is high, the heat resistance is also excellent.

さらに、添加成分として、AlおよびBaOの少なくとも一方を含むことが好ましい。 Furthermore, it is preferable that at least one of Al 2 O 3 and BaO is included as an additive component.

また、本発明のリン酸塩系ガラスは、モル%で、Pを50〜65%、CeOを5〜15%、Bを3〜8%、Alを0〜10%、BaOを0〜9%およびPr11を含み、CeOに対するPのモル比が4≦P/CeOの関係を満たすことを特徴とする。 Further, the phosphate glass of the present invention is mol%, P 2 O 5 is 50 to 65%, CeO 2 is 5 to 15%, B 2 O 3 is 3 to 8%, Al 2 O 3 is 0. 10%, containing 0-9% and Pr 6 O 11 and BaO, wherein the molar ratio of P 2 O 5 with respect to CeO 2 satisfies the 4 ≦ P 2 O 5 / CeO 2 relationship.

本発明のリン酸塩系ガラスは、P、CeO、B、Pr11、AlおよびBaOを上記組成範囲で含むことにより、熱伝導率の小さいガラスを得ることができる。従って、例えば、本発明のリン酸塩系ガラスでグレーズ層を形成することにより、サーマルヘッドの消費電力を低減することができる。また、熱膨張係数が所定の範囲内にあるため、セラミックス基板の熱膨張係数とほぼ等しくすることができる。従って、本発明のリン酸塩系ガラスでグレーズ層を形成したとき、セラミックス基板との剥離が起こりにくい。さらに、ガラス転移温度が高いので耐熱性にも優れている。
前記リン酸塩系ガラスは、Pr11を0.2〜2.0モル%含むことが好ましい。
The phosphate-based glass of the present invention contains P 2 O 5 , CeO 2 , B 2 O 3 , Pr 6 O 11 , Al 2 O 3, and BaO in the above composition range. Can be obtained. Therefore, for example, the power consumption of the thermal head can be reduced by forming the glaze layer with the phosphate glass of the present invention. Moreover, since the thermal expansion coefficient is within a predetermined range, it can be made substantially equal to the thermal expansion coefficient of the ceramic substrate. Therefore, when the glaze layer is formed with the phosphate glass of the present invention, peeling from the ceramic substrate hardly occurs. Furthermore, since the glass transition temperature is high, the heat resistance is also excellent.
It is preferable that the phosphate glass contains 0.2 to 2.0 mol% of Pr 6 O 11 .

さらに本発明は、セラミックス基板上に、グレーズ層、発熱抵抗層、および保護層が形成されたサーマルヘッドにおいて、
モル%で、Pを50〜68%、CeOを15〜39%、Bを2〜7%、Pr11を0.2〜0.5%含み、CeOに対するPのモル比が1≦P/CeO<4の関係を満たすリン酸塩系ガラスで前記グレーズ層が形成されること特徴とする。
Furthermore, the present invention provides a thermal head in which a glaze layer, a heating resistance layer, and a protective layer are formed on a ceramic substrate.
In mole% P 2 O 5 and 50 to 68 percent, the CeO 2 15-39% B 2 O 3 2-7% the Pr 6 O 11 wherein 0.2 to 0.5%, for CeO 2 P molar ratio of 2 O 5 is characterized that 1 ≦ P 2 O 5 / CeO 2 to <the glaze layer in a phosphate glass which satisfies the 4 relationships are formed.

前記リン酸塩系ガラスは、添加成分として、AlおよびBaOの少なくとも一方を含むことが好ましい。 The phosphate glass preferably contains at least one of Al 2 O 3 and BaO as an additive component.

本発明は、セラミックス基板上に、グレーズ層、発熱抵抗層、および保護層が形成されたサーマルヘッドにおいて、
モル%で、Pを50〜65%、CeOを5〜15%、Bを3〜8%、Alを0〜10%、BaOを0〜9%、およびPr11を含み、CeOに対するPのモル比が4≦P/CeOの関係を満たすリン酸塩系ガラスで前記グレーズ層が形成されることを特徴とする。
The present invention relates to a thermal head in which a glaze layer, a heating resistance layer, and a protective layer are formed on a ceramic substrate.
In mole% P 2 O 5 50 to 65% of CeO 2 5~15%, B 2 O 3 3-8% the Al 2 O 3 0~10%, 0~9 % of BaO, and It includes Pr 6 O 11, wherein the glaze layer in phosphate type glass molar ratio of P 2 O 5 satisfies 4 ≦ P 2 O 5 / CeO 2 relationship to CeO 2 is formed.

また、前記リン酸塩系ガラスは、Pr11を0.2〜2.0モル%含むことが好ましい。 Further, the phosphate type glass preferably contains Pr 6 O 11 0.2 to 2.0 mol%.

上記組成のリン酸塩系ガラスは熱伝導率が低いので、前記ガラスでグレーズ層を形成することにより、サーマルヘッドの消費電力を低減することができる。また、上記組成のリン酸塩系ガラスの熱膨張係数は、アルミナの熱膨張係数とほぼ等しい範囲内にあるため、前記リン酸塩系ガラスでグレーズ層を形成したとき、セラミックス基板との剥離が起こりにくい。さらに、上記組成のリン酸塩系ガラスは、ガラス転移温度が高いので耐熱性にも優れており、前記リン酸塩系ガラスでグレーズ層を形成したときの耐久性が高い。   Since the phosphate glass having the above composition has low thermal conductivity, the power consumption of the thermal head can be reduced by forming a glaze layer with the glass. In addition, since the thermal expansion coefficient of the phosphate glass having the above composition is in a range substantially equal to the thermal expansion coefficient of alumina, when the glaze layer is formed with the phosphate glass, peeling from the ceramic substrate occurs. Hard to happen. Furthermore, since the phosphate glass having the above composition has a high glass transition temperature, it is excellent in heat resistance, and has high durability when a glaze layer is formed from the phosphate glass.

また、前記サーマルヘッドは、前記発熱抵抗層の上に導体層が形成されていることが好ましい。   In the thermal head, a conductor layer is preferably formed on the heating resistor layer.

本発明のリン酸塩系ガラスは、従来に比べて熱伝導率を小さくできる。よって、例えば、本発明のリン酸塩系ガラスを、サーマルヘッドのグレーズ層に使用することで、サーマルヘッドの消費電力を従来より低いものとすることができる。また、ガラス転移温度が高く、耐熱性に優れているので、特に高速サーマルプリンター用のサーマルヘッドに使用することができる。   The phosphate glass of the present invention can have a lower thermal conductivity than the conventional glass. Therefore, for example, by using the phosphate glass of the present invention for the glaze layer of the thermal head, the power consumption of the thermal head can be made lower than before. Moreover, since it has a high glass transition temperature and excellent heat resistance, it can be used particularly for a thermal head for a high-speed thermal printer.

本発明のリン酸塩系ガラスは、熱膨張係数が小さく、アルミナとほぼ同等である。従って、セラミックス基板としてアルミナを用いたとき、リン酸塩系ガラスで形成されたグレーズ層がセラミックス基板から剥離することがない。   The phosphate glass of the present invention has a small coefficient of thermal expansion and is almost equivalent to alumina. Therefore, when alumina is used as the ceramic substrate, the glaze layer formed of phosphate glass does not peel from the ceramic substrate.

サーマルヘッドの断面図Cross section of thermal head

本発明のリン酸塩系ガラスは、リン酸(P)を主成分とし、酸化セリウム(CeO)、酸化ホウ素(B)、および酸化プラセオジム(Pr11)を含む。また他の成分を含むものであってもよい。 The phosphate glass of the present invention contains phosphoric acid (P 2 O 5 ) as a main component and contains cerium oxide (CeO 2 ), boron oxide (B 2 O 3 ), and praseodymium oxide (Pr 6 O 11 ). . Moreover, another component may be included.

本発明のリン酸塩系ガラスは、必須成分としてP、CeO、B、およびPr11を含むが、CeOに対するPの割合によって、各成分の含有量(組成範囲)が異なる。 The phosphate-based glass of the present invention contains P 2 O 5 , CeO 2 , B 2 O 3 , and Pr 6 O 11 as essential components, but depending on the ratio of P 2 O 5 to CeO 2 , the content of each component The amount (composition range) is different.

第1の実施形態のリン酸塩系ガラスは、Pを主成分(組成比が最も大きい)として50〜68(mol%)含み、CeOを15〜39(mol%)、Bを2〜7(mol%)、Pr11を0.2〜0.5(mol%)含む。そして、CeOに対するPのモル比は1≦P/CeO<4の関係を満たす。すなわち、本実施形態のリン酸塩系ガラスは、PをCeOと同じ、あるいはそれ以上多く含むガラスである。 The phosphate-based glass of the first embodiment includes 50 to 68 (mol%) of P 2 O 5 as a main component (the highest composition ratio), 15 to 39 (mol%) of CeO 2 , and B 2. O 3, 2~7 (mol%), the Pr 6 O 11 0.2~0.5 (mol% ) containing. The molar ratio of P 2 O 5 with respect to CeO 2 satisfies the relationship of 1 ≦ P 2 O 5 / CeO 2 <4. That is, the phosphate glass of this embodiment is a glass containing P 2 O 5 in the same amount as CeO 2 or more.

なお、前記含有量はリン酸塩系ガラス全体に対する含有量であり、後述するように、リン酸塩系ガラスを作製する際には、作製後のガラスにおいて各成分が前記含有量のmol%となるように原料の秤量、調合を行う。   In addition, the said content is content with respect to the phosphate-type glass whole, and when producing phosphate-type glass so that it may mention later, each component in the glass after preparation is said with mol% of the said content. Weigh and mix the raw materials so that

本実施形態のリン酸塩系ガラスは、主成分としてPを50〜68(mol%)含む。Pを主成分とするリン酸塩系ガラスは、Pが少ないほど耐水性が高い一方、結晶化が起こりやすくガラスになりにくい。 The phosphate glass of this embodiment contains 50 to 68 (mol%) of P 2 O 5 as a main component. Phosphate glass containing P 2 O 5 as a main component has higher water resistance as the amount of P 2 O 5 is smaller.

が50(mol%)より少ないと、ガラスが結晶化し、ガラス状態が不安定となる。また、Pが68(mol%)より多いと、耐候性が悪化するので好ましくない。 When P 2 O 5 is less than 50 (mol%), the glass is crystallized, the glass state becomes unstable. Further, when the P 2 O 5 is more than 68 (mol%), since the weather resistance is deteriorated unfavorably.

CeOは、Pの次に組成比の大きい成分であり、リン酸塩系ガラスに15〜39(mol%)含む。CeOが15(mol%)より少ないと、耐候性が悪化し、CeOが39(mol%)より多いと、ガラスが不安定となりガラスの結晶化が起こるため、いずれも好ましくない。 CeO 2 is a component having the next highest composition ratio after P 2 O 5 and is contained in the phosphate glass in an amount of 15 to 39 (mol%). When CeO 2 is less than 15 (mol%), the weather resistance is deteriorated, and when CeO 2 is more than 39 (mol%), the glass becomes unstable and crystallization of the glass occurs.

はリン酸塩系ガラスに2〜7(mol%)含まれる。Bは、リン酸塩系ガラスの結晶化を防止し、ガラスを安定化させる効果がある。Bが2(mol%)より少ないと、リン酸塩系ガラスの結晶化が起こり、Bが7(mol%)より多いと、得られるリン酸塩系ガラスの耐候性が悪くなるのでいずれも好ましくない。 B 2 O 3 is contained in the phosphate glass in 2 to 7 (mol%). B 2 O 3 has an effect of preventing crystallization of the phosphate glass and stabilizing the glass. When B 2 O 3 is less than 2 (mol%), crystallization of the phosphate glass occurs, and when B 2 O 3 is more than 7 (mol%), the weather resistance of the resulting phosphate glass is low. Neither is preferred because it worsens.

Pr11はリン酸塩系ガラスに0.2〜0.5(mol%)含まれる。Pは還元されると気体状の金属リン(P)となり蒸発するが、Pr11は、Pの還元を防止する効果を有する。よって、リン酸塩系ガラスがPr11を含むと、上記リンの蒸発防止効果が発現し、耐水性が向上する。 Pr 6 O 11 is contained in the phosphate glass in an amount of 0.2 to 0.5 (mol%). When P 2 O 5 is reduced, it becomes gaseous metallic phosphorus (P) and evaporates, but Pr 6 O 11 has an effect of preventing the reduction of P 2 O 5 . Therefore, when the phosphate glass contains Pr 6 O 11 , the phosphorus evaporation preventing effect is exhibited, and the water resistance is improved.

Pr11が0.2(mol%)より少ないと、上記リンの蒸発防止効果が発現せず、耐水性が低い。またPr11が0.5(mol%)より多いと、リン酸塩ガラスの結晶化を促進するため、好ましくない。 When the amount of Pr 6 O 11 is less than 0.2 (mol%), the phosphorus evaporation preventing effect is not exhibited and the water resistance is low. Also the Pr 6 O 11 is more than 0.5 (mol%), to promote the crystallization of phosphate glass, which is not preferable.

本実施形態のリン酸塩系ガラスは、主成分であるP、およびCeO、BおよびPr11の他に、微量成分として、アルミナ(Al)、酸化バリウム(BaO)、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化ストロンチウム(SrO)、酸化鉄(Fe)、酸化イットリウム(Y)、酸化酸化ニオブ(Nb)、酸化マンガン(MnO)、シリカ(SiO)の少なくとも1種を含むものであってよい。これらの酸化物は、ガラスの結晶化の抑制、ガラス転移温度の調整等のために加えられる。 In addition to P 2 O 5 and CeO 2 , B 2 O 3, and Pr 6 O 11 as main components, the phosphate glass of the present embodiment includes alumina (Al 2 O 3 ), oxidation as a minor component. Barium (BaO), titanium oxide (TiO 2 ), zinc oxide (ZnO), strontium oxide (SrO), iron oxide (Fe 2 O 3 ), yttrium oxide (Y 2 O 3 ), niobium oxide (Nb 2 O 5) ), Manganese oxide (MnO), and silica (SiO 2 ). These oxides are added for suppressing crystallization of glass, adjusting the glass transition temperature, and the like.

Alの含有量は5(mol%)以下であることが好ましい。Alが5(mol%)より多いと、ガラスの結晶化を促進するため好ましくない。 The content of Al 2 O 3 is preferably 5 (mol%) or less. When al 2 O 3 is more than 5 (mol%), it is not preferred to promote crystallization of the glass.

また、BaOの含有量は、1〜10(mol%)であることが好ましく、TiOの含有量は、1〜15(mol%)であることが好ましい。 The content of BaO is preferably 1 to 10 (mol%), the content of TiO 2 is preferably 1~15 (mol%).

本実施形態のリン酸塩系ガラスに含まれる成分は、上記の酸化物に限られず、例えば、酸化クロム(Cr)、酸化すず(SnO)、酸化ニッケル(NiO)、酸化マグネシウム(MgO)、酸化鉄(II)(FeO)、酸化セリウム(II)(CeO)、酸化ビスマス(Bi)、酸化銅(CuO)、酸化バナジウム(V)、酸化コバルト(CoO)、フッ化カルシウム(CaF)、酸化ジルコニウム(ZrO)酸化ネオジム(Nd))、酸化セシウム(CsO)、マンガン(MnO)、酸化リチウム(LiO)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)などの酸化物を含むものであってもよい。
上記したリン酸塩系ガラスを構成する全成分を合計すると100(mol%)となる。
The components contained in the phosphate-based glass of the present embodiment are not limited to the above oxides. For example, chromium oxide (Cr 2 O 3 ), tin oxide (SnO 2 ), nickel oxide (NiO), magnesium oxide ( MgO), iron oxide (II) (FeO), cerium oxide (II) (CeO), bismuth oxide (Bi 2 O 3 ), copper oxide (CuO), vanadium oxide (V 2 O 5 ), cobalt oxide (CoO) , Calcium fluoride (CaF 2 ), zirconium oxide (ZrO 2 ), neodymium oxide (Nd 2 O 3 )), cesium oxide (Cs 2 O), manganese (MnO), lithium oxide (Li 2 O), calcium oxide (CaO) ) Or an oxide such as magnesium oxide (MgO).
The total of all the components constituting the phosphate glass described above is 100 (mol%).

第2の実施形態のリン酸塩系ガラスは、Pを主成分(組成比が最も大きい)として50〜65(mol%)含み、CeOを5〜15(mol%)、Bを3〜8(mol%)、Alを0〜10(mol%)、BaOを0〜9(mol%)、およびPr11を含む。そして、CeOに対するPのモル比は4≦P/CeOの関係を満たす。すなわち、本実施形態のリン酸塩系ガラスは、PをCeOの4倍以上多く含むガラスであり、第1の実施形態のリン酸塩系ガラスより、CeOに対するPの割合が大きいガラスである。 Phosphate-based glass of the second embodiment, the P 2 O 5 comprises a main component 50-65 (mol%) as the (largest composition ratio), the CeO 2 5 to 15 (mol%), B 2 3 to 8 (mol%) of O 3 , 0 to 10 (mol%) of Al 2 O 3 , 0 to 9 (mol%) of BaO, and Pr 6 O 11 are included. The molar ratio of P 2 O 5 with respect to CeO 2 satisfies the 4 ≦ P 2 O 5 / CeO 2 relationship. That is, phosphate type glass of the present embodiment is a glass P 2 O 5 containing much more than four times the CeO 2, from phosphate-based glass of the first embodiment, P 2 O 5 with respect to CeO 2 The glass has a large ratio.

本実施形態のリン酸塩系ガラスは、主成分としてPを50〜65(mol%)含む。Pを主成分とするリン酸塩系ガラスは、Pが少ないほど耐水性が高い一方、結晶化が起こりやすくガラスになりにくい。 The phosphate glass of this embodiment contains 50 to 65 (mol%) of P 2 O 5 as a main component. Phosphate glass containing P 2 O 5 as a main component has higher water resistance as the amount of P 2 O 5 is smaller.

が50(mol%)より少ないと、ガラスが結晶化し、ガラス状態が不安定となる。また、Pが65(mol%)より多いと、耐候性が悪化するので好ましくない。なお、CeOに対するPの割合が第1の実施形態のガラスに比べて大きいため、P量が65(mol%)より多くても耐候性が悪化するものと考えられる。 When P 2 O 5 is less than 50 (mol%), the glass is crystallized, the glass state becomes unstable. On the other hand, if P 2 O 5 is more than 65 (mol%), the weather resistance deteriorates, which is not preferable. Since the ratio of P 2 O 5 with respect to CeO 2 is larger than the glass of the first embodiment, even if more than 65 (mol%) P 2 O 5 content is believed that the weather resistance is deteriorated.

CeOは、Pの次に組成比の大きい成分であり、リン酸塩系ガラスに5〜15(mol%)含む。CeOが5(mol%)より少ないと、耐候性が悪化し、CeOが15(mol%)より多いと、ガラスが不安定となりガラスの結晶化が起こるため、いずれも好ましくない。 CeO 2 is a component having the next highest composition ratio after P 2 O 5 and is contained in the phosphate glass in an amount of 5 to 15 (mol%). When CeO 2 is less than 5 (mol%), the weather resistance is deteriorated, and when CeO 2 is more than 15 (mol%), the glass becomes unstable and crystallization of the glass occurs.

はリン酸塩系ガラスに3〜8(mol%)含まれる。Bは、リン酸塩系ガラスの結晶化を防止し、ガラスを安定化させる効果がある。Bが3(mol%)より少ないと、リン酸塩系ガラスの結晶化が起こり、Bが8(mol%)より多いと、得られるリン酸塩系ガラスの耐候性が悪くなるのでいずれも好ましくない。 B 2 O 3 is contained in the phosphate glass in an amount of 3 to 8 (mol%). B 2 O 3 has an effect of preventing crystallization of the phosphate glass and stabilizing the glass. When B 2 O 3 is less than 3 (mol%), crystallization of the phosphate glass occurs, and when B 2 O 3 is more than 8 (mol%), the weather resistance of the resulting phosphate glass is low. Neither is preferred because it worsens.

リン酸塩系ガラスはPr11を含むものであれば含有量は特に限定されないが、リン酸塩系ガラスに0.2〜2.0(mol%)含まれることが好ましい。Pは還元されると気体状の金属リン(P)となり蒸発するが、Pr11は、Pの還元を防止する効果を有する。よって、リン酸塩系ガラスがPr11を含むと、上記リンの蒸発防止効果が発現し、耐水性が向上する。 The content of the phosphate glass is not particularly limited as long as it contains Pr 6 O 11 , but it is preferably 0.2 to 2.0 (mol%) in the phosphate glass. When P 2 O 5 is reduced, it becomes gaseous metallic phosphorus (P) and evaporates, but Pr 6 O 11 has an effect of preventing the reduction of P 2 O 5 . Therefore, when the phosphate glass contains Pr 6 O 11 , the phosphorus evaporation preventing effect is exhibited, and the water resistance is improved.

Pr11が0.2(mol%)より少ないと、上記リンの蒸発防止効果が発現せず、耐水性が低い。またPr11が2.0(mol%)より多いと、リン酸塩ガラスの結晶化を促進するため、好ましくない。 When the amount of Pr 6 O 11 is less than 0.2 (mol%), the phosphorus evaporation preventing effect is not exhibited and the water resistance is low. Also the Pr 6 O 11 is more than 2.0 (mol%), to promote the crystallization of phosphate glass, which is not preferable.

本実施形態のリン酸塩系ガラスは、さらにAlおよびBaOを含むことが好ましい。 It is preferable that the phosphate glass of the present embodiment further contains Al 2 O 3 and BaO.

Alはリン酸塩系ガラスに0〜10(mol%)含まれる。また、BaOはリン酸塩系ガラスに0〜9(mol%)含まれる。Alが10(mol%)より多いと、または、BaOが9(mol%)より多いと、ガラスの結晶化を促進するため、いずれも好ましくない。 Al 2 O 3 is contained in the phosphate glass in an amount of 0 to 10 (mol%). BaO is contained in the phosphate glass in an amount of 0 to 9 (mol%). When Al 2 O 3 is more than 10 (mol%) or BaO is more than 9 (mol%), crystallization of glass is promoted, which is not preferable.

本実施形態のリン酸塩系ガラスは、第1の実施形態のリン酸塩系ガラスと、P、CeO、B、Al、BaOおよびPr11の組成範囲が異なるが、これは、P/CeO比、すなわちCeOに対するP量が異なるため、リン酸塩系ガラス中の各成分の含有量が異なると考えられる。 The phosphate-based glass of the present embodiment is composed of the phosphate-based glass of the first embodiment and the composition of P 2 O 5 , CeO 2 , B 2 O 3 , Al 2 O 3 , BaO, and Pr 6 O 11 . Although the range is different, it is considered that the content of each component in the phosphate glass is different because the P 2 O 5 / CeO 2 ratio, that is, the amount of P 2 O 5 with respect to CeO 2 is different.

本実施形態のリン酸塩系ガラスは、主成分であるP、およびCeO、B、Al、BaO、およびPr11の他に、微量成分として、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化ストロンチウム(SrO)、酸化鉄(Fe)、酸化ランタン(La)、酸化ニオブ(Nb)、酸化タンタル(Ta)、シリカ(SiO)、酸化スズ(SnO)、酸化クロム(Cr)、酸化ナトリウム(NaO)の少なくとも1種を含むものであってよい。これらの酸化物は、ガラスの結晶化の抑制、ガラス転移温度の調整等のために加えられる。 In addition to P 2 O 5 , which is the main component, and CeO 2 , B 2 O 3 , Al 2 O 3 , BaO, and Pr 6 O 11 , the phosphate glass of the present embodiment is oxidized as a minor component. Titanium (TiO 2 ), zinc oxide (ZnO), strontium oxide (SrO), iron oxide (Fe 2 O 3 ), lanthanum oxide (La 2 O 3 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2) O 5 ), silica (SiO 2 ), tin oxide (SnO 2 ), chromium oxide (Cr 2 O 3 ), and sodium oxide (Na 2 O) may be included. These oxides are added for suppressing crystallization of glass, adjusting the glass transition temperature, and the like.

本実施形態のリン酸塩系ガラスに含まれる成分は、上記の酸化物に限られず、例えば、酸化ニッケル(NiO)、酸化マグネシウム(MgO)、酸化鉄(II)(FeO)、酸化セリウム(II)(CeO)、酸化ビスマス(Bi)、酸化銅(CuO)、酸化バナジウム(V)、酸化コバルト(CoO)、酸化ジルコニウム(ZrO)、酸化ネオジム(Nd))、酸化セシウム(CsO)、酸化イットリウム(Y)、酸化マンガン(MnO)、酸化リチウム(LiO)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)などの酸化物、あるいはフッ化カルシウム(CaF)を含むものであってもよい。
上記したリン酸塩系ガラスを構成する全成分を合計すると100(mol%)となる。
The components contained in the phosphate-based glass of the present embodiment are not limited to the above oxides. For example, nickel oxide (NiO), magnesium oxide (MgO), iron (II) oxide (FeO), cerium oxide (II) ) (CeO), bismuth oxide (Bi 2 O 3 ), copper oxide (CuO), vanadium oxide (V 2 O 5 ), cobalt oxide (CoO), zirconium oxide (ZrO 2 ), neodymium oxide (Nd 2 O 3 ) ), Oxides such as cesium oxide (Cs 2 O), yttrium oxide (Y 2 O 3 ), manganese oxide (MnO), lithium oxide (Li 2 O), calcium oxide (CaO), magnesium oxide (MgO), or It may contain calcium fluoride (CaF 2 ).
The total of all the components constituting the phosphate glass described above is 100 (mol%).

以上述べたような成分を所定量秤量し混合した後、加熱することによりガラスを作成する。例えば、リン酸として、脱水したオルトリン酸を用い、生成したリン酸塩系ガラスにおける含有量が所定量のmol%となるように秤量し、同様に秤量したCeO、B、Pr11およびその他の成分を、乳鉢を用いて粉砕しながら十分に均一になるように混合する。均一に混合した粉状のガラス原料成分を、例えば白金製のるつぼに入れ、電気炉を用いて大気中で約1000〜1500℃の温度で所定時間加熱して溶融する。その際、昇温速度は特に制限はなく、例えば10℃/分の昇温速度で急速に加熱してもよい。 A predetermined amount of the components described above are weighed and mixed, and then heated to produce glass. For example, dehydrated orthophosphoric acid is used as phosphoric acid and weighed so that the content in the produced phosphate glass is a predetermined amount of mol%, and similarly weighed CeO 2 , B 2 O 3 , Pr 6. O 11 and other ingredients are mixed so as to be sufficiently uniform while being pulverized using a mortar. The uniformly mixed powdery glass raw material component is placed in, for example, a platinum crucible and melted by heating at a temperature of about 1000 to 1500 ° C. for a predetermined time in the atmosphere using an electric furnace. In that case, there is no restriction | limiting in particular in the temperature increase rate, For example, you may heat rapidly with the temperature increase rate of 10 degree-C / min.

その後、板状または棒状に成形しながら冷却し、さらに板状または棒状のリン酸塩系ガラスを粉砕して粉末状のリン酸塩系ガラスとする。なお、ガラス原料を混合する前に、粉状のガラス原料成分を篩にかけて粒子径を一定の大きさ以下に揃えておくと、ガラスがより均一となり好ましい。   Then, it cools, shape | molding in plate shape or rod shape, Furthermore, plate-shaped or rod-shaped phosphate glass is grind | pulverized, and it is set as powdered phosphate glass. Before mixing the glass raw materials, it is preferable that the powdery glass raw material components are sieved so that the particle diameters are equal to or less than a certain size because the glass becomes more uniform.

本発明で得られるリン酸塩系ガラスはいずれも透明であるが、添加された微量成分により、黄色、黄緑色、緑色、褐色、あるいは黒色などの色を呈する。   The phosphate glasses obtained in the present invention are all transparent, but exhibit a color such as yellow, yellow-green, green, brown, or black depending on the added trace components.

なお、本発明のリン酸塩系ガラスは、安定したガラス状態を保つので、例えばガラス状態のガラスを再び加熱し冷却しても、結晶化しないで再度ガラス状態に戻すことが可能である。   In addition, since the phosphate glass of the present invention maintains a stable glass state, even if the glass in the glass state is heated and cooled again, it can be returned to the glass state again without crystallization.

前記組成によって得られる本発明のリン酸塩系ガラスは、熱伝導率が0.57〜0.85(W/m・K)の間とすることができる。従来のケイ酸塩系ガラスは熱伝導率が高く、低いものでも1W/(m・K)のものしか得られなかった。そのため、ケイ酸塩系ガラスをグレーズ層に用いた場合、加熱に多くの電力を必要とし、電力効率が低いことが問題であった。   The phosphate glass of the present invention obtained by the composition can have a thermal conductivity of 0.57 to 0.85 (W / m · K). Conventional silicate glass has a high thermal conductivity, and even if it has a low glass, only 1 W / (m · K) can be obtained. Therefore, when silicate glass is used for the glaze layer, a large amount of electric power is required for heating, and power efficiency is low.

本発明のリン酸塩系ガラスは、従来のケイ酸塩系ガラスに比べて、熱伝導率が小さい。特に熱伝導率が小さいものは、従来のケイ酸塩系ガラスの約1/2であり、熱伝導率が大きいものでも、従来のケイ酸塩系ガラスに比べて、約20%減少している。このように熱伝導率が小さいので、本発明のリン酸塩系ガラスをサーマルヘッドのグレーズ層に用いたとき、電気抵抗層で発生した熱をセラミックス基板に伝えにくいので、消費電力を低く抑えることができる。   The phosphate glass of the present invention has a lower thermal conductivity than conventional silicate glass. In particular, the one with low thermal conductivity is about 1/2 of the conventional silicate glass, and even the one with high thermal conductivity is reduced by about 20% compared to the conventional silicate glass. . Because of this low thermal conductivity, when the phosphate glass of the present invention is used for the glaze layer of the thermal head, it is difficult to transfer the heat generated in the electrical resistance layer to the ceramic substrate, thus reducing the power consumption. Can do.

さらに、熱膨張係数(α)が66〜76(×10−7/℃)の範囲内にできる。アルミナの熱膨張係数(α)は66〜76(×10−7/℃)の範囲内であるので、セラミックス基板をアルミナとしたときに、セラミックス基板とグレーズ層の熱膨張係数(α)をほぼ同じとすることができる。これにより、サーマルヘッド使用時に、電気抵抗層で発生した熱がグレーズ層およびセラミックス基板に伝わっても、グレーズ層とセラミックス基板の間で熱膨張による剥離が起こりにくく、耐久性に優れる。 Furthermore, the thermal expansion coefficient (α) can be in the range of 66 to 76 (× 10 −7 / ° C.). Since the thermal expansion coefficient (α) of alumina is in the range of 66 to 76 (× 10 −7 / ° C.), when the ceramic substrate is alumina, the thermal expansion coefficient (α) of the ceramic substrate and the glaze layer is almost equal. The same can be done. Thereby, even when heat generated in the electric resistance layer is transmitted to the glaze layer and the ceramic substrate when the thermal head is used, peeling due to thermal expansion hardly occurs between the glaze layer and the ceramic substrate, and the durability is excellent.

本発明のリン酸塩系ガラスは、ガラス転移温度(Tg)を530〜680℃の範囲内にできる。このように耐熱性が高いので、サーマルヘッドのグレーズ層に用いても、加熱による変形および変質を起こすことがない。サーマルプリンターの高速化に伴い、サーマルヘッドに加わる熱も500℃まで達することがあるが、耐熱性の高い本発明のリン酸塩系ガラスは、前記グレーズ層に好適に使用することができる。   The phosphate glass of the present invention can have a glass transition temperature (Tg) in the range of 530 to 680 ° C. Thus, since heat resistance is high, even if it uses for the glaze layer of a thermal head, a deformation | transformation and a quality change by heating do not raise | generate. As the thermal printer increases in speed, the heat applied to the thermal head may reach 500 ° C., but the phosphate glass of the present invention having high heat resistance can be suitably used for the glaze layer.

本発明で得られたリン酸塩系ガラスを用いて、以下の製造方法により図1に示すサーマルヘッド1を製造する。なお図1に示すサーマルヘッドは一例であり、本実施形態で好適に用いられるサーマルヘッドの形状等は図1に示すものに限られない。   A thermal head 1 shown in FIG. 1 is manufactured by the following manufacturing method using the phosphate glass obtained in the present invention. The thermal head shown in FIG. 1 is an example, and the shape of the thermal head suitably used in the present embodiment is not limited to that shown in FIG.

上記により、ガラス原料となる成分を混合、加熱して作製されたガラスを粉砕し、粒径が5μm以下の粉末とする。粉末にバインダー(例えば、ブチルメタクリレート)、溶剤(例えば、トルエン)および可塑剤(例えば、ジブチルフタレート)を加えてペースト状とし、市販のサーマルヘッド用アルミナ製セラミックス基板11上に塗布する。   By the above, the glass produced by mixing and heating the components used as the glass raw material is pulverized to obtain a powder having a particle size of 5 μm or less. A binder (for example, butyl methacrylate), a solvent (for example, toluene) and a plasticizer (for example, dibutyl phthalate) are added to the powder to form a paste, which is applied onto a commercially available alumina ceramic substrate 11 for a thermal head.

次に、ガラス粉末を塗布したセラミックス基板を加熱炉に入れ、空気中1000℃で、10〜60分間焼成し、グレーズ層12を形成する。加熱炉の昇温速度は当初は20℃/分程度の急加熱でよいが、焼成温度を制御するため、800℃付近から5℃/分程度に落とすことが好ましい。焼成後のガラス(グレーズ層12)の膜厚は50〜250μmである。   Next, the ceramic substrate coated with the glass powder is placed in a heating furnace and fired at 1000 ° C. in air for 10 to 60 minutes to form the glaze layer 12. The heating rate of the heating furnace may be rapid heating of about 20 ° C./min at the beginning, but it is preferable to drop from around 800 ° C. to about 5 ° C./min in order to control the firing temperature. The film thickness of the fired glass (glaze layer 12) is 50 to 250 μm.

上記により形成されたグレーズ層12上に、発熱抵抗体層13、導体層14および保護層15を形成する。発熱抵抗体層13は、例えば、Ta−SiO、またはTaNを、導体層14は、例えば、Alを、さらに保護層15は、例えば、SIALON(Si,Al,OおよびNからなる化合物)を、それぞれスパッタ等により製膜して形成される。 On the glaze layer 12 formed as described above, a heating resistor layer 13, a conductor layer 14, and a protective layer 15 are formed. The heating resistor layer 13 is made of, for example, Ta—SiO 2 or Ta 2 N, the conductor layer 14 is made of, for example, Al, and the protective layer 15 is made of, for example, SIALON (compound composed of Si, Al, O and N). ) Are formed by sputtering or the like.

上記により製造されたサーマルヘッド1は、グレーズ層12を本発明のリン酸塩系ガラスで形成しているため、グレーズ層12の熱伝導率が低く、消費電力が小さい。グレーズ層12のガラス転移温度が高いので、サーマルヘッド1の耐熱性が高い。また、グレーズ層12の熱膨張係数がセラミックス基板11であるアルミナの熱膨張係数と等しいのでグレーズ層12とセラミックス基板11の間の剥離が起こりにくいため、耐久性に優れる。   In the thermal head 1 manufactured as described above, since the glaze layer 12 is formed of the phosphate glass of the present invention, the thermal conductivity of the glaze layer 12 is low and the power consumption is small. Since the glass transition temperature of the glaze layer 12 is high, the heat resistance of the thermal head 1 is high. In addition, since the thermal expansion coefficient of the glaze layer 12 is equal to the thermal expansion coefficient of alumina, which is the ceramic substrate 11, peeling between the glaze layer 12 and the ceramic substrate 11 hardly occurs, so that the durability is excellent.

表1に示す組成比(mol%)を有するリン酸塩系ガラスを作製した。また、各リン酸塩系ガラスの熱伝導率、熱膨張係数(α)、ガラス転移温度(Tg)を測定し、同じ表中に示す。   Phosphate glass having the composition ratio (mol%) shown in Table 1 was produced. In addition, the thermal conductivity, thermal expansion coefficient (α), and glass transition temperature (Tg) of each phosphate glass were measured and shown in the same table.

表1に示す実施例1ないし16の組成成分を有するリン酸塩系ガラスは、いずれも、結晶化することがなく、良好なリン酸塩系ガラスを作製できた。実施例1ないし16のリン酸塩系ガラスは、いずれもPが50〜68(mol%)、CeOが15〜39(mol%)、Bが2〜7(mol%)、Pr11が0.2〜0.5(mol%)であり、CeOに対するPのモル比が1≦P/CeO<4の関係を満たす。 All the phosphate glasses having the composition components of Examples 1 to 16 shown in Table 1 were not crystallized, and good phosphate glasses could be produced. In all of the phosphate glasses of Examples 1 to 16, P 2 O 5 is 50 to 68 (mol%), CeO 2 is 15 to 39 (mol%), and B 2 O 3 is 2 to 7 (mol%). ), Pr 6 O 11 is 0.2~0.5 (mol%), the molar ratio of P 2 O 5 with respect to CeO 2 satisfies the relationship of 1 ≦ P 2 O 5 / CeO 2 <4.

実施例1ないし16のリン酸塩系ガラスは、熱伝導率が0.57〜0.75(W/(m・K))の範囲内であり、熱膨張係数が66〜76(×10−7/℃)の範囲内である。よって、実施例1ないし16のリン酸塩系ガラスでグレーズ層を形成したサーマルヘッドは消費電力が低く、電力効率の向上が図れる。また、グレーズ層の熱膨張係数がセラミックス基板と同じであるので、グレーズ層とセラミックス基板の剥離が起こりにくい。さらに、ガラス転移温度が540〜680℃であるので、耐熱性に優れたサーマルヘッドを得ることができる。 The phosphate glasses of Examples 1 to 16 have a thermal conductivity in the range of 0.57 to 0.75 (W / (m · K)) and a thermal expansion coefficient of 66 to 76 (× 10 − 7 / ° C.). Therefore, the thermal head in which the glaze layer is formed of the phosphate glass of Examples 1 to 16 has low power consumption and can improve power efficiency. Further, since the thermal expansion coefficient of the glaze layer is the same as that of the ceramic substrate, the glaze layer and the ceramic substrate are unlikely to peel off. Furthermore, since the glass transition temperature is 540 to 680 ° C., a thermal head excellent in heat resistance can be obtained.

比較例として、表2に示す組成比(mol%)を有するリン酸塩系ガラスを作製した。また、各リン酸塩系ガラスの熱伝導率、熱膨張係数(α)、ガラス転移温度(Tg)を測定し、同じ表中に示す。   As a comparative example, a phosphate glass having a composition ratio (mol%) shown in Table 2 was produced. In addition, the thermal conductivity, thermal expansion coefficient (α), and glass transition temperature (Tg) of each phosphate glass were measured and shown in the same table.

表2に示す比較例1ないし8の組成成分を有するリン酸塩系ガラスは、CeOに対するPのモル比が1≦P/CeO<4の関係を満たすが、各組成成分が、「Pが50〜68(mol%)、CeOが15〜39(mol%)、Bが2〜7(mol%)、Pr11が0.2〜0.5(mol%)」の本発明の組成範囲外の組成を有するリン酸塩系ガラスである。すなわち、上記範囲に比べて、Pが少ない(比較例1〜3)、CeOが少ない(比較例3)、Bが多い(比較例3〜5)Pr11が含まれていない(比較例4,5,8)、Pr11が多い(比較例2,3,6,7)。 Phosphate type glass having a composition component of the Comparative Examples 1 to 8 shown in Table 2, although the molar ratio of P 2 O 5 with respect to CeO 2 satisfies the relationship of 1 ≦ P 2 O 5 / CeO 2 <4, the The composition component is “P 2 O 5 is 50 to 68 (mol%), CeO 2 is 15 to 39 (mol%), B 2 O 3 is 2 to 7 (mol%), and Pr 6 O 11 is 0.2. It is a phosphate glass having a composition outside the composition range of the present invention of “˜0.5 (mol%)”. That is, compared to the above range, P 2 O 5 is less (Comparative Examples 1 to 3), CeO 2 is small (Comparative Example 3), B 2 O 3 is large (Comparative Example 3~5) Pr 6 O 11 is Not contained (Comparative Examples 4, 5, 8), there is much Pr 6 O 11 (Comparative Examples 2, 3, 6 , 7).

比較例1〜3および6,7は、いずれも結晶化してガラスにならなかった。また、比較例2,3,6,7は、熱膨張係数(α)が大きく、いずれもアルミナの熱膨張係数より大きかった。比較例4,5,8は、ガラスが形成できたが、再加熱した際に結晶化が起こった。また、熱膨張係数(α)も小さかった。   In Comparative Examples 1 to 3, 6, and 7, none of them crystallized into glass. Further, Comparative Examples 2, 3, 6, and 7 had a large thermal expansion coefficient (α), and all were larger than the thermal expansion coefficient of alumina. In Comparative Examples 4, 5, and 8, glass could be formed, but crystallization occurred when reheated. The thermal expansion coefficient (α) was also small.

表2に示すように、比較例1,3ないし8は、いずれも熱伝導率が小さく、またガラス転移温度も高く、耐熱性も有している。しかしながら、熱膨張係数(α)がアルミナの熱膨張係数より小さいか、または大きいため、サーマルヘッドのグレーズ層に用いるには好ましくない。さらにガラスにならなかったり、ガラス状態が不安定で再加熱により結晶化が起こり、サーマルヘッドのグレーズ層に用いることができないものであった。   As shown in Table 2, Comparative Examples 1, 3 to 8 all have low thermal conductivity, high glass transition temperature, and heat resistance. However, since the thermal expansion coefficient (α) is smaller or larger than that of alumina, it is not preferable for use in the glaze layer of the thermal head. Furthermore, it did not become glass, or the glass state was unstable and crystallization occurred due to reheating, so that it could not be used for the glaze layer of the thermal head.

次に、表3に示す組成比(mol%)を有するリン酸塩系ガラスを作製した。また、各リン酸塩系ガラスの熱伝導率、熱膨張係数(α)、ガラス転移温度(Tg)を測定し、同じ表中に示す。   Next, phosphate glass having the composition ratio (mol%) shown in Table 3 was produced. In addition, the thermal conductivity, thermal expansion coefficient (α), and glass transition temperature (Tg) of each phosphate glass were measured and shown in the same table.

表3に示す実施例17ないし24の組成成分を有するリン酸塩系ガラスは、いずれも、結晶化することがなく、良好なリン酸塩系ガラスを作製できた。実施例17ないし24のリン酸塩系ガラスは、Pを50〜65(mol%)、CeOを5〜15(mol%)、Bを3〜8(mol%)、Alを0〜10(mol%)、BaOを0〜9(mol%)およびPr11を含むリン酸塩系ガラスであって、CeOに対するPのモル比が4≦P/CeOの関係を満たす。 All of the phosphate glasses having the composition components of Examples 17 to 24 shown in Table 3 were not crystallized, and good phosphate glasses could be produced. Phosphate-based glasses of Examples 17 to 24, P 2 O 5 to 50~65 (mol%), the CeO 2 5~15 (mol%), the B 2 O 3 3~8 (mol% ), A phosphate-based glass containing Al 2 O 3 of 0 to 10 (mol%), BaO of 0 to 9 (mol%) and Pr 6 O 11 , wherein the molar ratio of P 2 O 5 to CeO 2 is 4 ≦ P 2 O 5 / CeO 2 is satisfied.

実施例17ないし24のリン酸塩系ガラスは、熱伝導率が0.61〜0.85(W/(m・K))の範囲内であり、熱膨張係数が66〜75(×10−7/℃)の範囲内である。よって、実施例17ないし24のリン酸塩系ガラスでグレーズ層を形成したサーマルヘッドは消費電力が低く、電力効率の向上が図れる。また、グレーズ層の熱膨張係数がセラミックス基板と同じであるので、グレーズ層とセラミックス基板の剥離が起こりにくい。さらに、ガラス転移温度が530〜630℃であるので、耐熱性に優れたサーマルヘッドを得ることができる。 The phosphate glasses of Examples 17 to 24 have a thermal conductivity in the range of 0.61 to 0.85 (W / (m · K)) and a thermal expansion coefficient of 66 to 75 (× 10 − 7 / ° C.). Therefore, the thermal head in which the glaze layer is formed of the phosphate glass of Examples 17 to 24 has low power consumption and can improve power efficiency. Further, since the thermal expansion coefficient of the glaze layer is the same as that of the ceramic substrate, the glaze layer and the ceramic substrate are unlikely to peel off. Furthermore, since the glass transition temperature is 530 to 630 ° C., a thermal head excellent in heat resistance can be obtained.

比較例として、表4に示す組成比(mol%)を有するリン酸塩系ガラスを作製した。また、各リン酸塩系ガラスの熱伝導率、熱膨張係数(α)、ガラス転移温度(Tg)を測定し、同じ表中に示す。   As a comparative example, a phosphate glass having a composition ratio (mol%) shown in Table 4 was produced. In addition, the thermal conductivity, thermal expansion coefficient (α), and glass transition temperature (Tg) of each phosphate glass were measured and shown in the same table.

表4に示す比較例9ないし12の組成成分を有するリン酸塩系ガラスは、CeOに対するPのモル比が4≦P/CeOの関係を満たすが、各組成成分が、「Pが50〜65(mol%)、CeOが5〜15(mol%)、Bが3〜8(mol%)、Alが0〜10(mol%)、BaOが0〜9(mol%)およびPr11を含む」本発明の組成範囲外の組成を有するリン酸塩系ガラスである。すなわち、上記範囲に比べて、Pが少ない(比較例9)、BaOが多い(比較例10,11)、Alが多い(比較例12)。 Phosphate type glass having a composition component of Comparative Example 9 to 12 shown in Table 4, although the molar ratio of P 2 O 5 with respect to CeO 2 satisfies the 4 ≦ P 2 O 5 / CeO 2 relationships, each composition component but "P 2 O 5 is 50~65 (mol%), CeO 2 is 5~15 (mol%), B 2 O 3 is 3~8 (mol%), Al 2 O 3 is 0 (mol %), BaO contains 0 to 9 (mol%) and Pr 6 O 11 ”. This is a phosphate glass having a composition outside the composition range of the present invention. That is, compared to the above range, P 2 O 5 is small (Comparative Example 9), BaO is large (Comparative Example 10, 11), Al 2 O 3 is large (Comparative Example 12).

比較例9ないし12は、いずれも結晶化してガラスにならなかった。また、比較例9,12は、熱膨張係数(α)が小さく、比較例10,11は、熱膨張係数(α)が大きかった。   None of Comparative Examples 9 to 12 crystallized into glass. Further, Comparative Examples 9 and 12 had a small coefficient of thermal expansion (α), and Comparative Examples 10 and 11 had a large coefficient of thermal expansion (α).

表2に示すように、比較例9,11,12は、いずれも熱伝導率が小さく、またガラス転移温度も高く、耐熱性も有している。しかしながら、熱膨張係数(α)がアルミナの熱膨張係数より小さいか、または大きいため、サーマルヘッドのグレーズ層に用いるには好ましくない。さらに結晶化してガラスにならないため、サーマルヘッドのグレーズ層に用いることができないものであった。   As shown in Table 2, Comparative Examples 9, 11, and 12 all have low thermal conductivity, a high glass transition temperature, and heat resistance. However, since the thermal expansion coefficient (α) is smaller or larger than that of alumina, it is not preferable for use in the glaze layer of the thermal head. Further, since it does not crystallize into glass, it cannot be used for the glaze layer of the thermal head.

1 サーマルヘッド
11 セラミックス基板
12 グレーズ層
13 発熱抵抗体層
14 導体層
15 保護層
DESCRIPTION OF SYMBOLS 1 Thermal head 11 Ceramic substrate 12 Glaze layer 13 Heating resistor layer 14 Conductor layer 15 Protective layer

本発明は、リン酸塩系ガラスに係り、特に、熱伝導率が低いリン酸塩系ガラス、および前記リン酸塩系ガラスを用いたサーマルヘッドに関する。   The present invention relates to a phosphate glass, and more particularly to a phosphate glass having a low thermal conductivity and a thermal head using the phosphate glass.

図1に、サーマルプリンター用ヘッド(サーマルヘッド)1の断面図の一例を示す。
サーマルヘッドは、例えばアルミナ(Al)などのセラミック基板11上に、グレーズ層12、発熱抵抗体層13、導体層14、および保護層15を形成した積層構造からなる。前記発熱抵抗体層13に電流が流れる際に発生する熱を、感熱紙やインクリボンなどの媒体に伝えることにより、印刷が行なわれる。なお、導体層14は形成されなくてもよい。
FIG. 1 shows an example of a sectional view of a thermal printer head (thermal head) 1.
The thermal head has a laminated structure in which a glaze layer 12, a heating resistor layer 13, a conductor layer 14, and a protective layer 15 are formed on a ceramic substrate 11 such as alumina (Al 2 O 3 ). Printing is performed by transferring heat generated when a current flows through the heating resistor layer 13 to a medium such as thermal paper or an ink ribbon. The conductor layer 14 may not be formed.

電気抵抗体層13で発生した熱は、保護層15を通して媒体に伝えられるが、一部がグレーズ層12に伝えられる。前記グレーズ層12は、熱をセラミック基板11に逃がすと共に、発生した熱を自身に蓄熱する蓄熱層および保温層の機能を有している。そして、グレーズ層12の高さや形状を変えることで様々な用途や素材に印刷可能なサーマルヘッドとすることができる。   The heat generated in the electrical resistor layer 13 is transferred to the medium through the protective layer 15, but part of the heat is transferred to the glaze layer 12. The glaze layer 12 has the functions of a heat storage layer and a heat insulation layer for releasing heat to the ceramic substrate 11 and storing the generated heat in itself. And it can be set as the thermal head which can be printed on various uses and a raw material by changing the height and shape of the glaze layer 12. FIG.

下記特許文献1には、ケイ酸塩系ガラスのグレーズ組成物が開示されている。また、下記特許文献2および3には、リン酸塩系ガラスが開示されている。   Patent Document 1 below discloses a silicate glass glaze composition. Patent Documents 2 and 3 listed below disclose phosphate glass.

特開平11―130461号公報Japanese Patent Laid-Open No. 11-130461 特開2000−1332号公報JP 2000-1332 A 特開平8−277141号公報JP-A-8-277141

サーマルプリンターの高速化に伴い、サーマルヘッドには耐熱性が要求されているが、近年、耐熱性と共にサーマルヘッドの低消費電力化が求められている。   With the increase in the speed of thermal printers, thermal heads are required to have heat resistance. In recent years, thermal heads are required to have low power consumption as well as heat resistance.

グレーズ層は蓄熱層の機能を有しているが、グレーズ層の熱伝導率が高いと、電気抵抗層で発生した熱がグレーズ層で蓄熱されずにセラミック基板に速やかに伝えられるため、印刷のためにより多くの熱を電気抵抗層で発生させなければならない。そのため、サーマルヘッドの低消費電力化のためにはグレーズ層を熱伝導率の低い材料で形成する必要がある。   The glaze layer has the function of a heat storage layer, but if the thermal conductivity of the glaze layer is high, the heat generated in the electrical resistance layer is not stored in the glaze layer but is quickly transferred to the ceramic substrate. Therefore, more heat must be generated in the electrical resistance layer. Therefore, in order to reduce the power consumption of the thermal head, it is necessary to form the glaze layer with a material having low thermal conductivity.

熱伝導率の低い材料として、例えば、ポリイミドなど有機高分子化合物が挙げられるが、これら有機高分子化合物は耐熱性が低いため、サーマルヘッドのグレーズ層に用いることができなかった。   Examples of the material having low thermal conductivity include organic polymer compounds such as polyimide, but these organic polymer compounds have low heat resistance, and thus cannot be used for the glaze layer of the thermal head.

また、ガラスに鉛を含有させると熱伝導率の低いガラスを得ることができるが、ガラス転移点が低く、サーマルヘッドとして耐熱性が不十分であった。また環境負荷の観点から、鉛含有ガラスの使用は好ましくない。   Moreover, when lead is contained in the glass, a glass having low thermal conductivity can be obtained, but the glass transition point is low and the heat resistance as a thermal head is insufficient. From the viewpoint of environmental impact, the use of lead-containing glass is not preferable.

特許文献1には、酸化マグネシウム(MgO)および酸化タンタル(Ta)を添加した、耐熱性の高いケイ酸塩系ガラスのグレーズ組成物が開示されている。しかしながら、ケイ酸塩系ガラスは熱伝導率が高いため、ケイ酸塩系ガラスをグレーズ層に用いても電力効率を向上させることができなかった。 Patent Document 1 discloses a glazed composition of silicate glass having high heat resistance to which magnesium oxide (MgO) and tantalum oxide (Ta 2 O 5 ) are added. However, since silicate glass has high thermal conductivity, power efficiency cannot be improved even when silicate glass is used for the glaze layer.

特許文献2には、リン酸塩系ガラスが開示されている。しかしながら、リン酸塩系ガラスの熱伝導率について記載されていない。また、特許文献2に記載のリン酸塩系ガラスは配線基板材料に適したものであるため、サーマルヘッドのグレーズ層として用いるには耐熱性が不十分である。さらに、熱膨張係数が大きく、例えばアルミナのセラミック基板の上に形成すると、剥離などが生じ好ましくない。   Patent Document 2 discloses a phosphate glass. However, it does not describe the thermal conductivity of phosphate glass. Moreover, since the phosphate glass described in Patent Document 2 is suitable for a wiring board material, its heat resistance is insufficient for use as a glaze layer of a thermal head. Furthermore, the thermal expansion coefficient is large, and, for example, if it is formed on an alumina ceramic substrate, peeling or the like is not preferable.

特許文献3には、酸化カルシウム(CaO)および酸化ストロンチウム(SrO)を含有する成形性のよいリン酸塩系ガラスが開示されている。しかしながら、熱伝導率について記載されていない。   Patent Document 3 discloses a phosphate glass having good moldability, which contains calcium oxide (CaO) and strontium oxide (SrO). However, it does not describe thermal conductivity.

そこで本発明は、上記従来の課題を解決するためのものであり、特に、従来に比べて、熱伝導率が低く、かつ耐熱性に優れたリン酸塩系ガラス、およびリン酸塩系ガラスを用いたサーマルヘッドを提供することを目的としている。   Therefore, the present invention is to solve the above-described conventional problems, and in particular, phosphate glass and phosphate glass having low thermal conductivity and excellent heat resistance as compared with the prior art. It aims at providing the used thermal head.

本発明のリン酸塩系ガラスは、モル%で、Pを50〜65%、CeOを5〜15%、Bを3〜8%、Alを0〜10%、BaOを0〜9%およびPr11を含み、CeOに対するPのモル比が4≦P/CeOの関係を満たすことを特徴とする。 This onset Ming phosphate type glass, in mol% P 2 O 5 50 to 65% of CeO 2 5~15%, B 2 O 3 3-8% the Al 2 O 3 0 to 10%, containing 0-9% and Pr 6 O 11 and BaO, wherein the molar ratio of P 2 O 5 with respect to CeO 2 satisfies the 4 ≦ P 2 O 5 / CeO 2 relationship.

本発明のリン酸塩系ガラスは、P、CeO、B、Pr11、AlおよびBaOを上記組成範囲で含むことにより、熱伝導率の小さいガラスを得ることができる。従って、例えば、本発明のリン酸塩系ガラスでグレーズ層を形成することにより、サーマルヘッドの消費電力を低減することができる。また、熱膨張係数が所定の範囲内にあるため、セラミックス基板の熱膨張係数とほぼ等しくすることができる。従って、本発明のリン酸塩系ガラスでグレーズ層を形成したとき、セラミックス基板との剥離が起こりにくい。さらに、ガラス転移温度が高いので耐熱性にも優れている。
前記リン酸塩系ガラスは、Pr11を0.2〜2.0モル%含むことが好ましい。
The phosphate-based glass of the present invention contains P 2 O 5 , CeO 2 , B 2 O 3 , Pr 6 O 11 , Al 2 O 3, and BaO in the above composition range. Can be obtained. Therefore, for example, the power consumption of the thermal head can be reduced by forming the glaze layer with the phosphate glass of the present invention. Moreover, since the thermal expansion coefficient is within a predetermined range, it can be made substantially equal to the thermal expansion coefficient of the ceramic substrate. Therefore, when the glaze layer is formed with the phosphate glass of the present invention, peeling from the ceramic substrate hardly occurs. Furthermore, since the glass transition temperature is high, the heat resistance is also excellent.
It is preferable that the phosphate glass contains 0.2 to 2.0 mol% of Pr 6 O 11 .

本発明は、セラミックス基板上に、グレーズ層、発熱抵抗層、および保護層が形成されたサーマルヘッドにおいて、
モル%で、Pを50〜65%、CeOを5〜15%、Bを3〜8%、Alを0〜10%、BaOを0〜9%、およびPr11を含み、CeOに対するPのモル比が4≦P/CeOの関係を満たすリン酸塩系ガラスで前記グレーズ層が形成されることを特徴とする。
This onset Ming, the ceramic substrate, a glaze layer, the heating resistor layer, and the thermal head having a protective layer formed,
In mole% P 2 O 5 50 to 65% of CeO 2 5~15%, B 2 O 3 3-8% the Al 2 O 3 0~10%, 0~9 % of BaO, and It includes Pr 6 O 11, wherein the glaze layer in phosphate type glass molar ratio of P 2 O 5 satisfies 4 ≦ P 2 O 5 / CeO 2 relationship to CeO 2 is formed.

また、前記リン酸塩系ガラスは、Pr11を0.2〜2.0モル%含むことが好ましい。 Further, the phosphate type glass preferably contains Pr 6 O 11 0.2 to 2.0 mol%.

上記組成のリン酸塩系ガラスは熱伝導率が低いので、前記ガラスでグレーズ層を形成することにより、サーマルヘッドの消費電力を低減することができる。また、上記組成のリン酸塩系ガラスの熱膨張係数は、アルミナの熱膨張係数とほぼ等しい範囲内にあるため、前記リン酸塩系ガラスでグレーズ層を形成したとき、セラミックス基板との剥離が起こりにくい。さらに、上記組成のリン酸塩系ガラスは、ガラス転移温度が高いので耐熱性にも優れており、前記リン酸塩系ガラスでグレーズ層を形成したときの耐久性が高い。   Since the phosphate glass having the above composition has low thermal conductivity, the power consumption of the thermal head can be reduced by forming a glaze layer with the glass. In addition, since the thermal expansion coefficient of the phosphate glass having the above composition is in a range substantially equal to the thermal expansion coefficient of alumina, when the glaze layer is formed with the phosphate glass, peeling from the ceramic substrate occurs. Hard to happen. Furthermore, since the phosphate glass having the above composition has a high glass transition temperature, it is excellent in heat resistance, and has high durability when a glaze layer is formed from the phosphate glass.

また、前記サーマルヘッドは、前記発熱抵抗層の上に導体層が形成されていることが好ましい。   In the thermal head, a conductor layer is preferably formed on the heating resistor layer.

本発明のリン酸塩系ガラスは、従来に比べて熱伝導率を小さくできる。よって、例えば、本発明のリン酸塩系ガラスを、サーマルヘッドのグレーズ層に使用することで、サーマルヘッドの消費電力を従来より低いものとすることができる。また、ガラス転移温度が高く、耐熱性に優れているので、特に高速サーマルプリンター用のサーマルヘッドに使用することができる。   The phosphate glass of the present invention can have a lower thermal conductivity than the conventional glass. Therefore, for example, by using the phosphate glass of the present invention for the glaze layer of the thermal head, the power consumption of the thermal head can be made lower than before. Moreover, since it has a high glass transition temperature and excellent heat resistance, it can be used particularly for a thermal head for a high-speed thermal printer.

本発明のリン酸塩系ガラスは、熱膨張係数が小さく、アルミナとほぼ同等である。従って、セラミックス基板としてアルミナを用いたとき、リン酸塩系ガラスで形成されたグレーズ層がセラミックス基板から剥離することがない。   The phosphate glass of the present invention has a small coefficient of thermal expansion and is almost equivalent to alumina. Therefore, when alumina is used as the ceramic substrate, the glaze layer formed of phosphate glass does not peel from the ceramic substrate.

サーマルヘッドの断面図Cross section of thermal head

本発明のリン酸塩系ガラスは、リン酸(P)を主成分とし、酸化セリウム(CeO)、酸化ホウ素(B)、および酸化プラセオジム(Pr11)を含む。また他の成分を含むものであってもよい。 The phosphate glass of the present invention contains phosphoric acid (P 2 O 5 ) as a main component and contains cerium oxide (CeO 2 ), boron oxide (B 2 O 3 ), and praseodymium oxide (Pr 6 O 11 ). . Moreover, another component may be included.

本発明のリン酸塩系ガラスは、必須成分としてP、CeO、B、およびPr11を含む。 Phosphate type glass of the present invention, P 2 O 5 as an essential component, CeO 2, B 2 O 3 , and including a Pr 6 O 11.

本発明の実施形態のリン酸塩系ガラスは、Pを主成分(組成比が最も大きい)として50〜65(mol%)含み、CeOを5〜15(mol%)、Bを3〜8(mol%)、Alを0〜10(mol%)、BaOを0〜9(mol%)、およびPr11を含む。そして、CeOに対するPのモル比は4≦P/CeOの関係を満たす。すなわち、本実施形態のリン酸塩系ガラスは、PをCeOの4倍以上多く含むガラスである The phosphate-based glass of the embodiment of the present invention contains 50 to 65 (mol%) of P 2 O 5 as a main component (the largest composition ratio), 5 to 15 (mol%) of CeO 2 , and B 2. 3 to 8 (mol%) of O 3 , 0 to 10 (mol%) of Al 2 O 3 , 0 to 9 (mol%) of BaO, and Pr 6 O 11 are included. The molar ratio of P 2 O 5 with respect to CeO 2 satisfies the 4 ≦ P 2 O 5 / CeO 2 relationship. That is, phosphate type glass of the present embodiment is a glass containing more than 4 times the CeO 2 and P 2 O 5.

本実施形態のリン酸塩系ガラスは、主成分としてPを50〜65(mol%)含む。Pを主成分とするリン酸塩系ガラスは、Pが少ないほど耐水性が高い一方、結晶化が起こりやすくガラスになりにくい。 The phosphate glass of this embodiment contains 50 to 65 (mol%) of P 2 O 5 as a main component. Phosphate glass containing P 2 O 5 as a main component has higher water resistance as the amount of P 2 O 5 is smaller.

が50(mol%)より少ないと、ガラスが結晶化し、ガラス状態が不安定となる。また、Pが65(mol%)より多いと、耐候性が悪化するので好ましくない。 When P 2 O 5 is less than 50 (mol%), the glass is crystallized, the glass state becomes unstable. Further, when the P 2 O 5 is more than 65 (mol%), it has an unwanted because weather resistance is deteriorated.

CeOは、Pの次に組成比の大きい成分であり、リン酸塩系ガラスに5〜15(mol%)含む。CeOが5(mol%)より少ないと、耐候性が悪化し、CeOが15(mol%)より多いと、ガラスが不安定となりガラスの結晶化が起こるため、いずれも好ましくない。 CeO 2 is a component having the next highest composition ratio after P 2 O 5 and is contained in the phosphate glass in an amount of 5 to 15 (mol%). When CeO 2 is less than 5 (mol%), the weather resistance is deteriorated, and when CeO 2 is more than 15 (mol%), the glass becomes unstable and crystallization of the glass occurs.

はリン酸塩系ガラスに3〜8(mol%)含まれる。Bは、リン酸塩系ガラスの結晶化を防止し、ガラスを安定化させる効果がある。Bが3(mol%)より少ないと、リン酸塩系ガラスの結晶化が起こり、Bが8(mol%)より多いと、得られるリン酸塩系ガラスの耐候性が悪くなるのでいずれも好ましくない。 B 2 O 3 is contained in the phosphate glass in an amount of 3 to 8 (mol%). B 2 O 3 has an effect of preventing crystallization of the phosphate glass and stabilizing the glass. When B 2 O 3 is less than 3 (mol%), crystallization of the phosphate glass occurs, and when B 2 O 3 is more than 8 (mol%), the weather resistance of the resulting phosphate glass is low. Neither is preferred because it worsens.

リン酸塩系ガラスはPr11を含むものであれば含有量は特に限定されないが、リン酸塩系ガラスに0.2〜2.0(mol%)含まれることが好ましい。Pは還元されると気体状の金属リン(P)となり蒸発するが、Pr11は、Pの還元を防止する効果を有する。よって、リン酸塩系ガラスがPr11を含むと、上記リンの蒸発防止効果が発現し、耐水性が向上する。 The content of the phosphate glass is not particularly limited as long as it contains Pr 6 O 11 , but it is preferably 0.2 to 2.0 (mol%) in the phosphate glass. When P 2 O 5 is reduced, it becomes gaseous metallic phosphorus (P) and evaporates, but Pr 6 O 11 has an effect of preventing the reduction of P 2 O 5 . Therefore, when the phosphate glass contains Pr 6 O 11 , the phosphorus evaporation preventing effect is exhibited, and the water resistance is improved.

Pr11が0.2(mol%)より少ないと、上記リンの蒸発防止効果が発現せず、耐水性が低い。またPr11が2.0(mol%)より多いと、リン酸塩ガラスの結晶化を促進するため、好ましくない。 When the amount of Pr 6 O 11 is less than 0.2 (mol%), the phosphorus evaporation preventing effect is not exhibited and the water resistance is low. Also the Pr 6 O 11 is more than 2.0 (mol%), to promote the crystallization of phosphate glass, which is not preferable.

本実施形態のリン酸塩系ガラスは、さらにAlおよびBaOを含むことが好ましい。 It is preferable that the phosphate glass of the present embodiment further contains Al 2 O 3 and BaO.

Alはリン酸塩系ガラスに0〜10(mol%)含まれる。また、BaOはリン酸塩系ガラスに0〜9(mol%)含まれる。Alが10(mol%)より多いと、または、BaOが9(mol%)より多いと、ガラスの結晶化を促進するため、いずれも好ましくない。 Al 2 O 3 is contained in the phosphate glass in an amount of 0 to 10 (mol%). BaO is contained in the phosphate glass in an amount of 0 to 9 (mol%). When Al 2 O 3 is more than 10 (mol%) or BaO is more than 9 (mol%), crystallization of glass is promoted, which is not preferable.

本実施形態のリン酸塩系ガラスは、主成分であるP、およびCeO、B、Al、BaO、およびPr11の他に、微量成分として、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化ストロンチウム(SrO)、酸化鉄(Fe)、酸化ランタン(La)、酸化ニオブ(Nb)、酸化タンタル(Ta)、シリカ(SiO)、酸化スズ(SnO)、酸化クロム(Cr)、酸化ナトリウム(NaO)の少なくとも1種を含むものであってよい。これらの酸化物は、ガラスの結晶化の抑制、ガラス転移温度の調整等のために加えられる。 Phosphate type glass of the present implementation embodiment, P 2 O 5 is a main component, and CeO 2, B 2 O 3, Al 2 O 3, BaO, and in addition to the Pr 6 O 11, as a minor component, Titanium oxide (TiO 2 ), zinc oxide (ZnO), strontium oxide (SrO), iron oxide (Fe 2 O 3 ), lanthanum oxide (La 2 O 3 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), silica (SiO 2 ), tin oxide (SnO 2 ), chromium oxide (Cr 2 O 3 ), and sodium oxide (Na 2 O). These oxides are added for suppressing crystallization of glass, adjusting the glass transition temperature, and the like.

本実施形態のリン酸塩系ガラスに含まれる成分は、上記の酸化物に限られず、例えば、酸化ニッケル(NiO)、酸化マグネシウム(MgO)、酸化鉄(II)(FeO)、酸化セリウム(II)(CeO)、酸化ビスマス(Bi)、酸化銅(CuO)、酸化バナジウム(V)、酸化コバルト(CoO)、酸化ジルコニウム(ZrO)、酸化ネオジム(Nd酸化セシウム(CsO)、酸化イットリウム(Y)、酸化マンガン(MnO)、酸化リチウム(LiO)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)などの酸化物、あるいはフッ化カルシウム(CaF)を含むものであってもよい。
上記したリン酸塩系ガラスを構成する全成分を合計すると100(mol%)となる。
The components contained in the phosphate-based glass of the present embodiment are not limited to the above oxides. For example, nickel oxide (NiO), magnesium oxide (MgO), iron (II) oxide (FeO), cerium oxide (II) ) (CeO), bismuth oxide (Bi 2 O 3 ), copper oxide (CuO), vanadium oxide (V 2 O 5 ), cobalt oxide (CoO), zirconium oxide (ZrO 2 ), neodymium oxide (Nd 2 O 3 ) , cesium oxide (Cs 2 O), yttrium oxide (Y 2 O 3), manganese oxide (MnO), lithium oxide (Li 2 O), calcium oxide (CaO), oxides such as magnesium oxide (MgO), or fluoride It may contain calcium fluoride (CaF 2 ).
The total of all the components constituting the phosphate glass described above is 100 (mol%).

以上述べたような成分を所定量秤量し混合した後、加熱することによりガラスを作成する。例えば、リン酸として、脱水したオルトリン酸を用い、生成したリン酸塩系ガラスにおける含有量が所定量のmol%となるように秤量し、同様に秤量したCeO、B、Pr11およびその他の成分を、乳鉢を用いて粉砕しながら十分に均一になるように混合する。均一に混合した粉状のガラス原料成分を、例えば白金製のるつぼに入れ、電気炉を用いて大気中で約1000〜1500℃の温度で所定時間加熱して溶融する。その際、昇温速度は特に制限はなく、例えば10℃/分の昇温速度で急速に加熱してもよい。 A predetermined amount of the components described above are weighed and mixed, and then heated to produce glass. For example, dehydrated orthophosphoric acid is used as phosphoric acid and weighed so that the content in the produced phosphate glass is a predetermined amount of mol%, and similarly weighed CeO 2 , B 2 O 3 , Pr 6. O 11 and other ingredients are mixed so as to be sufficiently uniform while being pulverized using a mortar. The uniformly mixed powdery glass raw material component is placed in, for example, a platinum crucible and melted by heating at a temperature of about 1000 to 1500 ° C. for a predetermined time in the atmosphere using an electric furnace. In that case, there is no restriction | limiting in particular in the temperature increase rate, For example, you may heat rapidly with the temperature increase rate of 10 degree-C / min.

その後、板状または棒状に成形しながら冷却し、さらに板状または棒状のリン酸塩系ガラスを粉砕して粉末状のリン酸塩系ガラスとする。なお、ガラス原料を混合する前に、粉状のガラス原料成分を篩にかけて粒子径を一定の大きさ以下に揃えておくと、ガラスがより均一となり好ましい。   Then, it cools, shape | molding in plate shape or rod shape, Furthermore, plate-shaped or rod-shaped phosphate glass is grind | pulverized, and it is set as powdered phosphate glass. Before mixing the glass raw materials, it is preferable that the powdery glass raw material components are sieved so that the particle diameters are equal to or less than a certain size because the glass becomes more uniform.

本発明で得られるリン酸塩系ガラスはいずれも透明であるが、添加された微量成分により、黄色、黄緑色、緑色、褐色、あるいは黒色などの色を呈する。   The phosphate glasses obtained in the present invention are all transparent, but exhibit a color such as yellow, yellow-green, green, brown, or black depending on the added trace components.

なお、本発明のリン酸塩系ガラスは、安定したガラス状態を保つので、例えばガラス状態のガラスを再び加熱し冷却しても、結晶化しないで再度ガラス状態に戻すことが可能である。   In addition, since the phosphate glass of the present invention maintains a stable glass state, even if the glass in the glass state is heated and cooled again, it can be returned to the glass state again without crystallization.

前記組成によって得られる本発明のリン酸塩系ガラスは、熱伝導率が0.57〜0.85(W/m・K)の間とすることができる。従来のケイ酸塩系ガラスは熱伝導率が高く、低いものでも1W/(m・K)のものしか得られなかった。そのため、ケイ酸塩系ガラスをグレーズ層に用いた場合、加熱に多くの電力を必要とし、電力効率が低いことが問題であった。   The phosphate glass of the present invention obtained by the composition can have a thermal conductivity of 0.57 to 0.85 (W / m · K). Conventional silicate glass has a high thermal conductivity, and even if it has a low glass, only 1 W / (m · K) can be obtained. Therefore, when silicate glass is used for the glaze layer, a large amount of electric power is required for heating, and power efficiency is low.

本発明のリン酸塩系ガラスは、従来のケイ酸塩系ガラスに比べて、熱伝導率が小さい。特に熱伝導率が小さいものは、従来のケイ酸塩系ガラスの約1/2であり、熱伝導率が大きいものでも、従来のケイ酸塩系ガラスに比べて、約20%減少している。このように熱伝導率が小さいので、本発明のリン酸塩系ガラスをサーマルヘッドのグレーズ層に用いたとき、電気抵抗層で発生した熱をセラミックス基板に伝えにくいので、消費電力を低く抑えることができる。   The phosphate glass of the present invention has a lower thermal conductivity than conventional silicate glass. In particular, the one with low thermal conductivity is about 1/2 of the conventional silicate glass, and even the one with high thermal conductivity is reduced by about 20% compared to the conventional silicate glass. . Because of this low thermal conductivity, when the phosphate glass of the present invention is used for the glaze layer of the thermal head, it is difficult to transfer the heat generated in the electrical resistance layer to the ceramic substrate, thus reducing the power consumption. Can do.

さらに、熱膨張係数(α)が66〜76(×10−7/℃)の範囲内にできる。アルミナの熱膨張係数(α)は66〜76(×10−7/℃)の範囲内であるので、セラミックス基板をアルミナとしたときに、セラミックス基板とグレーズ層の熱膨張係数(α)をほぼ同じとすることができる。これにより、サーマルヘッド使用時に、電気抵抗層で発生した熱がグレーズ層およびセラミックス基板に伝わっても、グレーズ層とセラミックス基板の間で熱膨張による剥離が起こりにくく、耐久性に優れる。 Furthermore, the thermal expansion coefficient (α) can be in the range of 66 to 76 (× 10 −7 / ° C.). Since the thermal expansion coefficient (α) of alumina is in the range of 66 to 76 (× 10 −7 / ° C.), when the ceramic substrate is alumina, the thermal expansion coefficient (α) of the ceramic substrate and the glaze layer is almost equal. The same can be done. Thereby, even when heat generated in the electric resistance layer is transmitted to the glaze layer and the ceramic substrate when the thermal head is used, peeling due to thermal expansion hardly occurs between the glaze layer and the ceramic substrate, and the durability is excellent.

本発明のリン酸塩系ガラスは、ガラス転移温度(Tg)を530〜680℃の範囲内にできる。このように耐熱性が高いので、サーマルヘッドのグレーズ層に用いても、加熱による変形および変質を起こすことがない。サーマルプリンターの高速化に伴い、サーマルヘッドに加わる熱も500℃まで達することがあるが、耐熱性の高い本発明のリン酸塩系ガラスは、前記グレーズ層に好適に使用することができる。   The phosphate glass of the present invention can have a glass transition temperature (Tg) in the range of 530 to 680 ° C. Thus, since heat resistance is high, even if it uses for the glaze layer of a thermal head, a deformation | transformation and a quality change by heating do not raise | generate. As the thermal printer increases in speed, the heat applied to the thermal head may reach 500 ° C., but the phosphate glass of the present invention having high heat resistance can be suitably used for the glaze layer.

本発明で得られたリン酸塩系ガラスを用いて、以下の製造方法により図1に示すサーマルヘッド1を製造する。なお図1に示すサーマルヘッドは一例であり、本実施形態で好適に用いられるサーマルヘッドの形状等は図1に示すものに限られない。   A thermal head 1 shown in FIG. 1 is manufactured by the following manufacturing method using the phosphate glass obtained in the present invention. The thermal head shown in FIG. 1 is an example, and the shape of the thermal head suitably used in the present embodiment is not limited to that shown in FIG.

上記により、ガラス原料となる成分を混合、加熱して作製されたガラスを粉砕し、粒径が5μm以下の粉末とする。粉末にバインダー(例えば、ブチルメタクリレート)、溶剤(例えば、トルエン)および可塑剤(例えば、ジブチルフタレート)を加えてペースト状とし、市販のサーマルヘッド用アルミナ製セラミックス基板11上に塗布する。   By the above, the glass produced by mixing and heating the components used as the glass raw material is pulverized to obtain a powder having a particle size of 5 μm or less. A binder (for example, butyl methacrylate), a solvent (for example, toluene) and a plasticizer (for example, dibutyl phthalate) are added to the powder to form a paste, which is applied onto a commercially available alumina ceramic substrate 11 for a thermal head.

次に、ガラス粉末を塗布したセラミックス基板を加熱炉に入れ、空気中1000℃で、10〜60分間焼成し、グレーズ層12を形成する。加熱炉の昇温速度は当初は20℃/分程度の急加熱でよいが、焼成温度を制御するため、800℃付近から5℃/分程度に落とすことが好ましい。焼成後のガラス(グレーズ層12)の膜厚は50〜250μmである。   Next, the ceramic substrate coated with the glass powder is placed in a heating furnace and fired at 1000 ° C. in air for 10 to 60 minutes to form the glaze layer 12. The heating rate of the heating furnace may be rapid heating of about 20 ° C./min at the beginning, but it is preferable to drop from around 800 ° C. to about 5 ° C./min in order to control the firing temperature. The film thickness of the fired glass (glaze layer 12) is 50 to 250 μm.

上記により形成されたグレーズ層12上に、発熱抵抗体層13、導体層14および保護層15を形成する。発熱抵抗体層13は、例えば、Ta−SiO、またはTaNを、導体層14は、例えば、Alを、さらに保護層15は、例えば、SIALON(Si,Al,OおよびNからなる化合物)を、それぞれスパッタ等により製膜して形成される。 On the glaze layer 12 formed as described above, a heating resistor layer 13, a conductor layer 14, and a protective layer 15 are formed. The heating resistor layer 13 is made of, for example, Ta—SiO 2 or Ta 2 N, the conductor layer 14 is made of, for example, Al, and the protective layer 15 is made of, for example, SIALON (compound composed of Si, Al, O and N). ) Are formed by sputtering or the like.

上記により製造されたサーマルヘッドは、グレーズ層12を本発明のリン酸塩系ガラスで形成しているため、グレーズ層12の熱伝導率が低く、消費電力が小さい。グレーズ層12のガラス転移温度が高いので、サーマルヘッド1の耐熱性が高い。また、グレーズ層12の熱膨張係数がセラミックス基板11であるアルミナの熱膨張係数と等しいのでグレーズ層12とセラミックス基板11の間の剥離が起こりにくいため、耐久性に優れる。 Since the thermal head 1 manufactured as described above has the glaze layer 12 formed of the phosphate glass of the present invention, the thermal conductivity of the glaze layer 12 is low and the power consumption is small. Since the glass transition temperature of the glaze layer 12 is high, the heat resistance of the thermal head 1 is high. In addition, since the thermal expansion coefficient of the glaze layer 12 is equal to the thermal expansion coefficient of alumina, which is the ceramic substrate 11, peeling between the glaze layer 12 and the ceramic substrate 11 hardly occurs, so that the durability is excellent.

表1に示す組成比(mol%)を有するリン酸塩系ガラスを作製した。また、各リン酸塩系ガラスの熱伝導率、熱膨張係数(α)、ガラス転移温度(Tg)を測定し、同じ表中に示す。   Phosphate glass having the composition ratio (mol%) shown in Table 1 was produced. In addition, the thermal conductivity, thermal expansion coefficient (α), and glass transition temperature (Tg) of each phosphate glass were measured and shown in the same table.

に示す実施例1ないし8の組成成分を有するリン酸塩系ガラスは、いずれも、結晶化することがなく、良好なリン酸塩系ガラスを作製できた。実施例1ないし8のリン酸塩系ガラスは、Pを50〜65(mol%)、CeOを5〜15(mol%)、Bを3〜8(mol%)、Alを0〜10(mol%)、BaOを0〜9(mol%)およびPr11を含むリン酸塩系ガラスであって、CeOに対するPのモル比が4≦P/CeOの関係を満たす。 All of the phosphate glasses having the composition components of Examples 1 to 8 shown in Table 1 were not crystallized, and good phosphate glasses could be produced. Phosphate type glass of Examples 1 to 8, P 2 O 5 to 50~65 (mol%), the CeO 2 5~15 (mol%), the B 2 O 3 3~8 (mol% ), A phosphate-based glass containing Al 2 O 3 of 0 to 10 (mol%), BaO of 0 to 9 (mol%) and Pr 6 O 11 , wherein the molar ratio of P 2 O 5 to CeO 2 is 4 ≦ P 2 O 5 / CeO 2 is satisfied.

実施例1ないし8のリン酸塩系ガラスは、熱伝導率が0.61〜0.85(W/(m・K))の範囲内であり、熱膨張係数が66〜75(×10−7/℃)の範囲内である。よって、実施例1ないし8のリン酸塩系ガラスでグレーズ層を形成したサーマルヘッドは消費電力が低く、電力効率の向上が図れる。また、グレーズ層の熱膨張係数がセラミックス基板と同じであるので、グレーズ層とセラミックス基板の剥離が起こりにくい。さらに、ガラス転移温度が530〜630℃であるので、耐熱性に優れたサーマルヘッドを得ることができる。 The phosphate glasses of Examples 1 to 8 have a thermal conductivity in the range of 0.61 to 0.85 (W / (m · K)) and a thermal expansion coefficient of 66 to 75 (× 10 − 7 / ° C.). Therefore, the thermal head in which the glaze layer is formed of the phosphate glass of Examples 1 to 8 has low power consumption and can improve power efficiency. Further, since the thermal expansion coefficient of the glaze layer is the same as that of the ceramic substrate, the glaze layer and the ceramic substrate are unlikely to peel off. Furthermore, since the glass transition temperature is 530 to 630 ° C., a thermal head excellent in heat resistance can be obtained.

比較例として、表2に示す組成比(mol%)を有するリン酸塩系ガラスを作製した。また、各リン酸塩系ガラスの熱伝導率、熱膨張係数(α)、ガラス転移温度(Tg)を測定し、同じ表中に示す。 As a comparative example, a phosphate glass having a composition ratio (mol%) shown in Table 2 was produced. In addition, the thermal conductivity, thermal expansion coefficient (α), and glass transition temperature (Tg) of each phosphate glass were measured and shown in the same table.

に示す比較例1ないし4の組成成分を有するリン酸塩系ガラスは、CeOに対するPのモル比が4≦P/CeOの関係を満たすが、各組成成分が、「Pが50〜65(mol%)、CeOが5〜15(mol%)、Bが3〜8(mol%)、Alが0〜10(mol%)、BaOが0〜9(mol%)およびPr11を含む」本発明の組成範囲外の組成を有するリン酸塩系ガラスである。すなわち、上記範囲に比べて、Pが少ない(比較例)、BaOが多い(比較例2,3)、Alが多い(比較例)。 It Comparative Examples 1 are shown in Table 2 a phosphate glass having a composition component of 4 is the molar ratio of P 2 O 5 with respect to CeO 2 satisfies 4 ≦ P 2 O 5 / CeO 2 relationships, each composition component but "P 2 O 5 is 50~65 (mol%), CeO 2 is 5~15 (mol%), B 2 O 3 is 3~8 (mol%), Al 2 O 3 is 0 (mol %), BaO contains 0 to 9 (mol%) and Pr 6 O 11 ”. This is a phosphate glass having a composition outside the composition range of the present invention. That is, compared to the above range, P 2 O 5 is small (Comparative Example 1), BaO is large (Comparative Example 2,3), Al 2 O 3 is large (Comparative Example 4).

比較例1ないし4は、いずれも結晶化してガラスにならなかった。また、比較例1,4は、熱膨張係数(α)が小さく、比較例2,3は、熱膨張係数(α)が大きかった。 In Comparative Examples 1 to 4 , none of them crystallized into glass. Further, Comparative Examples 1 and 4 had a small coefficient of thermal expansion (α), and Comparative Examples 2 and 3 had a large coefficient of thermal expansion (α).

表2に示すように、比較例1,3,4は、いずれも熱伝導率が小さく、またガラス転移温度も高く、耐熱性も有している。しかしながら、熱膨張係数(α)がアルミナの熱膨張係数より小さいか、または大きいため、サーマルヘッドのグレーズ層に用いるには好ましくない。さらに結晶化してガラスにならないため、サーマルヘッドのグレーズ層に用いることができないものであった。 As shown in Table 2, Comparative Examples 1 , 3 , and 4 all have low thermal conductivity, high glass transition temperature, and heat resistance. However, since the thermal expansion coefficient (α) is smaller or larger than that of alumina, it is not preferable for use in the glaze layer of the thermal head. Further, since it does not crystallize into glass, it cannot be used for the glaze layer of the thermal head.

1 サーマルヘッド
11 セラミックス基板
12 グレーズ層
13 発熱抵抗体層
14 導体層
15 保護層
DESCRIPTION OF SYMBOLS 1 Thermal head 11 Ceramic substrate 12 Glaze layer 13 Heating resistor layer 14 Conductor layer 15 Protective layer

Claims (9)

モル%で、Pを50〜68%、CeOを15〜39%、Bを2〜7%、Pr11を0.2〜0.5%含み、CeOに対するPのモル比が1≦P/CeO<4の関係を満たすことを特徴とするリン酸塩系ガラス。 In mole% P 2 O 5 and 50 to 68 percent, the CeO 2 15-39% B 2 O 3 2-7% the Pr 6 O 11 wherein 0.2 to 0.5%, for CeO 2 P 2 O 5 molar ratio of 1 ≦ P 2 O 5 / CeO 2 < phosphate type glass and satisfies the 4 relationships. 添加成分として、AlおよびBaOの少なくとも一方を含む請求項1記載のリン酸塩系ガラス。 The phosphate glass according to claim 1, comprising at least one of Al 2 O 3 and BaO as an additive component. モル%で、Pを50〜65%、CeOを5〜15%、Bを3〜8%、Alを0〜10%、BaOを0〜9%およびPr11を含み、CeOに対するPのモル比が4≦P/CeOの関係を満たすことを特徴とするリン酸塩系ガラス。 In mole% P 2 O 5 50 to 65% of CeO 2 5~15%, B 2 O 3 3-8% the Al 2 O 3 0~10%, 0~9 % of BaO and Pr 6 O 11 wherein the molar ratio of P 2 O 5 with respect to CeO 2 is 4 ≦ P 2 O 5 / phosphate type glass and satisfies the CeO 2 relationship. Pr11を0.2〜2.0モル%含む請求項3記載のリン酸塩系ガラス。 Pr 6 O 11 0.2 to 2.0 mol% including claim 3 phosphate type glass according. セラミックス基板上に、グレーズ層、発熱抵抗層、および保護層が形成されたサーマルヘッドにおいて、
モル%で、Pを50〜68%、CeOを15〜39%、Bを2〜7%、Pr11を0.2〜0.5%含み、CeOに対するPのモル比が1≦P/CeO<4の関係を満たすリン酸塩系ガラスで前記グレーズ層が形成されること特徴とするサーマルヘッド。
In a thermal head in which a glaze layer, a heating resistance layer, and a protective layer are formed on a ceramic substrate,
In mole% P 2 O 5 and 50 to 68 percent, the CeO 2 15-39% B 2 O 3 2-7% the Pr 6 O 11 wherein 0.2 to 0.5%, for CeO 2 P molar ratio of 2 O 5 is 1 ≦ P 2 O 5 / CeO 2 < a thermal head, wherein said glaze layer is formed by a phosphate glass which satisfies the 4 relationships.
前記リン酸塩系ガラスが、添加成分として、AlおよびBaOの少なくとも一方を含む請求項5記載のサーマルヘッド。 The thermal head according to claim 5, wherein the phosphate glass includes at least one of Al 2 O 3 and BaO as an additive component. セラミックス基板上に、グレーズ層、発熱抵抗層、および保護層が形成されたサーマルヘッドにおいて、
モル%で、Pを50〜65%、CeOを5〜15%、Bを3〜8%、Alを0〜10%、BaOを0〜9%、およびPr11を含み、CeOに対するPのモル比が4≦P/CeOの関係を満たすリン酸塩系ガラスで前記グレーズ層が形成されることを特徴とするサーマルヘッド。
In a thermal head in which a glaze layer, a heating resistance layer, and a protective layer are formed on a ceramic substrate,
In mole% P 2 O 5 50 to 65% of CeO 2 5~15%, B 2 O 3 3-8% the Al 2 O 3 0~10%, 0~9 % of BaO, and It includes Pr 6 O 11, thermal, wherein the glaze layer in a phosphate glass molar ratio of P 2 O 5 satisfies 4 ≦ P 2 O 5 / CeO 2 relationship to CeO 2 is formed head.
前記リン酸塩系ガラスは、Pr11を0.2〜2.0モル%含む請求項7記載のサーマルヘッド。 The thermal head according to claim 7, wherein the phosphate glass contains 0.2 to 2.0 mol% of Pr 6 O 11 . 前記発熱抵抗層の上に、導体層が形成された請求項6ないし8のいずれかに記載のサーマルヘッド。   The thermal head according to claim 6, wherein a conductor layer is formed on the heating resistance layer.
JP2012230681A 2007-03-09 2012-10-18 Phosphate glass and thermal head using phosphate glass Active JP5587379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230681A JP5587379B2 (en) 2007-03-09 2012-10-18 Phosphate glass and thermal head using phosphate glass

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007059851 2007-03-09
JP2007059851 2007-03-09
JP2012230681A JP5587379B2 (en) 2007-03-09 2012-10-18 Phosphate glass and thermal head using phosphate glass

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009503943A Division JP5140068B2 (en) 2007-03-09 2008-02-20 Phosphate glass and thermal head using phosphate glass

Publications (2)

Publication Number Publication Date
JP2013049623A true JP2013049623A (en) 2013-03-14
JP5587379B2 JP5587379B2 (en) 2014-09-10

Family

ID=39759316

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009503943A Active JP5140068B2 (en) 2007-03-09 2008-02-20 Phosphate glass and thermal head using phosphate glass
JP2012230681A Active JP5587379B2 (en) 2007-03-09 2012-10-18 Phosphate glass and thermal head using phosphate glass

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009503943A Active JP5140068B2 (en) 2007-03-09 2008-02-20 Phosphate glass and thermal head using phosphate glass

Country Status (2)

Country Link
JP (2) JP5140068B2 (en)
WO (1) WO2008111373A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101784495B (en) * 2007-10-31 2014-09-03 阿尔卑斯电气株式会社 Low-heat diffusible phosphate glass and thermal head using the low-heat diffusible phosphate glass
JP5841491B2 (en) * 2012-05-21 2016-01-13 アルプス電気株式会社 Phosphate glass and method for producing the same
CN110970146A (en) * 2019-11-27 2020-04-07 中国建筑材料科学研究总院有限公司 Borosilicate glass ceramic curing substrate and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487531A (en) * 1987-06-18 1989-03-31 Asahi Glass Co Ltd Glass glaze
JPH01305831A (en) * 1988-06-02 1989-12-11 Hitachi Chem Co Ltd Amorphous glass for coating alumina substrate and glazed substrate using the same
JP2007008777A (en) * 2005-07-01 2007-01-18 Alps Electric Co Ltd Phosphate-based glass, joining material using the same, magnetic head using the joining material, and plasma display panel
JP2008001585A (en) * 2006-05-22 2008-01-10 Alps Electric Co Ltd Phosphate based glass and electronic component using phosphate based glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487531A (en) * 1987-06-18 1989-03-31 Asahi Glass Co Ltd Glass glaze
JPH01305831A (en) * 1988-06-02 1989-12-11 Hitachi Chem Co Ltd Amorphous glass for coating alumina substrate and glazed substrate using the same
JP2007008777A (en) * 2005-07-01 2007-01-18 Alps Electric Co Ltd Phosphate-based glass, joining material using the same, magnetic head using the joining material, and plasma display panel
JP2008001585A (en) * 2006-05-22 2008-01-10 Alps Electric Co Ltd Phosphate based glass and electronic component using phosphate based glass

Also Published As

Publication number Publication date
WO2008111373A1 (en) 2008-09-18
JP5587379B2 (en) 2014-09-10
JP5140068B2 (en) 2013-02-06
JPWO2008111373A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5033339B2 (en) Glass composition
JP2006056769A (en) Glass composition for sealing, glass frit for sealing, and glass sheet for sealing
JPWO2004031088A1 (en) Glass frit for sealing
JP5235195B2 (en) Low thermal diffusion phosphate glass and thermal head using the low thermal diffusion phosphate glass
JP5587379B2 (en) Phosphate glass and thermal head using phosphate glass
US20220051834A1 (en) Method for producing a layer structure using a paste on the basis ofa resistive alloy
US10669188B2 (en) Seal compositions, methods, and structures for planar solid oxide fuel cells
JPS62137897A (en) Insulating layer compound
JP2008303077A (en) Insulating protective coating material
JP2007161524A (en) Bismuth-based glass composition
JPWO2009119433A1 (en) Lead-free glass and lead-free glass ceramic composition
JP4229045B2 (en) Electronic circuit board and lead-free glass for producing electronic circuit board
CN110395905B (en) Composition for manufacturing glass, sealing material and preparation method thereof, glass and manufacturing method thereof
JP3610100B2 (en) Heating element composition
JP2016079084A (en) Ceramic color composition, glass sheet with ceramic color and manufacturing method therefor
JP2001158641A (en) Glass and glass ceramic composition
JP7247825B2 (en) Glass composition, composite powder material, composite powder material paste, printer head for laser printer, and thermal printer head
JP2002080240A (en) Low dielectric constant alkali-free glass
JPH08138835A (en) Heater element composition
JPS63201036A (en) Composition for substrate
JP3153690B2 (en) Glazed ceramic substrate
JPH0781972A (en) Glaze composition
WO2021153388A1 (en) Glass composition and composite powder material
JP2016155730A (en) Heat insulation material
WO2014017610A1 (en) Glass for coating metal substrate and metal substrate having glass layer attached thereto

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140723

R150 Certificate of patent or registration of utility model

Ref document number: 5587379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350