WO2014017610A1 - Glass for coating metal substrate and metal substrate having glass layer attached thereto - Google Patents

Glass for coating metal substrate and metal substrate having glass layer attached thereto Download PDF

Info

Publication number
WO2014017610A1
WO2014017610A1 PCT/JP2013/070237 JP2013070237W WO2014017610A1 WO 2014017610 A1 WO2014017610 A1 WO 2014017610A1 JP 2013070237 W JP2013070237 W JP 2013070237W WO 2014017610 A1 WO2014017610 A1 WO 2014017610A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
metal substrate
glass layer
layer
coating
Prior art date
Application number
PCT/JP2013/070237
Other languages
French (fr)
Japanese (ja)
Inventor
陽平 柏田
藤峰 哲
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2014527015A priority Critical patent/JPWO2014017610A1/en
Publication of WO2014017610A1 publication Critical patent/WO2014017610A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/08Glass having a rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2207/00Compositions specially applicable for the manufacture of vitreous enamels
    • C03C2207/04Compositions specially applicable for the manufacture of vitreous enamels for steel

Definitions

  • the present invention relates to a glass for coating a metal substrate and a metal substrate with a glass layer, and particularly to a glass for insulatingly coating the surface of a metal substrate used for an electronic component and a metal substrate with a glass layer formed using the glass.
  • an electronic film is formed on a metal substrate with an insulating film formed on the metal substrate, depending on the processing conditions at the time of manufacture, the usage environment such as high temperature use, and the application. Parts may be used.
  • the glass layer formed on the metal substrate is usually equipped with various elements on the glass layer and provided with a circuit, so that high flatness is required on the surface and the entire substrate with the glass layer is used. There is a demand for no warpage.
  • a method in which a glass paste layer containing glass and a binder component is formed on a metal substrate and fired is generally used.
  • the thermal expansion coefficients of the metal and the glass are greatly different, warping and cracking occur due to stress strain.
  • the laminated structure of the metal substrate and the glass layer is sequentially formed from the lower layer, so that the lower layer portion is repeatedly exposed to the firing temperature.
  • the problem of warping and cracking is further exacerbated, and the reliability of the electronic component is impaired.
  • the heat resistance for example, when a specific semiconductor layer is formed on the glass layer of the metal substrate with a glass layer as in the solar cell described in Patent Document 1, the heat resistance is 500 ° C. or more. Sometimes it is required.
  • Patent Document 1 a metal substrate having a glass layer that can obtain a high insulation resistance even after a heat treatment of 500 ° C. or more to form a specific semiconductor layer, and further, a thermal expansion coefficient is adjusted to configure the glass layer
  • the composition of the finished glass is described.
  • the glass described in Patent Document 1 is easily devitrified (crystallized), it is difficult to obtain a glass layer having a flat surface, and it is difficult to form a thin line pattern on the glass layer.
  • the present invention has a high heat resistance, crystallization is suppressed during the formation of the glass layer, suppresses the occurrence of warpage of the metal substrate, and can impart high flatness to the surface of the obtained glass layer. It aims at providing glass for substrate covering. It is another object of the present invention to provide a metal substrate with a glass layer that includes a glass layer having high heat resistance and surface flatness and has almost no warpage as the entire substrate.
  • the present invention is expressed in terms of mass percentage on the basis of oxide, and SiO 2 is 15 to 60%, B 2 O 3 is 0 to 35%, R 2 O (R is at least one selected from the group consisting of Li, Na and K) 0-15%, R′O (R ′ is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) 25-55%, and Al 2 O 3 0.1-7. %, And a glass for coating a metal substrate satisfying (ZnO + MgO + CaO) / (SrO + BaO) ⁇ 0.3.
  • the glass for coating a metal substrate of the above composition SiO 2 is 30 to 50%, B 2 O 3 is 10 to 25%, R 2 O (R is O A glass containing 0 to 13% of at least one selected from the group consisting of Li, Na and K is preferred.
  • the metal substrate covering glass of the present invention the ratio of content of R 2 O / (SiO 2 + B 2 O 3) is preferably 0.3 or less.
  • the glass for coating a metal substrate of the present invention has a glass transition point of 520 to 670 ° C., a glass softening point of 650 to 800 ° C., and an average thermal expansion coefficient ⁇ at 50 to 350 ° C. of 80 ⁇ 10 ⁇ 7. It is preferably ⁇ 110 ⁇ 10 ⁇ 7 / ° C.
  • the present invention also provides a metal substrate with a glass layer having a metal substrate and a glass layer formed on at least a part of the surface of the metal substrate using the glass for covering a metal substrate of the present invention.
  • the surface roughness of the glass layer is preferably 0.10 ⁇ m or less, and the difference in average thermal expansion coefficient ⁇ between the metal and the glass at 50 to 350 ° C. is 30. It is preferable that the temperature is 10 ⁇ 7 / ° C. or less.
  • the glass for coating a metal substrate of the present invention has high heat resistance, is an amorphous glass, and hardly crystallizes when a glass layer is formed on the metal substrate.
  • the glass for coating a metal substrate of the present invention when the glass layer is formed on the metal substrate, the metal substrate is hardly warped, and the surface of the obtained glass layer has high flatness. Have. Therefore, a delicate electrode pattern can be formed on the surface of the glass layer on the metal substrate.
  • the metal substrate with a glass layer of the present invention can be provided which has a glass layer having high heat resistance and surface flatness and hardly warps as a whole substrate.
  • the composition of the glass for coating a metal substrate of the present invention is expressed in terms of mass percentage on the basis of oxide, and SiO 2 is 15 to 60%, B 2 O 3 is 0 to 35%, R 2 O (R is Li, Na and K At least one selected from the group consisting of: 0 to 15% in the present specification, and R′O (R ′ is selected from the group consisting of Mg, Ca, Sr, Ba and Zn). In the present specification, the same shall apply hereinafter) 25 to 55%, Al 2 O 3 0.1 to 7%, and (ZnO + MgO + CaO) / (SrO + BaO) ⁇ 0.3. Satisfied.
  • the glass of the present invention is for forming a glass layer provided to cover at least a part of the surface of a metal substrate.
  • the glass of this invention has sufficient heat resistance, about the thermal expansion coefficient, the thermal expansion coefficient of the metal (It is as mentioning later about a specific metal.) Which comprises a metal substrate.
  • the glass of the present invention is an amorphous glass, and has good meltability of raw materials in the melting step at the time of glass production, and is hardly crystallized when a glass layer is formed on a metal substrate.
  • the glass of the present invention has a glass transition point (hereinafter referred to as “Tg”) of 520 ° C. or higher and a glass softening point (hereinafter referred to as “Ts”) of 650 ° C. or higher in terms of heat resistance. Preferably there is. Furthermore, from the viewpoint of the heat resistant temperature of the metal substrate, Tg is preferably 670 ° C. or less, and Ts is preferably 800 ° C. or less. Further, regarding the thermal expansion coefficient of the glass of the present invention, the average thermal expansion coefficient ⁇ at 50 to 350 ° C. is 80 ⁇ 10 ⁇ 7 to 110 ⁇ in consideration of suppressing the induction of warpage of the metal substrate as much as possible.
  • Tg is a temperature at which the glass structure changes, and is a temperature at which the viscosity becomes 10 13.3 (dPa ⁇ s).
  • Tg and Ts can be measured by a differential thermal analysis (DTA) apparatus.
  • DTA differential thermal analysis
  • the thermal expansion coefficient means an average thermal expansion coefficient at 50 to 350 ° C.
  • SiO 2 is a component that stabilizes the glass and is an essential component.
  • Ts becomes too low, and it becomes difficult to sufficiently increase the heat resistant temperature of the glass layer in the obtained metal substrate with a glass layer. If the heat resistance temperature of the glass layer is not at a sufficiently high level, it is difficult to form an electric circuit or the like on the glass layer. If the SiO 2 content exceeds 60%, Ts becomes too high.
  • the firing temperature at the time of forming the glass layer set to be equal to or higher than Ts may exceed the heat resistance temperature of the metal substrate, and the metal substrate may be deformed.
  • the content of SiO 2 is particularly preferably 30 to 50% in the above range.
  • the component represented by R′O that is, at least one selected from the group consisting of ZnO, MgO, CaO, SrO, and BaO is an essential component as a component for adjusting the thermal expansion coefficient. If the total content of R′O is less than 25%, the thermal expansion coefficient is lowered and warpage is induced in the metal substrate with a glass layer. If the total content of R'O exceeds 55%, the glass becomes unstable and partially crystallizes and devitrifies.
  • the content ratio of (ZnO + MgO + CaO) / (SrO + BaO) is preferably 0.3 or less. When this ratio exceeds 0.3, the thermal expansion coefficient is lowered. ZnO is preferably 0 to 3%. If ZnO exceeds 3%, the thermal expansion coefficient tends to decrease, and it becomes difficult to adjust the thermal expansion coefficient to a desired range as a whole R′O.
  • B 2 O 3 is a component that stabilizes the glass, and is an optional component that is preferably contained.
  • the content of B 2 O 3 is preferably 10 to 25%.
  • the alkali metal oxide represented by R 2 O is a component having a function of facilitating vitrification, a function of decreasing Ts, a function of increasing the thermal expansion coefficient, and the like, and is an optional component that is preferably contained. If the total content of R 2 O exceeds 15%, Ts becomes too low, and a problem occurs when Ts is low as described above.
  • the total content of R 2 O is preferably 13% or less.
  • the ratio of the content of R 2 O / (SiO 2 + B 2 O 3 ) is preferably 0.3 or less. This is because if R 2 O / (SiO 2 + B 2 O 3 ) exceeds 0.3, Ts tends to be lowered, and the problem that occurs when Ts is low as described above is likely to be induced.
  • R 2 O is the total content of R 2 O.
  • Al 2 O 3 is a component that lowers the coefficient of thermal expansion and increases the stability and chemical durability of glass, and is essential.
  • the content of Al 2 O 3 exceeds 7%, the viscosity of the glass increases, and the problem that Al 2 O 3 remains as an unmelted material in the glass is induced. If it is less than 0.1%, the glass becomes unstable and partially devitrified.
  • the glass of the present invention basically preferably contains the above components, but can contain other components other than the above components as long as the effects of the present invention are not impaired.
  • the total content of the other components is preferably 10% or less.
  • TiO 2 and ZrO 2 are components that contribute to glass stabilization and are preferably used.
  • the glass of the present invention contains substantially no lead compound such as PbO. This reduces the load on the environment.
  • the glass which does not contain a lead compound substantially refers to the glass whose content of lead compounds, such as PbO in a glass composition, is 1000 ppm (mass parts per million display) or less.
  • SiO 2 is 30 to 50%
  • B 2 O 3 is 10 to 25%
  • R 2 O is 0 to 13% in terms of mole percentage based on oxide.
  • a glass containing 25 to 55% of R′O, 0.1 to 7% of Al 2 O 3 and satisfying (ZnO + MgO + CaO) / (SrO + BaO) ⁇ 0.3 is particularly preferable.
  • the above-mentioned preferable characteristics specifically, amorphous
  • Tg is 520 to 670 ° C.
  • Ts is 650 to 800 ° C.
  • the thermal expansion coefficient is 80 ⁇ .
  • a characteristic of 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C. can be achieved.
  • the glass of the present invention can be produced by an ordinary glass production method, for example, a melting method. Specifically, it can be produced by mixing and mixing glass raw materials so as to have the above composition, melting at about 1300 to 1600 ° C., and then cooling and solidifying.
  • the form of the glass of the present invention is not particularly limited, the glass obtained above is usually pulverized and used as a glass powder for coating a metal substrate.
  • the pulverization can be performed using a pulverizer such as a roll mill, a ball mill, or a jet mill.
  • D 50 50% particle diameter
  • D 50 of the glass is more preferably 0.3 ⁇ m or more, and still more preferably 0.5 ⁇ m or more.
  • D 50 of the glass powder is more preferably 10 ⁇ m or less, and further preferably 6 ⁇ m or less.
  • the particle size can be adjusted, for example, by classification as necessary after pulverization.
  • D 50 in the present specification is a value measured by a laser diffraction scattering method.
  • the metal substrate on which the glass layer is formed on at least a part of the surface of the glass of the present invention is not particularly limited.
  • a metal substrate or the like that requires an insulating coating used for an electronic component can be used.
  • the metal constituting the metal substrate is preferably a metal having a difference in thermal expansion coefficient between the metal and the glass of 30 ⁇ 10 ⁇ 7 / ° C. or less. More preferably, a metal having a thermal expansion coefficient equal to or lower than the thermal expansion coefficient of the glass of the present invention is preferable.
  • Such metals include ferritic stainless steel (100 to 120), titanium alloy (84 to 88), nickel steel (94 to 100), carbon steel (100 to 130), and the like.
  • the numbers in parentheses after each metal are the thermal expansion coefficient, and the unit is ⁇ 10 -7 / ° C.
  • the metal substrate with a glass layer of the present invention has a metal substrate and a glass layer formed on the surface of at least a part of the metal substrate using the glass for coating a metal substrate of the present invention.
  • a metal substrate similar to having demonstrated above is mentioned preferably.
  • the region for forming the glass layer may be the whole of both main surfaces, the whole of one main surface, or a part of one main surface as necessary. May be. Moreover, all or a part of one main surface and a part of the other main surface may be sufficient.
  • the shape of the glass layer forming region is not particularly limited.
  • the thickness of the glass layer of the metal substrate with a glass layer of the present invention is not particularly limited. It can set similarly to the thickness of the glass layer of the metal substrate with a glass layer normally used for an electronic component etc. Specifically, the thickness is about 10 to 100 ⁇ m. By setting the thickness of the glass layer within this range, it is possible to insulate the metal substrate from the electronic component and the like, which is preferable.
  • the surface roughness of the glass layer of the metal substrate with a glass layer of the present invention is preferably 0.10 ⁇ m or less.
  • the surface roughness is arithmetic average roughness (Ra), and the value of Ra is represented by 3 “Definition and display of defined arithmetic average roughness” of JIS B0601 (1994).
  • the surface of the glass layer may be, for example, at least Ra within the above-mentioned range in the mounting region of the element mounted on the metal substrate with the glass layer or the formation region of the circuit provided depending on the use. More preferably, Ra is within the above range.
  • the main surface is required to be horizontal over the entire metal substrate with a glass layer.
  • there is no warp such that the difference between the maximum value and the minimum value of the main surface of the metal substrate with the glass layer from the horizontal plane is 400 ⁇ m or less. preferable.
  • the metal substrate with a glass layer of the present invention can be produced by a conventional method using the glass of the present invention. For example, by preparing a glass paste containing the glass of the present invention, applying the obtained glass paste to a predetermined region on the surface of a metal substrate to form a glass paste layer, and then firing this to form a glass layer Can be manufactured.
  • the glass paste is usually obtained by preparing the glass of the present invention as a glass powder as described above, and adding a vehicle composed of a binder resin and an organic solvent to the glass powder to prepare a paste.
  • the glass paste is made into a glass paste layer on the metal substrate, and then becomes a glass layer by firing.
  • a vehicle ie, a mixture of a binder resin and an organic solvent, is a component for adjusting a viscosity suitable for supplying a glass paste in a layer form on a metal substrate.
  • the type and blending amount are appropriately selected.
  • the mixing ratio of the vehicle and the glass is also appropriately selected according to the method of supplying the glass paste onto the metal substrate, the supply device, and the like.
  • the component which comprises a vehicle is a component which lose
  • the component remaining after firing in the glass paste may be composed only of glass, and additives having various functions as other components. May be included.
  • other components include inorganic oxide powder as an additive having a function of adjusting a thermal expansion coefficient.
  • An inorganic oxide powder can be mix
  • the thermal expansion coefficient of the entire material constituting the glass layer is the same as the range of the thermal expansion coefficient of the glass of the present invention.
  • a range of 80 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C. is preferable.
  • Examples of the inorganic oxide powder include inorganic fillers and heat-resistant pigments.
  • Examples of the inorganic filler include powders such as alumina, mullite, zircon, zirconia, cordierite, aluminum titanate, ⁇ -spodumene, ⁇ -quartz, quartz glass, ⁇ -quartz solid solution, ⁇ -eucryptite, and zirconium phosphate. Is mentioned.
  • Examples of the heat-resistant pigment include white pigments such as titania, black pigments such as Fe—Mn complex oxide, Fe—Co—Cr complex oxide, and Fe—Mn—Al complex oxide.
  • the shape of the inorganic oxide powder is not particularly limited, and examples thereof include a spherical shape, a plate shape, a crushed shape, and a whisker shape.
  • D 50 of the inorganic oxide powder is preferably 0.3 to 20 ⁇ m, more preferably 0.5 to 10 ⁇ m.
  • the D 50 of the inorganic oxide powder is easy to handle if the above-mentioned range. Furthermore, it is excellent in operability and workability when it is made into a glass paste, and is also effective in dispersibility in glass.
  • the glass paste used for forming the glass layer may further contain known additives in ordinary glass pastes such as an antifoaming agent and a dispersing agent. These additives, like the vehicle, are usually components that disappear during the firing process.
  • the glass paste can be adjusted by stirring and mixing a mixture of glass and vehicle (binder resin and organic solvent), which are essential components, and an appropriate amount of optional components such as inorganic oxide powder. Stirring and mixing are performed by a known method using a rotary mixer equipped with a stirring blade, a roll mill, a ball mill, or the like.
  • a printing method such as screen printing, gravure printing or metal mask printing is applied to the metal substrate, or a dispenser or the like is used. Methods such as a coating method and a blade coating method are applied. The thickness and shape of the glass paste layer are adjusted so that the glass layer finally obtained has a predetermined thickness and shape.
  • a step of drying the glass paste layer may be provided. This drying step is preferably performed in order to remove the organic solvent in the glass paste layer. If the organic solvent remains in the glass paste layer, there is a possibility that components to be eliminated such as the binder resin cannot be sufficiently removed in the heating process.
  • heat treatment is performed in the baking temperature range of the glass contained in the glass paste.
  • the baking of the glass is required to be performed at a temperature equal to or higher than Ts of the glass.
  • Ts a temperature region of Ts + 0 ° C. to Ts + 30 ° C.
  • a temperature region of Ts + 10 ° C. to Ts + 20 ° C. is more preferable.
  • heat processing are normally performed below the heat-resistant temperature of a metal substrate.
  • the method for the heat treatment is not particularly limited as long as at least the temperature of the glass paste layer is the above temperature. Specific examples include thermal radiation heating, infrared heating, laser light irradiation, induction heating, and the like. Thermal radiation heating and laser light irradiation are preferably used from the viewpoint of temperature stability and manufacturing process costs.
  • the heat treatment is mainly performed by removing the binder (such as pre-baking) to remove and remove components that should be lost, such as the binder resin, and glass. You may perform in two steps of the main baking for baking. By performing the heat treatment in two stages in this way, the amount of residual carbon is reduced and the growth of bubbles in the glass layer is suppressed, so that the smoothness of the glass layer surface is further improved. Heat treatment is more preferable.
  • the use of the glass substrate with a glass layer of the present invention is not particularly limited.
  • Preferred examples include display elements such as (Field Emission Display), and electronic parts of piezoelectric vibrators such as MEMS (Micro Electro Mechanical Systems), IC packages, and quartz vibrators.
  • Examples 1 to 15 are examples, and examples 16 to 18 are comparative examples.
  • Examples 1 to 18 Manufacture of glass
  • the glass raw materials were prepared and mixed so as to have the glass compositions shown in Table 1 (Examples 1 to 10) and Table 2 (Examples 11 to 18), and then used for 1 hour using a platinum crucible in an electric furnace at 1400 to 1500 ° C. melted, after forming the thin plate glass was pulverized by a ball mill, D 50 was obtained glass powder 1 to 18 1 ⁇ 3 [mu] m.
  • Tg glass transition point
  • Ts glass softening point
  • Tc glass crystallization peak temperature
  • Tc glass crystallization peak temperature
  • Tg, Ts and Tc About Tg, Ts, and Tc, about 50 mg of glass powder is packed in a platinum cell, measured using a differential thermal analyzer at a temperature rising rate of 10 ° C./min up to 1000 ° C., and the first inflection point is determined. Tg and the fourth inflection point were Ts. Further, Tc was an exothermic peak observed in a temperature range higher than Ts. In Tables 1 and 2, “none” means that Tc does not exist up to 1000 ° C.
  • Ra surface roughness
  • a surface roughness shape measuring machine manufactured by Tokyo Seimitsu Co., Ltd., Surfcom 1400D
  • JIS B0601 (1994)
  • 3 "Definition and display of defined arithmetic mean roughness" Ra was measured.
  • FIG. 1 shows a schematic diagram of a method for measuring warpage.
  • Fig.1 (a) is a top view of the metal substrate with a glass layer obtained above. 1 is a metal substrate, 2 is a glass layer.
  • FIG. 1B shows a cross-sectional view (XX cross-sectional view) taken along the diagonal line of the metal substrate with a glass layer shown in FIG.
  • XX cross-sectional view taken along the diagonal line of the metal substrate with a glass layer shown in FIG.
  • FIG. 1 (b) shows a cross-sectional view from one end s to the other end e of the formation region of the glass layer 2 .
  • the difference in values is indicated by H in FIG.
  • “ ⁇ ” indicates that the difference between the displacement amounts (H in FIG. 1B) is within 400 ⁇ m, and the difference between the displacement amounts is either one or both is 400 ⁇ m. Those exceeding the value were evaluated as “x”.
  • Table 1 and Table 2 together with the glass composition.
  • the glasses 1 to 15 of Examples 1 to 15 corresponding to Examples are different from the glasses 16 to 18 of Examples 16 to 18 corresponding to Comparative Examples.
  • Glasses 1 to 15 of Examples 1 to 15 have a glass transition point of 520 to 670 ° C., a glass softening point of 650 to 800 ° C., and a thermal expansion coefficient of 80 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C. All the conditions are met. Further, in the metal substrates with glass layers 1 to 15, Ra on the surface of the glass layer is 0.10 ⁇ m or less, and there is almost no warpage.
  • the glass layer is formed on the metal substrate with high heat resistance and is hardly crystallized when the glass layer is formed on the metal substrate.
  • a glass for coating a metal substrate that hardly induces the warp of the metal substrate and can obtain high flatness on the surface of the obtained glass layer, and the metal substrate of the present invention.
  • the glass for coating it is possible to provide a metal substrate with a glass layer of the present invention having a glass layer having high heat resistance and surface flatness and almost no warpage as the whole substrate, which is useful for various electronic components. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Provided is a glass for coating a metal substrate. The glass exhibits high heat resistance, crystallization and metal substrate warpage are suppressed during the formation of the glass into a glass layer, and an extremely flat upper surface can be imparted to the glass layer that is obtained. Also provided is a metal substrate having a glass layer attached thereto, the metal substrate being provided with the glass layer that exhibits high heat resistance and is extremely flat, and the entire substrate body exhibiting no warpage. The glass for coating a metal substrate contains, expressed as a mass percentage in terms of the oxides, 15-60% of SiO2, 0-35% of B2O3, 0-15% of R2O (R represents at least one element selected from the group consisting of Li, Na, and K), 25-55% of R'O (R' represents at least one element selected from the group consisting of Mg, Ca, Sr, Ba and Zn), and 0.1-7% of AI2O3, and satisfies (ZnO+MgO+CaO)/(SrO+BaO)<̳0.3. The metal substrate having a glass layer attached thereto is formed using the glass for coating a metal substrate.

Description

金属基板被覆用ガラスおよびガラス層付き金属基板Glass for metal substrate coating and metal substrate with glass layer
 本発明は、金属基板被覆用ガラスおよびガラス層付き金属基板に関し、特には電子部品に用いる金属基板の表面を絶縁被覆するためのガラスおよび該ガラスを用いて形成されたガラス層付き金属基板に関する。 The present invention relates to a glass for coating a metal substrate and a metal substrate with a glass layer, and particularly to a glass for insulatingly coating the surface of a metal substrate used for an electronic component and a metal substrate with a glass layer formed using the glass.
 電子回路を基板上に有する電子部品として、製造時の処理条件や高温使用等の使用環境、さらには用途に応じて、金属基板上にガラスで絶縁被膜を設け、その上に回路を形成した電子部品が用いられる場合がある。
 この場合、金属基板上に被膜形成されたガラス層は、通常そのガラス層上に各種素子を搭載することや回路を設けることから、表面に高い平坦性が求められるとともにガラス層付きの基板全体として反りがないことが求められている。
As an electronic component having an electronic circuit on a substrate, an electronic film is formed on a metal substrate with an insulating film formed on the metal substrate, depending on the processing conditions at the time of manufacture, the usage environment such as high temperature use, and the application. Parts may be used.
In this case, the glass layer formed on the metal substrate is usually equipped with various elements on the glass layer and provided with a circuit, so that high flatness is required on the surface and the entire substrate with the glass layer is used. There is a demand for no warpage.
 金属基板上にガラス層を形成するには、ガラスとバインダ成分を含むガラスペースト層を金属基板上に形成し焼成する方法が一般的である。この際、金属とガラスの熱膨張係数が大きく異なると応力歪により反りやクラックが生じることが知られている。特に、多層電子回路基板の製造において、金属基板とガラス層の積層構造は下層から順次形成されるため、下層部分では繰り返し焼成温度に曝される。結果として、反りやクラックの問題はさらに悪化し、電子部品の信頼性を損なうことになる。さらに、耐熱性としては、例えば、特許文献1に記載された太陽電池のようにガラス層付き金属基板のガラス層上に特定の半導体層が形成される場合には、500℃以上の耐熱性が求められることもある。 In order to form a glass layer on a metal substrate, a method in which a glass paste layer containing glass and a binder component is formed on a metal substrate and fired is generally used. At this time, it is known that when the thermal expansion coefficients of the metal and the glass are greatly different, warping and cracking occur due to stress strain. In particular, in the production of a multilayer electronic circuit board, the laminated structure of the metal substrate and the glass layer is sequentially formed from the lower layer, so that the lower layer portion is repeatedly exposed to the firing temperature. As a result, the problem of warping and cracking is further exacerbated, and the reliability of the electronic component is impaired. Furthermore, as the heat resistance, for example, when a specific semiconductor layer is formed on the glass layer of the metal substrate with a glass layer as in the solar cell described in Patent Document 1, the heat resistance is 500 ° C. or more. Sometimes it is required.
 特許文献1には、特定の半導体層を形成するために500℃以上の熱処理を経ても高い絶縁耐性が得られるガラス層を有する金属基板、さらに該ガラス層を構成するために熱膨張係数を調整したガラスの組成が記載されている。しかしながら、特許文献1に記載のガラスは、失透化(結晶化)し易いことから平坦な表面を有するガラス層が得にくく、ガラス層上への細線パターンの形成が困難であった。 In Patent Document 1, a metal substrate having a glass layer that can obtain a high insulation resistance even after a heat treatment of 500 ° C. or more to form a specific semiconductor layer, and further, a thermal expansion coefficient is adjusted to configure the glass layer The composition of the finished glass is described. However, since the glass described in Patent Document 1 is easily devitrified (crystallized), it is difficult to obtain a glass layer having a flat surface, and it is difficult to form a thin line pattern on the glass layer.
日本特開2006-80370号公報Japanese Unexamined Patent Publication No. 2006-80370
 本発明は、高い耐熱性を有し、ガラス層形成時に結晶化が抑制され、金属基板の反りの発生を抑制するとともに、得られるガラス層の表面に高い平坦性を付与することが可能な金属基板被覆用ガラスを提供することを目的とする。また、高い耐熱性と表面平坦性を有するガラス層を備え、かつ基板全体として反りのほとんどないガラス層付き金属基板を提供することを目的とする。 The present invention has a high heat resistance, crystallization is suppressed during the formation of the glass layer, suppresses the occurrence of warpage of the metal substrate, and can impart high flatness to the surface of the obtained glass layer. It aims at providing glass for substrate covering. It is another object of the present invention to provide a metal substrate with a glass layer that includes a glass layer having high heat resistance and surface flatness and has almost no warpage as the entire substrate.
 本発明は、酸化物基準の質量百分率表示で、SiOを15~60%、Bを0~35%、RO(RはLi、NaおよびKからなる群から選ばれる少なくとも1種)を0~15%、R’O(R’はMg、Ca、Sr、BaおよびZnからなる群から選ばれる少なくとも1種)を25~55%、Alを0.1~7%含有し、(ZnO+MgO+CaO)/(SrO+BaO)≦0.3を満足する金属基板被覆用ガラスを提供する。 The present invention is expressed in terms of mass percentage on the basis of oxide, and SiO 2 is 15 to 60%, B 2 O 3 is 0 to 35%, R 2 O (R is at least one selected from the group consisting of Li, Na and K) 0-15%, R′O (R ′ is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) 25-55%, and Al 2 O 3 0.1-7. %, And a glass for coating a metal substrate satisfying (ZnO + MgO + CaO) / (SrO + BaO) ≦ 0.3.
 本発明においては、上記組成の金属基板被覆用ガラスのうちでも、酸化物基準の質量百分率表示で、SiOを30~50%、Bを10~25%、RO(RはLi、NaおよびKからなる群から選ばれる少なくとも1種)を0~13%含有するガラスが好ましい。
 また、本発明の金属基板被覆用ガラスは、RO/(SiO+B)の含有量の比が、0.3以下であることが好ましい。
 さらに、本発明の金属基板被覆用ガラスは、ガラス転移点が520~670℃であり、ガラス軟化点が650~800℃であり、50~350℃における平均熱膨張係数αが80×10-7~110×10-7/℃であることが好ましい。
In the present invention, among the glass for coating a metal substrate of the above composition, SiO 2 is 30 to 50%, B 2 O 3 is 10 to 25%, R 2 O (R is O A glass containing 0 to 13% of at least one selected from the group consisting of Li, Na and K is preferred.
The metal substrate covering glass of the present invention, the ratio of content of R 2 O / (SiO 2 + B 2 O 3) is preferably 0.3 or less.
Furthermore, the glass for coating a metal substrate of the present invention has a glass transition point of 520 to 670 ° C., a glass softening point of 650 to 800 ° C., and an average thermal expansion coefficient α at 50 to 350 ° C. of 80 × 10 −7. It is preferably ˜110 × 10 −7 / ° C.
 本発明は、また、金属基板と、前記金属基板の少なくとも一部の表面に上記本発明の金属基板被覆用ガラスを用いて形成されたガラス層を有するガラス層付き金属基板を提供する。本発明のガラス層付き金属基板においては、上記ガラス層の表面粗さが、0.10μm以下であることが好ましく、上記金属と上記ガラスの50~350℃における平均熱膨張係数αの差は30×10-7/℃以下であることが好ましい。 The present invention also provides a metal substrate with a glass layer having a metal substrate and a glass layer formed on at least a part of the surface of the metal substrate using the glass for covering a metal substrate of the present invention. In the metal substrate with a glass layer of the present invention, the surface roughness of the glass layer is preferably 0.10 μm or less, and the difference in average thermal expansion coefficient α between the metal and the glass at 50 to 350 ° C. is 30. It is preferable that the temperature is 10 −7 / ° C. or less.
 本発明の金属基板被覆用ガラスは、高い耐熱性を有し、非晶質なガラスであって金属基板上にガラス層を形成する際に結晶化することがほとんどない。また、本発明の金属基板被覆用ガラスによれば、金属基板上にガラス層を形成する際に、金属基板の反りを誘発することがほとんどなく、得られるガラス層の表面については高い平坦性を有する。よって、金属基板上のガラス層の表面に繊細な電極パターンが形成できる。さらに、上記本発明の金属基板被覆用ガラスを用いることで、高い耐熱性と表面平坦性を有するガラス層を備え、かつ基板全体として反りがほとんどない本発明のガラス層付き金属基板が提供できる。 The glass for coating a metal substrate of the present invention has high heat resistance, is an amorphous glass, and hardly crystallizes when a glass layer is formed on the metal substrate. In addition, according to the glass for coating a metal substrate of the present invention, when the glass layer is formed on the metal substrate, the metal substrate is hardly warped, and the surface of the obtained glass layer has high flatness. Have. Therefore, a delicate electrode pattern can be formed on the surface of the glass layer on the metal substrate. Furthermore, by using the glass for covering a metal substrate of the present invention, the metal substrate with a glass layer of the present invention can be provided which has a glass layer having high heat resistance and surface flatness and hardly warps as a whole substrate.
ガラス層付き金属基板の反りの測定方法を概略的に示す図である。It is a figure which shows roughly the measuring method of the curvature of the metal substrate with a glass layer.
 以下に本発明の実施の形態を説明する。なお、本発明は、下記説明に限定して解釈されるものではない。
[金属基板被覆用ガラス]
 本発明の金属基板被覆用ガラスの組成は、酸化物基準の質量百分率表示で、SiOを15~60%、Bを0~35%、RO(RはLi、NaおよびKからなる群から選ばれる少なくとも1種を示す。本明細書において、以下同様である。)を0~15%、R’O(R’はMg、Ca、Sr、BaおよびZnからなる群から選ばれる少なくとも1種を示す。本明細書において、以下同様である。)を25~55%、Alを0.1~7%含有し、(ZnO+MgO+CaO)/(SrO+BaO)≦0.3を満足する。
Embodiments of the present invention will be described below. In addition, this invention is limited to the following description and is not interpreted.
[Metal substrate coating glass]
The composition of the glass for coating a metal substrate of the present invention is expressed in terms of mass percentage on the basis of oxide, and SiO 2 is 15 to 60%, B 2 O 3 is 0 to 35%, R 2 O (R is Li, Na and K At least one selected from the group consisting of: 0 to 15% in the present specification, and R′O (R ′ is selected from the group consisting of Mg, Ca, Sr, Ba and Zn). In the present specification, the same shall apply hereinafter) 25 to 55%, Al 2 O 3 0.1 to 7%, and (ZnO + MgO + CaO) / (SrO + BaO) ≦ 0.3. Satisfied.
 本発明のガラスは、金属基板の少なくとも一部の表面を被覆するために設けられるガラス層を形成するためのものである。上記組成とすることで、本発明のガラスは、十分な耐熱性を有するとともに、熱膨張係数については金属基板を構成する金属(具体的な金属については後述するとおりである。)の熱膨張係数との差を小さくするように調整できる。さらに、本発明のガラスは、非晶質なガラスであって、ガラス製造時の溶融工程において原料の溶融性もよく、金属基板上にガラス層を形成する際に結晶化することがほとんどない。 The glass of the present invention is for forming a glass layer provided to cover at least a part of the surface of a metal substrate. By setting it as the said composition, while the glass of this invention has sufficient heat resistance, about the thermal expansion coefficient, the thermal expansion coefficient of the metal (It is as mentioning later about a specific metal.) Which comprises a metal substrate. Can be adjusted to reduce the difference between Furthermore, the glass of the present invention is an amorphous glass, and has good meltability of raw materials in the melting step at the time of glass production, and is hardly crystallized when a glass layer is formed on a metal substrate.
 本発明のガラスは、耐熱性の点では、ガラス転移点(以下、「Tg」と記す。)が520℃以上であり、ガラス軟化点(以下、「Ts」と記す。)が650℃以上であることが好ましい。さらに、金属基板の耐熱温度の観点からTgは670℃以下が好ましく、Tsは800℃以下が好ましい。また、本発明のガラスの熱膨張係数については、金属基板の反りの誘発を可能な限り抑制することを勘案して、50~350℃における平均熱膨張係数αが80×10-7~110×10-7/℃であることが好ましい。
 なお、Tgとは、ガラスの構造が変化する温度であり、粘度が1013.3(dPa・s)になる温度である。TgおよびTsは、示差熱分析(DTA)装置により測定することができる。また、本明細書においては、特に断りのない限り熱膨張係数とは、50~350℃における平均熱膨張係数をいう。
The glass of the present invention has a glass transition point (hereinafter referred to as “Tg”) of 520 ° C. or higher and a glass softening point (hereinafter referred to as “Ts”) of 650 ° C. or higher in terms of heat resistance. Preferably there is. Furthermore, from the viewpoint of the heat resistant temperature of the metal substrate, Tg is preferably 670 ° C. or less, and Ts is preferably 800 ° C. or less. Further, regarding the thermal expansion coefficient of the glass of the present invention, the average thermal expansion coefficient α at 50 to 350 ° C. is 80 × 10 −7 to 110 × in consideration of suppressing the induction of warpage of the metal substrate as much as possible. It is preferably 10 −7 / ° C.
Tg is a temperature at which the glass structure changes, and is a temperature at which the viscosity becomes 10 13.3 (dPa · s). Tg and Ts can be measured by a differential thermal analysis (DTA) apparatus. Further, in this specification, unless otherwise specified, the thermal expansion coefficient means an average thermal expansion coefficient at 50 to 350 ° C.
 以下、本発明のガラスの各成分について説明する。なお、以下の説明においてガラスの成分の含有量は、全て酸化物基準の質量百分率表示である。
 SiOはガラスを安定化させる成分であり、必須成分である。SiOの含有量が15%未満では、Tsが低くなり過ぎ、得られるガラス層付き金属基板におけるガラス層の耐熱温度を十分に高くすることが難しくなる。ガラス層の耐熱温度が十分に高いレベルにないと、ガラス層上への電気回路等の形成が困難になる。SiOの含有量が60%超ではTsが高くなりすぎる。Tsが必要以上に高いと、Ts以上に設定されるガラス層形成時の焼成温度が、金属基板の耐熱温度を超え金属基板の変形が生じるおそれがある。SiOの含有量は上記範囲中、特に30~50%が好ましい。
Hereinafter, each component of the glass of the present invention will be described. In the following description, the contents of glass components are all expressed in terms of oxide based mass percentage.
SiO 2 is a component that stabilizes the glass and is an essential component. When the content of SiO 2 is less than 15%, Ts becomes too low, and it becomes difficult to sufficiently increase the heat resistant temperature of the glass layer in the obtained metal substrate with a glass layer. If the heat resistance temperature of the glass layer is not at a sufficiently high level, it is difficult to form an electric circuit or the like on the glass layer. If the SiO 2 content exceeds 60%, Ts becomes too high. If Ts is higher than necessary, the firing temperature at the time of forming the glass layer set to be equal to or higher than Ts may exceed the heat resistance temperature of the metal substrate, and the metal substrate may be deformed. The content of SiO 2 is particularly preferably 30 to 50% in the above range.
 R’Oで示される成分、すなわち、ZnO、MgO、CaO、SrO、およびBaOからなる群から選ばれる少なくとも1種は、熱膨張係数を調整する成分として必須の成分である。R’Oの合計の含有量が25%未満では、熱膨張係数が低下してガラス層付き金属基板に反りを誘発する。R’Oの合計の含有量が55%超ではガラスが不安定になり、部分的に結晶化して失透する。また、R’Oで示される成分における各成分の関係として、(ZnO+MgO+CaO)/(SrO+BaO)の含有量の比は、0.3以下であるのが好ましい。この比が0.3を超えると、熱膨張係数の低下を誘発する。ZnOは0~3%が好ましい。ZnOが3%を超えると、熱膨張係数が低下する傾向にあり、R’O全体として熱膨張係数を所望の範囲に調整するのが困難となる。 The component represented by R′O, that is, at least one selected from the group consisting of ZnO, MgO, CaO, SrO, and BaO is an essential component as a component for adjusting the thermal expansion coefficient. If the total content of R′O is less than 25%, the thermal expansion coefficient is lowered and warpage is induced in the metal substrate with a glass layer. If the total content of R'O exceeds 55%, the glass becomes unstable and partially crystallizes and devitrifies. In addition, as a relationship of each component in the component represented by R′O, the content ratio of (ZnO + MgO + CaO) / (SrO + BaO) is preferably 0.3 or less. When this ratio exceeds 0.3, the thermal expansion coefficient is lowered. ZnO is preferably 0 to 3%. If ZnO exceeds 3%, the thermal expansion coefficient tends to decrease, and it becomes difficult to adjust the thermal expansion coefficient to a desired range as a whole R′O.
 Bは、ガラスを安定化させる成分であり、含有することが好ましい任意成分である。Bの含有量が35%超では軟化点が高くなり過ぎ、上記同様にTsが高いことで発生する問題を誘発する。Bの含有量は好ましくは10~25%である。 B 2 O 3 is a component that stabilizes the glass, and is an optional component that is preferably contained. When the content of B 2 O 3 exceeds 35%, the softening point becomes too high, and the problem that occurs due to the high Ts as described above is induced. The content of B 2 O 3 is preferably 10 to 25%.
 ROで示されるアルカリ金属酸化物は、ガラス化しやすくなる機能、Tsを下げる機能、または熱膨張係数を上げる機能等を有する成分であり、含有することが好ましい任意成分である。ROの合計の含有量が15%超ではTsが低くなり過ぎ、上記同様にTsが低いことで発生する問題を誘発する。ROの合計の含有量は好ましくは13%以下である。
 また、RO/(SiO+B)の含有量の比は、0.3以下が好ましい。RO/(SiO+B)が0.3を超えると、Tsが低下する傾向にあり、上記同様にTsが低いことで発生する問題を誘発し易いためである。なお、ここにおいてROは、ROの合計の含有量である。
The alkali metal oxide represented by R 2 O is a component having a function of facilitating vitrification, a function of decreasing Ts, a function of increasing the thermal expansion coefficient, and the like, and is an optional component that is preferably contained. If the total content of R 2 O exceeds 15%, Ts becomes too low, and a problem occurs when Ts is low as described above. The total content of R 2 O is preferably 13% or less.
The ratio of the content of R 2 O / (SiO 2 + B 2 O 3 ) is preferably 0.3 or less. This is because if R 2 O / (SiO 2 + B 2 O 3 ) exceeds 0.3, Ts tends to be lowered, and the problem that occurs when Ts is low as described above is likely to be induced. Here, R 2 O is the total content of R 2 O.
 Alは熱膨張係数を下げ、かつガラスの安定性、化学的耐久性を高める成分であり、必須である。Alの含有量が7%を超えると、ガラスの粘性が上がり、ガラス中にAlが未熔融物として残留する問題を誘発する。0.1%未満だとガラスが不安定になり部分的に失透する。 Al 2 O 3 is a component that lowers the coefficient of thermal expansion and increases the stability and chemical durability of glass, and is essential. When the content of Al 2 O 3 exceeds 7%, the viscosity of the glass increases, and the problem that Al 2 O 3 remains as an unmelted material in the glass is induced. If it is less than 0.1%, the glass becomes unstable and partially devitrified.
 本発明のガラスは、基本的に上記成分を含有することが好ましいが、本発明の効果を損なわない限度において、上記成分以外の他の成分を含有できる。例えば、TiO、ZrO、V、CeO、La、SnO、CuO、NiO、MnO、CoO、Fe、Bi、Cr、In、AgO、MoO、Nb、Ta、Ga、およびSb等からなる群の少なくとも1種が挙げられる。その場合、当該その他の成分の含有量の合計は、好ましくは10%以下である。この中でも、TiOおよびZrOは、ガラスの安定化に寄与する成分であり、好ましく用いられる。ただし、TiOの含有量が4%を超えたり、ZrOの含有量が1.6%を超えたりすると、不安定になり部分的に失透しやすくなる。したがって、ガラス中にTiOおよび/またはZrOを含有する場合には、それぞれの上限値以下とする。 The glass of the present invention basically preferably contains the above components, but can contain other components other than the above components as long as the effects of the present invention are not impaired. For example, TiO 2, ZrO 2, V 2 O 5, CeO 2, La 2 O 3, SnO 2, CuO, NiO, MnO, CoO, Fe 2 O 3, Bi 2 O 3, Cr 2 O 3, In 2 O 3 , at least one selected from the group consisting of Ag 2 O, MoO 3 , Nb 2 O 3 , Ta 2 O 5 , Ga 2 O 3 , Sb 2 O 3 and the like. In that case, the total content of the other components is preferably 10% or less. Among these, TiO 2 and ZrO 2 are components that contribute to glass stabilization and are preferably used. However, if the content of TiO 2 exceeds 4% or the content of ZrO 2 exceeds 1.6%, it becomes unstable and becomes partially devitrified. Therefore, when TiO 2 and / or ZrO 2 is contained in the glass, the upper limit value is set.
 本発明のガラスは、実質的にPbO等の鉛化合物を含まない。これにより、環境に与える負荷が少ない。なお、本明細書において、鉛化合物を実質的に含まないガラスとは、ガラス組成中のPbO等の鉛化合物の含有量が1000ppm(質量百万分率表示)以下のガラスを示す。 The glass of the present invention contains substantially no lead compound such as PbO. This reduces the load on the environment. In addition, in this specification, the glass which does not contain a lead compound substantially refers to the glass whose content of lead compounds, such as PbO in a glass composition, is 1000 ppm (mass parts per million display) or less.
 本発明においては、このような組成のガラスのうちでも、酸化物基準のモル百分率表示で、SiOを30~50%、Bを10~25%、ROを0~13%、R’Oを25~55%、Alを0.1~7%含有し、(ZnO+MgO+CaO)/(SrO+BaO)≦0.3を満足するガラスが特に好ましい。 In the present invention, among the glasses having such a composition, SiO 2 is 30 to 50%, B 2 O 3 is 10 to 25%, and R 2 O is 0 to 13% in terms of mole percentage based on oxide. Further, a glass containing 25 to 55% of R′O, 0.1 to 7% of Al 2 O 3 and satisfying (ZnO + MgO + CaO) / (SrO + BaO) ≦ 0.3 is particularly preferable.
 本発明のガラスは、上記組成とすることで上記好ましい特性、具体的には、非晶質であり、Tgが520~670℃、Tsが650~800℃であって、熱膨張係数が80×10-7~110×10-7/℃である特性を達成できる。 When the glass of the present invention has the above composition, the above-mentioned preferable characteristics, specifically, amorphous, Tg is 520 to 670 ° C., Ts is 650 to 800 ° C., and the thermal expansion coefficient is 80 ×. A characteristic of 10 −7 to 110 × 10 −7 / ° C. can be achieved.
 本発明のガラスは、通常のガラスの製造方法、例えば溶融法により製造できる。具体的には、上記のような組成となるようにガラス原料を配合、混合し、1300~1600℃程度で溶融後、冷却固化することで製造できる。本発明のガラスの形態は特に限定されないが、上記で得られたガラスは、通常、粉砕してガラス粉末として金属基板の被覆に用いられる。粉砕は、例えばロールミル、ボールミル、ジェットミル等の粉砕機を用いて行うことができる。 The glass of the present invention can be produced by an ordinary glass production method, for example, a melting method. Specifically, it can be produced by mixing and mixing glass raw materials so as to have the above composition, melting at about 1300 to 1600 ° C., and then cooling and solidifying. Although the form of the glass of the present invention is not particularly limited, the glass obtained above is usually pulverized and used as a glass powder for coating a metal substrate. The pulverization can be performed using a pulverizer such as a roll mill, a ball mill, or a jet mill.
 本発明のガラスが粉末である場合には、その50%粒径(以下、D50と記す。)は、0.1~100μmであることが好ましい。ガラスのD50が0.1μm未満になると、工業的に製造しづらく、また凝集しやすくなるため、取り扱いが難しい。ガラスのD50はより好ましくは0.3μm以上、さらに好ましくは0.5μm以上である。一方、D50が100μmを超えると、ガラス全体での軟化が不十分になり、得られるガラス層付き金属基板においてガラス層の均一性が十分でない場合がある。そのため、ガラス粉末のD50は10μm以下がより好ましく、6μm以下がさらに好ましい。粒径の調整は、例えば粉砕後に必要に応じて分級することにより行うことができる。なお、本明細書におけるD50は、レーザ回折散乱法で測定された値である。 When the glass of the present invention is a powder, 50% particle diameter (hereinafter, referred to as D 50.) Is preferably from 0.1 ~ 100 [mu] m. If D 50 of the glass is less than 0.1 [mu] m, industrially and difficult manufacture and made for easily aggregate, it is difficult to handle. D 50 of the glass is more preferably 0.3μm or more, and still more preferably 0.5μm or more. On the other hand, if D 50 exceeds 100 [mu] m, the softening of the entire glass becomes insufficient, the uniformity of the glass layer in the glass layer coated metal substrate obtained may not be sufficient. Therefore, D 50 of the glass powder is more preferably 10 μm or less, and further preferably 6 μm or less. The particle size can be adjusted, for example, by classification as necessary after pulverization. Incidentally, D 50 in the present specification is a value measured by a laser diffraction scattering method.
 本発明のガラスを用いて、その少なくとも一部の表面にガラス層が形成される金属基板としては、特に制限されない。例えば、電子部品に使用される絶縁被覆が必要とされる金属基板等が挙げられる。金属基板を構成する金属としては、該金属と上記ガラスの熱膨張係数の差が30×10-7/℃以下となるような金属が好ましい。より好ましくは、熱膨張係数が本発明のガラスの熱膨張係数と同じか上記差の範囲内で低い金属が好ましい。 The metal substrate on which the glass layer is formed on at least a part of the surface of the glass of the present invention is not particularly limited. For example, a metal substrate or the like that requires an insulating coating used for an electronic component can be used. The metal constituting the metal substrate is preferably a metal having a difference in thermal expansion coefficient between the metal and the glass of 30 × 10 −7 / ° C. or less. More preferably, a metal having a thermal expansion coefficient equal to or lower than the thermal expansion coefficient of the glass of the present invention is preferable.
 このような金属として具体的には、フェライト系ステンレス鋼(100~120)、チタン合金(84~88)、ニッケル鋼(94~100)、炭素鋼(100~130)等が上げられる。なお、各金属の後の括弧内に示す数字は熱膨張係数であり単位は×10-7/℃である。 Specific examples of such metals include ferritic stainless steel (100 to 120), titanium alloy (84 to 88), nickel steel (94 to 100), carbon steel (100 to 130), and the like. The numbers in parentheses after each metal are the thermal expansion coefficient, and the unit is × 10 -7 / ° C.
[ガラス層付き金属基板]
 本発明のガラス層付き金属基板は、金属基板と、前記金属基板の少なくとも一部の表面に上記本発明の金属基板被覆用ガラスを用いて形成されたガラス層を有する。
 金属基板としては、特に限定されないが、上に説明したのと同様の金属基板が好ましく挙げられる。金属基板の表面において、ガラス層を形成する領域としては、必要に応じて両主面の全部であってもよく、一方の主面の全部であってもよく、一方の主面の一部分であってもよい。また、一方の主面の全部または一部分と他方の主面の一部分であってもよい。ガラス層形成領域の形状についても特に制限されない。
[Metal substrate with glass layer]
The metal substrate with a glass layer of the present invention has a metal substrate and a glass layer formed on the surface of at least a part of the metal substrate using the glass for coating a metal substrate of the present invention.
Although it does not specifically limit as a metal substrate, The metal substrate similar to having demonstrated above is mentioned preferably. On the surface of the metal substrate, the region for forming the glass layer may be the whole of both main surfaces, the whole of one main surface, or a part of one main surface as necessary. May be. Moreover, all or a part of one main surface and a part of the other main surface may be sufficient. The shape of the glass layer forming region is not particularly limited.
 本発明のガラス層付き金属基板のガラス層の厚さは特に制限されない。電子部品等に通常、用いられるガラス層付き金属基板のガラス層の厚さと同様に設定できる。具体的には、10~100μm程度の厚さが挙げられる。ガラス層の厚さをこの範囲に設定することで、金属基板と電子部品等の絶縁が可能であり、好ましい。 The thickness of the glass layer of the metal substrate with a glass layer of the present invention is not particularly limited. It can set similarly to the thickness of the glass layer of the metal substrate with a glass layer normally used for an electronic component etc. Specifically, the thickness is about 10 to 100 μm. By setting the thickness of the glass layer within this range, it is possible to insulate the metal substrate from the electronic component and the like, which is preferable.
 本発明のガラス層付き金属基板のガラス層の表面粗さは、0.10μm以下であることが好ましい。なお、表面粗さは算術平均粗さ(Ra)のことであり、Raの値は、JIS B0601(1994年)の3「定義された算術平均粗さの定義及び表示」によって表される。ガラス層の表面は用途に応じて、例えば、ガラス層の少なくとも該ガラス層付き金属基板に搭載される素子の搭載領域や設けられる回路の形成領域においてRaが上記範囲であればよいが、ガラス層の全面についてRaが上記範囲にあることがより好ましい。 The surface roughness of the glass layer of the metal substrate with a glass layer of the present invention is preferably 0.10 μm or less. The surface roughness is arithmetic average roughness (Ra), and the value of Ra is represented by 3 “Definition and display of defined arithmetic average roughness” of JIS B0601 (1994). The surface of the glass layer may be, for example, at least Ra within the above-mentioned range in the mounting region of the element mounted on the metal substrate with the glass layer or the formation region of the circuit provided depending on the use. More preferably, Ra is within the above range.
 本発明のガラス層付き金属基板においては、求められる形状に対してガラス層の形成に起因する反りによる形状の相違が生じていないことが好ましい。例えば、ガラス層付き金属基板全体亘って主面が水平となることが求められる。この場合、ガラス層付き金属基板のサイズにもよるが、水平面からのガラス層付き金属基板の主面の高さの最大値と最小値の差が400μm以下というように反りが生じていないことが好ましい。 In the metal substrate with a glass layer of the present invention, it is preferable that a shape difference due to warpage resulting from the formation of the glass layer does not occur with respect to the required shape. For example, the main surface is required to be horizontal over the entire metal substrate with a glass layer. In this case, although depending on the size of the metal substrate with a glass layer, there is no warp such that the difference between the maximum value and the minimum value of the main surface of the metal substrate with the glass layer from the horizontal plane is 400 μm or less. preferable.
 本発明のガラス層付き金属基板は、上記本発明のガラスを用いて、常法により製造できる。例えば、本発明のガラスを含むガラスペーストを調製し、得られたガラスペーストを金属基板表面の所定の領域に塗布してガラスペースト層を形成した後、これを焼成してガラス層とする方法により製造できる。 The metal substrate with a glass layer of the present invention can be produced by a conventional method using the glass of the present invention. For example, by preparing a glass paste containing the glass of the present invention, applying the obtained glass paste to a predetermined region on the surface of a metal substrate to form a glass paste layer, and then firing this to form a glass layer Can be manufactured.
 ガラスペーストは、通常、本発明のガラスを上記のようなガラス粉末として準備し、該ガラス粉末にバインダ樹脂と有機溶剤とからなるビヒクルを加えてペースト状に調製することで得られる。ガラスペーストは、金属基板上でガラスペースト層とされ、その後、焼成によりガラス層となる。ビヒクルすなわちバインダ樹脂と有機溶剤の混合物は、ガラスペーストを金属基板上に層状に供給するのに適切な粘度に調整するための成分であり、供給方法、供給装置等により、バインダ樹脂および有機溶剤の種類や配合量が適宜選択される。ビヒクルとガラスの配合割合についても、ガラスペーストの金属基板上への供給方法、供給装置等に応じて適宜選択される。なお、ビヒクルを構成する成分は、ガラスペーストが金属基板上に層状に供給された後、仮焼成や焼成等の製造過程で消失しガラス層には残留しない成分である。 The glass paste is usually obtained by preparing the glass of the present invention as a glass powder as described above, and adding a vehicle composed of a binder resin and an organic solvent to the glass powder to prepare a paste. The glass paste is made into a glass paste layer on the metal substrate, and then becomes a glass layer by firing. A vehicle, ie, a mixture of a binder resin and an organic solvent, is a component for adjusting a viscosity suitable for supplying a glass paste in a layer form on a metal substrate. The type and blending amount are appropriately selected. The mixing ratio of the vehicle and the glass is also appropriately selected according to the method of supplying the glass paste onto the metal substrate, the supply device, and the like. In addition, the component which comprises a vehicle is a component which lose | disappears in manufacturing processes, such as temporary baking and baking, and does not remain | survive in a glass layer, after glass paste is supplied in a layer form on a metal substrate.
 また、ガラスペーストにおいて焼成後に残存する成分、すなわち本発明のガラス層付き金属基板のガラス層を構成する成分は、ガラスのみで構成されてもよく、その他の成分として各種機能を有する添加剤等を含んでいてもよい。その他の成分としては、例えば、熱膨張係数調整等の機能を有する添加剤として無機酸化物粉末が挙げられる。無機酸化物粉末は、例えば、本発明のガラスと無機酸化物粉末の合計量100質量部に対して15質量部までの割合で配合することができる。
 本発明のガラス層付き金属基板のガラス層が無機酸化物粉末を含む場合においても、ガラス層を構成する材料全体としての熱膨張係数は、上記本発明のガラスの熱膨張係数の範囲と同様に、80×10-7~110×10-7/℃の範囲が好ましい。
In addition, the component remaining after firing in the glass paste, that is, the component constituting the glass layer of the metal substrate with a glass layer of the present invention may be composed only of glass, and additives having various functions as other components. May be included. Examples of other components include inorganic oxide powder as an additive having a function of adjusting a thermal expansion coefficient. An inorganic oxide powder can be mix | blended in the ratio to 15 mass parts with respect to 100 mass parts of total amounts of the glass and inorganic oxide powder of this invention, for example.
Even when the glass layer of the metal substrate with a glass layer of the present invention contains an inorganic oxide powder, the thermal expansion coefficient of the entire material constituting the glass layer is the same as the range of the thermal expansion coefficient of the glass of the present invention. A range of 80 × 10 −7 to 110 × 10 −7 / ° C. is preferable.
 上記無機酸化物粉末としては無機フィラーや耐熱顔料が挙げられる。無機フィラーとしては、例えば、アルミナ、ムライト、ジルコン、ジルコニア、コージェライト、チタン酸アルミニウム、β-スポジュメン、α-石英、石英ガラス、β-石英固溶体、β-ユークリプタイト、リン酸ジルコニウム等の粉末が挙げられる。耐熱顔料としては、例えば、チタニア等の白色顔料、Fe-Mn複酸化物系、Fe-Co-Cr複合酸化物系、Fe-Mn-Al複合酸化物系等の黒色顔料が挙げられる。 Examples of the inorganic oxide powder include inorganic fillers and heat-resistant pigments. Examples of the inorganic filler include powders such as alumina, mullite, zircon, zirconia, cordierite, aluminum titanate, β-spodumene, α-quartz, quartz glass, β-quartz solid solution, β-eucryptite, and zirconium phosphate. Is mentioned. Examples of the heat-resistant pigment include white pigments such as titania, black pigments such as Fe—Mn complex oxide, Fe—Co—Cr complex oxide, and Fe—Mn—Al complex oxide.
 無機酸化物粉末の形状は特に限定されず、球状、板状、破砕状、ウィスカー状等が挙げられる。無機酸化物粉末のD50は、0.3~20μmが好ましく、0.5~10μmがより好ましい。無機酸化物粉末のD50を上記範囲とすれば取り扱いが容易である。さらに、ガラスペーストとした際の操作性、作業性等に優れるとともに、ガラスへの分散性にも有効になる。 The shape of the inorganic oxide powder is not particularly limited, and examples thereof include a spherical shape, a plate shape, a crushed shape, and a whisker shape. D 50 of the inorganic oxide powder is preferably 0.3 to 20 μm, more preferably 0.5 to 10 μm. The D 50 of the inorganic oxide powder is easy to handle if the above-mentioned range. Furthermore, it is excellent in operability and workability when it is made into a glass paste, and is also effective in dispersibility in glass.
 ガラス層の形成に用いるガラスペーストには、さらに消泡剤や分散剤のように、通常のガラスペーストにおいて公知の添加物を加えてもよい。これらの添加物は、ビヒクルと同様、通常、焼成の過程で消失する成分である。ガラスペーストは、必須成分であるガラスおよびビヒクル(バインダ樹脂と有機溶剤)と、任意成分、例えば、無機酸化物粉末等の適量を合わせた混合物を撹拌、混合することで調整できる。撹拌および混合は、撹拌翼を備えた回転式の混合機やロールミル、ボールミル等を用いた公知の方法により行う。 The glass paste used for forming the glass layer may further contain known additives in ordinary glass pastes such as an antifoaming agent and a dispersing agent. These additives, like the vehicle, are usually components that disappear during the firing process. The glass paste can be adjusted by stirring and mixing a mixture of glass and vehicle (binder resin and organic solvent), which are essential components, and an appropriate amount of optional components such as inorganic oxide powder. Stirring and mixing are performed by a known method using a rotary mixer equipped with a stirring blade, a roll mill, a ball mill, or the like.
 ガラスペーストを用いて金属基板上にガラスペースト層を形成するには、例えばスクリーン印刷、グラビア印刷やメタルマスク印刷等の印刷法を適用して金属基板上に塗布する方法、あるいはディスペンサ等を用いて塗布する方法、ブレードコートする方法等の方法が適用される。ガラスペースト層の厚さ、形状は、最終的に得られるガラス層において、所定の厚さ、形状となるように調整される。 In order to form a glass paste layer on a metal substrate using a glass paste, for example, a printing method such as screen printing, gravure printing or metal mask printing is applied to the metal substrate, or a dispenser or the like is used. Methods such as a coating method and a blade coating method are applied. The thickness and shape of the glass paste layer are adjusted so that the glass layer finally obtained has a predetermined thickness and shape.
 次いで、ガラスペーストが含有するガラスの焼成温度領域での加熱処理が行われるが、その前に、ガラスペースト層を乾燥させる工程を設けてもよい。この乾燥工程は、ガラスペースト層内の有機溶剤を除去するために行われ、設けることが好ましい工程である。ガラスペースト層内に有機溶剤が残留していると、加熱工程においてバインダ樹脂等の消失すべき成分を十分に除去できないおそれがある。 Next, heat treatment is performed in the glass baking temperature region contained in the glass paste, but before that, a step of drying the glass paste layer may be provided. This drying step is preferably performed in order to remove the organic solvent in the glass paste layer. If the organic solvent remains in the glass paste layer, there is a possibility that components to be eliminated such as the binder resin cannot be sufficiently removed in the heating process.
 次いで、ガラスペーストが含有するガラスの焼成温度領域での加熱処理が行われる。ここで、ガラスの焼成は、該ガラスのTs以上の温度で行うことが必要とされる。上記焼成温度領域としては、Ts+0℃~Ts+30℃の温度領域が好ましく、Ts+10℃~Ts+20℃の温度領域がより好ましい。なお、加熱処理は、通常、金属基板の耐熱温度以下で行われる。加熱処理の方法としては、少なくともガラスペースト層の温度が上記温度となる方法であれば特に制限されない。具体的には、熱放射加熱、赤外線加熱、レーザ光照射、および誘導加熱等が挙げられ、熱放射加熱、レーザ光照射が温度安定性、製造工程費の観点から好ましく用いられる。 Next, heat treatment is performed in the baking temperature range of the glass contained in the glass paste. Here, the baking of the glass is required to be performed at a temperature equal to or higher than Ts of the glass. As the firing temperature region, a temperature region of Ts + 0 ° C. to Ts + 30 ° C. is preferable, and a temperature region of Ts + 10 ° C. to Ts + 20 ° C. is more preferable. In addition, heat processing are normally performed below the heat-resistant temperature of a metal substrate. The method for the heat treatment is not particularly limited as long as at least the temperature of the glass paste layer is the above temperature. Specific examples include thermal radiation heating, infrared heating, laser light irradiation, induction heating, and the like. Thermal radiation heating and laser light irradiation are preferably used from the viewpoint of temperature stability and manufacturing process costs.
 上記加熱処理を、電気炉等による熱放射加熱で行う場合、加熱処理は、主にバインダ樹脂等の消失すべき成分の焼失、除去を行うための脱バインダ加熱(すなわち、仮焼成)と、ガラスを焼成させるための本焼成の2段階で行ってもよい。このように加熱処理を2段階で行うことで、残留カーボン量が低減されてガラス層の気泡の成長が抑制されることにより、ガラス層表面の平滑性がより高められるので、上記した2段階の加熱処理がより好ましい。 When the heat treatment is performed by heat radiation heating using an electric furnace or the like, the heat treatment is mainly performed by removing the binder (such as pre-baking) to remove and remove components that should be lost, such as the binder resin, and glass. You may perform in two steps of the main baking for baking. By performing the heat treatment in two stages in this way, the amount of residual carbon is reduced and the growth of bubbles in the glass layer is suppressed, so that the smoothness of the glass layer surface is further improved. Heat treatment is more preferable.
 本発明のガラス層付き金属基板の用途は特に制限されないが、例えば、太陽電池、PDP(Plasma Display Panel)、VFD(Vacuum Fluorescent Display)、OELD(Organic Electroluminescence Display)、LCD(Liquid Crystal Display)、FED(Field Emission Display)などの表示素子や、MEMS(Micro Electro Mechanical Systems)、ICパッケージ、水晶振動子等の圧電振動子の電子部品等が好適に挙げられる。 The use of the glass substrate with a glass layer of the present invention is not particularly limited. Preferred examples include display elements such as (Field Emission Display), and electronic parts of piezoelectric vibrators such as MEMS (Micro Electro Mechanical Systems), IC packages, and quartz vibrators.
 以下に、本発明の実施例を説明する。なお、本発明はこれら実施例に限定されるものではない。例1~15が実施例であり、例16~18が比較例である。 Hereinafter, examples of the present invention will be described. The present invention is not limited to these examples. Examples 1 to 15 are examples, and examples 16 to 18 are comparative examples.
[例1~例18]
(ガラスの製造)
 表1(例1~10)および表2(例11~18)に示すガラス組成となるようにガラス原料を調合して混合し、1400~1500℃の電気炉中で白金ルツボを用いて1時間溶融し、薄板状ガラスに成形した後、ボールミルで粉砕し、D50が1~3μmのガラス粉末1~18を得た。得られたガラス粉末1~18について、Tg(ガラス転移点)、Ts(ガラス軟化点)、およびガラス結晶化ピーク温度(以下、Tcと記す。)(単位:℃)、ならびに、熱膨張係数(単位:10-7/℃)を以下のようにして測定した。
[Examples 1 to 18]
(Manufacture of glass)
The glass raw materials were prepared and mixed so as to have the glass compositions shown in Table 1 (Examples 1 to 10) and Table 2 (Examples 11 to 18), and then used for 1 hour using a platinum crucible in an electric furnace at 1400 to 1500 ° C. melted, after forming the thin plate glass was pulverized by a ball mill, D 50 was obtained glass powder 1 to 18 1 ~ 3 [mu] m. For the obtained glass powders 1 to 18, Tg (glass transition point), Ts (glass softening point), glass crystallization peak temperature (hereinafter referred to as Tc) (unit: ° C.), and thermal expansion coefficient ( (Unit: 10 −7 / ° C.) was measured as follows.
(Tg、TsおよびTc)
 Tg、TsおよびTcについては、ガラス粉末の約50mgを白金セルに詰め、昇温速度10℃/minにて1000℃までの範囲で示差熱分析計を用いて測定し、第一変曲点をTg、第四変曲点をTsとした。また、Tcは、Tsより高い温度域で観測される発熱のピークとした。なお、表1および表2において「なし」の記載は、1000℃までの範囲でTcが存在しないことを意味する。
(Tg, Ts and Tc)
About Tg, Ts, and Tc, about 50 mg of glass powder is packed in a platinum cell, measured using a differential thermal analyzer at a temperature rising rate of 10 ° C./min up to 1000 ° C., and the first inflection point is determined. Tg and the fourth inflection point were Ts. Further, Tc was an exothermic peak observed in a temperature range higher than Ts. In Tables 1 and 2, “none” means that Tc does not exist up to 1000 ° C.
(熱膨張係数)
 熱膨張係数αについては、ガラス粉末を加圧成形後、Tsより30℃高い温度で10分間焼成して得た焼成体を、直径5mm、長さ2cmの円柱状に加工し、熱膨張計で熱膨張係数を測定した。
(Coefficient of thermal expansion)
Regarding the thermal expansion coefficient α, a fired body obtained by pressure-molding a glass powder and firing it at a temperature 30 ° C. higher than Ts for 10 minutes is processed into a cylindrical shape having a diameter of 5 mm and a length of 2 cm. The thermal expansion coefficient was measured.
(ガラス層付き金属基板の作製)
 上記で得られた各ガラス粉末の60gをそれぞれ、ビヒクル(ブチルカルビトールアセテートとエチルセルロース樹脂の質量比9:1の混合物)の20gに添加、混合してガラスペーストを作製した。これを、ブレードコートでステンレス基板(SUS430:50×50mm、厚さ0.3mm、平均線膨張係数:110×10-7/℃)の主面に、基板の4辺の端から5mmのスペースを空けて10~50μmの膜厚に塗布した。
 ペースト塗布後、これを乾燥し、さらに、ガラス粉末のTs+(0~30℃)の温度にそれぞれ調整された加熱炉内に30分間保持した後、冷却してガラス層付き金属基板1~18を得た。得られたガラス層付き金属基板1~18について以下の評価を行った。
(Production of metal substrate with glass layer)
60 g of each glass powder obtained above was added to and mixed with 20 g of a vehicle (a mixture of butyl carbitol acetate and ethyl cellulose resin in a mass ratio of 9: 1) to prepare a glass paste. This is blade coated with a stainless steel substrate (SUS430: 50 × 50 mm, thickness 0.3 mm, average linear expansion coefficient: 110 × 10 −7 / ° C.) with a space of 5 mm from the edges of the four sides of the substrate. The film was applied to a thickness of 10 to 50 μm.
After applying the paste, this is dried, and further held in a heating furnace adjusted to a temperature of Ts + (0 to 30 ° C.) of the glass powder for 30 minutes, and then cooled to cool the metal substrates 1 to 18 with the glass layer. Obtained. The following evaluations were performed on the obtained metal substrates 1 to 18 with a glass layer.
[評価]
(ガラス層の厚さ)
 得られたガラス層付き金属基板についてガラス層の厚さは、表面粗さ形状測定機(株式会社東京精密社製、サーフコム1400D)を用いて測定した。測定に当たっては、ガラス層が付いている面において、ガラス層が付いていない金属基板の部位から、基板の中心に向かって10mmスキャンし、最大値と最小値の差をガラス層の厚さとした。
(表面粗さ、Ra)
 得られたガラス層付き金属基板のガラス層の中央部分(30×30mmの範囲)において、Raとして、表面粗さ形状測定機(株式会社東京精密社製、サーフコム1400D)を用いて、JIS B0601(1994年)の3「定義された算術平均粗さの定義及び表示」に基づいてRaを測定した。
[Evaluation]
(Glass layer thickness)
About the obtained metal substrate with a glass layer, the thickness of the glass layer was measured using the surface roughness shape measuring machine (The Tokyo Seimitsu Co., Ltd. make, Surfcom 1400D). In the measurement, the surface with the glass layer was scanned from the portion of the metal substrate without the glass layer by 10 mm toward the center of the substrate, and the difference between the maximum value and the minimum value was the thickness of the glass layer.
(Surface roughness, Ra)
In the central part (range of 30 × 30 mm) of the glass layer of the obtained metal substrate with a glass layer, as Ra, using a surface roughness shape measuring machine (manufactured by Tokyo Seimitsu Co., Ltd., Surfcom 1400D), JIS B0601 ( (1994), 3 "Definition and display of defined arithmetic mean roughness" Ra was measured.
(ガラス層付き金属基板の反り)
 得られたガラス層付き金属基板のガラス層が付いている領域についてのガラス層付き金属基板の反りの測定には、表面粗さ形状測定機(株式会社東京精密社製、サーフコム1400D)を用いた。反りを求めるに当たっては、ガラス層が付いている領域の2本の対角線上をそれぞれスキャンして、それぞれについて変位量の最大値と最小値の差を求め、ガラス層付き金属基板の反りの指標とした。
 図1に反りの測定方法の概略図を示す。図1(a)は、上記で得られたガラス層付き金属基板の平面図である。1は金属基板であり、2はガラス層を示す。図1(b)は、図1(a)に示すガラス層付き金属基板の対角線における断面図(X-X線断面図)を示す。図1(b)に示す断面図においてガラス層2の形成領域の一方の端部sから他方の端部eまでが表面粗さ形状測定機によるスキャン領域であり、その変位量の最大値と最小値の差を、図1(b)にHで示す。
 2本の対角線上の測定において、上記変位量の差(図1(b)のH)がいずれも400μm以内である場合を「○」、上記変位量の差がいずれか一方でまたは両方とも400μmを超えたものを「×」として評価した。
 評価結果を、ガラス組成とともに表1および表2に示す。
(Warpage of metal substrate with glass layer)
A surface roughness shape measuring machine (Surfcom 1400D, manufactured by Tokyo Seimitsu Co., Ltd.) was used for measuring the warpage of the metal substrate with the glass layer in the region of the obtained metal substrate with the glass layer. . In determining the warpage, each of the two diagonal lines in the region with the glass layer is scanned, and the difference between the maximum value and the minimum value of the displacement amount is determined for each, and the warpage index of the metal substrate with the glass layer is calculated. did.
FIG. 1 shows a schematic diagram of a method for measuring warpage. Fig.1 (a) is a top view of the metal substrate with a glass layer obtained above. 1 is a metal substrate, 2 is a glass layer. FIG. 1B shows a cross-sectional view (XX cross-sectional view) taken along the diagonal line of the metal substrate with a glass layer shown in FIG. In the cross-sectional view shown in FIG. 1 (b), from one end s to the other end e of the formation region of the glass layer 2 is a scan region by a surface roughness shape measuring instrument, and the maximum and minimum displacements thereof. The difference in values is indicated by H in FIG.
In the measurement on the two diagonal lines, “◯” indicates that the difference between the displacement amounts (H in FIG. 1B) is within 400 μm, and the difference between the displacement amounts is either one or both is 400 μm. Those exceeding the value were evaluated as “x”.
The evaluation results are shown in Table 1 and Table 2 together with the glass composition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2からわかるように、実施例に相当する例1~例15のガラス1~15は、比較例に相当する例16~例18のガラス16~18と異なる。例1~15のガラス1~15は、ガラス転移点が520~670℃であり、ガラス軟化点が650~800℃であり、熱膨張係数が80×10-7~110×10-7/℃のすべての条件を満たしている。
 また、ガラス層付き金属基板1~15において、ガラス層表面のRaは0.10μm以下であり、反りもほとんどない。
As can be seen from Tables 1 and 2, the glasses 1 to 15 of Examples 1 to 15 corresponding to Examples are different from the glasses 16 to 18 of Examples 16 to 18 corresponding to Comparative Examples. Glasses 1 to 15 of Examples 1 to 15 have a glass transition point of 520 to 670 ° C., a glass softening point of 650 to 800 ° C., and a thermal expansion coefficient of 80 × 10 −7 to 110 × 10 −7 / ° C. All the conditions are met.
Further, in the metal substrates with glass layers 1 to 15, Ra on the surface of the glass layer is 0.10 μm or less, and there is almost no warpage.
 本発明によれば、高い耐熱性を有し、非晶質なガラスであって金属基板上にガラス層を形成する際に結晶化することがほとんどなく、また金属基板上にガラス層を形成する際に、金属基板の反りを誘発することがほとんどなく、得られるガラス層の表面については高い平坦性が得ることができる金属基板被覆用ガラスを提供することができ、また、本発明の金属基板被覆用ガラスを用いることで、高い耐熱性と表面平坦性を有するガラス層を備え、かつ基板全体として反りがほとんどない本発明のガラス層付き金属基板が提供でき、各種の電子部品用として有用である。
 なお、2012年7月27日に出願された日本特許出願2012-167387号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
According to the present invention, the glass layer is formed on the metal substrate with high heat resistance and is hardly crystallized when the glass layer is formed on the metal substrate. In this case, it is possible to provide a glass for coating a metal substrate that hardly induces the warp of the metal substrate and can obtain high flatness on the surface of the obtained glass layer, and the metal substrate of the present invention. By using the glass for coating, it is possible to provide a metal substrate with a glass layer of the present invention having a glass layer having high heat resistance and surface flatness and almost no warpage as the whole substrate, which is useful for various electronic components. is there.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2012-167387 filed on July 27, 2012 are incorporated herein as the disclosure of the present invention. .
 1…金属基板、2…ガラス層 1 ... Metal substrate, 2 ... Glass layer

Claims (7)

  1.  酸化物基準の質量百分率表示で、SiOを15~60%、Bを0~35%、RO(RはLi、NaおよびKからなる群から選ばれる少なくとも1種)を0~15%、R’O(R’はMg、Ca、Sr、BaおよびZnからなる群から選ばれる少なくとも1種)を25~55%、Alを0.1~7%含有し、(ZnO+MgO+CaO)/(SrO+BaO)≦0.3を満足する金属基板被覆用ガラス。 In terms of mass percentage based on oxide, SiO 2 is 15 to 60%, B 2 O 3 is 0 to 35%, and R 2 O (R is at least one selected from the group consisting of Li, Na and K) is 0. Containing 15 to 15%, R′O (R ′ is at least one selected from the group consisting of Mg, Ca, Sr, Ba and Zn), 25 to 55%, Al 2 O 3 0.1 to 7%, A glass for coating a metal substrate that satisfies (ZnO + MgO + CaO) / (SrO + BaO) ≦ 0.3.
  2.  酸化物基準の質量百分率表示で、SiOを30~50%、Bを10~25%、RO(RはLi、NaおよびKからなる群から選ばれる少なくとも1種)を0~13%含有する請求項1に記載の金属基板被覆用ガラス。 Oxide-based mass percentage display, SiO 2 30-50%, B 2 O 3 10-25%, R 2 O (R is at least one selected from the group consisting of Li, Na and K) 0 The glass for coating a metal substrate according to claim 1, which contains -13%.
  3.  RO/(SiO+B)の含有量の比が、0.3以下である請求項1または2に記載の金属基板被覆用ガラス。 The glass for coating a metal substrate according to claim 1 or 2, wherein the ratio of the content of R 2 O / (SiO 2 + B 2 O 3 ) is 0.3 or less.
  4.  ガラス転移点が520~670℃であり、ガラス軟化点が650~800℃であり、50~350℃における平均熱膨張係数が80×10-7~110×10-7/℃である請求項1~3のいずれか1項に記載の金属基板被覆用ガラス。 2. The glass transition point is 520 to 670 ° C., the glass softening point is 650 to 800 ° C., and the average thermal expansion coefficient at 50 to 350 ° C. is 80 × 10 −7 to 110 × 10 −7 / ° C. 4. The glass for coating a metal substrate according to any one of items 1 to 3.
  5.  金属基板と、前記金属基板の少なくとも一部の表面に請求項1~4のいずれか1項に記載の金属基板被覆用ガラスを用いて形成されたガラス層を有するガラス層付き金属基板。 A metal substrate with a glass layer, comprising a metal substrate and a glass layer formed on at least a part of the surface of the metal substrate using the glass for coating a metal substrate according to any one of claims 1 to 4.
  6.  前記ガラス層の表面粗さ(Ra)が、0.10μm以下である請求項5に記載のガラス層付き金属基板。 The metal substrate with a glass layer according to claim 5, wherein the glass layer has a surface roughness (Ra) of 0.10 µm or less.
  7.  前記金属と前記ガラスの50~350℃における平均熱膨張係数の差が30×10-7/℃以下である請求項5または6に記載のガラス層付き金属基板。 The metal substrate with a glass layer according to claim 5 or 6, wherein a difference in average thermal expansion coefficient between the metal and the glass at 50 to 350 ° C is 30 × 10 -7 / ° C or less.
PCT/JP2013/070237 2012-07-27 2013-07-25 Glass for coating metal substrate and metal substrate having glass layer attached thereto WO2014017610A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014527015A JPWO2014017610A1 (en) 2012-07-27 2013-07-25 Glass for metal substrate coating and metal substrate with glass layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-167387 2012-07-27
JP2012167387 2012-07-27

Publications (1)

Publication Number Publication Date
WO2014017610A1 true WO2014017610A1 (en) 2014-01-30

Family

ID=49997416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070237 WO2014017610A1 (en) 2012-07-27 2013-07-25 Glass for coating metal substrate and metal substrate having glass layer attached thereto

Country Status (2)

Country Link
JP (1) JPWO2014017610A1 (en)
WO (1) WO2014017610A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841738A (en) * 1981-09-04 1983-03-11 Narumi China Corp Glaze composition for ceramic base plates
JPS5988340A (en) * 1982-11-08 1984-05-22 Nippon Furitsuto Kk Enamel frit
JPS6389435A (en) * 1986-10-02 1988-04-20 モベイ・コーポレーシヨン Enamel composition and substrate coated therewith
JPH01188443A (en) * 1988-01-19 1989-07-27 Nippon Electric Glass Co Ltd Glaze composition for ceramic substrate
JPH0446035A (en) * 1990-06-14 1992-02-17 Ngk Spark Plug Co Ltd Glaze composition
JPH10139477A (en) * 1996-11-13 1998-05-26 Nippon Electric Glass Co Ltd Highly expandable glass composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO821301L (en) * 1981-05-05 1982-11-08 Bayer Ag ENAMELING SUSPENSION AND PROCEDURE FOR TWO AND MULTI-LAYER PAINTING IN A BURNING
US4429007A (en) * 1981-10-21 1984-01-31 The United States Of America As Represented By The United States Department Of Energy Electrical wire insulation and electromagnetic coil
DE3346686C2 (en) * 1983-12-23 1986-11-27 Degussa Ag, 6000 Frankfurt Luminescent glasses
JPS645928A (en) * 1987-06-30 1989-01-10 Hitachi Chemical Co Ltd Glass for coating alumina substrate
EP0414458A1 (en) * 1989-08-21 1991-02-27 Corning Incorporated Glass-ceramic coatings for titanium aluminide surfaces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841738A (en) * 1981-09-04 1983-03-11 Narumi China Corp Glaze composition for ceramic base plates
JPS5988340A (en) * 1982-11-08 1984-05-22 Nippon Furitsuto Kk Enamel frit
JPS6389435A (en) * 1986-10-02 1988-04-20 モベイ・コーポレーシヨン Enamel composition and substrate coated therewith
JPH01188443A (en) * 1988-01-19 1989-07-27 Nippon Electric Glass Co Ltd Glaze composition for ceramic substrate
JPH0446035A (en) * 1990-06-14 1992-02-17 Ngk Spark Plug Co Ltd Glaze composition
JPH10139477A (en) * 1996-11-13 1998-05-26 Nippon Electric Glass Co Ltd Highly expandable glass composition

Also Published As

Publication number Publication date
JPWO2014017610A1 (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP5309629B2 (en) Lead-free glass composition having acid resistance
JP5033339B2 (en) Glass composition
EP1503965A1 (en) Electronic device having lead and cadmium free electronic overglaze applied thereto
KR20070100150A (en) Glass for coating electrode, glass plate with electric wiring and plasma display panel
JP2006193385A (en) Glass for coating electrode and front and back substrates of plasma display panel
JP2005213103A (en) Sealing composition
JP2007063105A (en) Nonlead glass composition
WO2011093177A1 (en) Glass for semiconductor coating and material for semiconductor coating using the same
JP2015117170A (en) Glass for coating metal and metal member having glass layer attached thereto
WO2013054639A1 (en) Bismuth-containing glass composition
WO2013027636A1 (en) Glass for covering semiconductor element
JP2007126319A (en) Bismuth-based lead-free glass composition
JPWO2001090012A1 (en) Glass composition and glass-forming material containing the composition
JP2006169047A (en) Lead-free low melting point glass
JP5668322B2 (en) Optical glass, glass frit and translucent substrate with glass layer
JP2008308393A (en) Lead-free low softening point glass, lead-free low softening point glass composition, lead-free low softening point glass paste, and fluorescent display tube
JP2590972B2 (en) Glass composition for grace layer of substrate
WO2014017610A1 (en) Glass for coating metal substrate and metal substrate having glass layer attached thereto
JP2008303077A (en) Insulating protective coating material
JPS62137897A (en) Insulating layer compound
WO2016084627A1 (en) Glass powder, composite powder, and low expansion substrate with decorative layer
WO2009119433A1 (en) Lead-free glass and composition for lead-free glass ceramics
JP2004175645A (en) Glass frit mixture, method of manufacturing electronic circuit board and electronic circuit board
JP2016079084A (en) Ceramic color composition, glass sheet with ceramic color and manufacturing method therefor
WO2015093326A1 (en) Glass for metallic coating, and metallic member provided with glass layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014527015

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822797

Country of ref document: EP

Kind code of ref document: A1