JP2013043923A - High-damping composition - Google Patents

High-damping composition Download PDF

Info

Publication number
JP2013043923A
JP2013043923A JP2011181685A JP2011181685A JP2013043923A JP 2013043923 A JP2013043923 A JP 2013043923A JP 2011181685 A JP2011181685 A JP 2011181685A JP 2011181685 A JP2011181685 A JP 2011181685A JP 2013043923 A JP2013043923 A JP 2013043923A
Authority
JP
Japan
Prior art keywords
mass
calcium carbonate
silica
parts
treated calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011181685A
Other languages
Japanese (ja)
Other versions
JP5404716B2 (en
Inventor
Yuichiro Matsutani
雄一朗 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2011181685A priority Critical patent/JP5404716B2/en
Priority to KR1020120022249A priority patent/KR101805205B1/en
Priority to TW101109587A priority patent/TWI542642B/en
Priority to CN201210091288.9A priority patent/CN102952294B/en
Publication of JP2013043923A publication Critical patent/JP2013043923A/en
Application granted granted Critical
Publication of JP5404716B2 publication Critical patent/JP5404716B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Springs (AREA)
  • Vibration Dampers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-damping composition which can for example decrease elastic modulus thereof without reducing the size of a viscoelastic damper or the like, because the high-damping composition has high damping performance and also can form a high-damping member having rigidity lower than before.SOLUTION: Silica I and surface-treated calcium carbonate II are blended with diene rubber as a base polymer, so that: I+II is 100-160 pts.mass per 100 pts.mass of the diene rubber; and formula {I/(I+II)}×100 is 10-50 mass%.

Description

本発明は、振動エネルギーの伝達を緩和したり吸収したりする高減衰部材のもとになる高減衰組成物に関するものである。   The present invention relates to a highly damped composition that is a source of a highly damped member that relaxes or absorbs transmission of vibration energy.

例えばビルや橋梁等の建築物、産業機械、航空機、自動車、鉄道車両、コンピュータやその周辺機器類、家庭用電気機器類、さらには自動車用タイヤ等の幅広い分野において、振動エネルギーの伝達を緩和したり吸収したりする、すなわち免震、制震、制振、防振等をするために、ゴム等をベースポリマとして含む高減衰部材が用いられる。
前記高減衰部材は、振動が加えられた際のヒステリシスロスを大きくして減衰性能を高める、すなわち前記振動のエネルギーを効率よく速やかに減衰できるようにするために、前記ベースポリマを含み、損失正接tanδのピークが高減衰部材の使用温度域に入るように調整した高減衰組成物によって形成するのが一般的である。
For example, in a wide range of fields such as buildings and bridges, industrial machinery, aircraft, automobiles, railway vehicles, computers and peripheral equipment, household electrical equipment, and automobile tires, vibration energy transmission is alleviated. In order to absorb or absorb, that is, to perform seismic isolation, vibration control, vibration control, vibration isolation, etc., a high damping member containing rubber or the like as a base polymer is used.
The high damping member includes the base polymer in order to increase the hysteresis loss when vibration is applied to improve damping performance, i.e., to efficiently and quickly attenuate the energy of the vibration. In general, it is formed by a high attenuation composition adjusted so that the peak of tan δ falls within the operating temperature range of the high attenuation member.

前記高減衰組成物を所定の立体形状に形成するとともに、ベースポリマがゴムである場合は架橋させることで高減衰部材が形成される。
ベースポリマとしては、ジエン系ゴムが好適に用いられる。前記ジエン系ゴムは、ガラス転移温度が室温(2〜35℃)付近に存在しないため、最も一般的な使用温度域である前記室温付近での、減衰性能の温度依存性を小さくして、広い温度範囲で安定した減衰性能を示す高減衰部材を形成できるという利点がある。
The high attenuation composition is formed into a predetermined three-dimensional shape, and when the base polymer is rubber, a high attenuation member is formed by crosslinking.
As the base polymer, a diene rubber is preferably used. Since the diene rubber does not have a glass transition temperature near room temperature (2 to 35 ° C.), the temperature dependence of the damping performance near the room temperature, which is the most common use temperature range, is reduced and wide. There is an advantage that a high damping member showing stable damping performance in the temperature range can be formed.

高減衰組成物としては、前記ジエン系ゴム等のベースポリマに、減衰性付与剤としてのシリカとシラン化合物(シリル化剤)とを加え、混練してシリカとシラン化合物とを反応させて調製したもの等が知られている(特許文献1等参照)。
建築物の制振用ダンパ、いわゆる粘弾性ダンパは、例えば高減衰組成物のシート等を鋼板等で挟んだ状態で架橋反応させて、高減衰部材としての粘弾性体を形成するとともに、前記粘弾性体を前記鋼板と加硫接着等によって一体化させる等して構成される。
The high-damping composition was prepared by adding silica and a silane compound (silylating agent) as a damping agent to the base polymer such as the diene rubber and kneading and reacting the silica and the silane compound. The thing etc. are known (refer patent document 1 grade | etc.,).
A damping damper for buildings, a so-called viscoelastic damper, for example, forms a viscoelastic body as a high damping member by causing a cross-linking reaction in a state where a sheet of high damping composition is sandwiched between steel plates and the like. The elastic body is constituted by integrating with the steel plate by vulcanization adhesion or the like.

前記粘弾性ダンパには、地震の揺れに対する制震機能の他に、風揺れ等の微小変形に対しても制振機能を有することが求められる。
また建築物によっては、前記粘弾性ダンパの弾性率を小さく分散させて、つまり弾性率の小さい粘弾性ダンパを複数個、分散的に配置して使用したいという事例が存在する。
ところが、前記従来の高減衰組成物を架橋させて形成される粘弾性体は、良好な減衰性能を発現するべく多量のシリカを含むため、どうしても剛性が高くなる傾向にある。
The viscoelastic damper is required to have a damping function against minute deformations such as wind shaking in addition to a damping function against earthquake shaking.
In some buildings, there are cases where it is desired to disperse and use a plurality of viscoelastic dampers having a low elastic modulus, in which the elastic modulus of the viscoelastic damper is small.
However, the viscoelastic body formed by crosslinking the conventional high-damping composition contains a large amount of silica so as to exhibit good damping performance, and therefore has a tendency to increase in rigidity.

そのため、かかる剛性の高い粘弾性体を備えた粘弾性ダンパの弾性率を小さくして、微小変形に対して十分な制振機能を発揮できるようにしたり、分散配置の要求を満足したりするために、前記粘弾性ダンパの全体の大きさを小型化することが考えられる。
しかしその場合には、粘弾性体の断面積が小さくなるため、例えば地震による大変形時に、面外方向への回転が大きくなって、場合によっては粘弾性体が破壊されるといった問題を生じやすくなる。
Therefore, in order to reduce the elastic modulus of such a viscoelastic damper with a highly rigid viscoelastic body so that it can exhibit a sufficient damping function against minute deformation, or to satisfy the requirements for distributed arrangement In addition, it is conceivable to reduce the overall size of the viscoelastic damper.
However, in that case, since the cross-sectional area of the viscoelastic body becomes small, for example, during large deformation due to an earthquake, the rotation in the out-of-plane direction increases, and in some cases, the viscoelastic body is easily broken. Become.

特開平7−41603号公報JP 7-41603 A

本発明の目的は、高い減衰性能を有する上、これまでよりも剛性が低い高減衰部材を形成できるため、例えば粘弾性ダンパ等を小型化することなしにその弾性率を小さくすることができる高減衰組成物を提供することにある。   An object of the present invention is to provide a high damping member that has high damping performance and lower rigidity than before, so that the elastic modulus can be reduced without downsizing, for example, a viscoelastic damper. It is to provide a damping composition.

本発明は、ベースポリマとしてのジエン系ゴムにシリカ、および表面処理炭酸カルシウムを配合してなるとともに、前記ジエン系ゴム100質量部あたりの、前記シリカ、および表面処理炭酸カルシウムの合計の配合割合は100質量部以上、160質量部以下で、かつ前記表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合は10質量%以上、50質量%以下であることを特徴とする高減衰組成物である。   In the present invention, silica and surface-treated calcium carbonate are blended with diene rubber as a base polymer, and the total blending ratio of silica and surface-treated calcium carbonate per 100 parts by mass of the diene rubber is The proportion of the surface-treated calcium carbonate in the total amount of the silica and the surface-treated calcium carbonate is 10% by mass or more and 50% by mass or less. A damping composition.

炭酸カルシウムは、シリカと同様に減衰性付与剤として機能する上、シリカよりも剛性を上昇させる働きが小さいため、前記シリカの一部を炭酸カルシウムによって置き換えることで、高減衰部材の剛性をこれまでよりも低いレベルに抑えることができる。
しかし未処理の炭酸カルシウムはジエン系ゴムとの相互作用が弱いため、前記のようにシリカの一部を炭酸カルシウムで置き換えると、全量がシリカである場合に比べて高減衰部材の減衰性能が低下する傾向がある。
Calcium carbonate functions as an attenuating agent like silica, and has a lower function of increasing the rigidity than silica. Therefore, by replacing a part of the silica with calcium carbonate, the rigidity of the high attenuation member has been improved so far. Can be kept to a lower level.
However, since the untreated calcium carbonate has a weak interaction with the diene rubber, if a part of the silica is replaced with calcium carbonate as described above, the damping performance of the high damping member is lower than when the entire amount is silica. Tend to.

これに対し、例えばロジン酸や脂肪酸等で表面処理した表面処理炭酸カルシウムは、前記ジエン系ゴムと良好な相互作用を有するため、かかる表面処理炭酸カルシウムをシリカと併用することにより、前記のように高減衰部材の剛性をこれまでよりも低いレベルに抑えながら、高減衰部材の減衰性能を、全量がシリカである場合と同等またはそれ以上に向上することができる。   On the other hand, for example, the surface-treated calcium carbonate surface-treated with rosin acid or fatty acid has a good interaction with the diene rubber, so that the surface-treated calcium carbonate is used in combination with silica as described above. While suppressing the rigidity of the high damping member to a lower level than before, the damping performance of the high damping member can be improved to be equal to or higher than when the entire amount is silica.

そのため本発明の高減衰組成物によれば、高い減衰性能を有する上、これまでよりも剛性が低い高減衰部材を形成できるため、例えば粘弾性ダンパ等を小型化することなしにその弾性率を小さくすることができる。
したがって、例えば地震による大変形時に、面外方向への回転が大きくなって粘弾性体が破壊されるといった問題が発生するのを防止することが可能となる。
Therefore, according to the high damping composition of the present invention, it is possible to form a high damping member having high damping performance and lower rigidity than before, so that, for example, the elastic modulus can be reduced without downsizing a viscoelastic damper or the like. Can be small.
Therefore, it is possible to prevent the occurrence of the problem that the viscoelastic body is destroyed due to the large rotation in the out-of-plane direction at the time of a large deformation due to an earthquake, for example.

なお本発明において、ジエン系ゴム100質量部あたりの、シリカ、および表面処理炭酸カルシウムの合計の配合割合が100質量部以上、160質量部以下に限定されるのは、配合割合が前記範囲未満では、前記両成分を減衰性付与剤として配合することによる効果が得られず、高減衰部材の減衰性能が低下してしまうためである。一方、前記範囲を超える場合には、シリカの一部を表面処理炭酸カルシウムで置き換えたことによる効果が得られず、高減衰部材の剛性が上昇してしまうためである。   In the present invention, the total blending ratio of silica and surface-treated calcium carbonate per 100 parts by weight of the diene rubber is limited to 100 parts by weight or more and 160 parts by weight or less if the blending ratio is less than the above range. This is because the effect obtained by blending the two components as an attenuating agent cannot be obtained, and the attenuation performance of the high attenuation member is lowered. On the other hand, when the above range is exceeded, the effect of replacing part of the silica with the surface-treated calcium carbonate cannot be obtained, and the rigidity of the high attenuation member is increased.

また本発明において、表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合は10質量%以上、50質量%以下に限定されるのは、前記割合が前記範囲未満では、シリカの一部を表面処理炭酸カルシウムで置き換えたことによる効果が得られず、高減衰部材の剛性が上昇してしまうためである。一方、前記範囲を超える場合には、相対的にシリカの割合が少なくなって、高減衰部材の減衰性能が低下してしまうためである。   In the present invention, the proportion of the surface-treated calcium carbonate in the total amount of silica and the surface-treated calcium carbonate is limited to 10% by mass or more and 50% by mass or less. This is because the effect of replacing a part of the surface with calcium carbonate treated with the surface cannot be obtained, and the rigidity of the high damping member is increased. On the other hand, when the above range is exceeded, the ratio of silica is relatively reduced, and the damping performance of the high damping member is lowered.

前記表面処理炭酸カルシウムは、先に説明したジエン系ゴムとの相互作用を向上して、高減衰部材の減衰性能を向上することを考慮すると、ロジン酸、および脂肪酸からなる群より選ばれた少なくとも1種で表面処理した炭酸カルシウムであるのが好ましい。
高減衰部材の剛性をより一層低下させるため、本発明の高減衰組成物には、さらに軟化剤として液状ポリイソプレンゴムを配合してもよい。特に数平均分子量40000以下の、比較的分子量の小さい液状ポリイソプレンゴムを配合することにより、高減衰部材の剛性をより一層効果的に低下させることができる。
The surface-treated calcium carbonate is at least selected from the group consisting of rosin acid and fatty acids in consideration of improving the interaction with the diene rubber described above and improving the damping performance of the high damping member. It is preferably calcium carbonate surface-treated with one kind.
In order to further reduce the rigidity of the high damping member, the high damping composition of the present invention may further contain liquid polyisoprene rubber as a softening agent. In particular, by blending a liquid polyisoprene rubber having a number average molecular weight of 40000 or less and a relatively small molecular weight, the rigidity of the high damping member can be further effectively reduced.

ジエン系ゴムとしては、高減衰部材の減衰性能を向上することを考慮すると、天然ゴムとブタジエンゴムとを併用するのが好ましい。
前記本発明の高減衰組成物を形成材料として用いて、高減衰部材としての建築物の粘弾性ダンパの粘弾性体を形成した場合には、当該粘弾性体が高い減衰性能を有する上、これまでよりも剛性が低いため、前記粘弾性体を含む粘弾性ダンパの全体を小型化することなしにその弾性率を小さくすることができ、例えば地震による大変形時に、面外方向への回転が大きくなって粘弾性体が破壊されるといった問題が発生するのを防止することができる。
As the diene rubber, it is preferable to use natural rubber and butadiene rubber in combination in consideration of improving the damping performance of the high damping member.
When the viscoelastic body of a viscoelastic damper of a building as a high damping member is formed using the high damping composition of the present invention as a forming material, the viscoelastic body has a high damping performance. Therefore, the elastic modulus can be reduced without downsizing the entire viscoelastic damper including the viscoelastic body. For example, during large deformation due to an earthquake, rotation in an out-of-plane direction is possible. It is possible to prevent the occurrence of a problem that the viscoelastic body is destroyed due to the increase in size.

本発明によれば、高い減衰性能を有する上、これまでよりも剛性が低い高減衰部材を形成できるため、例えば粘弾性ダンパ等を小型化することなしにその弾性率を小さくすることができる高減衰組成物を提供することができる。   According to the present invention, a high damping member having high damping performance and lower rigidity than before can be formed, and therefore, the elastic modulus can be reduced without downsizing, for example, a viscoelastic damper. A dampening composition can be provided.

本発明の実施例、比較例の高減衰組成物からなる高減衰部材の減衰性能を評価するために作製する、前記高減衰部材のモデルとしての試験体を分解して示す分解斜視図である。It is a disassembled perspective view which decomposes | disassembles and shows the test body as a model of the said high attenuation member produced in order to evaluate the attenuation performance of the high attenuation member which consists of the high attenuation composition of the Example of this invention, and a comparative example. 同図(a)(b)は、前記試験体を変位させて変位量と荷重との関係を求めるための試験機の概略を説明する図である。FIGS. 4A and 4B are diagrams for explaining the outline of a testing machine for displacing the test body and obtaining the relationship between the displacement and the load. 前記試験機を用いて試験体を変位させて求められる、変位量と荷重との関係を示すヒステリシスループの一例を示すグラフである。It is a graph which shows an example of the hysteresis loop which shows the relationship between the displacement amount and a load calculated | required by displacing a test body using the said testing machine.

本発明は、ベースポリマとしてのジエン系ゴムにシリカ、および表面処理炭酸カルシウムを配合してなるとともに、前記ジエン系ゴム100質量部あたりの、前記シリカ、および表面処理炭酸カルシウムの合計の配合割合は100質量部以上、160質量部以下で、かつ前記表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合は10質量%以上、50質量%以下であることを特徴とする高減衰組成物である。   In the present invention, silica and surface-treated calcium carbonate are blended with diene rubber as a base polymer, and the total blending ratio of silica and surface-treated calcium carbonate per 100 parts by mass of the diene rubber is The proportion of the surface-treated calcium carbonate in the total amount of the silica and the surface-treated calcium carbonate is 10% by mass or more and 50% by mass or less. A damping composition.

(ジエン系ゴム)
ジエン系ゴムとしては、例えば天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム等の1種または2種以上が挙げられる。
前記ジエン系ゴムは、前記反応性成分との反応性に優れる上、ガラス転移温度が室温(2〜35℃)付近に存在しないため、最も一般的な使用温度域である前記室温付近での、剛性等の特性の温度依存性を小さくして、広い温度範囲で安定した減衰性能を示す高減衰部材を形成できるという利点がある。
(Diene rubber)
Examples of the diene rubber include one or more of natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, and the like.
The diene rubber is excellent in reactivity with the reactive component, and since the glass transition temperature does not exist near room temperature (2-35 ° C.), in the vicinity of the room temperature, which is the most common use temperature range, There is an advantage that it is possible to reduce the temperature dependence of characteristics such as rigidity and to form a high damping member that exhibits stable damping performance over a wide temperature range.

材料の入手のしやすさ等を考慮すると、ジエン系ゴムとしては天然ゴムを用いるのが好ましい。また高減衰部材の減衰性能を向上することを考慮すると、前記ジエン系ゴムとしては天然ゴムとブタジエンゴムとを併用するのが好ましい。
前記併用系における両ゴムの配合比率は特に限定されないが、両ゴムの総量中に占めるブタジエンゴムの割合(質量%)で表して10質量%以上、30質量%以下であるのが好ましい。
Considering the availability of materials and the like, it is preferable to use natural rubber as the diene rubber. In consideration of improving the damping performance of the high damping member, it is preferable to use natural rubber and butadiene rubber in combination as the diene rubber.
The blending ratio of both rubbers in the combined system is not particularly limited, but it is preferably 10% by mass or more and 30% by mass or less in terms of the ratio (mass%) of butadiene rubber in the total amount of both rubbers.

前記範囲よりブタジエンゴムが少ない場合には、前記ブタジエンゴムを天然ゴムと併用することによる、高減衰部材の減衰性能を向上する効果が十分に得られないおそれがある。一方、前記範囲よりブタジエンゴムが多い場合には、相対的に天然ゴムの割合が少なくなるため、高減衰組成物の生産コストが上昇するおそれがある。
(シリカ)
シリカとしては、その製法によって分類される湿式法シリカ、乾式法シリカのいずれを用いてもよい。またシリカとしては、充填剤として機能して高減衰部材の減衰性能を向上する効果を向上することを考慮すると、BET比表面積が100〜400m/g、特に200〜250m/gであるものが好ましい。BET比表面積は、例えば柴田化学器械工業(株)製の迅速表面積測定装置SA−1000等を使用して、吸着気体として窒素ガスを用いる気相吸着法で測定した値でもって表すこととする。
When the butadiene rubber is less than the above range, there is a possibility that the effect of improving the damping performance of the high damping member by using the butadiene rubber together with natural rubber may not be sufficiently obtained. On the other hand, when there is more butadiene rubber than the said range, since the ratio of a natural rubber will become relatively small, there exists a possibility that the production cost of a high attenuation | damping composition may rise.
(silica)
As the silica, any of wet process silica and dry process silica classified by the production method may be used. Silica has a BET specific surface area of 100 to 400 m 2 / g, particularly 200 to 250 m 2 / g in consideration of improving the effect of improving the damping performance of the high damping member by functioning as a filler. Is preferred. The BET specific surface area is expressed by a value measured by a gas phase adsorption method using nitrogen gas as an adsorbed gas, for example, using a rapid surface area measuring device SA-1000 manufactured by Shibata Chemical Instruments Co., Ltd.

前記シリカとしては、例えば東ソー・シリカ(株)製のNipSil(ニップシール)KQ等が挙げられる。
(表面処理炭酸カルシウム)
表面処理炭酸カルシウムとしては、例えば合成炭酸カルシウム、重質炭酸カルシウム等の炭酸カルシウムを、例えば脂肪酸、4級アンモニウム塩、ロジン酸、およびリグニン酸等の1種または2種以上で表面処理した炭酸カルシウムの1種または2種以上が挙げられる。
Examples of the silica include NipSil (nip seal) KQ manufactured by Tosoh Silica Co., Ltd.
(Surface treatment calcium carbonate)
As the surface-treated calcium carbonate, for example, calcium carbonate obtained by surface-treating calcium carbonate such as synthetic calcium carbonate or heavy calcium carbonate with one or more of, for example, fatty acid, quaternary ammonium salt, rosin acid, and lignic acid. 1 type, or 2 or more types.

特にロジン酸、および脂肪酸からなる群より選ばれた少なくとも1種で表面処理した表面処理炭酸カルシウムが、ジエン系ゴムとの相互作用を向上して、高減衰部材の減衰性能を向上する機能に優れるため好ましい。
前記表面処理炭酸カルシウムとしては、例えば白石カルシウム(株)製の白艶華(登録商標)DD〔合成炭酸カルシウムをロジン酸で表面処理したもの〕、白艶華CC〔合成炭酸カルシウムを脂肪酸で表面処理したもの〕等が挙げられる。
In particular, the surface-treated calcium carbonate surface-treated with at least one selected from the group consisting of rosin acid and fatty acid improves the interaction with the diene rubber and has an excellent function of improving the damping performance of the high damping member. Therefore, it is preferable.
Examples of the surface-treated calcium carbonate include Shiroishi Hana (registered trademark) DD manufactured by Shiraishi Calcium Co., Ltd. (synthesized calcium carbonate surface-treated with rosin acid), Shiroka Hana CC [synthesized calcium carbonate surface-treated with fatty acid] Etc.

(シリカ、および表面処理炭酸カルシウムの配合割合)
前記のようにジエン系ゴム100質量部あたりの、シリカ、および表面処理炭酸カルシウムの合計の配合割合は100質量部以上、160質量部以下で、かつ前記表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合は10質量%以上、50質量%以下である必要がある。
(Combination ratio of silica and surface-treated calcium carbonate)
As described above, the total blending ratio of silica and surface-treated calcium carbonate per 100 parts by mass of the diene rubber is 100 parts by mass or more and 160 parts by mass or less, and the silica and surface treatment of the surface-treated calcium carbonate. The proportion of calcium carbonate in the total amount needs to be 10% by mass or more and 50% by mass or less.

前記シリカ、および表面処理炭酸カルシウムの合計の配合割合が前記範囲内に限定されるのは、合計の配合割合が100質量部未満では、前記両成分を減衰性付与剤として配合することによる効果が得られず、高減衰部材の減衰性能が低下してしまうためである。一方、160質量部を超える場合には、シリカの一部を表面処理炭酸カルシウムで置き換えたことによる効果が得られず、高減衰部材の剛性が上昇してしまうためである。   The total compounding ratio of the silica and the surface-treated calcium carbonate is limited to the above range. When the total compounding ratio is less than 100 parts by mass, the effect of blending the two components as an attenuating agent is obtained. This is because the damping performance of the high damping member is not obtained. On the other hand, when the amount exceeds 160 parts by mass, the effect of replacing part of the silica with the surface-treated calcium carbonate cannot be obtained, and the rigidity of the high attenuation member is increased.

なお、高減衰部材の剛性のより一層低く抑えながら、減衰性能をさらに向上することを考慮すると、前記シリカ、および表面処理炭酸カルシウムの合計の配合割合は、前記範囲内でも120質量部以上、特に130質量部以上であるのが好ましく、150質量部以下、特に140質量部以下であるのが好ましい。
また表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合が前記範囲内に限定されるのは、前記割合が10質量%未満では、シリカの一部を表面処理炭酸カルシウムで置き換えたことによる効果が得られず、高減衰部材の剛性が上昇してしまうためである。一方、50質量%を超える場合には、相対的にシリカの割合が少なくなって、高減衰部材の減衰性能が低下してしまうためである。
In consideration of further improving the damping performance while further suppressing the rigidity of the high damping member, the total blending ratio of the silica and the surface-treated calcium carbonate is 120 parts by mass or more, particularly within the above range. The amount is preferably 130 parts by mass or more, more preferably 150 parts by mass or less, and particularly preferably 140 parts by mass or less.
In addition, the proportion of the surface-treated calcium carbonate in the total amount of silica and the surface-treated calcium carbonate is limited to the above range. If the proportion is less than 10% by mass, a part of the silica is treated with the surface-treated calcium carbonate. This is because the effect of the replacement cannot be obtained, and the rigidity of the high damping member is increased. On the other hand, when it exceeds 50 mass%, the ratio of silica is relatively reduced, and the attenuation performance of the high attenuation member is lowered.

なお、高減衰部材の剛性のより一層低く抑えながら、減衰性能をさらに向上することを考慮すると、前記表面処理炭酸カルシウムの割合は、前記範囲内でも20質量%以上、特に30質量%以上であるのが好ましく、40質量%以下、特に35質量%以下であるのが好ましい。
(軟化剤)
本発明の高減衰組成物には、高減衰部材の剛性をより一層低下させるため、さらに軟化剤を配合してもよい。前記軟化剤としては液状ゴムが挙げられる。また液状ゴムとしては、室温(3〜35℃)で液状を呈する種々のゴムが挙げられる。前記液状ゴムとしては、例えば液状ポリイソプレンゴム、液状ニトリルゴム(液状NBR)、液状スチレンブタジエンゴム(液状SBR)等の1種または2種以上が挙げられる。
In consideration of further improving the damping performance while further suppressing the rigidity of the high damping member, the ratio of the surface-treated calcium carbonate is 20% by mass or more, particularly 30% by mass or more even within the above range. Is preferably 40% by mass or less, particularly preferably 35% by mass or less.
(Softener)
The high damping composition of the present invention may further contain a softening agent in order to further reduce the rigidity of the high damping member. Examples of the softening agent include liquid rubber. Examples of the liquid rubber include various rubbers that are liquid at room temperature (3-35 ° C.). Examples of the liquid rubber include one or more of liquid polyisoprene rubber, liquid nitrile rubber (liquid NBR), liquid styrene butadiene rubber (liquid SBR), and the like.

このうち液状ポリイソプレンゴムが好ましい。前記液状ポリイソプレンゴムとしては、例えば(株)クラレ製のクラプレン(登録商標)LIR−30(数平均分子量:28000)、LIR−50(数平均分子量:54000)等が挙げられる。中でも特にLIR−30等の、数平均分子量40000以下の比較的分子量の小さい液状ポリイソプレンゴムを配合することにより、高減衰部材の剛性をより一層効果的に低下させることができる。   Of these, liquid polyisoprene rubber is preferred. Examples of the liquid polyisoprene rubber include Kuraray (trademark) LIR-30 (number average molecular weight: 28000), LIR-50 (number average molecular weight: 54000) manufactured by Kuraray Co., Ltd., and the like. In particular, the rigidity of the high damping member can be further effectively reduced by blending a liquid polyisoprene rubber having a relatively low molecular weight such as LIR-30 and having a number average molecular weight of 40000 or less.

液状ポリイソプレンゴムの配合割合は、ジエン系ゴム100質量部あたり5質量部以上であるのが好ましく、50質量部以下であるのが好ましい。
配合割合が前記範囲未満では、当該液状ポリイソプレンゴムを配合することによる、高減衰部材の剛性を低下させる効果が十分に得られないおそれがある。一方、前記範囲を超える場合には高減衰部材の減衰性能が低下するおそれがある。
The blending ratio of the liquid polyisoprene rubber is preferably 5 parts by mass or more per 100 parts by mass of the diene rubber, and is preferably 50 parts by mass or less.
If the blending ratio is less than the above range, the effect of lowering the rigidity of the high damping member by blending the liquid polyisoprene rubber may not be sufficiently obtained. On the other hand, if the above range is exceeded, the damping performance of the high damping member may be reduced.

(その他の成分)
本発明の高減衰組成物には、さらにシリカ、表面処理炭酸カルシウム以外の他の充てん剤や、あるいはジエン系ゴムを架橋させるための架橋成分等を、適宜の割合で配合してもよい。
前記他の充てん剤としては、例えばカーボンブラック等が挙げられる。
(Other ingredients)
The high attenuation composition of the present invention may further contain a filler other than silica and surface-treated calcium carbonate, or a crosslinking component for crosslinking the diene rubber at an appropriate ratio.
Examples of the other fillers include carbon black.

前記カーボンブラックとしては、その製造方法等によって分類される種々のカーボンブラックのうち、充てん剤として機能しうるカーボンブラックの1種または2種以上が使用可能である。
カーボンブラックの配合割合は特に限定されないが、ジエン系ゴム100質量部あたり1質量部以上、5質量部以下であるのが好ましい。
As the carbon black, one or more of carbon blacks that can function as a filler among various carbon blacks classified according to the production method thereof can be used.
The blending ratio of carbon black is not particularly limited, but is preferably 1 part by mass or more and 5 parts by mass or less per 100 parts by mass of the diene rubber.

架橋成分としては、ジエン系ゴムを架橋しうる種々の架橋成分が使用可能である。特に硫黄加硫系の架橋成分を用いるのが好ましい。前記硫黄加硫系の架橋成分としては、加硫剤、加硫促進剤、および加硫促進助剤を組み合わせたものが挙げられる。特に高減衰部材のゴム弾性が上昇して減衰性能が低下する問題を生じにくい加硫剤、加硫促進剤、加硫促進助剤を組み合わせるのが好ましい。   As the crosslinking component, various crosslinking components capable of crosslinking the diene rubber can be used. In particular, it is preferable to use a sulfur vulcanized crosslinking component. Examples of the sulfur-vulcanized crosslinking component include a combination of a vulcanizing agent, a vulcanization accelerator, and a vulcanization acceleration aid. In particular, it is preferable to combine a vulcanizing agent, a vulcanization accelerator, and a vulcanization acceleration aid that hardly cause the problem that the rubber elasticity of the high damping member increases and the damping performance decreases.

加硫剤としては、例えば硫黄や含硫黄有機化合物等が挙げられる。特に硫黄が好ましい。
加硫促進剤としては、例えばスルフェンアミド系加硫促進剤、チウラム系加硫促進剤等が挙げられる。加硫促進剤は、種類によって加硫促進のメカニズムが異なるため2種以上を併用するのが好ましい。
Examples of the vulcanizing agent include sulfur and sulfur-containing organic compounds. In particular, sulfur is preferable.
Examples of the vulcanization accelerator include a sulfenamide vulcanization accelerator and a thiuram vulcanization accelerator. It is preferable to use two or more vulcanization accelerators in combination because the vulcanization acceleration mechanism varies depending on the type.

このうちスルフェンアミド系加硫促進剤としては、例えば大内新興化学工業(株)製のノクセラー(登録商標)NS〔N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド〕等が挙げられる。またチウラム系加硫促進剤としては、例えば大内新興化学工業(株)製のノクセラーTBT〔テトラブチルチウラムジスルフィド〕等が挙げられる。
加硫促進助剤としては例えば亜鉛華、ステアリン酸等が挙げられる。通常は両者を加硫促進助剤として併用するのが好ましい。
Among them, examples of the sulfenamide-based vulcanization accelerator include Noxeller (registered trademark) NS [N-tert-butyl-2-benzothiazolylsulfenamide] manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. . Examples of the thiuram vulcanization accelerator include Noxeller TBT [tetrabutyl thiuram disulfide] manufactured by Ouchi Shinsei Chemical Co., Ltd.
Examples of the vulcanization acceleration aid include zinc white and stearic acid. Usually, it is preferable to use both as a vulcanization acceleration aid.

前記加硫剤、加硫促進剤、加硫促進助剤の配合割合は、高減衰部材の用途等によって異なる減衰性能や剛性等の特性に応じて適宜調整すればよい。
本発明の高減衰組成物には、さらに必要に応じてシラン化合物、液状ポリイソプレンゴム以外の他の軟化剤、粘着性付与剤、老化防止剤等の各種添加剤を、適宜の割合で配合してもよい。
The blending ratio of the vulcanizing agent, the vulcanization accelerator, and the vulcanization accelerating agent may be appropriately adjusted according to the characteristics such as the damping performance and the rigidity that differ depending on the use of the high damping member.
The high attenuation composition of the present invention may further contain various additives such as a silane compound and a softening agent other than the liquid polyisoprene rubber, a tackifier, and an anti-aging agent at an appropriate ratio, if necessary. May be.

このうちシラン化合物としては、式(a):   Among these, as the silane compound, the formula (a):

Figure 2013043923
Figure 2013043923

〔式中、R、R、R、およびRのうちの少なくとも1つはアルコキシ基を示す。ただしR、R、R、およびRが同時にアルコキシ基であることはなく、他はアルキル基またはアリール基を示す。〕
で表され、シランカップリング剤やシリル化剤等の、シリカの分散剤として機能しうる種々のシラン化合物が挙げられる。
[Wherein, at least one of R 1 , R 2 , R 3 , and R 4 represents an alkoxy group. However, R 1 , R 2 , R 3 , and R 4 are not simultaneously an alkoxy group, and the other represents an alkyl group or an aryl group. ]
And various silane compounds that can function as a silica dispersant, such as a silane coupling agent and a silylating agent.

特にヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン等のアルコキシシランが好ましい。
前記シラン化合物としては、例えば信越化学工業(株)製のKBE−103(フェニルトリエトキシシラン)等が挙げられる。
シラン化合物の配合割合は特に限定されないが、シリカ100質量部あたり5質量部以上であるのが好ましく、25質量部以下であるのが好ましい。
In particular, alkoxysilanes such as hexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and diphenyldimethoxysilane are preferred.
Examples of the silane compound include KBE-103 (phenyltriethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
The blending ratio of the silane compound is not particularly limited, but it is preferably 5 parts by mass or more and preferably 25 parts by mass or less per 100 parts by mass of silica.

他の軟化剤としては、例えば先に例示した液状ポリイソプレンゴム以外の他の液状ゴムや、あるいはクマロンインデン樹脂等が挙げられる。
前記クマロンインデン樹脂としては、主にクマロンとインデンの重合物からなり、平均分子量1000以下程度の比較的低分子量であって、軟化剤として機能しうる種々のクマロンインデン樹脂が挙げられる。
Examples of other softeners include liquid rubber other than the liquid polyisoprene rubber exemplified above, or coumarone indene resin.
Examples of the coumarone indene resin include various coumarone indene resins which are mainly composed of a polymer of coumarone and indene and have a relatively low molecular weight of about 1000 or less in average molecular weight and can function as a softening agent.

前記クマロンインデン樹脂としては、例えば日塗化学(株)製のニットレジン(登録商標)クマロンG−90〔平均分子量:770、軟化点:90℃、酸価:1.0KOHmg/g以下、水酸基価:25KOHmg/g、臭素価9g/100g〕、G−100N〔平均分子量:730、軟化点:100℃、酸価:1.0KOHmg/g以下、水酸基価:25KOHmg/g、臭素価11g/100g〕、V−120〔平均分子量:960、軟化点:120℃、酸価:1.0KOHmg/g以下、水酸基価:30KOHmg/g、臭素価6g/100g〕、V−120S〔平均分子量:950、軟化点:120℃、酸価:1.0KOHmg/g以下、水酸基価:30KOHmg/g、臭素価7g/100g〕等の1種または2種以上が挙げられる。   As the coumarone indene resin, for example, Knit Resin (registered trademark) Coumarone G-90 manufactured by Nikko Chemical Co., Ltd. [average molecular weight: 770, softening point: 90 ° C., acid value: 1.0 KOH mg / g or less, hydroxyl group] Value: 25 KOH mg / g, bromine value 9 g / 100 g], G-100N [average molecular weight: 730, softening point: 100 ° C., acid value: 1.0 KOH mg / g or less, hydroxyl value: 25 KOH mg / g, bromine value 11 g / 100 g V-120 [average molecular weight: 960, softening point: 120 ° C., acid value: 1.0 KOH mg / g or less, hydroxyl value: 30 KOH mg / g, bromine value 6 g / 100 g], V-120S [average molecular weight: 950, Softening point: 120 ° C., acid value: 1.0 KOH mg / g or less, hydroxyl value: 30 KOH mg / g, bromine value 7 g / 100 g] and the like.

クマロンインデン樹脂の配合割合は特に限定されないが、ジエン系ゴム100質量部あたり5質量部以上であるのが好ましく、20質量部以下であるのが好ましい。
粘着性付与剤としては、例えば石油樹脂等が挙げられる。また石油樹脂としては、例えば丸善石油化学(株)製のマルカレッツ(登録商標)M890A〔ジシクロペンタジエン系石油樹脂、軟化点:105℃〕等が好ましい。
The blending ratio of the coumarone indene resin is not particularly limited, but is preferably 5 parts by mass or more and more preferably 20 parts by mass or less per 100 parts by mass of the diene rubber.
Examples of the tackifier include petroleum resins. As the petroleum resin, for example, Marcaretz (registered trademark) M890A [dicyclopentadiene-based petroleum resin, softening point: 105 ° C.] manufactured by Maruzen Petrochemical Co., Ltd. is preferable.

前記石油樹脂の配合割合は特に限定されないが、ジエン系ゴム100質量部あたり3質量部以上であるのが好ましく、30質量部以下であるのが好ましい。
老化防止剤としては、例えばベンズイミダゾール系、キノン系、ポリフェノール系、アミン系等の各種老化防止剤の1種または2種以上が挙げられる。特にベンズイミダゾール系老化防止剤とキノン系老化防止剤を併用するのが好ましい。
Although the blending ratio of the petroleum resin is not particularly limited, it is preferably 3 parts by mass or more and preferably 30 parts by mass or less per 100 parts by mass of the diene rubber.
As an anti-aging agent, 1 type, or 2 or more types of various anti-aging agents, such as a benzimidazole type, a quinone type, a polyphenol type, and an amine type, are mentioned, for example. In particular, it is preferable to use a benzimidazole antioxidant and a quinone antioxidant together.

このうちベンズイミダゾール系老化防止剤としては、例えば大内新興化学工業(株)製のノクラック(登録商標)MB〔2−メルカプトベンズイミダゾール〕等が挙げられる。またキノン系老化防止剤としては、例えば丸石化学品(株)製のアンチゲンFR〔芳香族ケトン−アミン縮合物〕等が挙げられる。
両老化防止剤の配合割合は特に限定されないが、ベンズイミダゾール系老化防止剤は、ジエン系ゴム100質量部あたり0.5質量部以上であるのが好ましく、5質量部以下であるのが好ましい。またキノン系老化防止剤は、ジエン系ゴム100質量部あたり0.5質量部以上であるのが好ましく、5質量部以下であるのが好ましい。
Among them, examples of the benzimidazole-based anti-aging agent include NOCRACK (registered trademark) MB [2-mercaptobenzimidazole] manufactured by Ouchi Shinko Chemical Industry Co., Ltd. Examples of the quinone anti-aging agent include Antigen FR [aromatic ketone-amine condensate] manufactured by Cobblestone Chemical Co., Ltd.
The blending ratio of both anti-aging agents is not particularly limited, but the benzimidazole type anti-aging agent is preferably 0.5 parts by mass or more and preferably 5 parts by mass or less per 100 parts by mass of the diene rubber. The quinone anti-aging agent is preferably 0.5 parts by mass or more, preferably 5 parts by mass or less, per 100 parts by mass of the diene rubber.

本発明の高減衰組成物を用いて製造できる高減衰部材としては、例えばビル等の建築物の基礎に組み込まれる免震用ダンパ、建築物の構造中に組み込まれる制震(制振)用ダンパ、吊橋や斜張橋等のケーブルの制振部材、産業機械や航空機、自動車、鉄道車両等の防振部材、コンピュータやその周辺機器類、あるいは家庭用電気機器類等の防振部材、さらには自動車用タイヤのトレッド等が挙げられる。   The high damping member that can be manufactured using the high damping composition of the present invention includes, for example, a seismic isolation damper that is incorporated in the foundation of a building such as a building, and a damping damper that is incorporated in the structure of the building. Damping members for cables such as suspension bridges and cable-stayed bridges, anti-vibration members for industrial machines, aircraft, automobiles, railway vehicles, etc., anti-vibration members for computers and their peripheral devices, household electric appliances, etc. Examples include treads for automobile tires.

本発明によれば、前記ジエン系ゴム、シリカ、表面処理炭酸カルシウムその他、各種成分の種類とその組み合わせおよび配合割合を調整することにより、前記それぞれの用途に適した優れた減衰性能を有する高減衰部材を得ることができる。
特に本発明の高減衰組成物を形成材料として用いて、高減衰部材としての建築物の粘弾性ダンパの粘弾性体を形成した場合には、当該粘弾性体が高い減衰性能を有する上、これまでよりも剛性が低いため、前記粘弾性体を含む粘弾性ダンパの全体を小型化することなしにその弾性率を小さくすることができ、例えば地震による大変形時に、面外方向への回転が大きくなって粘弾性体が破壊されるといった問題が発生するのを防止することができる。
According to the present invention, the above-described diene rubber, silica, surface-treated calcium carbonate, and other various components, and combinations and blending ratios thereof can be adjusted to achieve high attenuation having excellent attenuation performance suitable for each application. A member can be obtained.
In particular, when a viscoelastic body of a building as a high damping member is formed using the high damping composition of the present invention as a forming material, the viscoelastic body has high damping performance and Therefore, the elastic modulus can be reduced without downsizing the entire viscoelastic damper including the viscoelastic body. For example, during large deformation due to an earthquake, rotation in an out-of-plane direction is possible. It is possible to prevent the occurrence of a problem that the viscoelastic body is destroyed due to the increase in size.

〈実施例1〉
(高減衰組成物の調製)
ベースポリマとしての天然ゴム〔SMR(Standard Malaysian Rubber)−CV60〕100質量部に、シリカ〔東ソー・シリカ(株)製のNipSil(ニップシール)KQ〕90質量部、表面処理炭酸カルシウム〔白石カルシウム(株)製の白艶華(登録商標)DD、合成炭酸カルシウムをロジン酸で表面処理したもの〕45質量部、および液状ポリイソプレンゴム〔(株)クラレ製のLIR−30、数平均分子量:28000〕35質量部と、下記表1に示す各成分とを配合し、密閉式混練機を用いて混練して高減衰組成物を調製した。
<Example 1>
(Preparation of highly attenuated composition)
100 parts by mass of natural rubber (SMR (Standard Malaysian Rubber) -CV60) as a base polymer, 90 parts by mass of silica (NipSil (nip seal) KQ made by Tosoh Silica Co., Ltd.), surface treated calcium carbonate [Shiraishi Calcium Co., Ltd. Hakuenka (registered trademark) DD, synthetic calcium carbonate surface-treated with rosin acid] 45 parts by mass, and liquid polyisoprene rubber [LIR-30 manufactured by Kuraray Co., Ltd., number average molecular weight: 28000] 35 parts by mass The components shown in Table 1 below were blended and kneaded using a closed kneader to prepare a highly attenuated composition.

シリカと表面処理炭酸カルシウムの合計の配合割合は、天然ゴム100質量部あたり135質量部であった。また表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合は33.3質量%であった。   The total blending ratio of silica and surface-treated calcium carbonate was 135 parts by mass per 100 parts by mass of natural rubber. The proportion of the surface-treated calcium carbonate in the total amount of silica and surface-treated calcium carbonate was 33.3% by mass.

Figure 2013043923
Figure 2013043923

表中の各成分は下記のとおり。
シラン化合物:フェニルトリエトキシシラン、信越化学工業(株)製のKBE−103
カーボンブラック:FEF、東海カーボン(株)製のシーストSO
ベンズイミダゾール系老化防止剤:2−メルカプトベンズイミダゾール、大内新興化学工業(株)製のノクラックMB
キノン系老化防止剤:丸石化学品(株)製のアンチゲンFR
酸化亜鉛2種:三井金属鉱業(株)製
ステアリン酸:日油(株)製の「つばき」
ジシクロペンタジエン系石油樹脂:軟化点105℃、丸善石油化学(株)製のマルカレッツ(登録商標)M890A
クマロン樹脂:軟化点90℃、日塗化学(株)製のエスクロン(登録商標)G-90
5%オイル処理粉末硫黄:加硫剤、鶴見化学工業(株)製
スルフェンアミド系加硫促進剤:N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド、大内新興化学工業(株)製のノクセラー(登録商標)NS
チウラム系加硫促進剤:テトラブチルチウラムジスルフィド、大内新興化学工業(株)製のノクセラーTBT−N
〈実施例2〉
表面処理炭酸カルシウムとして、合成炭酸カルシウムを脂肪酸で表面処理したもの〔白石カルシウム(株)製の白艶華(登録商標)CC〕45質量部を配合したこと以外は実施例1と同様にして高減衰組成物を調製した。
Each component in the table is as follows.
Silane compound: Phenyltriethoxysilane, KBE-103 manufactured by Shin-Etsu Chemical Co., Ltd.
Carbon Black: FEF, Sea Toe SO manufactured by Tokai Carbon Co., Ltd.
Benzimidazole anti-aging agent: 2-mercaptobenzimidazole, NOCRACK MB manufactured by Ouchi Shinsei Chemical Co., Ltd.
Quinone anti-aging agent: Antigen FR manufactured by Maruishi Chemical Co., Ltd.
Two types of zinc oxide: manufactured by Mitsui Mining & Smelting Co., Ltd. Stearic acid: "Tsubaki" manufactured by NOF Corporation
Dicyclopentadiene-based petroleum resin: softening point 105 ° C., Marukaretsu (registered trademark) M890A manufactured by Maruzen Petrochemical Co., Ltd.
Coumarone resin: softening point 90 ° C., Nikko Chemical Co., Ltd. Escron (registered trademark) G-90
5% oil-treated powder sulfur: vulcanizing agent, manufactured by Tsurumi Chemical Industry Co., Ltd. Sulfenamide vulcanization accelerator: N-tert-butyl-2-benzothiazolylsulfenamide, Ouchi Shinsei Chemical Industry Co., Ltd. Noxeller (registered trademark) NS
Thiuram-based vulcanization accelerator: Tetrabutylthiuram disulfide, Noxeller TBT-N manufactured by Ouchi Shinsei Chemical Co., Ltd.
<Example 2>
Highly attenuated composition in the same manner as in Example 1 except that 45 parts by mass of surface-treated calcium carbonate obtained by subjecting synthetic calcium carbonate to a surface treatment with a fatty acid [Shiraishi Hana (registered trademark) CC manufactured by Shiraishi Calcium Co., Ltd.] A product was prepared.

シリカと表面処理炭酸カルシウムの合計の配合割合は、天然ゴム100質量部あたり135質量部であった。また表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合は33.3質量%であった。
〈実施例3〉
ベースポリマとして、天然ゴム〔SMR(Standard Malaysian Rubber)−CV60〕とブタジエンゴム〔宇部興産(株)製のUBEPOL(登録商標) BR130B〕とを質量比で80/20の割合で配合したもの100質量部を用いたこと以外は実施例1と同様にして高減衰組成物を調製した。
The total blending ratio of silica and surface-treated calcium carbonate was 135 parts by mass per 100 parts by mass of natural rubber. The proportion of the surface-treated calcium carbonate in the total amount of silica and surface-treated calcium carbonate was 33.3% by mass.
<Example 3>
A blend of natural rubber [SMR (Standard Malaysian Rubber) -CV60] and butadiene rubber [UBEPOL (registered trademark) BR130B manufactured by Ube Industries, Ltd.] at a mass ratio of 80/20 as a base polymer 100 mass A highly attenuating composition was prepared in the same manner as in Example 1 except that the parts were used.

シリカと表面処理炭酸カルシウムの合計の配合割合は、天然ゴム+ブタジエンゴム100質量部あたり135質量部であった。また表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合は33.3質量%であった。
〈比較例1〉
表面処理炭酸カルシウムを配合せず、かつシリカの配合割合を135質量部としたこと以外は実施例1と同様にして高減衰組成物を調製した。
The total blending ratio of silica and surface-treated calcium carbonate was 135 parts by mass per 100 parts by mass of natural rubber + butadiene rubber. The proportion of the surface-treated calcium carbonate in the total amount of silica and surface-treated calcium carbonate was 33.3% by mass.
<Comparative example 1>
A highly attenuating composition was prepared in the same manner as in Example 1 except that the surface-treated calcium carbonate was not blended and the blending ratio of silica was 135 parts by mass.

シリカと表面処理炭酸カルシウムの合計の配合割合は、天然ゴム100質量部あたり135質量部であった。また表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合は0質量%であった。
〈比較例2〉
シリカの配合割合を90質量部としたこと以外は比較例1と同様にして高減衰組成物を調製した。
The total blending ratio of silica and surface-treated calcium carbonate was 135 parts by mass per 100 parts by mass of natural rubber. The proportion of the surface-treated calcium carbonate in the total amount of silica and surface-treated calcium carbonate was 0% by mass.
<Comparative example 2>
A highly attenuated composition was prepared in the same manner as in Comparative Example 1 except that the blending ratio of silica was 90 parts by mass.

シリカと表面処理炭酸カルシウムの合計の配合割合は、天然ゴム100質量部あたり90質量部であった。また表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合は0質量%であった。
〈比較例3〉
液状ポリイソプレンゴムとして、数平均分子量が54000であるもの〔(株)クラレ製のLIR−50〕35質量部を配合したこと以外は比較例1と同様にして高減衰組成物を調製した。
The total blending ratio of silica and surface-treated calcium carbonate was 90 parts by mass per 100 parts by mass of natural rubber. The proportion of the surface-treated calcium carbonate in the total amount of silica and surface-treated calcium carbonate was 0% by mass.
<Comparative Example 3>
A highly attenuating composition was prepared in the same manner as in Comparative Example 1 except that 35 parts by mass of a liquid polyisoprene rubber having a number average molecular weight of 54,000 [LIR-50 manufactured by Kuraray Co., Ltd.] was blended.

シリカと表面処理炭酸カルシウムの合計の配合割合は、天然ゴム100質量部あたり135質量部であった。また表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合は0質量%であった。
〈比較例4〉
表面処理をしていない未処理の重質炭酸カルシウム〔白石カルシウム(株)製のホワイトン(登録商標)BF−300〕45質量部を配合したこと以外は実施例1と同様にして高減衰組成物を調製した。
The total blending ratio of silica and surface-treated calcium carbonate was 135 parts by mass per 100 parts by mass of natural rubber. The proportion of the surface-treated calcium carbonate in the total amount of silica and surface-treated calcium carbonate was 0% by mass.
<Comparative example 4>
Highly attenuated composition in the same manner as in Example 1 except that 45 parts by weight of untreated heavy calcium carbonate (Shiraishi Calcium Co., Ltd., Whiten (registered trademark) BF-300) not surface-treated is blended. A product was prepared.

シリカと重質炭酸カルシウムの合計の配合割合は、天然ゴム100質量部あたり135質量部であった。また重質炭酸カルシウムの、シリカ、および重質炭酸カルシウムの総量中に占める割合は33.3質量%であった。
〈比較例5〉
表面処理炭酸カルシウム〔白石カルシウム(株)製の白艶華(登録商標)DD〕の配合割合を10質量部とし、かつシリカの配合割合を125質量部としたこと以外は実施例1と同様にして高減衰組成物を調製した。
The total blending ratio of silica and heavy calcium carbonate was 135 parts by mass per 100 parts by mass of natural rubber. The proportion of heavy calcium carbonate in the total amount of silica and heavy calcium carbonate was 33.3% by mass.
<Comparative Example 5>
Except that the blending ratio of the surface-treated calcium carbonate [Shiraishi Hana (registered trademark) DD manufactured by Shiraishi Calcium Co., Ltd.] was 10 parts by mass and the blending ratio of silica was 125 parts by mass, the same as in Example 1. A damping composition was prepared.

シリカと表面処理炭酸カルシウムの合計の配合割合は、天然ゴム100質量部あたり135質量部であった。また表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合は7.4質量%であった。
〈比較例6〉
表面処理炭酸カルシウム〔白石カルシウム(株)製の白艶華(登録商標)DD〕の配合割合を75質量部とし、かつシリカの配合割合を60質量部としたこと以外は実施例1と同様にして高減衰組成物を調製した。
The total blending ratio of silica and surface-treated calcium carbonate was 135 parts by mass per 100 parts by mass of natural rubber. The proportion of the surface-treated calcium carbonate in the total amount of silica and surface-treated calcium carbonate was 7.4% by mass.
<Comparative Example 6>
Except that the blending ratio of the surface-treated calcium carbonate [Shiraishi Hana (registered trademark) DD manufactured by Shiraishi Calcium Co., Ltd.] is 75 parts by mass and the blending ratio of silica is 60 parts by mass, the same as in Example 1. A damping composition was prepared.

シリカと表面処理炭酸カルシウムの合計の配合割合は、天然ゴム100質量部あたり135質量部であった。また表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合は55.6質量%であった。
〈比較例7〉
表面処理炭酸カルシウム〔白石カルシウム(株)製の白艶華(登録商標)DD〕の配合割合を30質量部とし、かつシリカの配合割合を60質量部としたこと以外は実施例1と同様にして高減衰組成物を調製した。
The total blending ratio of silica and surface-treated calcium carbonate was 135 parts by mass per 100 parts by mass of natural rubber. The proportion of the surface-treated calcium carbonate in the total amount of silica and surface-treated calcium carbonate was 55.6% by mass.
<Comparative Example 7>
Except that the blending ratio of the surface-treated calcium carbonate [Shiraishi Hana (registered trademark) DD manufactured by Shiraishi Calcium Co., Ltd.] was 30 parts by mass and the blending ratio of silica was 60 parts by mass, the amount was as high as in Example 1. A damping composition was prepared.

シリカと表面処理炭酸カルシウムの合計の配合割合は、天然ゴム100質量部あたり90質量部であった。また表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合は33.3質量%であった。
〈比較例8〉
表面処理炭酸カルシウム〔白石カルシウム(株)製の白艶華(登録商標)DD〕の配合割合を60質量部とし、かつシリカの配合割合を120質量部としたこと以外は実施例1と同様にして高減衰組成物を調製した。
The total blending ratio of silica and surface-treated calcium carbonate was 90 parts by mass per 100 parts by mass of natural rubber. The proportion of the surface-treated calcium carbonate in the total amount of silica and surface-treated calcium carbonate was 33.3% by mass.
<Comparative Example 8>
The amount of the surface-treated calcium carbonate [Shiraishi Hana (registered trademark) DD manufactured by Shiraishi Calcium Co., Ltd.] was 60 parts by mass, and the silica compounding ratio was 120 parts by mass. A damping composition was prepared.

シリカと表面処理炭酸カルシウムの合計の配合割合は、天然ゴム100質量部あたり180質量部であった。また表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合は33.3質量%であった。
〈減衰特性試験〉
(試験体の作製)
実施例、比較例、従来例で調製した高減衰組成物をシート状に押出成形したのち打ち抜いて、図1に示すように円板1(厚み5mm×直径25mm)を作製し、前記円板1の表裏両面に、それぞれ加硫接着剤を介して厚み6mm×縦44mm×横44mmの矩形平板状の鋼板2を重ねて積層方向に加圧しながら150℃に加熱して円板1を形成する高減衰組成物を加硫させるとともに、前記円板1を2枚の鋼板2と加硫接着させて、高減衰部材のモデルとしての減衰特性評価用の試験体3を作製した。
The total blending ratio of silica and surface-treated calcium carbonate was 180 parts by mass per 100 parts by mass of natural rubber. The proportion of the surface-treated calcium carbonate in the total amount of silica and surface-treated calcium carbonate was 33.3% by mass.
<Attenuation characteristic test>
(Preparation of test specimen)
The high attenuation compositions prepared in Examples, Comparative Examples, and Conventional Examples are extruded into a sheet shape and then punched to produce a disk 1 (thickness 5 mm × diameter 25 mm) as shown in FIG. The disk 1 is formed by superimposing a rectangular plate-shaped steel plate 2 of thickness 6 mm × length 44 mm × width 44 mm on both the front and back surfaces of the steel sheet and heating to 150 ° C. while pressing in the laminating direction. While the damping composition was vulcanized, the disk 1 was vulcanized and bonded to the two steel plates 2 to produce a specimen 3 for evaluating damping characteristics as a model of a high damping member.

(変位試験)
図2(a)に示すように前記試験体3を2個用意し、前記2個の試験体3を、一方の鋼板2を介して1枚の中央固定治具4にボルトで固定するとともに、それぞれの試験体3の他方の鋼板2に、1枚ずつの左右固定治具5をボルトで固定した。そして中央固定治具4を、図示しない試験機の上側の固定アーム6に、ジョイント7を介してボルトで固定し、かつ2枚の左右固定治具5を、前記試験機の下側の可動盤8に、ジョイント9を介してボルトで固定した。
(Displacement test)
As shown in FIG. 2 (a), two test bodies 3 are prepared, and the two test bodies 3 are fixed to one central fixing jig 4 with bolts via one steel plate 2. One left and right fixing jig 5 was fixed to the other steel plate 2 of each test body 3 with bolts. The center fixing jig 4 is fixed to the upper fixing arm 6 of the testing machine (not shown) with a bolt via a joint 7, and the two left and right fixing jigs 5 are connected to the lower movable platen of the testing machine. 8 was fixed with bolts through a joint 9.

次にこの状態で、可動盤8を図中に白抜きの矢印で示すように固定アーム6の方向に押し上げるように変位させて、試験体3のうち円板1を、図2(b)に示すように前記試験体3の積層方向と直交方向に歪み変形させた状態とし、次いでこの状態から、可動盤8を図中に白抜きの矢印で示すように固定アーム6の方向と反対方向に引き下げるように変位させて、前記図2(a)に示す状態に戻す操作を1サイクルとして、前記試験体3のうち円板1を繰り返し歪み変形、すなわち振動させた際の、前記試験体3の積層方向と直交方向への円板1の変位量(mm)と荷重(N)との関係を示すヒステリシスループH(図3参照)を求めた。   Next, in this state, the movable platen 8 is displaced so as to be pushed up in the direction of the fixed arm 6 as indicated by the white arrow in the figure, and the disk 1 of the test body 3 is moved to the position shown in FIG. As shown in the figure, the test body 3 is strained and deformed in a direction orthogonal to the stacking direction, and from this state, the movable platen 8 is moved in a direction opposite to the direction of the fixed arm 6 as indicated by a white arrow in the figure. The operation of the test body 3 when the disk 1 of the test body 3 is repeatedly distorted or deformed, that is, vibrated, with the operation of displacing it down and returning to the state shown in FIG. A hysteresis loop H (see FIG. 3) indicating the relationship between the displacement (mm) of the disk 1 in the direction perpendicular to the stacking direction and the load (N) was obtained.

測定は、温度20℃の環境下、前記操作を3サイクル実施して3回目の値を求める。また最大変位量は、円板1を挟む2枚の鋼板2の、前記積層方向と直交方向のずれ量が、前記円板1の厚みの100%となるように設定した。
次いで、前記測定により求めた図3に示すヒステリシスループHのうち最大変位点と最小変位点とを結ぶ、図中に太線の実線で示す直線Lの傾きKeq(N/mm)を求め、前記傾きKeq(N/mm)と、円板1の厚みT(mm)と、円板1の断面積A(mm)とから、式(2):
The measurement is performed for 3 cycles under the environment of a temperature of 20 ° C. to obtain the third value. The maximum amount of displacement was set so that the amount of deviation of the two steel plates 2 sandwiching the disc 1 in the direction perpendicular to the stacking direction was 100% of the thickness of the disc 1.
Then, connecting the maximum displacement point and the minimum displacement point of the hysteresis loop H shown in FIG. 3 obtained by the measurement, determine the slope Keq (N / mm) of the straight line L 1 shown by a thick solid line in the figure, the From the inclination Keq (N / mm), the thickness T (mm) of the disc 1, and the cross-sectional area A (mm 2 ) of the disc 1, the formula (2):

Figure 2013043923
Figure 2013043923

により等価せん断弾性率Geq(N/mm)を求めた。等価せん断弾性率が低いほど、試験体3は剛性が低く良好な弾性率を有していると判定できる。ここでは、等価せん断弾性率が0.25N/mm以下のものを弾性率良好、0.25N/mmを超えるのものを弾性率不良と評価した。
また図3中に斜線を付して示した、ヒステリシスループHの全表面積で表される吸収エネルギー量ΔWと、同図中に網線を付して示した、前記直線Lと、グラフの横軸と、直線LとヒステリシスループHとの交点から前記横軸におろした垂線Lとで囲まれた領域の表面積で表される弾性歪みエネルギーWとから、式(3):
The equivalent shear modulus Geq (N / mm 2 ) was determined by It can be determined that the lower the equivalent shear modulus is, the lower the rigidity of the specimen 3 is and the better the modulus of elasticity. Here, those having an equivalent shear modulus of 0.25 N / mm 2 or less were evaluated as good elastic modulus, and those having an equivalent shear modulus exceeding 0.25 N / mm 2 were evaluated as defective elastic modulus.
Also, the absorbed energy amount ΔW represented by the total surface area of the hysteresis loop H shown with diagonal lines in FIG. 3, the straight line L 1 shown with a mesh line in the figure, and the horizontal axis, and a straight line L 1 and the hysteresis loop H elastic strain energy W represented by the surface area of the region surrounded by the perpendicular L 2 grated on the horizontal axis from the intersection of the formula (3):

Figure 2013043923
Figure 2013043923

により等価減衰定数Heqを求めた。等価減衰定数Heqが大きいほど、試験体3は減衰性能に優れていると判定できる。ここでは、Heqが0.25以上のものを減衰性能良好、0.25未満のものを減衰性能不良と評価した。
以上の結果を表2、表3に示す。
Thus, an equivalent damping constant Heq was obtained. It can be determined that the greater the equivalent damping constant Heq is, the better the specimen 3 is in damping performance. Here, those having a Heq of 0.25 or more were evaluated as good attenuation performance, and those having a Heq of less than 0.25 were evaluated as poor attenuation performance.
The above results are shown in Tables 2 and 3.

Figure 2013043923
Figure 2013043923

Figure 2013043923
Figure 2013043923

表2の比較例1、2の結果より、シリカを単独で配合した場合には剛性が高くなる傾向があることが判った。また比較例3の結果より、液状ポリイソプレンゴムとして数平均分子量が40000を超えるものを用いるとさらに剛性が高くなることが判った。
また表3の比較例4の結果より、シリカと未処理の炭酸カルシウムとを併用した場合には剛性を低く抑えることができるものの減衰性能が低下することが判った。
From the results of Comparative Examples 1 and 2 in Table 2, it was found that the rigidity tends to increase when silica is blended alone. Further, from the result of Comparative Example 3, it was found that when the liquid polyisoprene rubber having a number average molecular weight exceeding 40,000 is used, the rigidity is further increased.
Moreover, from the result of Comparative Example 4 in Table 3, it was found that when silica and untreated calcium carbonate were used in combination, the rigidity could be kept low but the damping performance was lowered.

これに対し表2の実施例1〜3の結果より、シリカと表面処理炭酸カルシウムとを併用した場合には、高い減衰性能を有する上、これまでよりも剛性が低い高減衰部材を形成できることが判った。
ただし前記実施例1〜3、および表3の比較例5〜8の結果より、シリカと表面処理炭酸カルシウムの合計の配合割合(表2、3中のI+II)が100質量部未満では減衰性能が低下し、160質量部を超える場合には剛性が高くなるため、前記合計の配合割合は100質量部以上、160質量部以下である必要があることが判った。
On the other hand, from the results of Examples 1 to 3 in Table 2, when silica and surface-treated calcium carbonate are used in combination, a high damping member having high damping performance and lower rigidity than before can be formed. understood.
However, from the results of Examples 1 to 3 and Comparative Examples 5 to 8 in Table 3, if the total blending ratio of silica and surface-treated calcium carbonate (I + II in Tables 2 and 3) is less than 100 parts by mass, the damping performance is When it exceeds 160 parts by mass, the rigidity becomes high. Therefore, it has been found that the total blending ratio needs to be 100 parts by mass or more and 160 parts by mass or less.

また表面処理炭酸カルシウムの、シリカと表面処理炭酸カルシウムの総量に対する割合、すなわち表2、3中の:   Also, the ratio of the surface-treated calcium carbonate to the total amount of silica and surface-treated calcium carbonate, that is, in Tables 2 and 3:

Figure 2013043923
Figure 2013043923

が10質量%未満では剛性が高くなり、50質量%を超える場合には減衰性能が低下するため、前記割合は10質量%以上、50質量%以下である必要があることも判った。 However, it was also found that the ratio needs to be 10% by mass or more and 50% by mass or less because the rigidity increases when the content is less than 10% by mass and the damping performance decreases when the content exceeds 50% by mass.

1 円板
2 鋼板
3 試験体
4 中央固定治具
5 左右固定治具
6 固定アーム
7 ジョイント
8 可動盤
9 ジョイント
H ヒステリシスループ
直線
Keq 傾き
垂線
W エネルギー
ΔW 吸収エネルギー量
DESCRIPTION OF SYMBOLS 1 Disc 2 Steel plate 3 Specimen 4 Center fixing jig 5 Left and right fixing jig 6 Fixed arm 7 Joint 8 Movable platen 9 Joint H Hysteresis loop L 1 Straight line Keq Inclination L 2 Vertical line W Energy ΔW Absorbed energy amount

Claims (5)

ベースポリマとしてのジエン系ゴムにシリカ、および表面処理炭酸カルシウムを配合してなるとともに、前記ジエン系ゴム100質量部あたりの、前記シリカ、および表面処理炭酸カルシウムの合計の配合割合は100質量部以上、160質量部以下で、かつ前記表面処理炭酸カルシウムの、シリカ、および表面処理炭酸カルシウムの総量中に占める割合は10質量%以上、50質量%以下であることを特徴とする高減衰組成物。   Silica and surface-treated calcium carbonate are blended with diene rubber as a base polymer, and the total blending ratio of silica and surface-treated calcium carbonate per 100 parts by weight of diene rubber is 100 parts by mass or more. 160% by mass or less, and the proportion of the surface-treated calcium carbonate in the total amount of silica and surface-treated calcium carbonate is 10% by mass or more and 50% by mass or less. 前記表面処理炭酸カルシウムは、ロジン酸、および脂肪酸からなる群より選ばれた少なくとも1種で表面処理した炭酸カルシウムである請求項1に記載の高減衰組成物。   The highly attenuated composition according to claim 1, wherein the surface-treated calcium carbonate is calcium carbonate surface-treated with at least one selected from the group consisting of rosin acid and fatty acid. さらに軟化剤として、数平均分子量40000以下の液状ポリイソプレンゴムをも含んでいる請求項1または2に記載の高減衰組成物。   The high-damping composition according to claim 1 or 2, further comprising a liquid polyisoprene rubber having a number average molecular weight of 40000 or less as a softening agent. 前記ジエン系ゴムとしては、天然ゴムとブタジエンゴムとを併用している請求項1ないし3のいずれか1項に記載の高減衰組成物。   The high-damping composition according to any one of claims 1 to 3, wherein natural rubber and butadiene rubber are used in combination as the diene rubber. 建築物の粘弾性ダンパの形成材料として用いる請求項1ないし4のいずれか1項に記載の高減衰組成物。   The high attenuation composition according to any one of claims 1 to 4, which is used as a material for forming a viscoelastic damper of a building.
JP2011181685A 2011-08-23 2011-08-23 High damping composition Expired - Fee Related JP5404716B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011181685A JP5404716B2 (en) 2011-08-23 2011-08-23 High damping composition
KR1020120022249A KR101805205B1 (en) 2011-08-23 2012-03-05 High damping composition
TW101109587A TWI542642B (en) 2011-08-23 2012-03-21 High-damping composition
CN201210091288.9A CN102952294B (en) 2011-08-23 2012-03-30 High-damping composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011181685A JP5404716B2 (en) 2011-08-23 2011-08-23 High damping composition

Publications (2)

Publication Number Publication Date
JP2013043923A true JP2013043923A (en) 2013-03-04
JP5404716B2 JP5404716B2 (en) 2014-02-05

Family

ID=47761722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011181685A Expired - Fee Related JP5404716B2 (en) 2011-08-23 2011-08-23 High damping composition

Country Status (4)

Country Link
JP (1) JP5404716B2 (en)
KR (1) KR101805205B1 (en)
CN (1) CN102952294B (en)
TW (1) TWI542642B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104788997A (en) * 2015-03-18 2015-07-22 四川长虹技佳精工有限公司 Modified oxide and powder coating, and preparation methods and applications thereof
JP2017048339A (en) * 2015-09-03 2017-03-09 株式会社クラレ Rubber composition and tire
WO2017209263A1 (en) * 2016-06-01 2017-12-07 株式会社ブリヂストン Rubber composition and tire
JP2018123205A (en) * 2017-01-30 2018-08-09 住友ゴム工業株式会社 Manufacturing method of high attenuation composition and manufacturing method of viscoelastic damper

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327749B2 (en) * 2014-07-18 2018-05-23 住友ゴム工業株式会社 Viscoelastic damper and manufacturing method thereof
EP3670622B1 (en) 2016-09-20 2022-03-30 Avery Dennison Corporation Multilayer tape
US11059264B2 (en) 2018-03-19 2021-07-13 Avery Dennison Corporation Multilayer constrained-layer damping
EP3793819B1 (en) 2018-05-17 2023-08-30 Avery Dennison Corporation Partial coverage multilayer damping laminate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081787A (en) * 1996-07-10 1998-03-31 Sumitomo Rubber Ind Ltd Vibration-damping member
JPH1089407A (en) * 1996-09-17 1998-04-07 Sumitomo Rubber Ind Ltd Base isolation structural body
JP2006008859A (en) * 2004-06-25 2006-01-12 Tokai Rubber Ind Ltd Highly damping elastomer composition
JP2007070595A (en) * 2004-12-21 2007-03-22 Tokai Rubber Ind Ltd Highly damping elastomer composition and seismic-control damper obtained by the same
JP2009030016A (en) * 2007-07-05 2009-02-12 Sumitomo Rubber Ind Ltd High damping rubber composition and damping member
JP2009138053A (en) * 2007-12-04 2009-06-25 Sumitomo Rubber Ind Ltd Highly damping rubber composition, and rubber vibration insulator comprising the highly damping rubber composition
JP2011116931A (en) * 2009-11-06 2011-06-16 Sumitomo Rubber Ind Ltd High damping composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143605B2 (en) * 2008-03-28 2013-02-13 東海ゴム工業株式会社 High damping rubber composition and vibration control damper using the same
JP2010126597A (en) 2008-11-26 2010-06-10 Tokai Rubber Ind Ltd Highly damping elastomer composition for vibration damper and vibration damper obtained by the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081787A (en) * 1996-07-10 1998-03-31 Sumitomo Rubber Ind Ltd Vibration-damping member
JPH1089407A (en) * 1996-09-17 1998-04-07 Sumitomo Rubber Ind Ltd Base isolation structural body
JP2006008859A (en) * 2004-06-25 2006-01-12 Tokai Rubber Ind Ltd Highly damping elastomer composition
JP2007070595A (en) * 2004-12-21 2007-03-22 Tokai Rubber Ind Ltd Highly damping elastomer composition and seismic-control damper obtained by the same
JP2009030016A (en) * 2007-07-05 2009-02-12 Sumitomo Rubber Ind Ltd High damping rubber composition and damping member
JP2009138053A (en) * 2007-12-04 2009-06-25 Sumitomo Rubber Ind Ltd Highly damping rubber composition, and rubber vibration insulator comprising the highly damping rubber composition
JP2011116931A (en) * 2009-11-06 2011-06-16 Sumitomo Rubber Ind Ltd High damping composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104788997A (en) * 2015-03-18 2015-07-22 四川长虹技佳精工有限公司 Modified oxide and powder coating, and preparation methods and applications thereof
CN104788997B (en) * 2015-03-18 2017-10-24 四川长虹技佳精工有限公司 Modified oxide, powdery paints and its preparation method and application
JP2017048339A (en) * 2015-09-03 2017-03-09 株式会社クラレ Rubber composition and tire
WO2017209263A1 (en) * 2016-06-01 2017-12-07 株式会社ブリヂストン Rubber composition and tire
JPWO2017209263A1 (en) * 2016-06-01 2019-03-28 株式会社ブリヂストン Rubber composition and tire
JP7000318B2 (en) 2016-06-01 2022-01-19 株式会社ブリヂストン Rubber composition and tires
JP2018123205A (en) * 2017-01-30 2018-08-09 住友ゴム工業株式会社 Manufacturing method of high attenuation composition and manufacturing method of viscoelastic damper

Also Published As

Publication number Publication date
TW201309762A (en) 2013-03-01
CN102952294A (en) 2013-03-06
KR101805205B1 (en) 2017-12-05
CN102952294B (en) 2015-10-21
JP5404716B2 (en) 2014-02-05
TWI542642B (en) 2016-07-21
KR20130023034A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5404716B2 (en) High damping composition
TWI454525B (en) High decay composition
JP6261131B2 (en) High damping composition, seismic damper and seismic isolation bearing
JP5648014B2 (en) High damping composition and viscoelastic damper
TWI575007B (en) High decay composition
JP2014109023A (en) High-damping composition and viscoelastic damper
JP2011126992A (en) Highly damping composition
JP2017082171A (en) High attenuation rubber composition and viscoelastic damper
JP6195338B2 (en) High damping composition and viscoelastic damper
KR101780829B1 (en) High damping composition
JP6575807B2 (en) High damping composition, viscoelastic damper and viscoelastic bearing
JP2012219150A (en) Highly damping composition
JP6504696B2 (en) High damping composition and visco-elastic damper
JP5568581B2 (en) High damping composition and viscoelastic damper
JP2013053251A (en) Highly damping composition
KR101680905B1 (en) Highly damping composition
JP2015160903A (en) High attenuation composition, earthquake-proof damper, and aseismic base isolation bearing
JP2011132481A (en) High damping composition
JP2012082377A (en) High damping composition
JP2016056279A (en) High-damping composition and viscoelastic damper
JP2014224180A (en) Highly damping composition and viscoelastic damper
JP5738113B2 (en) High damping composition
JP5950358B2 (en) High damping composition and viscoelastic damper
JP2014118516A (en) High-damping composition and vibration control damper
JP5523428B2 (en) High damping composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5404716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees