JP2013039125A - Underground irrigation system - Google Patents

Underground irrigation system Download PDF

Info

Publication number
JP2013039125A
JP2013039125A JP2012154416A JP2012154416A JP2013039125A JP 2013039125 A JP2013039125 A JP 2013039125A JP 2012154416 A JP2012154416 A JP 2012154416A JP 2012154416 A JP2012154416 A JP 2012154416A JP 2013039125 A JP2013039125 A JP 2013039125A
Authority
JP
Japan
Prior art keywords
water
water supply
soil
impervious
shielding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012154416A
Other languages
Japanese (ja)
Other versions
JP6041190B2 (en
Inventor
Tsuneo Onodera
恒雄 小野寺
Shinji Shimada
信二 島田
Kazuhiro Hirao
和弘 平尾
Hidemi Yamaguchi
秀美 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Paddy Research Co Ltd
Kubota CI Co Ltd
Original Assignee
National Agriculture and Food Research Organization
Paddy Research Co Ltd
Kubota CI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization, Paddy Research Co Ltd, Kubota CI Co Ltd filed Critical National Agriculture and Food Research Organization
Priority to JP2012154416A priority Critical patent/JP6041190B2/en
Publication of JP2013039125A publication Critical patent/JP2013039125A/en
Application granted granted Critical
Publication of JP6041190B2 publication Critical patent/JP6041190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an underground irrigation system that can be suitably used on a slope land since the amount of moisture in a plough layer can be kept as even as possible without needing equipment such as water-table management equipment.SOLUTION: The underground irrigation system 10 includes a sealing member 12 to be buried in the ground of a cropland 200 and supplies water from the underground to keep the amount of moisture in soil in a state appropriate for the growth of a plant. The sealing member is formed of a material having a sealing property in an elongated groove-like shape and is buried in the ground with its longitudinal direction being along the slope of the cropland 200. A water-holding member 14 having a water-absorbing property and water-holding property is provided at the bottom of the inside of the sealing member 12, and a water supply member 16 is disposed through the water-holding member 14. In the underground irrigation system 10, water from a water supply source 30 is supplied to the water-holding member 14 by the water supply member 16 during the irrigation. The water absorbed and held by the water-holding member 14 is soaked up and supplied to the soil above by capillary action.

Description

この発明は、地下灌漑システムに関し、特にたとえば、地下から水を供給して土壌の水分量を適切に保つ、地下灌漑システムに関する。   The present invention relates to an underground irrigation system, and more particularly to an underground irrigation system that supplies water from the underground to keep the moisture content of soil appropriately.

従来、畑地などの灌水には、地表に這わせた孔あきホースやスプリンクラ等を用いて、地表面から土壌に水を供給する地表灌水が一般的に用いられている。ここで、地表灌水によって土壌に供給された水は、土壌表面や植物表面も潤すことになるが、これらの水の多くは大気中に蒸発(つまり表面蒸発)してしまうだけであるので、水の無駄遣いが生じる。また、土壌のぬかるみによって作業に支障が出たり、泥跳ねや土壌表面におけるクラスト(土膜)形成などの不具合を招いたりしてしまう。さらに、ハウス栽培の場合には、土壌表面から蒸発した水分によってハウス内の湿度が過剰に高くなり、植物の病気発生の原因となる場合もある。   Conventionally, surface irrigation for supplying water from the ground surface to the soil using a perforated hose or a sprinkler or the like laid on the ground surface is generally used for irrigation of fields and the like. Here, the water supplied to the soil by surface irrigation will also moisten the soil surface and plant surface, but most of this water will only evaporate into the atmosphere (ie, surface evaporation). Waste of money occurs. In addition, the mud of the soil may hinder the work, and may cause problems such as mud splashing and crust (soil film) formation on the soil surface. Further, in the case of house cultivation, the moisture in the house is excessively increased by moisture evaporated from the soil surface, which may cause plant diseases.

これに対して、地下から水を供給する地下灌漑では、供給した水が土壌表面から蒸発することがほとんど無いので、水の無駄遣いを低減でき、水資源を効率的に利用できる。また、土壌がぬかるんだり、ハウス内の湿度が過度に上昇したりする等の地表灌水に起因する不具合も生じない。このため、近年では、各種の地下灌漑システムが提案されている。   On the other hand, in underground irrigation in which water is supplied from the underground, the supplied water hardly evaporates from the soil surface, so that waste of water can be reduced and water resources can be used efficiently. Moreover, the malfunction resulting from surface irrigation, such as the soil becoming muddy or the humidity in the house rising excessively, does not occur. For this reason, various underground irrigation systems have been proposed in recent years.

たとえば、特許文献1には、従来の地下灌漑システムが開示される。この地下灌漑システムでは、上側開口の容器状に形成された遮水部材が耕作地などの地中に埋設される。そして、遮水部材の内部に水を供給して重力水状態の土壌部を形成し、その重力水状態の土壌部から毛細管現象によって植物根圏の土壌に水を供給するようにしている。一例として、上側に開口を設けた横管状(横長の容器状)の遮水部材が用いられる。
特開2010−29072号公報 [A01G 25/00]
For example, Patent Document 1 discloses a conventional underground irrigation system. In this underground irrigation system, a water-impervious member formed in a container shape with an upper opening is buried in the ground such as a cultivated land. Then, water is supplied to the inside of the water-impervious member to form a gravity water-state soil portion, and water is supplied from the gravity water-state soil portion to the plant rhizosphere soil by capillary action. As an example, a horizontal tubular (horizontal container-shaped) water shielding member having an opening on the upper side is used.
JP 2010-29072 A [A01G 25/00]

特許文献1の技術では、上側開口の遮水部材内に重力水状態の土壌部を形成するので、遮水部材を傾けて設置すると、地下灌漑時に遮水部材内の重力水が開口からこぼれてしまう可能性があり、また、遮水部材内の重力水の量が場所によって偏ってしまうので、土壌の水分量を均等に保つことが困難であった。このため、特許文献1の技術では、遮水部材を水平に設置する必要があり、傾斜を有する耕作地(傾斜地)にシステムを適用する場合には、施工現場で遮水部材の正確な(厳密な)水平出しを行い、遮水部材を等高線に沿って設置しなければならなかった。つまり、特許文献1の技術では、遮水部材の配置態様に地理的な制約が大きいという問題があった。   In the technique of Patent Document 1, a soil part in a gravitational water state is formed in the water-impervious member of the upper opening, so that if the water-impervious member is installed at an angle, gravity water in the water-impervious member spills from the opening during underground irrigation. Moreover, since the amount of gravity water in the water-impervious member is biased depending on the location, it is difficult to keep the moisture content of the soil uniform. For this reason, in the technique of patent document 1, it is necessary to install a water shielding member horizontally, and when applying a system to the cultivation land (inclined land) which has an inclination, the exact (strict N) I had to level out and install a water-blocking member along the contour line. That is, in the technique of Patent Document 1, there is a problem that there is a great geographical restriction on the arrangement of the water shielding members.

さらに、特許文献1の技術では、遮水部材内の重力水の水位管理を水位管理器によって行うようにしているが、この地下灌漑システムを傾斜地に適用する場合には、土壌に対して均等に給水できるように、各遮水部材内の重力水の水位を個別に調節できることが望ましい。しかしながら、そのために遮水部材ごとに水位管理器を設けると、コストが大幅にアップしてしまう。   Furthermore, in the technique of Patent Document 1, the water level management of the gravity water in the water-impervious member is performed by the water level management device. However, when this underground irrigation system is applied to an inclined land, it is evenly applied to the soil. It is desirable that the level of gravity water in each water shielding member can be adjusted individually so that water can be supplied. However, if a water level management device is provided for each water shielding member for that purpose, the cost is significantly increased.

それゆえに、この発明の主たる目的は、新規な、地下灌漑システムを提供することである。   Therefore, the main object of the present invention is to provide a novel underground irrigation system.

この発明の他の目的は、傾斜地にも好適に用いることができる、地下灌漑システムを提供することである。   Another object of the present invention is to provide an underground irrigation system that can be suitably used for sloping land.

また、この発明のさらに他の目的は、水位管理器等の設備を用いなくても、土壌に対して均等に給水できる、地下灌漑システムを提供することである。   Still another object of the present invention is to provide an underground irrigation system that can supply water evenly to the soil without using equipment such as a water level controller.

本発明は、上記の課題を解決するために、以下の構成を採用した。なお、括弧内の参照符号および補足説明などは、本発明の理解を助けるために後述する実施の形態との対応関係を示したものであって、本発明を何ら限定するものではない。   The present invention employs the following configuration in order to solve the above problems. Note that reference numerals in parentheses, supplementary explanations, and the like indicate correspondence relationships with embodiments described later to help understanding of the present invention, and do not limit the present invention in any way.

第1の発明は、上側開口の容器状に形成され、耕作地の地中に傾斜させて埋設される遮水部材、および遮水部材内の少なくとも底部に設けられる保水部材、保水部材を介して遮水部材内に配設され、給水源から供給された水を保水部材に給水する給水部材を備える、地下灌漑システムである。   1st invention is formed in the container shape of an upper side opening, and is embedded through the water-impervious member inclined and embedded in the ground of the cultivated land, and the water-retaining member provided at least at the bottom of the water-impervious member, the water-retaining member An underground irrigation system including a water supply member that is disposed in a water shielding member and supplies water supplied from a water supply source to a water retention member.

第1の発明では、地下灌漑システム(10)は、耕作地(200)の地中に埋設される遮水部材(12)を含み、地下から水を供給して土壌中の水分を植物の生育にとって適切な状態に保つものである。遮水部材は、遮水性を有する材質によって上側開口の容器状に形成され、たとえば耕作地の傾斜に沿うように地中に埋設される。遮水部材内のたとえば底部には、保水部材(14)が設けられる。保水部材は、吸水性および保水性を有する材質からなり、たとえば遮水部材の長さ方向の全長に亘って設けられる。また、遮水部材の内部には、保水部材を介して、給水部材(16)が配設される。給水部材は、給水源(30)から供給された水を保水部材に供給する管路であり、たとえば保水部材の上側に載置される。このような地下灌漑システムでは、灌漑時には、給水源から給水部材に供給された水が保水部材に給水され、その水が保水部材に吸収される。そして、保水部材が保水した水が上側の土壌に毛細管現象によって吸い上げられて浸透していき、上側の土壌に毛管水状態の土壌部(38)が形成される。   In the first invention, the underground irrigation system (10) includes a water-impervious member (12) embedded in the ground of the cultivated land (200), and supplies water from the underground to grow moisture in the soil. To keep it in a proper state. The water-impervious member is formed in a container shape having an upper opening by a material having water-impervious properties, and is embedded in the ground along the slope of the cultivated land, for example. A water retaining member (14) is provided, for example, at the bottom of the water shielding member. The water retaining member is made of a material having water absorption and water retaining properties, and is provided over the entire length of the water shielding member in the length direction, for example. In addition, a water supply member (16) is disposed inside the water shielding member via a water retention member. A water supply member is a pipe line which supplies the water supplied from the water supply source (30) to a water retention member, for example, is mounted on the upper side of a water retention member. In such an underground irrigation system, at the time of irrigation, water supplied from the water supply source to the water supply member is supplied to the water retention member, and the water is absorbed by the water retention member. Then, the water retained by the water retaining member is sucked up and penetrated into the upper soil by a capillary phenomenon, and a soil portion (38) in a capillary water state is formed in the upper soil.

第1の発明によれば、給水部材によって給水した水を保水部材に吸収ないし浸透させて、保水部材が保水した水を毛細管現象によって土壌に供給するようにしたため、遮水部材を傾斜させて設置していても、作土層の水分量を可及的均等に保つことが可能である。つまり、傾斜地に対しても地下灌漑システムを好適に用いることができる。   According to the first invention, the water supplied by the water supply member is absorbed or permeated into the water retention member, and the water retained by the water retention member is supplied to the soil by capillary action. Even so, it is possible to keep the water content of the soil layer as uniform as possible. In other words, the underground irrigation system can be suitably used even on sloping land.

また、水位管理器等の特別な設備を用いる必要もないので、設備コストや維持管理コスト等を削減できる。   Moreover, since there is no need to use special equipment such as a water level management device, equipment costs and maintenance costs can be reduced.

第2の発明は、第1の発明に従属し、給水部材よりも下流側に設けられ、前記給水部材の内部の余剰水が流入する貯水手段をさらに備える。   A second invention is dependent on the first invention, and further includes a water storage means provided on the downstream side of the water supply member and into which surplus water inside the water supply member flows.

第2の発明では、給水部材(16)の下流側端部は、たとえば配水管(32)を介して、給水部材よりも下流側に設置された貯水手段(34)に接続される。実施例では、貯水手段は、貯水タンク(34)であり、給水部材から保水部材に給水されなかった余剰水が貯水タンクに排出され、貯水タンクは、給水部材から送られてきた水をその内部に貯留する。   In 2nd invention, the downstream end part of the water supply member (16) is connected to the water storage means (34) installed in the downstream rather than the water supply member, for example via the water distribution pipe (32). In the embodiment, the water storage means is a water storage tank (34), and surplus water that has not been supplied from the water supply member to the water retention member is discharged to the water storage tank, and the water storage tank receives the water sent from the water supply member therein. Store in.

第2の発明によれば、給水しきれずに給水部材の内部に残った余剰水を貯水手段によって貯水するようにしたため、その水を再利用することにより、水資源を効率的に利用することができる。   According to the second aspect of the invention, since the surplus water remaining inside the water supply member without being able to supply water is stored by the water storage means, the water resources can be efficiently used by reusing the water. it can.

第3の発明は、第2の発明に従属し、貯水手段によって貯水した水を給水源に戻す循環手段をさらに備える。   A third invention is dependent on the second invention, and further includes a circulation means for returning the water stored by the water storage means to the water supply source.

第3の発明では、地下灌漑システム(10)には、貯水手段(34)によって貯水した水を給水源(30)に戻す循環手段が設けられる。実施例では、貯水タンク(34)内に貯水した水をポンプ(40)によって給水源(30)に送水する。   In the third invention, the underground irrigation system (10) is provided with a circulation means for returning the water stored by the water storage means (34) to the water supply source (30). In the embodiment, the water stored in the water storage tank (34) is sent to the water supply source (30) by the pump (40).

第4の発明は、第2または3の発明に従属し、給水部材は、管壁に形成される複数の貫通孔を有する有孔管を含み、有孔管は、遮水部材の内部の余剰水を集水する集水部材として兼用され、この集水部材によって集水された余剰水が貯水手段に排出される。   A fourth invention is dependent on the second or third invention, wherein the water supply member includes a perforated pipe having a plurality of through holes formed in the pipe wall, and the perforated pipe is an excess inside the water shielding member. The water collecting member is also used as a water collecting member, and surplus water collected by the water collecting member is discharged to the water storage means.

第4の発明では、給水部材(16)は、集水部材(36)として兼用される有孔管(24)を含む。有孔管は、合成樹脂や合成ゴムなどによって形成され、その管壁には、複数の貫通孔(26)が形成される。灌漑時には、給水源(30)から有孔管に供給された水が貫通孔を通して保水部材に給水される。また、降雨等により土壌に水が過多の時には、遮水部材内に溜まった水が貫通孔を通して有孔管の内部に集水される。そして、有孔管の内部に集水された水が貯水手段(34)に排出され、貯水手段は、有孔管から送られてきた水をその内部に貯留する。   In 4th invention, a water supply member (16) contains the perforated pipe | tube (24) used as a water collection member (36). The perforated tube is formed of synthetic resin, synthetic rubber, or the like, and a plurality of through holes (26) are formed on the tube wall. At the time of irrigation, water supplied from the water supply source (30) to the perforated pipe is supplied to the water retaining member through the through hole. Further, when there is excessive water in the soil due to rain or the like, water accumulated in the water shielding member is collected into the perforated pipe through the through hole. Then, the water collected inside the perforated pipe is discharged to the water storage means (34), and the water storage means stores the water sent from the perforated pipe therein.

第4の発明によれば、遮水部材の内部に留まった余剰水を貯水手段によって貯水するようにしたため、その水を再利用することにより、水資源をより効率的に利用することができる。   According to the fourth aspect of the invention, the surplus water remaining inside the water-impervious member is stored by the water storage means, so that the water resource can be used more efficiently by reusing the water.

第5の発明は、上側開口の容器状に形成され、耕作地の地中に埋設される遮水部材、遮水部材内の少なくとも底部に設けられる保水部材、保水部材を介して遮水部材内に配設され、給水源から供給された水を保水部材に給水する給水部材、および給水部材から保水部材に給水された水の水位を検知する水位検知手段、および水位検知手段の検知結果に基づいて給水部材から保水部材への給水を制御する給水制御手段を備える、地下灌漑システムである。   5th invention is formed in the container shape of an upper side opening, the water-impervious member embed | buried under the ground of a cultivated land, the water-retaining member provided in the at least bottom part in a water-impervious member, and inside a water-impervious member via a water-retaining member A water supply member for supplying water supplied from a water supply source to the water retention member, a water level detection means for detecting the water level supplied from the water supply member to the water retention member, and a detection result of the water level detection means An underground irrigation system comprising water supply control means for controlling water supply from the water supply member to the water retention member.

第5の発明では、地下灌漑システム(10)は、耕作地(200)の地中に埋設される遮水部材(12)を含み、地下から水を供給して土壌中の水分を植物の生育にとって適切な状態に保つものである。遮水部材は、遮水性を有する材質によって上側開口の容器状に形成され、耕作地の地中に埋設される。遮水部材内のたとえば底部には、保水部材(14)が設けられる。保水部材は、吸水性および保水性を有する材質からなり、たとえば遮水部材の長さ方向の全長に亘って設けられる。また、遮水部材の内部には、保水部材を介して、給水部材(16)が配設される。給水部材は、給水源(30)から供給された水を保水部材に供給する管路であり、たとえば保水部材の上側に載置される。また、たとえば、給水部材の下流側の端には、給水部材から保水部材に給水された水の水位を検知する水位検知手段(62)が設けられ、給水部材の上流側の端には、水位検知手段の検知結果に基づいて給水部材から保水部材への給水を制御する水位制御手段(64)が設けられる。このような地下灌漑システムでは、灌漑時には、給水源から給水部材に供給された水が保水部材に給水され、給水部材の上流側から下流側に向けて遮水部材内でその水が保水部材に吸収される。このとき、保水部材が保水した水は、上側の土壌に毛細管現象によって吸い上げられて浸透していき、上側の土壌に毛管水状態の土壌部(38)が形成される。また、たとえば給水部材の下流側の端において、給水部材から給水された水が保水部材に保水されると、保水部材が保水した水の水位を水位検知手段によって検知し、その検知結果に応じて給水部材からの給水を制御する。   In the fifth invention, the underground irrigation system (10) includes a water-impervious member (12) embedded in the ground of the cultivated land (200), and supplies water from the underground to grow moisture in the soil. To keep it in a proper state. The water-impervious member is formed in a container shape having an upper opening made of a material having water-impervious properties, and is embedded in the ground of the cultivated land. A water retaining member (14) is provided, for example, at the bottom of the water shielding member. The water retaining member is made of a material having water absorption and water retaining properties, and is provided over the entire length of the water shielding member in the length direction, for example. In addition, a water supply member (16) is disposed inside the water shielding member via a water retention member. A water supply member is a pipe line which supplies the water supplied from the water supply source (30) to a water retention member, for example, is mounted on the upper side of a water retention member. Further, for example, a water level detection means (62) for detecting the water level of water supplied from the water supply member to the water retention member is provided at the downstream end of the water supply member, and the water level is provided at the upstream end of the water supply member. A water level control means (64) for controlling the water supply from the water supply member to the water retention member based on the detection result of the detection means is provided. In such an underground irrigation system, at the time of irrigation, water supplied from the water supply source to the water supply member is supplied to the water retention member, and the water is supplied to the water retention member from the upstream side to the downstream side of the water supply member. Absorbed. At this time, the water retained by the water retaining member is sucked up and penetrated into the upper soil by a capillary phenomenon, and a soil portion (38) in a capillary water state is formed in the upper soil. Further, for example, when the water supplied from the water supply member is retained in the water retention member at the downstream end of the water supply member, the water level detected by the water retention member is detected by the water level detection means, and the detection result is determined according to the detection result. Control water supply from the water supply member.

第5の発明によれば、給水部材によって給水した水を保水部材に吸収ないし浸透させて、保水部材が保水した水を毛細管現象によって土壌に供給するようにしたため、遮水部材を傾斜させて設置していても、作土層の水分量を可及的均等に保つことが可能である。つまり、傾斜地に対しても地下灌漑システムを好適に用いることができる。   According to the fifth aspect of the invention, the water supplied by the water supply member is absorbed or penetrated into the water retention member, and the water retained by the water retention member is supplied to the soil by capillary action, so that the water shielding member is inclined and installed. Even so, it is possible to keep the water content of the soil layer as uniform as possible. In other words, the underground irrigation system can be suitably used even on sloping land.

さらに、保水部材が保水した水の水位を水位検知手段によって検知し、その検知結果に応じて給水部材からの給水を制御することにより、システムより下流側への水の無駄な放流を防止できるので、水資源を無駄にしてしまうこともない。   Furthermore, by detecting the water level retained by the water retention member by the water level detection means and controlling the water supply from the water supply member according to the detection result, wasteful discharge of water downstream from the system can be prevented. Water resources are not wasted.

第6の発明は、第5の発明に従属し、遮水部材は、耕作地の地中に傾斜させて埋設され、水位検知手段は、遮水部材の傾斜下端に設置され、給水制御手段は、水位検知手段の検知結果に基づいて給水部材から保水部材への給水を停止させる給水停止手段を含む。   6th invention is dependent on 5th invention, a water-impervious member is inclined and embedded in the ground of a cultivated land, a water level detection means is installed in the inclination lower end of a water-impervious member, and a water supply control means is And a water supply stop means for stopping water supply from the water supply member to the water retention member based on the detection result of the water level detection means.

第6の発明では、遮水部材(12)は、耕作地(200)の地中に傾斜させて埋設され、その傾斜下端に水位検知手段(62)が設けられる。そして、その水位検知手段の検知結果の水位が設定水位(W)よりも高い時などに、給水制御手段(64)によって給水部材(16)から保水部材(14)への給水を停止させる。   In the sixth invention, the water-impervious member (12) is embedded in the ground of the cultivated land (200), and the water level detecting means (62) is provided at the lower end of the inclined surface. And when the water level of the detection result of the water level detection means is higher than the set water level (W), the water supply control means (64) stops water supply from the water supply member (16) to the water retention member (14).

第6の発明によれば、給水開始後、水が遮水部材の傾斜上端から傾斜下端までの保水部材全体に給水された時点で給水を停止させることができ、給水量の過不足を防止することができる。   According to the sixth aspect of the present invention, after the start of water supply, the water supply can be stopped at the time when the water is supplied to the entire water retaining member from the upper end of the water shielding member to the lower end of the inclined member, thereby preventing excessive or insufficient water supply. be able to.

第7の発明は、上側開口の容器状に形成され、耕作地の地中に傾斜させて埋設される遮水部材、遮水部材内の少なくとも底部に設けられる保水部材、および遮水部材内の底部との間に保水部材を介在させた状態で遮水部材内に配設され、給水源から供給された水を保水部材に給水する給水部材を備える、地下灌漑システムである。   According to a seventh aspect of the present invention, there is provided a water-impervious member that is formed in a container shape having an upper opening and is embedded in an inclined manner in the ground of the cultivated land, a water-retaining member provided at least at the bottom of the water-impervious member, An underground irrigation system including a water supply member that is disposed in a water-impervious member with a water retention member interposed between the water supply member and a water supply member.

第7の発明では、地下灌漑システム(10)は、耕作地(200)の地中に埋設される遮水部材(12)を含み、地下から水を供給して土壌中の水分を植物の生育にとって適切な状態に保つものである。遮水部材は、遮水性を有する材質によって上側開口の容器状に形成され、たとえば耕作地の傾斜に沿うように地中に埋設される。遮水部材内のたとえば底部には、保水部材(14)が設けられる。保水部材は、吸水性および保水性を有する材質からなり、たとえば遮水部材の長さ方向の全長に亘って設けられる。また、遮水部材の内部には、遮水部材内の底部との間に保水部材を介在させた状態で給水部材(16)が配設される。給水部材は、給水源(30)から供給された水を保水部材に供給する管路であり、たとえば保水部材の上側に載置される。   In the seventh invention, the underground irrigation system (10) includes a water-impervious member (12) embedded in the ground of the cultivated land (200), and supplies water from the underground to grow moisture in the soil. To keep it in a proper state. The water-impervious member is formed in a container shape having an upper opening by a material having water-impervious properties, and is embedded in the ground along the slope of the cultivated land, for example. A water retaining member (14) is provided, for example, at the bottom of the water shielding member. The water retaining member is made of a material having water absorption and water retaining properties, and is provided over the entire length of the water shielding member in the length direction, for example. In addition, a water supply member (16) is disposed inside the water shielding member with a water retaining member interposed between the water shielding member and the bottom of the water shielding member. A water supply member is a pipe line which supplies the water supplied from the water supply source (30) to a water retention member, for example, is mounted on the upper side of a water retention member.

第7の発明によれば、第1の発明と同様の効果を奏する。   According to the seventh aspect, the same effect as the first aspect can be obtained.

第8の発明は、第7の発明に従属し、耕作地の地中において、耕していない土の上に遮水部材を挟んで給水部材を載置することによって給水部材の上下方向位置を位置決めするようにした。   The eighth invention is dependent on the seventh invention, and in the ground of the cultivated land, the water supply member is placed on the soil that is not cultivated with the water supply member interposed therebetween, and the vertical position of the water supply member is positioned. I tried to do it.

第8の発明では、遮水部材(12)の少なくとも一部は、耕作地(200)の地中において、掘り起こされていない土の上側に配置され、給水部材(16)は、その遮水部材を挟んで掘り起こされていない土の上側に載置される。こうすることにより、地下灌漑システムの施工時などに、給水部材や土の重量によって給水部材の下側の保水部材が圧縮されて給水部材が下方に移動したりすることがなくなり、給水部材の上下方向の位置を確実に位置決めすることができる。   In 8th invention, at least one part of the water-impervious member (12) is arrange | positioned above the soil which is not dug up in the ground of a cultivated land (200), and a water supply member (16) is the water-impervious member. It is placed on the upper side of the soil that has not been dug up. In this way, when the underground irrigation system is constructed, the water retaining member below the water supply member is not compressed due to the weight of the water supply member or the soil, and the water supply member does not move downward. The position in the direction can be reliably positioned.

第8の発明によれば、遮水部材の傾斜上端から傾斜下端にかけて遮水部材内の底部から給水部材までの距離が安定するので、保水部材に保水される水分量を均一化させることができる。したがって、毛管水状態の土壌部の水分量が偏ることがなく、作土層の水分量をより均等に保つことができるようになる。   According to the eighth aspect of the invention, since the distance from the bottom of the water-impervious member to the water supply member is stabilized from the upper inclined end to the lower inclined end of the water-impervious member, the amount of water retained by the water retaining member can be made uniform. . Therefore, the moisture content of the soil portion in the capillary water state is not biased, and the moisture content of the soil layer can be more evenly maintained.

第9の発明は、遮水部材内の底部のうち最も低い第1位置よりも段差状に高くなった第2位置の上側に給水部材を載置するようにした。   In the ninth aspect of the invention, the water supply member is placed on the upper side of the second position which is higher than the lowest first position in the bottom portion in the water shielding member.

第9の発明では、たとえば、遮水部材(12)の一部には、遮水部材内の底部のうち最も低い底板(18)よりも段差状に高くなった第2の底板(60)が形成され、その第2の底板の上側に給水部材(16)が載置される。   In the ninth invention, for example, the second bottom plate (60) which is higher in a step shape than the lowest bottom plate (18) among the bottoms in the water shielding member (12) is formed in a part of the water shielding member (12). The water supply member (16) is placed on the upper side of the second bottom plate.

第9の発明によれば、給水部材の上下方向の位置を簡単かつ確実に位置決めすることができる。   According to the ninth aspect, the vertical position of the water supply member can be easily and reliably positioned.

第10の発明は、第1ないし9の発明に従属し、遮水部材内の底部を当該遮水部材の設置方向に所定の間隔を隔てて仕切る仕切り部をさらに備える。   A tenth aspect of the invention is dependent on the first to ninth aspects of the invention, and further includes a partition portion that divides the bottom portion in the water shielding member at a predetermined interval in the installation direction of the water shielding member.

第10の発明では、遮水部材(12)内の底部には、仕切り部(46)が形成される。仕切り部は、遮水性を有する材質からなり、たとえば遮水部材の底部の内面側から突出して形成され、遮水部材の設置方向に一定の間隔で配置される。仕切り部は、遮水部材の底部の内面側の空間を区画し、その仕切り部によって区画された各部分に、保水部材(14,14a)がそれぞれ設けられる。   In the tenth invention, a partition (46) is formed at the bottom of the water-impervious member (12). The partition portion is made of a material having water shielding properties, and is formed to protrude from the inner surface side of the bottom portion of the water shielding member, for example, and is arranged at a constant interval in the installation direction of the water shielding member. The partition section defines a space on the inner surface side of the bottom of the water-impervious member, and a water retaining member (14, 14a) is provided in each section partitioned by the partition section.

第10の発明によれば、有孔管から給水されて、仕切り部によって仕切られた各部分に溜まった水が、その各部分に設けた保水部材にそれぞれ吸収されるようになるので、各保水部材が吸収する水分量をほぼ均等に保つことができる。よって、作土層の水分量をより均等に保つことができる。   According to the tenth invention, the water supplied from the perforated pipe and accumulated in each part partitioned by the partition part is absorbed by the water retaining member provided in each part. The amount of water absorbed by the member can be kept substantially uniform. Therefore, the water content of the soil layer can be kept more even.

第11の発明は、第1ないし10のいずれかの発明に従属し、保水部材は、耕作地の土を含む。   An eleventh invention is dependent on any one of the first to tenth inventions, and the water retention member includes soil of cultivated land.

第11の発明では、遮水部材(12)内の底部には、保水部材(14)として、たとえば、耕作地(100)の土壌と同様の成分によって構成される土が充填される。たとえば、給水部材(16)から給水された水は、遮水部材の内部の土中に浸透し、毛管水または重力水となって遮水部材の内部に留まり、遮水部材の内部には、毛管水状態または重力水状態の土壌部(50)が形成される。そして、この土壌部の水分が、その上側の土壌に毛細管現象によって吸い上げられて浸透していき、上側の土壌に毛管水状態の土壌部(38)を形成する。   In the 11th invention, the bottom part in the water-impervious member (12) is filled with the soil comprised by the component similar to the soil of a cultivated land (100) as a water retention member (14), for example. For example, the water supplied from the water supply member (16) penetrates into the soil inside the water shielding member, becomes capillary water or gravity water, stays inside the water shielding member, and inside the water shielding member, A soil portion (50) in a capillary water state or a gravity water state is formed. And the water | moisture content of this soil part is sucked up and permeate | transmitted to the upper soil by the capillary phenomenon, and forms the soil part (38) of a capillary water state in the upper soil.

第12の発明は、第1ないし11のいずれかの発明に従属し、給水部材は、遮水部材の内部の余剰水を集水する集水部材として兼用される有孔管を含み、この有孔管の上側に疎水部が設けられる。   A twelfth invention is dependent on any one of the first to eleventh inventions, and the water supply member includes a perforated pipe that is also used as a water collecting member for collecting excess water inside the water shielding member. A hydrophobic portion is provided on the upper side of the hole tube.

第12の発明では、給水部材(16)は、遮水部材(12)の内部の余剰水を集水する集水部材(36)として兼用される有孔管(24)を含み、この有孔管の上側、つまり有孔管の上部や上方には、疎水部(108)が設けられる。そして、耕作地(200)の地中から疎水部の中へ滲みだした水が有孔管に集められ、有孔管の中を流れた水がたとえば貯水タンク(34)などに排出される。   In the twelfth invention, the water supply member (16) includes a perforated pipe (24) that is also used as a water collecting member (36) for collecting surplus water inside the water shielding member (12). A hydrophobic portion (108) is provided on the upper side of the tube, that is, on the upper and upper sides of the perforated tube. Then, the water that has oozed out from the ground of the cultivated land (200) into the hydrophobic portion is collected in the perforated pipe, and the water that has flowed through the perforated pipe is discharged into, for example, the water storage tank (34).

第13の発明は、上側開口の容器状に形成され、耕作地の地中に埋設される遮水部材、および遮水部材内の底部に設けられる保水部材、遮水部材内に保水部材を介して配設され、給水源から供給された水を保水部材に給水する給水部材を備える、地下灌漑システム。   A thirteenth aspect of the present invention is a water-impervious member formed in a container shape with an upper opening and buried in the ground of a cultivated land, a water-retaining member provided at the bottom of the water-impervious member, and a water-retaining member in the water-impervious member. A subsurface irrigation system comprising a water supply member that is disposed in a row and supplies water supplied from a water supply source to a water retention member.

第13の発明では、地下灌漑システム(10)は、耕作地(100)の地中に埋設される遮水部材(12)を含み、地下から水を供給して土壌中の水分を植物の生育にとって適切な状態に保つものである。遮水部材は、遮水性を有する材質によって上側開口の容器状に形成される。遮水部材内の底部には、保水部材(14)が設けられる。保水部材は、吸水性および保水性を有する材質からなり、たとえば遮水部材の長さ方向の全長に亘って設けられる。また、遮水部材の内部には、保水部材を介して、給水部材(16)が配設される。給水部材は、給水源(30)から供給された水を保水部材に供給する管路であり、たとえば保水部材の上側に載置される。このような地下灌漑システムでは、灌漑時には、給水源から給水部材に供給された水が保水部材に給水され、その水が保水部材に吸収される。そして、保水部材が保水した水が上側の土壌に毛細管現象によって吸い上げられて浸透していき、上側の土壌に毛管水状態の土壌部(38)が形成される。   In the thirteenth aspect, the underground irrigation system (10) includes a water-impervious member (12) embedded in the ground of the cultivated land (100), and supplies water from the underground to grow moisture in the soil. To keep it in a proper state. The water-impervious member is formed in a container shape having an upper opening by a material having water-impervious properties. A water retaining member (14) is provided at the bottom of the water shielding member. The water retaining member is made of a material having water absorption and water retaining properties, and is provided over the entire length of the water shielding member in the length direction, for example. In addition, a water supply member (16) is disposed inside the water shielding member via a water retention member. A water supply member is a pipe line which supplies the water supplied from the water supply source (30) to a water retention member, for example, is mounted on the upper side of a water retention member. In such an underground irrigation system, at the time of irrigation, water supplied from the water supply source to the water supply member is supplied to the water retention member, and the water is absorbed by the water retention member. Then, the water retained by the water retaining member is sucked up and penetrated into the upper soil by a capillary phenomenon, and a soil portion (38) in a capillary water state is formed in the upper soil.

第13の発明によれば、第1の発明と同様の効果を奏する。   According to the thirteenth invention, the same effect as the first invention is obtained.

この発明によれば、給水部材によって給水した水を保水部材に吸収ないし浸透させて、保水部材が保水した水を毛細管現象によって土壌に供給するようにしたため、遮水部材の配置態様に地理的な制約がなくなり、傾斜地に対しても地下灌漑システムを好適に用いることが可能である。   According to this invention, the water supplied by the water supply member is absorbed or permeated into the water retention member, and the water retained by the water retention member is supplied to the soil by capillary action. There are no restrictions, and it is possible to suitably use the underground irrigation system even on sloping land.

また、水位管理器等の特別な設備を用いなくても土壌に対して均等に給水できるので、設備コストや維持管理コスト等を削減することが可能である。   Moreover, since it is possible to supply water evenly to the soil without using special equipment such as a water level management device, it is possible to reduce equipment costs and maintenance costs.

この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。   The above object, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

この発明の一実施例の地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system of one Example of this invention. 図1の地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system of FIG. 図1の地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system of FIG. 図1の地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system of FIG. (a)は、図1の地下灌漑システムにおける有孔管の給水時の水の流れを示す図解図であり、(b)は、図1の地下灌漑システムにおける有孔管の集水時の水の流れを示す図解図である。(A) is an illustration showing the flow of water when the perforated pipe is supplied in the underground irrigation system of FIG. 1, and (b) is the water when collecting the perforated pipe in the underground irrigation system of FIG. It is an illustration figure which shows the flow of. 有孔管の貫通孔から保水部材に給水する水の流れを示す図解図である。It is an illustration figure which shows the flow of the water supplied to a water retention member from the through-hole of a perforated pipe. 図1の地下灌漑システムにおける貯水の循環時の水の流れを示す図解図であり、It is an illustration figure which shows the flow of the water at the time of circulation of the stored water in the underground irrigation system of FIG. この発明の他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is another Example of this invention. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention. 図16の地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system of FIG. 図16の地下灌漑システムの遮水部材を設置する様子を示す図解図である。It is an illustration figure which shows a mode that the water-impervious member of the underground irrigation system of FIG. 16 is installed. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention. 図19の地下灌漑システムを施工装置を利用して施工する様子を示す図解図である。It is an illustration figure which shows a mode that the underground irrigation system of FIG. 19 is constructed using a construction apparatus. 図19の地下灌漑システムの遮水部材および給水部材を設置する様子を示す図解図である。It is an illustration figure which shows a mode that the water-impervious member and water supply member of the underground irrigation system of FIG. 19 are installed. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention. 図22の地下灌漑システムの遮水部材および給水部材を設置する様子を示す図解図である。It is an illustration figure which shows a mode that the water shielding member and water supply member of the underground irrigation system of FIG. 22 are installed. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention. 図25の地下灌漑システムの水位検知手段を示す図解図である。It is an illustration figure which shows the water level detection means of the underground irrigation system of FIG. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention. 図28の地下灌漑システムの水位管理器を示す図解図である。It is an illustration figure which shows the water level management device of the underground irrigation system of FIG. 図28の地下灌漑システムの水位管理器の動作を示す概略断面図であり、(a)は給水口が開いた状態を示し、(b)は給水口が閉じた状態を示す。It is a schematic sectional drawing which shows operation | movement of the water level management device of the underground irrigation system of FIG. 28, (a) shows the state which the water supply port opened, (b) shows the state which the water supply port closed. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention. この発明のさらに他の実施例である地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system which is further another Example of this invention.

図1および図2を参照して、この発明の一実施例である地下灌漑システム10(以下、単に「システム10」ということもある。)は、傾斜を有する耕作地(傾斜地)200の地中に埋設される遮水部材12、および遮水部材12内の底部に設けられる保水部材14を含み、地下から水を供給して土壌中の水分を植物の生育にとって適切な状態に保つものである。詳細は後に説明するが、このシステム10では、給水部材16によって遮水部材12の内部に給水した水を保水部材14に吸収させて、保水部材14が保水した水を毛細管現象によって土壌に供給する。   Referring to FIGS. 1 and 2, an underground irrigation system 10 (hereinafter, also simply referred to as “system 10”) according to an embodiment of the present invention is an underground of a cultivated land (inclined land) 200 having an inclination. Including a water-impervious member 12 buried in the water and a water-retaining member 14 provided at the bottom of the water-impervious member 12, supplying water from the underground to keep moisture in the soil in a state suitable for plant growth. . Although details will be described later, in this system 10, the water supplied to the inside of the impermeable member 12 by the water supply member 16 is absorbed by the water retention member 14, and the water retained by the water retention member 14 is supplied to the soil by capillary action. .

図1−図3に示すように、遮水部材12は、ポリエチレンやポリ塩化ビニル等の合成樹脂やステンレス等の金属などの遮水性を有する材質によって、上側開口の容器状に形成され、耕作地200の傾斜に沿うように地中に埋設される。   As shown in FIG. 1 to FIG. 3, the water shielding member 12 is formed in a container shape with an upper opening by a material having water shielding properties such as a synthetic resin such as polyethylene and polyvinyl chloride, and a metal such as stainless steel, It is buried in the ground along the 200 slope.

たとえば、この実施例では、遮水部材12は、底板18の両側端から側板20がやや外側に傾斜して立ち上がる細長い溝状に形成され、その長手方向が耕作地200の傾斜に沿うように地中に埋設される。遮水部材12としては、たとえば、上述のような、遮水性を有する材質からなる遮水シートを屈曲ないし湾曲させて細長い溝状に形成したものを用いるとよい。一例として、遮水部材12の底板18の幅は、たとえば120mmであり、側板20の高さ(遮水部材12の深さ)は、たとえば150mmである。また、遮水部材12の上側(天端)の開口22の幅は、底板18の幅よりも大きく設定され、たとえば300mmである。   For example, in this embodiment, the water-impervious member 12 is formed in an elongated groove shape in which the side plate 20 rises slightly outward from both side ends of the bottom plate 18, and the longitudinal direction thereof follows the inclination of the cultivated land 200. Buried inside. As the water-impervious member 12, for example, a member formed by bending or curving a water-impervious sheet made of a water-impervious material as described above may be used. As an example, the width of the bottom plate 18 of the water shielding member 12 is 120 mm, for example, and the height of the side plate 20 (depth of the water shielding member 12) is 150 mm, for example. Further, the width of the opening 22 on the upper side (top end) of the water shielding member 12 is set larger than the width of the bottom plate 18 and is, for example, 300 mm.

遮水部材12は、植物の根圏に沿うように、耕作地200の傾斜に沿って畝立てされた畝202ごとに配置されており、畝202に沿って耕作地200の両端付近まで延びる遮水部材12が、所定の間隔を隔てて並ぶように配置される。なお、図1では、図解のために、耕作地200内に4つの遮水部材12を並べて配置しているが、これは単なる例示であり、必要に応じて遮水部材12の配置個数は適宜変更され得る。また、必ずしも遮水部材12を畝202ごとに配置する必要もなく、複数の畝202がある耕作地200では、2−3本の畝202に1つの割合で遮水部材12を配置してもよい。   The water-impervious member 12 is arranged for each ridge 202 set up along the slope of the cultivated land 200 so as to extend along the root zone of the plant, and extends along the ridge 202 to the vicinity of both ends of the cultivated land 200. The water members 12 are arranged so as to be arranged at a predetermined interval. In FIG. 1, for the purpose of illustration, four water-impervious members 12 are arranged side by side in the cultivated land 200, but this is merely an example, and the number of the water-impervious members 12 disposed is appropriately set as necessary. Can be changed. Further, it is not always necessary to dispose the water shielding member 12 for each ridge 202. In the cultivated land 200 having a plurality of ridges 202, the water shielding member 12 may be disposed at a ratio of one to two ridges 202. Good.

一例として、隣り合う遮水部材12どうしの間隔は、たとえば500−2000mmとされる。また、遮水部材12の底板18から地表面までの距離は、たとえば100mm−800mmとされる。   As an example, the space | interval of the adjacent water-impervious members 12 shall be 500-2000 mm, for example. Moreover, the distance from the baseplate 18 of the water-impervious member 12 to the ground surface is, for example, 100 mm-800 mm.

ただし、遮水部材12の大きさ、配置個数、配置深さおよび配置間隔などは、これらの数値に限定されず、このシステム10を適用する耕作地200の面積、土壌成分および気候条件などに応じて、適宜設定される。このことは、後述する他の各実施例においても同様である。   However, the size, the number of arrangement, the arrangement depth, the arrangement interval, and the like of the water-impervious member 12 are not limited to these numerical values, and depend on the area of the cultivated land 200 to which the system 10 is applied, soil components, climatic conditions, and the like. Is set as appropriate. This is the same in other embodiments described later.

遮水部材12内の底部には、保水部材14が設けられる。そして、この保水部材14を介して、遮水部材12内に給水部材16が配設される。ただし、上述のように、遮水部材12は上側開口の容器状に形成されるため、この場合の遮水部材12の内部とは、遮水部材12の上側に含まれる概念となり、遮水部材12内の底部とは、遮水部材12の底板18の上側に含まれる概念となることに留意されたい。   A water retaining member 14 is provided at the bottom of the water shielding member 12. And the water supply member 16 is arrange | positioned in the water-impervious member 12 through this water retention member 14. However, as described above, since the water-impervious member 12 is formed in a container shape having an upper opening, the inside of the water-impervious member 12 in this case is a concept included on the upper side of the water-impervious member 12, and the water-impervious member It should be noted that the bottom portion in 12 is a concept included above the bottom plate 18 of the water shielding member 12.

図1、図3および図4に示すように、保水部材14は、吸水性および保水性を有する材質からなり、遮水部材12の長さ方向の全長に亘って遮水部材12内の底部、つまり底板18の上側に配置される。一例として、保水部材14には、ポリアクリル酸ナトリウムなどの高吸水性高分子からなる汎用の保水剤や、そのような保水剤と土とを混合した混合物が用いられる。保水部材14の厚み(高さ)は、たとえば50−100mmである。   As shown in FIGS. 1, 3, and 4, the water retaining member 14 is made of a material having water absorption and water retaining properties, and has a bottom in the water shielding member 12 over the entire length of the water shielding member 12. That is, it is arranged on the upper side of the bottom plate 18. As an example, the water retention member 14 may be a general-purpose water retention agent made of a highly water-absorbing polymer such as sodium polyacrylate, or a mixture of such a water retention agent and soil. The thickness (height) of the water retaining member 14 is, for example, 50-100 mm.

また、給水部材16は、給水源30から供給された水を保水部材14に供給(給水)するためのものであり、遮水部材12内を通る水路を形成する有孔管24を含む。   Further, the water supply member 16 is for supplying (water supply) the water supplied from the water supply source 30 to the water retention member 14, and includes a perforated pipe 24 that forms a water channel passing through the water shielding member 12.

たとえば、この実施例では、有孔管24は、ポリエチレンやポリ塩化ビニル等の合成樹脂や合成ゴムなどによって形成され、保水部材14に沿ってその上側に載置される。有孔管24には、管壁全体に複数の貫通孔26がランダムに分散配置され、その貫通孔26を通して有孔管24内の水が保水部材14に給水される。一例として、有孔管24の外径は、たとえば5−30mmである。貫通孔26は、円形に形成され、その大きさは、たとえば直径1−5mmである。また、図示は省略するが、有孔管24の外面は、不織布などからなる防根シートによって覆われている。   For example, in this embodiment, the perforated tube 24 is formed of a synthetic resin such as polyethylene or polyvinyl chloride, synthetic rubber, or the like, and is placed on the upper side along the water retaining member 14. In the perforated tube 24, a plurality of through holes 26 are randomly distributed over the entire tube wall, and water in the perforated tube 24 is supplied to the water retaining member 14 through the through holes 26. As an example, the outer diameter of the perforated tube 24 is, for example, 5-30 mm. The through hole 26 is formed in a circular shape, and the size thereof is, for example, 1-5 mm in diameter. Moreover, although illustration is abbreviate | omitted, the outer surface of the perforated pipe | tube 24 is covered with the root-proof sheet | seat which consists of a nonwoven fabric etc.

ただし、貫通孔26の形状、大きさ、形成位置および数などは、適用する耕作地200の土壌成分などに応じて適宜設定されるものであり、これらを調整変更することによって、有孔管24から保水部材14へ供給する水の量を制御することが可能である。   However, the shape, size, formation position, number, and the like of the through-holes 26 are appropriately set according to the soil components of the cultivated land 200 to be applied, and the perforated pipe 24 can be adjusted and changed. It is possible to control the amount of water supplied from the water to the water retaining member 14.

図1および図2に示すように、有孔管24の上流側端部は、第1配水管28を介して、有孔管24よりも傾斜上側に配置された給水源30に接続される。第1配水管28は、給水源30から供給された水を有孔管24まで送る管路であり、複数の直管、可撓管および継手などを適宜連結して形成される。給水源30は、耕作地200に供給するための水を貯留する給水タンク30であり、たとえば地上に設置される。給水タンク30は、たとえば、農業用水配管(図示せず)などと接続されて、農業用水配管から送られてくる水をその内部に貯留する。給水タンク30に貯留される水量は、耕作地200の面積などによって適宜設定され、給水タンク30内には、常に一定量以上の水が貯留される。   As shown in FIGS. 1 and 2, the upstream end portion of the perforated pipe 24 is connected to a water supply source 30 disposed on the upper side of the perforated pipe 24 via the first water distribution pipe 28. The first water distribution pipe 28 is a pipe that sends the water supplied from the water supply source 30 to the perforated pipe 24, and is formed by appropriately connecting a plurality of straight pipes, flexible pipes, joints, and the like. The water supply source 30 is a water supply tank 30 that stores water to be supplied to the cultivated land 200, and is installed on the ground, for example. The water supply tank 30 is connected to, for example, an agricultural water pipe (not shown), and stores water sent from the agricultural water pipe therein. The amount of water stored in the water supply tank 30 is appropriately set depending on the area of the cultivated land 200 and the like, and a certain amount or more of water is always stored in the water supply tank 30.

一方、有孔管24の下流側端部は、第2配水管32を介して、有孔管24よりも傾斜下側に配置された貯水手段34と接続される。第2配水管32は、有孔管24から送られてきた水を貯水手段34まで送る管路であり、複数の直管、可撓管および継手などを適宜連結して形成される。貯水手段34は、第2配水管32から送られてくる水をその内部に貯留する貯水タンク34であり、たとえば地上に設置される。詳細は後に説明するように、給水しきれずに有孔管24の内部に残った余剰水は、第2配水管32を介して貯水タンク34に排出される。また、このシステム10では、有孔管24が遮水部材12内の余剰水を集水するための集水部材36として兼用されるため、詳細は後に説明するように、有孔管24によって集水された遮水部材12内の余剰水が、第2配水管32を介して貯水タンク34に排出される。   On the other hand, the downstream end portion of the perforated pipe 24 is connected to the water storage means 34 disposed below the perforated pipe 24 via the second water distribution pipe 32. The second water distribution pipe 32 is a pipe that sends the water sent from the perforated pipe 24 to the water storage means 34, and is formed by appropriately connecting a plurality of straight pipes, flexible pipes, joints, and the like. The water storage means 34 is a water storage tank 34 that stores the water sent from the second water distribution pipe 32 therein, and is installed on the ground, for example. As will be described in detail later, surplus water remaining inside the perforated pipe 24 without being supplied with water is discharged to the water storage tank 34 via the second water distribution pipe 32. Further, in this system 10, the perforated pipe 24 is also used as the water collecting member 36 for collecting surplus water in the water shielding member 12, so that the perforated pipe 24 collects the details as will be described later. Excess water in the impermeable member 12 that has been drained is discharged to the water storage tank 34 via the second water distribution pipe 32.

図3−図6を参照して、このようなシステム10では、灌漑時には、たとえば給水タンク30に設けられているバルブ(図示せず)を手動で開け閉めすること等によって、給水タンク30から第1配水管28に対して水が供給される。ただし、電磁弁やタイマ等を利用して、所定の時間帯に自動的に給水タンク30から水が供給されるようにしてもよいし、栽培作物の生理的状況をモニタリングして水分を補給するようにしてもよいし、給水タンク30からの取水量を適宜調整して、水が常時供給されるようにしてもよい。   Referring to FIGS. 3 to 6, in such a system 10, during irrigation, the valve (not shown) provided in the water supply tank 30 is manually opened and closed, for example, to close the first water supply tank 30. Water is supplied to one water distribution pipe 28. However, water may be automatically supplied from the water supply tank 30 during a predetermined time period using a solenoid valve, a timer, or the like, and the physiological condition of the cultivated crop is monitored to supply water. Alternatively, the amount of water taken from the water supply tank 30 may be adjusted as appropriate so that water is constantly supplied.

給水タンク30から第1配水管28に供給された水は、図5(a)に示すように、有孔管24に流れ込み、有孔管24内を通って遮水部材12の全長に亘るように搬送されるとともに、図6に示すように、各貫通孔26から有孔管24外に出て、遮水部材12の内部に供給(給水)される。有孔管24から遮水部材12の内部に給水されると、その水は土中に浸透して、遮水部材12内の底部に溜まる。そして、遮水部材12内の底部に溜まった水が保水部材14と混合して、その水が保水部材14に吸収される。それから、時間の経過とともに徐々に保水部材14が保水した(含んだ)水(水分)が上側の土壌に毛細管現象によって吸い上げられて浸透していき、これによって、保水部材14よりも上側の土壌に、毛管水状態の土壌部38が形成される。   As shown in FIG. 5A, the water supplied from the water supply tank 30 to the first water distribution pipe 28 flows into the perforated pipe 24 and passes through the perforated pipe 24 over the entire length of the water shielding member 12. 6, as shown in FIG. 6, the gas passes through the through-holes 26, goes out of the perforated pipe 24, and is supplied (supplied) to the inside of the water shielding member 12. When water is supplied from the perforated pipe 24 to the inside of the water shielding member 12, the water penetrates into the soil and accumulates at the bottom of the water shielding member 12. Then, the water accumulated at the bottom of the water-impervious member 12 is mixed with the water retaining member 14 and the water is absorbed by the water retaining member 14. Then, with the passage of time, the water (moisture) retained (included) gradually by the water retaining member 14 is sucked up and permeated into the upper soil by capillarity, whereby the water is retained in the soil above the water retaining member 14. A soil portion 38 in a capillary water state is formed.

ここで、毛管水状態の土壌部38の水分量は、遮水部材12内に保持される水の量によって変動するが、このシステム10では、遮水部材12の中に供給した水を一旦保水部材14に吸収させて、保水部材14が保水した水を毛細管現象によって上側の土壌に吸い上げるようにしているので、遮水部材12を傾斜させて設置していても、遮水部材12内の水がこぼれたり、遮水部材12内に保持される水の量が傾斜の上側と下側とで偏ってしまったりすることがない。つまり、遮水部材12内に保持される水の量はほぼ均等に保たれる。よって、たとえば耕作地200で栽培する植物に合わせて、保水部材14に給水する(吸収させる)水の量を適量に保つことにより、その植物にとって最適な水分量を有する土壌部38を耕作地200に実現できる。   Here, the water content of the soil portion 38 in the capillary water state varies depending on the amount of water retained in the water-impervious member 12, but in this system 10, the water supplied into the water-impervious member 12 is temporarily retained. Since the water retained by the water retaining member 14 is absorbed by the member 14 and sucked up into the upper soil by the capillary phenomenon, the water in the water shielding member 12 is maintained even when the water shielding member 12 is inclined. Neither spillage nor the amount of water held in the water-impervious member 12 is biased between the upper side and the lower side of the slope. That is, the amount of water retained in the water shielding member 12 is kept substantially equal. Therefore, for example, by keeping an appropriate amount of water supplied (absorbed) to the water retention member 14 in accordance with a plant cultivated on the cultivated land 200, the soil portion 38 having an optimal amount of water for the plant is cultivated 200. Can be realized.

また、このシステム10では、灌漑時に、給水タンク30から有孔管24(給水部材16)に余剰に水が供給されても、給水しきれずに有孔管24の内部に残った余剰水が第2配水管32に排出される。そして、第2配水管32は、有孔管24から送られてきた水を貯水タンク34まで送り、貯水タンク34は、第2配水管32から送られてきた水をその内部に貯留する。   Further, in this system 10, even when excessive water is supplied from the water supply tank 30 to the perforated pipe 24 (the water supply member 16) during irrigation, the surplus water remaining inside the perforated pipe 24 without being able to be supplied is first. 2 is discharged to the water distribution pipe 32. And the 2nd water distribution pipe 32 sends the water sent from the perforated pipe 24 to the water storage tank 34, and the water storage tank 34 stores the water sent from the 2nd water distribution pipe 32 in the inside.

さらに、このシステム10では、有孔管24から遮水部材12内に余剰に水が供給された時や、自然降雨などによって土壌に余剰に水が与えられた時に、それらの余剰水が遮水部材12内に溜まって、保水部材14が水で飽和した状態になると、保水部材14に吸収されなかった水が貫通孔26を通して有孔管24(集水部材36)内に集水される。そして、有孔管24の内部に水が集水されると、図5(b)に示すように、その水は有孔管24内を通って第2配水管32に排出される。そして、第2配水管32は、有孔管24から送られてきた水を貯水タンク34まで送り、貯水タンク34は、第2配水管32から送られてきた水をその内部に貯留する。   Furthermore, in this system 10, when excessive water is supplied from the perforated pipe 24 into the water-impervious member 12, or when excessive water is given to the soil by natural rainfall or the like, the surplus water is impermeable. When the water retaining member 14 is saturated with water by accumulating in the member 12, the water that has not been absorbed by the water retaining member 14 is collected into the perforated pipe 24 (water collecting member 36) through the through hole 26. Then, when water is collected inside the perforated pipe 24, the water is discharged to the second water distribution pipe 32 through the perforated pipe 24 as shown in FIG. And the 2nd water distribution pipe 32 sends the water sent from the perforated pipe 24 to the water storage tank 34, and the water storage tank 34 stores the water sent from the 2nd water distribution pipe 32 in the inside.

以上のように、この実施例によれば、遮水部材12内に供給した水を保水部材14に吸収させて、保水部材14が保水した水(水分)を毛細管現象によって土壌に供給するようにしているので、遮水部材12が傾斜して埋設されていても、毛管水状態の土壌部32の水分量が偏ることがない。したがって、同一システム10の耕作地200において、作土層の水分量を可及的均等に保つことができるようになる。つまり、傾斜を有する耕作地200などに対してもシステム10を好適に用いることができる。   As described above, according to this embodiment, the water supplied into the water-impervious member 12 is absorbed by the water retaining member 14 and the water (water) retained by the water retaining member 14 is supplied to the soil by capillary action. Therefore, even if the water shielding member 12 is inclined and embedded, the moisture content of the soil portion 32 in the capillary water state is not biased. Therefore, in the cultivated land 200 of the same system 10, the water content of the soil layer can be kept as uniform as possible. That is, the system 10 can be suitably used for the cultivated land 200 having an inclination.

しかも、たとえば、地下灌漑のシステムを傾斜地に適用する場合には、上述した特許文献1のように、各遮水部材内の重力水の水位を水位管理器によって個別に調節する必要があったが、この実施例によれば、水位管理器等の特別な設備を用いなくても、遮水部材12内に保持される水の量をほぼ均等に保つことができるので、設備コストや維持管理コスト等が低減できる。   Moreover, for example, when the underground irrigation system is applied to an inclined land, it is necessary to individually adjust the water level of the gravitational water in each water-impervious member by a water level controller as in Patent Document 1 described above. According to this embodiment, the amount of water retained in the water-impervious member 12 can be kept substantially even without using special equipment such as a water level controller, so that the equipment cost and maintenance cost Etc. can be reduced.

また、このシステム10では、有孔管24(給水部材16)の下流側に貯水タンク34が設けられ、給水しきれずに有孔管24の内部に残った余剰水が貯水タンク34に排出される。すなわち、通常であれば、給水しきれずに有孔管24の内部に残った余剰水は給水部材16の下流側末端などから地下深くに浸透させるが、このシステム10によれば、有孔管24内の余剰水を貯水タンク34内に貯留することが可能である。   Further, in this system 10, a water storage tank 34 is provided on the downstream side of the perforated pipe 24 (water supply member 16), and surplus water remaining inside the perforated pipe 24 without being supplied is discharged to the water storage tank 34. . That is, normally, the surplus water remaining inside the perforated pipe 24 without being supplied with water penetrates deeply underground from the downstream end of the water supply member 16, but according to this system 10, the perforated pipe 24 It is possible to store the excess water in the water storage tank 34.

さらに、このシステム10では、有孔管24が集水部材36として兼用される。このため、遮水部材12内に余剰に供給された水や、自然降雨などによって土壌に余剰に与えられた水が遮水部材12内に溜まると、その水が有孔管24の内部に集水され、第2配水管32を通って貯水タンク34に排出される。すなわち、このシステム10によれば、有孔管24によって作土層の水分量の調整を行うとともに、遮水部材12内の余剰水を貯水タンク34内に貯留することが可能である。   Further, in the system 10, the perforated pipe 24 is also used as the water collecting member 36. For this reason, when the water supplied excessively in the water-impervious member 12 or the water excessively given to the soil by natural rain or the like accumulates in the water-impervious member 12, the water collects in the perforated pipe 24. Water is discharged and discharged to the water storage tank 34 through the second water distribution pipe 32. That is, according to this system 10, it is possible to adjust the moisture content of the soil formation layer with the perforated pipe 24 and to store the excess water in the water shielding member 12 in the water storage tank 34.

したがって、たとえば、図7に示すように、システム10に、貯水タンク34内に貯水した水を給水タンク30に送るポンプ40(たとえば、ソーラー型循環ポンプなど)を設けて、貯水タンク34内の水を同一システム10の給水タンク30に戻すようにしたり、貯水タンク34内に貯水した水を作業員がタンクローリー車等で給水タンク30に運搬するようにしたり、また、貯水タンク34内に貯水した水を耕作地200よりも傾斜下側の耕作地に適用した別のシステムの給水タンクに給水するようにすれば、貯水タンク34内に貯水した余剰水を再利用することが可能である。   Therefore, for example, as shown in FIG. 7, the system 10 is provided with a pump 40 (for example, a solar circulation pump or the like) that sends the water stored in the water storage tank 34 to the water supply tank 30. Is returned to the water supply tank 30 of the same system 10, the water stored in the water storage tank 34 is transported to the water supply tank 30 by a tank truck or the like, or the water stored in the water storage tank 34 is stored. If the water is supplied to the water supply tank of another system applied to the cultivated land below the cultivated land 200, the surplus water stored in the water storage tank 34 can be reused.

このように、このシステム10によれば、水の無駄遣いを低減でき、水資源を効率的に利用することができる。特に、離島などの圃場においては、雨水を逃がさないことで、海水の淡水化量を減らす事に繋げながら、栽培する植物に潤いをもたらすことができるので、システム10を利用する効果は大きい。   Thus, according to this system 10, wasteful use of water can be reduced and water resources can be used efficiently. In particular, in farm fields such as remote islands, it is possible to bring moisture to the plants to be cultivated while reducing the amount of seawater desalination by not letting rainwater escape, so the effect of using the system 10 is great.

なお、システム10の他の実施例として、図8に示すように、有孔管24内の全長に亘って給水ホース42を挿通させて、この給水ホース42から有孔管24内に放出された水を、有孔管24の各貫通孔26を通して遮水部材12の中に給水するようにしてもよい。たとえば、給水ホース42には、水圧をかけることによって内部の水が壁面の外部に染み出す、所謂、点滴チューブなどを利用し得る。こうすることによって、有孔管24の各貫通孔26から保水部材14への給水量の均等化を図ることができ、延いては、同一システム10の耕作地200において、作土層の水分量をより均等に保つことができるようになる。   As another embodiment of the system 10, as shown in FIG. 8, the water supply hose 42 is inserted through the entire length of the perforated pipe 24 and discharged from the water supply hose 42 into the perforated pipe 24. The water may be supplied into the water shielding member 12 through each through hole 26 of the perforated pipe 24. For example, for the water supply hose 42, a so-called drip tube or the like in which the internal water oozes out of the wall surface by applying water pressure can be used. By doing so, it is possible to equalize the amount of water supplied from each through hole 26 of the perforated pipe 24 to the water retention member 14, and in turn, in the cultivated land 200 of the same system 10, the amount of water in the soil layer Can be kept more even.

また、図示は省略するが、上述した有孔管24の代わりに、給水ホース42を給水部材16として遮水部材12内に配設するようにしてもよい。この場合には、給水部材16は排水パイプとして機能しない。   Although not shown, the water supply hose 42 may be disposed in the water shielding member 12 as the water supply member 16 instead of the perforated pipe 24 described above. In this case, the water supply member 16 does not function as a drain pipe.

さらにまた、図示は省略するが、上述した有孔管24を排水部材36として遮水部材12内に配設するとともに、その遮水部材12内に給水ホース42を給水部材16として配設するようにしてもよい。   Furthermore, although not shown, the perforated pipe 24 described above is disposed as the drainage member 36 in the water shielding member 12, and the water supply hose 42 is disposed in the water shielding member 12 as the water supply member 16. It may be.

さらに、上述の実施例では、遮水部材12内の底部に保水部材14が設けられ、その保水部材14の上側に有孔管24が載置されたが、必ずしも有孔管24を保水部材14の上側に載置する必要はない。   Further, in the above-described embodiment, the water retaining member 14 is provided at the bottom of the water shielding member 12 and the perforated tube 24 is placed on the upper side of the water retaining member 14, but the perforated tube 24 is not necessarily connected to the water retaining member 14. There is no need to place it on the upper side of the.

たとえば、図9に示すシステム10のさらに他の実施例のように、有孔管24の全部または一部を保水部材14の中に埋め込んで配設するようにしてもよい。この場合には、有孔管24は主として保水部材14への給水パイプとして機能する。また、遮水部材12内が保水部材14で満杯になるようにし、その保水部材14の中へ有孔管24を埋め込んで配設するようにしてもよい。要は、上述した各実施例のように、遮水部材12内の底部との間に保水部材14が介在された状態で有孔管24(給水部材16)が配設されていれば、システム10はその効果を発揮できる。   For example, as in still another embodiment of the system 10 shown in FIG. 9, all or part of the perforated tube 24 may be embedded in the water retaining member 14. In this case, the perforated pipe 24 mainly functions as a water supply pipe to the water retention member 14. Alternatively, the water-impervious member 12 may be filled with the water-retaining member 14, and the perforated tube 24 may be embedded in the water-retaining member 14. In short, as in the above-described embodiments, if the perforated pipe 24 (water supply member 16) is disposed with the water retention member 14 interposed between the bottom portion in the water shielding member 12 and the system, 10 can exhibit its effect.

さらにまた、図10に示すシステム10のさらに他の実施例のように、遮水部材12の上側の開口22に、鍔状部材44を設けるようにしてもよい。たとえば、鍔状部材44は、合成樹脂および金属などの遮水性を有する材質によって形成され、遮水部材12の全長に亘るように側板20の上端から鍔状に外側に延びて、その下方の土壌への水の浸透を遮断する。上述のように、保水部材14の水分は、その上側の土壌に毛細管現象によって吸い上げられて、遮水部材12の上部およびその周辺の土壌へと浸透していくが、遮水部材12に鍔状部材44を設けておくと、鍔状部材44はその下方の土壌への水の浸透を遮断して、下方に向かって浸透していく水の量を低減させるので、浸透水は横方向ないし上方向に浸透していくことになる。これによって、使用する水の量を低減させつつ、横方向に広範囲に広がる毛管水状態の土壌部38を形成することができるようになる。さらに、降雨があったときには、地中に浸透した雨水を鍔状部材44によって下方の土壌へ浸透させずに遮水部材12内に導くことができる。すなわち、遮水部材12によって雨水を効率的に集水することが可能であるので、水資源をより効率的に利用できるようになる。   Furthermore, as in another embodiment of the system 10 shown in FIG. 10, a hook-shaped member 44 may be provided in the opening 22 on the upper side of the water shielding member 12. For example, the hook-shaped member 44 is formed of a material having a water-blocking property such as a synthetic resin and a metal, and extends outward from the upper end of the side plate 20 in a bowl shape so as to extend over the entire length of the water-blocking member 12, and below the soil Block water penetration into the water. As described above, the moisture of the water retaining member 14 is sucked up by the capillarity in the upper soil and permeates into the upper portion of the water shielding member 12 and the surrounding soil. If the member 44 is provided, the bowl-shaped member 44 blocks the penetration of water into the soil below it and reduces the amount of water penetrating downward, so that the permeated water is laterally or upwardly. It will penetrate in the direction. As a result, it is possible to form the soil portion 38 in the capillary water state that spreads widely in the lateral direction while reducing the amount of water to be used. Furthermore, when there is rain, rainwater that has penetrated into the ground can be guided into the water-impervious member 12 without penetrating the soil below by the hook-shaped member 44. That is, since rainwater can be collected efficiently by the water shielding member 12, water resources can be used more efficiently.

さらに、図11に示すシステム10のさらに他の実施例のように、遮水部材12内の底部に複数の仕切り部46を形成し、その仕切り部46によって仕切られた各区画に保水部材14aを設けるようにしてもよい。   Further, as in still another embodiment of the system 10 shown in FIG. 11, a plurality of partition portions 46 are formed at the bottom portion in the water shielding member 12, and the water retaining members 14 a are provided in the respective partitions partitioned by the partition portions 46. You may make it provide.

仕切り部46は、合成樹脂および金属などの遮水性を有する材質からなり、遮水部材12の底板18の上面から上方に突出して形成される。仕切り部46は、遮水部材12の設置(傾斜)方向に一定の間隔で配置され、隣り合う仕切り部46どうしの間隔は、耕作地200の勾配に応じて適宜設定され、たとえば1000mmであり、その高さは、保水部材14の厚みと同程度の高さにされる。   The partition portion 46 is made of a material having water shielding properties such as synthetic resin and metal, and is formed to protrude upward from the upper surface of the bottom plate 18 of the water shielding member 12. The partition part 46 is arrange | positioned by the fixed space | interval in the installation (inclination) direction of the water-impervious member 12, and the space | interval of the adjacent partition parts 46 is suitably set according to the gradient of the cultivated land 200, for example, is 1000 mm, The height is set to the same level as the thickness of the water retaining member 14.

仕切り部46は、遮水部材12の内部の空間を区画し、その仕切り部46によって仕切られた各区画の底部に、保水部材14aがそれぞれ設けられる。こうすることにより、有孔管24から給水されて、仕切り部46によって仕切られた各区画の底部に溜まった水が、その各区画の底部に設けた保水部材14aにそれぞれ吸収されるようになるので、各々の保水部材14aが吸収する水分量をほぼ均等に保つことができる。すなわち、同一システム10の耕作地200において、作土層の水分量をより均等に保つことができるようになる。   The partition part 46 partitions the space inside the water-impervious member 12, and a water retaining member 14 a is provided at the bottom of each partition partitioned by the partition part 46. By doing so, the water supplied from the perforated pipe 24 and accumulated at the bottom of each section partitioned by the partition 46 is absorbed by the water retaining member 14a provided at the bottom of each section. Therefore, the amount of water absorbed by each of the water retaining members 14a can be kept substantially uniform. That is, in the cultivated land 200 of the same system 10, the water content of the soil layer can be kept more even.

なお、遮水部材12内の底部に仕切り部46を形成する代わりに、遮水部材12の底板18を変形させる仕切り部材48を耕作地200の地中に埋設するようにしてもよい。   Instead of forming the partition 46 at the bottom of the water shielding member 12, a partition member 48 that deforms the bottom plate 18 of the water shielding member 12 may be embedded in the cultivated land 200.

具体的には、図12に示すように、耕作地200の傾斜に沿って、地中に一定の間隔で仕切り部材48を埋設する。たとえば、仕切り部材48は、矩形の板状に形成され、その幅方向の長さは、たとえば遮水部材12の開口22の幅と同程度になるように設定される。そして、仕切り部材48の上側に遮水部材12を埋設することにより、仕切り部材48の外形に沿って遮水部材12の底板18の形状を変形させて、底板18に凹凸形状を形成する。そして、その凹凸形状のうち上方に突き出す凸部を仕切り部46として機能させ、凸部によって仕切られた各区画に保水部材14aをそれぞれ設ける。こうすることにより、凸部によって仕切られた各区画の底部に溜まった水が、その各区画の底部に設けた保水部材14aにそれぞれ吸収されるようになるので、各々の保水部材14aが吸収する水分量をほぼ均等に保つことが可能である。   Specifically, as shown in FIG. 12, along the slope of the cultivated land 200, partition members 48 are embedded in the ground at regular intervals. For example, the partition member 48 is formed in a rectangular plate shape, and the length in the width direction is set to be approximately the same as the width of the opening 22 of the water shielding member 12, for example. Then, by embedding the water shielding member 12 on the upper side of the partition member 48, the shape of the bottom plate 18 of the water shielding member 12 is deformed along the outer shape of the partition member 48, thereby forming an uneven shape on the bottom plate 18. And the convex part which protrudes upwards among the uneven | corrugated shape is functioned as the partition part 46, and the water retention member 14a is each provided in each division partitioned by the convex part. By doing so, the water accumulated at the bottom of each section partitioned by the convex part is absorbed by the water retaining member 14a provided at the bottom of each section, so that each water retaining member 14a absorbs. It is possible to keep the water content almost even.

さらにまた、上述の実施例では、有孔管24の管壁全体にランダムに分散配置した円形の貫通孔26を通して保水部材14に給水したが、これに限定される必要はない。上述したように、貫通孔26の形状、大きさ、形成位置および数などは、有孔管24から保水部材14への水の供給量を考慮して適宜設定すればよい。   Furthermore, in the above-described embodiment, the water retaining member 14 is supplied with water through the circular through holes 26 that are randomly distributed over the entire wall of the perforated tube 24. However, the present invention is not limited to this. As described above, the shape, size, formation position, number, and the like of the through holes 26 may be appropriately set in consideration of the amount of water supplied from the perforated tube 24 to the water retention member 14.

たとえば、有孔管24の管底部付近に管軸方向に所定の間隔を隔てて並ぶように貫通孔26を形成してもよい。この場合には、有孔管24がその内部の水を主として下方に供給することとなるので、水の供給源に向けて延びる植物の根が有孔管24の貫通孔26に侵入することによって、貫通孔26が閉塞されてしまうこと等の不具合が生じない。   For example, the through holes 26 may be formed near the tube bottom of the perforated tube 24 so as to be arranged at a predetermined interval in the tube axis direction. In this case, since the perforated pipe 24 mainly supplies the water inside thereof, the roots of the plant extending toward the water supply source enter the through hole 26 of the perforated pipe 24. There is no problem such that the through hole 26 is blocked.

さらに、貫通孔26は、有孔管24の管壁を直線状に貫くものに限定されず、多孔質状や網目状のものでもよいし、貫通孔26をスリット状に形成するようにしてもよい。   Furthermore, the through-hole 26 is not limited to the one that penetrates the tube wall of the perforated tube 24 in a straight line, and may be porous or mesh-shaped, or the through-hole 26 may be formed in a slit shape. Good.

また、上述の実施例では、有孔管24(給水部材16)の下流側の端部に第2配水管32を介して貯水タンク34を接続したが、これに限定される必要はない。たとえば、有孔管24の下流側の端部を直接貯水タンク34に接続するようにしてもよい。また、貯水手段は、貯水タンク34に限定されず、給水部材16の下流側にため池などを形成しておき、それを貯水手段として利用してもよい。   Moreover, in the above-mentioned Example, although the water storage tank 34 was connected to the downstream edge part of the perforated pipe 24 (water supply member 16) via the 2nd water distribution pipe 32, it does not need to be limited to this. For example, the downstream end of the perforated pipe 24 may be directly connected to the water storage tank 34. Further, the water storage means is not limited to the water storage tank 34, and a reservoir or the like may be formed on the downstream side of the water supply member 16 and used as the water storage means.

さらに、必ずしも貯水手段を設ける必要はなく、給水タンク30から有孔管24に必要水量だけ送水するのであれば貯水手段は不要である。さらにまた、有孔管24の下流側の端部を排水管に接続し、この排水管を介して有孔管24内の余剰水や、有孔管24の内部に集水した遮水部材12内の余剰水を下水処理施設などへ排出するようにしてもよい。   Furthermore, it is not always necessary to provide a water storage means, and the water storage means is not necessary if the required amount of water is fed from the water supply tank 30 to the perforated pipe 24. Furthermore, the downstream end of the perforated pipe 24 is connected to a drain pipe, and the water blocking member 12 collects excess water in the perforated pipe 24 or collects water inside the perforated pipe 24 via the drain pipe. The excess water inside may be discharged to a sewage treatment facility or the like.

さらに、上述の実施例では、給水タンク30は、農業用水配管などと接続されて、そこから送られてくる水を貯留するようにしたが、これに限定されない。たとえば、給水タンク30は必ずしも設ける必要は無く、農業用配水管などから直接給水部材16に水が供給されるようにしてもよい。この場合には、その農業用配水管が給水源となる。また、給水部材16に供給する水の中に肥料や農薬を溶かして、水とともに肥料や農薬を作物に投与するようにしてもよい。   Furthermore, in the above-described embodiment, the water supply tank 30 is connected to an agricultural water pipe or the like and stores water sent therefrom, but is not limited to this. For example, the water supply tank 30 is not necessarily provided, and water may be directly supplied to the water supply member 16 from an agricultural water distribution pipe or the like. In this case, the agricultural water distribution pipe becomes the water supply source. Moreover, a fertilizer and an agrochemical may be dissolved in the water supplied to the water supply member 16, and a fertilizer and an agrochemical may be administered to a crop with water.

さらにまた、上述の実施例では、遮水部材12内の底部に、汎用の保水剤や、そのような保水剤と土とを混合した混合物からなる保水部材14を設けたが、これに限定される必要はない。保水部材14は、吸水性および保水性を有するものであれば、その材質は特に限定しない。   Furthermore, in the above-described embodiment, the water retaining member 14 made of a general water retention agent or a mixture of such a water retention agent and soil is provided at the bottom of the water shielding member 12, but the present invention is not limited thereto. There is no need to The material of the water retention member 14 is not particularly limited as long as it has water absorption and water retention.

たとえば、図13に示すシステム10のさらに他の実施例のように、耕作地200が保水力を有する土によって構成されている場合には、遮水部材12内の底部に耕作地200の土(または、耕作地200と土壌と同様の成分によって構成される土)を充填し、遮水部材12内の底部に形成した毛管水状態または重力水状態の土壌部50を保水部材14として用いるようにしてもよい。   For example, when the cultivated land 200 is configured by soil having water retention capacity as in still another embodiment of the system 10 shown in FIG. 13, the soil of the cultivated land 200 ( Alternatively, the soil portion 50 in the capillary water state or the gravity water state formed on the bottom of the water-impervious member 12 is used as the water retaining member 14. May be.

このシステム10では、有孔管24から遮水部材12の内部に供給された水は、遮水部材12内の底部に充填された土の中に浸透していき、土中に保水される。すなわち、土中に浸透した水が、毛管水または重力水となって遮水部材12の内部に留まることによって、遮水部材12内の底部に、毛管水状態または重力水状態の土壌部50が形成される。そして、遮水部材12内の底部の毛管水や重力水、つまり土壌部50の水分は、その上側の土壌に毛細管現象によって吸い上げられて浸透していき、上側の土壌に毛管水状態の土壌部38を形成する。   In this system 10, the water supplied from the perforated pipe 24 to the inside of the water shielding member 12 penetrates into the soil filled in the bottom of the water shielding member 12 and is retained in the soil. That is, when the water that has penetrated into the soil becomes capillary water or gravity water and remains inside the water shielding member 12, the soil portion 50 in the capillary water state or the gravity water state is formed at the bottom of the water shielding member 12. It is formed. And the capillary water and gravity water of the bottom part in the water-impervious member 12, ie, the water | moisture content of the soil part 50 are sucked up and permeate | transmitted to the upper soil by the capillary phenomenon, and the soil part of a capillary water state is carried out to the upper soil. 38 is formed.

ただし、耕作地200が保水力が弱い所謂ざる田や砂地などの場合には、予め保水力が高い土を準備しておいて、それを遮水部材12内の底部に充填するとよい。また、下層から順に、礫層、砂層、およびシルト層を形成するというように、遮水部材12内部に充填する土を複層状態にして、保水力を向上させるようにしてもよい。   However, in the case where the cultivated land 200 is a so-called paddy field or sandy land having a weak water retention capacity, it is preferable to prepare a soil having a high water retention capacity in advance and fill the bottom of the water shielding member 12 with the soil. Moreover, the water filling power may be improved by making the soil filled in the water-impervious member 12 into a multi-layer state, such as forming a gravel layer, a sand layer, and a silt layer in order from the lower layer.

さらに、上述の実施例では、保水部材14は、遮水部材12の長さ方向の全長に亘って設けられたが、これに限定される必要もない。たとえば、灌漑を行いたい必要な場所にのみ保水部材14を設けるようにしてもよい。   Furthermore, in the above-described embodiment, the water retaining member 14 is provided over the entire length of the water shielding member 12 in the length direction, but it is not necessary to be limited to this. For example, the water retention member 14 may be provided only in a necessary place where irrigation is desired.

さらにまた、上述の実施例では、細長い溝状に形成される遮水部材12を耕作地200の畝202に沿うように規則正しく並べて配置したが、これに限定される必要はなく、遮水部材12は、不規則的な配置位置となっていてもよい。   Furthermore, in the above-described embodiment, the water-impervious members 12 formed in an elongated groove shape are regularly arranged along the ridges 202 of the cultivated land 200, but the present invention is not limited to this. May be irregularly arranged.

さらに、必ずしも遮水部材12をその長手方向が耕作地200の傾斜に沿うように設置する必要もない。遮水部材12を耕作地200の地中に傾斜させて埋設するのであれば、遮水部材12をその長手方向が耕作地200の傾斜方向からずれるように配置してもよいし、遮水部材12を耕作地200の勾配よりも大きいまたは小さい勾配で傾斜させて埋設するようにしてもよい。   Furthermore, it is not always necessary to install the water shielding member 12 so that the longitudinal direction thereof follows the inclination of the cultivated land 200. If the water-impervious member 12 is embedded in the ground of the cultivated land 200, the water-impervious member 12 may be disposed such that the longitudinal direction thereof deviates from the inclined direction of the cultivated land 200. 12 may be embedded with an inclination greater than or less than the gradient of the cultivated land 200.

また、遮水部材12は、基本的には直線状に配置されるが、蛇行するように配置してもよい。さらに、耕作地200全体に万遍なく遮水部材12を配置することによって、耕作地200の作土層全体を毛管水状態の土壌部38とすることもできるし、耕作地200の一部の範囲に遮水部材12を配置することによって、耕作地200の作土層の一部の範囲のみ、つまり耕作者が望む範囲のみを毛管水状態の土壌部38とすることもできる。   Moreover, although the water-impervious member 12 is basically arranged linearly, it may be arranged to meander. Furthermore, by disposing the water shielding member 12 over the entire cultivated land 200, the entire soil layer of the cultivated land 200 can be used as the soil portion 38 in the capillary water state. By disposing the water-impervious member 12 in the range, only a partial range of the soil layer of the cultivated land 200, that is, only a range desired by the farmer can be used as the soil portion 38 in the capillary water state.

さらにまた、基本的には、このシステム10は遮水部材12を耕作地200の地中に所定勾配で傾斜させて設置する場合に好適に用いられるが、これに限定される必要はなく、遮水部材12を耕作地の地中に水平または略水平に設置する場合にシステム10を適用するようにしてもよい。その場合であっても、遮水部材12を地中に埋設する際に、耕作地200の多少の起伏(上り下り)に対し、施工現場で遮水部材12の正確な(厳密な)水平出しを行う必要がないので、このシステム10を利用する効果は大きい。   Furthermore, basically, the system 10 is preferably used when the water shielding member 12 is installed in the ground of the cultivated land 200 at a predetermined slope, but the system 10 is not limited to this and is not limited thereto. The system 10 may be applied when the water member 12 is installed horizontally or substantially horizontally in the cultivated land. Even in that case, when the water shielding member 12 is buried in the ground, the water shielding member 12 is accurately (strictly) leveled at the construction site with respect to some undulation (up and down) of the cultivated land 200. Therefore, the effect of using the system 10 is great.

一例を挙げると、図14に示すシステム10のさらに他の実施例では、傾斜に直交する方向(たとえば、等高線沿い)に畝立てした耕作地200にシステム10が適用され、遮水部材12が耕作地200の傾斜に直交する方向に沿うように水平に地中に埋設される。以下、先の実施例と同様の部分については、同じ参照番号を用い、その説明を省略或いは簡略化する。   For example, in yet another embodiment of the system 10 shown in FIG. 14, the system 10 is applied to a cultivated land 200 that is erected in a direction perpendicular to the slope (eg, along a contour line), and the impermeable member 12 is cultivated. It is buried in the ground horizontally along the direction orthogonal to the inclination of the ground 200. Hereinafter, the same reference numerals are used for the same parts as in the previous embodiment, and the description thereof is omitted or simplified.

図14に示すように、遮水部材12は、細長い溝状に形成され、その長手方向が耕作地200の傾斜に直交する方向に沿うように地中に埋設される。そして、耕作地200の両端付近まで延びる遮水部材12が、耕作地200の傾斜方向に所定の間隔を隔てて並ぶように配置される。遮水部材12内の底部には、保水部材14が設けられる。そして、この保水部材14を介して(つまり、遮水部材12内の底部との間に保水部材14が介在された状態で)有孔管24(給水部材16,集水部材36)が遮水部材12内に配設される。   As shown in FIG. 14, the water-impervious member 12 is formed in an elongated groove shape, and is embedded in the ground such that its longitudinal direction is along a direction perpendicular to the inclination of the cultivated land 200. And the water-impervious member 12 extending to the vicinity of both ends of the cultivated land 200 is arranged so as to be arranged at a predetermined interval in the inclination direction of the cultivated land 200. A water retaining member 14 is provided at the bottom of the water shielding member 12. The perforated pipe 24 (the water supply member 16 and the water collecting member 36) is impermeable to water through the water retaining member 14 (that is, with the water retaining member 14 interposed between the water retaining member 12 and the bottom of the water impermeable member 12). It is disposed in the member 12.

耕作地200の傾斜方向に所定の間隔を隔てて並ぶ遮水部材12どうしの間の区間では、それぞれの遮水部材12の内部に配設された有孔管24どうしが、管壁に貫通孔26や空隙などが形成されない第3配水管54によって接続される。   In the section between the water-impervious members 12 arranged at a predetermined interval in the inclination direction of the cultivated land 200, the perforated pipes 24 arranged inside each of the water-impervious members 12 pass through the pipe wall. 26 and the 3rd water distribution pipe 54 in which a space | gap etc. are not formed.

また、耕作地200の最上部に設置された遮水部材12内に配設された有孔管24の上流側端部は、第1配水管28を介して、その遮水部材12よりも傾斜上側の地上に設置された給水タンク30に接続される。また、耕作地200の最下部に設置された遮水部材12内に配設された有孔管24の下流側端部は、第2配水管32を介して、その遮水部材12よりも傾斜下側の地上に設置された貯水タンク34に接続される。   Further, the upstream end portion of the perforated pipe 24 disposed in the water shielding member 12 installed at the top of the cultivated land 200 is inclined more than the water shielding member 12 through the first water distribution pipe 28. It is connected to a water supply tank 30 installed on the upper ground. Further, the downstream end portion of the perforated pipe 24 disposed in the water shielding member 12 installed at the lowermost part of the cultivated land 200 is inclined more than the water shielding member 12 through the second water distribution pipe 32. It is connected to a water storage tank 34 installed on the lower ground.

図14の実施例においても、図1の実施例と同様に、遮水部材12内に供給した水を保水部材14に吸収させて、保水部材14が保水した水(水分)を毛細管現象によって土壌に供給するようにしているので、水位管理器等の特別な設備を用いなくても、各遮水部材12内に保持される水の量をほぼ均等に保つことができる。したがって、設備コストや維持管理コスト等が低減できる。   In the embodiment of FIG. 14 as well, the water supplied into the water shielding member 12 is absorbed by the water retaining member 14 and the water (moisture) retained by the water retaining member 14 is soiled by capillary action as in the embodiment of FIG. Therefore, the amount of water retained in each water shielding member 12 can be kept substantially even without using special equipment such as a water level controller. Therefore, equipment costs, maintenance costs, etc. can be reduced.

さらに、傾斜地の傾斜に直交する方向に多少の起伏がある場合であっても、遮水部材12を地中に埋設する際に、施工現場で遮水部材12の正確な水平出しを行う必要がないので、システム10の施工性が向上する。   Furthermore, even when there are some undulations in the direction perpendicular to the slope of the inclined land, it is necessary to accurately level the water shielding member 12 at the construction site when the water shielding member 12 is buried in the ground. Therefore, the workability of the system 10 is improved.

また、このシステム10においても、給水しきれずに有孔管24の内部に残った余剰水や、有孔管24によって集水された遮水部材12内の余剰水を貯水タンク34内に貯留することができるので、水の無駄遣いを低減でき、水資源を効率的に利用することが可能である。   Also in this system 10, the excess water remaining in the perforated pipe 24 without being supplied with water or the surplus water in the water shielding member 12 collected by the perforated pipe 24 is stored in the water storage tank 34. Therefore, waste of water can be reduced and water resources can be used efficiently.

さらにまた、傾斜に直交する方向に畝立てした耕作地200にシステム10を適用するのみならず、傾斜地に形成された段々畑や棚田などの平坦地部分の耕作地200にもシステム10を適用することが可能である。   Furthermore, the system 10 is applied not only to the cultivated land 200 erected in the direction orthogonal to the slope, but also to the cultivated land 200 in flat areas such as terraced fields and terraced rice fields formed on the sloped land. Is possible.

一例を挙げると、図15に示すシステム10のさらに他の実施例では、遮水部材12が段々畑の平坦地部分の耕作地200に沿うように水平に地中に埋設される。以下、先の実施例と同様の部分については、同じ参照番号を用い、その説明を省略或いは簡略化する。   For example, in still another embodiment of the system 10 shown in FIG. 15, the water shielding member 12 is embedded in the ground horizontally along the cultivated land 200 of the flat land portion of the terraced field. Hereinafter, the same reference numerals are used for the same parts as in the previous embodiment, and the description thereof is omitted or simplified.

図15に示すように、遮水部材12は、細長い溝状に形成され、その長手方向が段々畑の平坦地部分の耕作地200に沿うように地中に埋設される。そして、耕作地200の両端付近まで延びる遮水部材12が、所定の間隔を隔てて並ぶように配置される。遮水部材12内の底部には、保水部材14が設けられ、この保水部材14を介して(つまり、遮水部材12内の底部との間に保水部材14が介在された状態で)、有孔管24(給水部材16,集水部材36)が遮水部材12内に配設される。   As shown in FIG. 15, the water-impervious member 12 is formed in an elongated groove shape, and is embedded in the ground so that its longitudinal direction follows the cultivated land 200 of the flat land portion of the terraced field. And the water-impervious members 12 extending to the vicinity of both ends of the cultivated land 200 are arranged so as to be arranged at a predetermined interval. A water retaining member 14 is provided at the bottom of the water shielding member 12, and the water retaining member 14 is provided via the water retaining member 14 (that is, with the water retaining member 14 interposed between the water shielding member 12 and the bottom). The hole tube 24 (the water supply member 16 and the water collecting member 36) is disposed in the water shielding member 12.

有孔管24の上流側端部は、第1配水管28を介して、耕作地200の地上に設置された給水タンク30に接続される。また、有孔管24の下流側端部は、第2配水管32を介して、耕作地200よりも下の段の平坦地部分に設置された貯水タンク34に接続される。なお、第2配水管32は、有孔管24から貯水タンク34への水の流れがスムーズになるように、有孔管24の下流側端部から貯水タンク34に向けてやや下り勾配になるように配管される。   The upstream end of the perforated pipe 24 is connected to the water supply tank 30 installed on the ground of the cultivated land 200 via the first water distribution pipe 28. Further, the downstream end portion of the perforated pipe 24 is connected to a water storage tank 34 installed in a flat land portion below the cultivated land 200 via the second water distribution pipe 32. The second water distribution pipe 32 has a slight downward slope from the downstream end of the perforated pipe 24 toward the water storage tank 34 so that the flow of water from the perforated pipe 24 to the water storage tank 34 is smooth. So that it is piped.

図15の実施例においても、図1の実施例と同様に、遮水部材12内に供給した水を保水部材14に吸収させて、保水部材14が保水した水(水分)を毛細管現象によって土壌に供給するようにしているので、水位管理器等の特別な設備を用いなくても、各遮水部材12内に保持される水の量をほぼ均等に保つことができる。したがって、設備コストや維持管理コスト等が低減できる。   In the embodiment of FIG. 15 as well, in the same manner as in the embodiment of FIG. 1, the water supplied into the water-impervious member 12 is absorbed by the water-retaining member 14, and the water (water) retained by the water-retaining member 14 is soiled by capillary action. Therefore, the amount of water retained in each water shielding member 12 can be kept substantially even without using special equipment such as a water level controller. Therefore, equipment costs, maintenance costs, etc. can be reduced.

さらに、段々畑の平坦地部分の耕作地200に多少の起伏がある場合であっても、遮水部材12を地中に埋設する際に、施工現場で遮水部材12の正確な水平出しを行う必要がないので、システム10の施工性が向上する。   Furthermore, even when the cultivated land 200 in the flat land portion of the terraced field has some undulations, when the water shielding member 12 is buried in the ground, the water shielding member 12 is accurately leveled at the construction site. Since it is not necessary, the workability of the system 10 is improved.

また、このシステム10においても、給水しきれずに有孔管24の内部に残った余剰水や、有孔管24によって集水された遮水部材12内の余剰水を貯水タンク34内に貯留することができるので、水の無駄遣いを低減でき、水資源を効率的に利用することが可能である。   Also in this system 10, the excess water remaining in the perforated pipe 24 without being supplied with water or the surplus water in the water shielding member 12 collected by the perforated pipe 24 is stored in the water storage tank 34. Therefore, waste of water can be reduced and water resources can be used efficiently.

なお、上述の各実施例ではいずれも、底板18の両側端から側板20がやや外側に傾斜して立ち上がる細長い溝状の遮水部材12を例示しているが、これに限定される必要はなく、遮水部材12は、上側開口の容器状に形成されて貯水機能を有するものであれば、適宜の形状を適用可能である。   In each of the above-described embodiments, the elongate groove-shaped water shielding member 12 in which the side plate 20 rises slightly outward from both side ends of the bottom plate 18 is illustrated, but it is not necessary to be limited to this. As long as the water shielding member 12 is formed in a container shape having an upper opening and has a water storage function, an appropriate shape can be applied.

たとえば、遮水部材12の上側(天端)の開口の幅を広げるようにすれば、その分だけ土壌に余剰に与えられた水が遮水部材12内に溜まりやすくなる。すなわち、遮水部材12の集水能力を増すことが可能であるので、水資源をより効率的に利用することが可能になる。また、遮水部材12の材質についても、合成樹脂や金属などに限定される必要はなく、遮水性を有する材質であれば適宜のものを適用可能である。   For example, if the width of the opening on the upper side (top end) of the water-impervious member 12 is increased, the water excessively applied to the soil is easily accumulated in the water-impervious member 12. That is, since the water collecting capacity of the water shielding member 12 can be increased, water resources can be used more efficiently. Further, the material of the water shielding member 12 is not necessarily limited to synthetic resin or metal, and any appropriate material can be applied as long as it is a material having water shielding properties.

図16および図17に示すシステム10のさらに他の実施例では、ゴムおよび合成樹脂などによって形成される遮水シート56を利用して遮水部材12を形成する。以下、先の実施例と同様の部分については、同じ参照番号を用い、その説明を省略或いは簡略化する。   In still another embodiment of the system 10 shown in FIGS. 16 and 17, the water shielding member 12 is formed using a water shielding sheet 56 formed of rubber, synthetic resin, or the like. Hereinafter, the same reference numerals are used for the same parts as in the previous embodiment, and the description thereof is omitted or simplified.

図16および図17に示すように、このシステム10では、傾斜を有する耕作地200の傾斜に沿って全面に広がるように、遮水シート56が耕作地200の地下に敷かれる。遮水シート56は、耕作地200の傾斜に直交する方向に凹凸を繰り返すように、波形状に(または、ジグザグ状に)に湾曲される。すなわち、遮水シート56には、耕作地200の傾斜方向に沿って延びる凹部58が、一定の間隔を隔てて並ぶように形成される。そして、このシステム10では、凹部58のそれぞれが遮水部材12として機能する。凹部58内の底部には、保水部材14が設けられ、この保水部材14を介して、有孔管24(給水部材16,集水部材36)が遮水部材12内に配設される。有孔管24の上流側端部は、第1配水管28を介して、給水タンク30に接続される。また、有孔管24の下流側端部は、第2配水管32を介して、貯水タンク34に接続される。   As shown in FIGS. 16 and 17, in this system 10, the water shielding sheet 56 is laid under the cultivated land 200 so as to spread over the entire surface along the inclined cultivated land 200. The water-impervious sheet 56 is curved into a wave shape (or a zigzag shape) so as to repeat unevenness in a direction orthogonal to the inclination of the cultivated land 200. That is, the water shielding sheet 56 is formed with recesses 58 extending along the inclination direction of the cultivated land 200 so as to be arranged at a predetermined interval. In the system 10, each of the recesses 58 functions as the water shielding member 12. The water retaining member 14 is provided at the bottom of the recess 58, and the perforated pipe 24 (the water supply member 16 and the water collecting member 36) is disposed in the water shielding member 12 through the water retaining member 14. The upstream end of the perforated pipe 24 is connected to the water supply tank 30 via the first water distribution pipe 28. The downstream end of the perforated pipe 24 is connected to the water storage tank 34 via the second water distribution pipe 32.

このようなシステム10を耕作地200に形成する場合には、図18(a)に示すように、先ず、耕作地200の地面を掘削し、その底に耕作地200の傾斜に直交する方向に繰り返す凹凸部分60を形成する。そして、図18(b)に示すように、凹凸部分60の上側に遮水シート56を敷設する。すると、凹凸部分58の形状に合わせて遮水シート56が波形状に湾曲し、遮水シート56に凹部58が形成されるので、その凹部58内の底部に保水部材14を設け、保水部材14の上側に有孔管24を配設する。それから、掘削した地面を埋め戻す。   When such a system 10 is formed on the cultivated land 200, as shown in FIG. 18 (a), first, the ground of the cultivated land 200 is excavated and the bottom thereof is perpendicular to the inclination of the cultivated land 200. Repeated uneven portions 60 are formed. And as shown in FIG.18 (b), the water-impervious sheet | seat 56 is laid on the upper side of the uneven | corrugated | grooved part 60. FIG. Then, since the water-impervious sheet 56 is curved in a wave shape in accordance with the shape of the concavo-convex part 58 and the concave part 58 is formed in the water-impervious sheet 56, the water retaining member 14 is provided at the bottom of the concave part 58. A perforated tube 24 is disposed on the upper side. Then backfill the excavated ground.

このシステム10においても、凹部58内に供給した水を保水部材14に吸収させて、保水部材14が保水した水を毛細管現象によって土壌に供給するようにしたため、図1のシステム10と同様に、作土層の水分量を可及的均等に保つことができる。また、水位管理器等の特別な設備を用いる必要もないので、設備コストや維持管理コスト等を削減できる。   Also in this system 10, the water supplied into the recess 58 is absorbed by the water retaining member 14, and the water retained by the water retaining member 14 is supplied to the soil by capillary action. The water content of the soil layer can be kept as uniform as possible. Moreover, since there is no need to use special equipment such as a water level management device, equipment costs and maintenance costs can be reduced.

さらに、給水しきれずに有孔管24の内部に残った余剰水や、有孔管24によって集水された遮水部材12内の余剰水を貯水タンク34内に貯留することができるので、水の無駄遣いを低減でき、水資源を効率的に利用することが可能である。   Furthermore, since the surplus water remaining inside the perforated pipe 24 without being able to supply water and the surplus water in the water shielding member 12 collected by the perforated pipe 24 can be stored in the water storage tank 34, water Waste water can be reduced, and water resources can be used efficiently.

なお、遮水シート56は、必ずしも耕作地200の全面に設ける必要はなく、耕作地200の一部の範囲に形成することもできるし、耕作地200の地中に分散配置することもできる。また、図1の実施例と同じように、耕作地200の畝202ごとに遮水シート56を配置するようにしてもよい。   The water shielding sheet 56 is not necessarily provided on the entire surface of the cultivated land 200, and can be formed in a part of the cultivated land 200, or can be distributed and arranged in the ground of the cultivated land 200. Moreover, you may make it arrange | position the water-impervious sheet | seat 56 for every ridge 202 of the cultivated land 200 similarly to the Example of FIG.

また、必ずしも耕作地200の傾斜に直交する方向の全長に亘って遮水シート56に凹部58を形成する必要はなく、遮水シート56の一部に複数の凹部58を形成することもできる。つまり、遮水シート56の凹部58は、灌漑を行いたい必要な場所に設けてあればよく、遮水シート56は、凹部58が形成される波形状の部分の他に、凹部58が形成されない平面状の部分を有していてもよい。また、必ずしも耕作地200の傾斜方向に沿って延びる凹部58を形成する必要もない。   In addition, it is not always necessary to form the recessed portions 58 in the water shielding sheet 56 over the entire length in the direction orthogonal to the inclination of the cultivated land 200, and a plurality of recessed portions 58 can be formed in a part of the water shielding sheet 56. That is, the recessed portion 58 of the water shielding sheet 56 may be provided at a necessary place where irrigation is desired, and the water shielding sheet 56 is not formed with the recessed portion 58 in addition to the wave-shaped portion where the recessed portion 58 is formed. You may have a planar part. Further, it is not always necessary to form the recess 58 extending along the inclination direction of the cultivated land 200.

さらにまた、上述の各実施例ではいずれも、遮水部材12内の底部の中央部、つまり底板18の幅方向の中央部に有孔管24が配設されたが、これに限定される必要はない。図19に示すシステム10のさらに他の実施例のように、有孔管24を底板18の幅方向の端で側板20に接するように配設してもよい。こうすることにより、システム10の施工時に有孔管24が上下方向ないし左右方向に位置ずれしにくくなり、有孔管24の位置決めを簡単かつ確実に行うことができるようになる。   Furthermore, in each of the above-described embodiments, the perforated tube 24 is disposed in the central portion of the bottom portion in the water shielding member 12, that is, the central portion in the width direction of the bottom plate 18, but it is necessary to be limited to this. There is no. As in still another embodiment of the system 10 shown in FIG. 19, the perforated tube 24 may be disposed so as to contact the side plate 20 at the end in the width direction of the bottom plate 18. By doing so, the perforated tube 24 is less likely to be displaced in the vertical direction or the left-right direction during construction of the system 10, and the perforated tube 24 can be positioned easily and reliably.

特に、保水力を有する土によって構成された耕作地200において、遮水部材12内の底部に耕作地200の土を充填し、遮水部材12内の底部に形成した土壌部50を保水部材14として用いるシステム10を施工する場合などには、有孔管24を底板18の幅方向の端で側板20に接するように配設することによって、施工性を向上させることができる。   In particular, in the cultivated land 200 constituted by soil having water retaining ability, the soil portion 50 formed on the bottom portion in the water shielding member 12 is filled with the soil in the cultivated land 200 in the bottom portion in the water shielding member 12 and the water retaining member 14. When the system 10 to be used is constructed, the workability can be improved by arranging the perforated tube 24 so as to be in contact with the side plate 20 at the end in the width direction of the bottom plate 18.

具体的には、本願出願人等は、平成24年2月23日付で特許出願された特願2012−037794号において、地下灌漑システムを耕作地に施工するための地下灌漑用部材(遮水部材12,給水部材16)の敷設装置を提案しているが、このような敷設装置200を利用してシステム10を施工する際などに、施工性を向上させることができる。   Specifically, the applicant of the present application described in Japanese Patent Application No. 2012-037794, filed on February 23, 2012, for an underground irrigation member (water shielding member) for constructing an underground irrigation system on cultivated land. 12, the water supply member 16) is proposed, but when the system 10 is constructed using such a laying device 200, the workability can be improved.

以下には、図20および図21を参照して、敷設装置200を使用してシステム10を施工する方法を簡単に説明するが、このような敷設装置200を使用したシステム10の施工方法については、上述した特願2012−037794号において詳しく説明されているので、必要なら、この特許文献を参照されたい。   Below, with reference to FIG. 20 and FIG. 21, the method of constructing the system 10 using the laying apparatus 200 will be briefly described. The construction method of the system 10 using such a laying apparatus 200 is described below. As described in detail in the aforementioned Japanese Patent Application No. 2012-037794, refer to this patent document if necessary.

先ず、耕作地200におけるシステム10の形成区間の一方端の地面を掘削して、耕作地200に立抗(図示せず)を設け、その立抗内に敷設装置204の本体部分206を配置する。   First, the ground at one end of the formation section of the system 10 in the cultivated land 200 is excavated to provide a stand (not shown) on the cultivated land 200, and the main body portion 206 of the laying device 204 is disposed in the stand. .

次に、敷設装置200の第1ロール部208から引き出した合成樹脂シート210(遮水部材12)を溝形状に成形して立抗内に固定するとともに、合成樹脂シート210の上側に、第2ロール部212から引き出した可撓管214(有孔管24)を配設する。   Next, the synthetic resin sheet 210 (water-impervious member 12) pulled out from the first roll portion 208 of the laying device 200 is molded into a groove shape and fixed in the standing wall, and the second side is placed above the synthetic resin sheet 210. A flexible tube 214 (perforated tube 24) drawn from the roll unit 212 is disposed.

それから、合成樹脂シート210の先端部分と可撓管214の先端部分とを立抗内で固定した状態で、バックホーなどの作業機で牽引して敷設装置204を前進させることにより、立抗から本体部分206を耕作地200の地中に打ち込んで(挿入して)、地中で本体部分206を牽引方向に移動させる。   Then, in a state where the distal end portion of the synthetic resin sheet 210 and the distal end portion of the flexible tube 214 are fixed within the stand, the laying device 204 is advanced by pulling with a working machine such as a backhoe, so that the main body is removed from the stand. The portion 206 is driven (inserted) into the ground of the cultivated land 200, and the main body portion 206 is moved in the pulling direction in the ground.

すると、図21(a)に示すように、耕作地200の土が本体部分206によって上下に分断されて、地中に空隙216が形成される。そして、掘り起こした(耕した)土を本体部分16の内部に入り込ませて一旦持ち上げるとともに、図21(b)に示すように、空隙216に挟み込むようにして第1ロール部204から引き出した合成樹脂シート210を連続的に敷設する。そして、掘り起こした土を合成樹脂シート210の上側に埋め戻しつつ、合成樹脂シート210の上側に第2ロール部212から引き出した可撓管214を連続的に配設する。このとき、遮水部材12の底板18の幅方向の端に可撓管214を配設するようにしているので、掘り起こした土を埋め戻す際に、埋め戻す土が可撓管214に干渉することを可及的回避できる。   Then, as shown to Fig.21 (a), the soil of the cultivation land 200 is divided | segmented up and down by the main-body part 206, and the space | gap 216 is formed in the ground. Then, the dug up (cultivated) soil enters the inside of the main body portion 16 and is temporarily lifted, and as shown in FIG. 21B, the synthetic resin pulled out from the first roll portion 204 so as to be sandwiched between the gaps 216. Sheets 210 are continuously laid. Then, the flexible pipe 214 drawn out from the second roll part 212 is continuously disposed on the upper side of the synthetic resin sheet 210 while the dug up soil is backfilled on the upper side of the synthetic resin sheet 210. At this time, since the flexible tube 214 is disposed at the end in the width direction of the bottom plate 18 of the water shielding member 12, the backfilled soil interferes with the flexible tube 214 when the dug up soil is backfilled. Can be avoided as much as possible.

これを耕作地200のシステム10の形成区間の他方端の地面に到達するまで行うことにより、耕作地200の地中に遮水部材12および有孔管24が埋設される。   By performing this until reaching the ground at the other end of the formation section of the system 10 of the cultivated land 200, the water shielding member 12 and the perforated pipe 24 are embedded in the ground of the cultivated land 200.

このように、遮水部材12の底板18の幅方向の端に有孔管24を配設するようにすれば、遮水部材12内の底部に耕作地200の土を充填し、遮水部材12内の底部に形成した土壌部50を保水部材14として用いるシステム10を施工する場合などに、有孔管24が埋め戻す土に干渉しにくくなる。したがって、たとえば大きい土塊なども有孔管24よりも下側に入り込みやすくなるので、遮水部材12内の底部に適切かつ確実に土を埋め戻すことが可能になる。   As described above, if the perforated pipe 24 is disposed at the end in the width direction of the bottom plate 18 of the water shielding member 12, the bottom of the water shielding member 12 is filled with the soil of the cultivated land 200, and the water shielding member When constructing the system 10 that uses the soil portion 50 formed at the bottom in the water 12 as the water retaining member 14, the perforated tube 24 is less likely to interfere with the soil to be backfilled. Therefore, for example, a large soil block or the like can easily enter below the perforated pipe 24, so that the soil can be backfilled in the bottom portion in the water shielding member 12 appropriately and reliably.

さらに、上述の各実施例ではいずれも、有孔管24(給水部材16,集水部材36)を保水部材14に沿ってその上側に載置したり、有孔管24の全部または一部を保水部材14の中に埋め込んで配設したりしたが、これに限定される必要はなく、有孔管24を保水部材14から離間して設置するようにしてもよい。この場合であっても、上述したように、遮水部材12内に保水部材14を介して、つまり遮水部材12内の底部との間に保水部材14が介在された状態で有孔管24を配設するようにしていれば、システム10はその効果を発揮できる。   Further, in each of the above-described embodiments, the perforated pipe 24 (the water supply member 16 and the water collecting member 36) is placed on the upper side along the water retaining member 14, or all or part of the perforated pipe 24 is disposed. However, the present invention is not limited to this, and the perforated tube 24 may be installed separately from the water retention member 14. Even in this case, as described above, the perforated pipe 24 with the water retaining member 14 interposed in the water shielding member 12 via the water retaining member 14, that is, between the bottom portion in the water shielding member 12. If the system 10 is arranged, the system 10 can exert its effect.

一例を挙げると、図22に示すシステム10のさらに他の実施例では、遮水部材12内の底部のうち最も低い第1位置h1よりも段差状に高くなった第2位置h2の上側に有孔管24が載置される。   For example, in still another embodiment of the system 10 shown in FIG. 22, the bottom of the water shielding member 12 has a step higher than the lowest first position h1 and is higher than the second position h2. The hole tube 24 is placed.

図22に示すように、遮水部材12は、底板18の両側端から側板20がやや外側に傾斜して立ち上がる細長い溝状に形成され、その長手方向が耕作地200の傾斜に沿うように地中に埋設される。側板20のうち一方は、所定の高さで外側に屈曲して、そこに平坦な第2の底板60を形成する。第2の底板60は、遮水部材12内の底部のうち最も低い第1位置(高さ)h1の底板18よりも段差状に高くなった第2位置(高さ)h2に形成される。そして、第2の底板60に沿ってその上側に有孔管24が載置される。   As shown in FIG. 22, the water-impervious member 12 is formed in an elongated groove shape in which the side plate 20 rises slightly outward from both ends of the bottom plate 18, and its longitudinal direction follows the inclination of the cultivated land 200. Buried inside. One of the side plates 20 is bent outward at a predetermined height to form a flat second bottom plate 60 there. The second bottom plate 60 is formed at a second position (height) h <b> 2 that is higher than the bottom plate 18 at the lowest first position (height) h <b> 1 in the bottom portion in the water shielding member 12. The perforated tube 24 is placed on the upper side along the second bottom plate 60.

また、たとえば、このシステム10では、遮水部材12内の底部には、耕作地200の土が充填され、遮水部材12内の底部に形成された土壌部50が保水部材14として用いられる。そして、土壌部50つまり保水部材14の厚み(上下方向の長さ)は、第1位置h1から第2位置h2までの高さとほぼ同じかそれよりも低くなるように設定される。   Further, for example, in this system 10, the bottom of the water-impervious member 12 is filled with soil of the cultivated land 200, and the soil part 50 formed at the bottom of the water-impervious member 12 is used as the water retaining member 14. The thickness (length in the vertical direction) of the soil portion 50, that is, the water retaining member 14, is set to be substantially the same as or lower than the height from the first position h1 to the second position h2.

ここで、このようなシステム10を上述した敷設装置204を利用して施工する場合には、耕作地200の土が本体部分206によって分断されることにより、図23(a)に示すように、空隙216の下側の土(つまり、本体部分206によって掘り起こされていない土)には、遮水部材12の底板18が上側に載置される平面部分218が形成されるとともに、その第1平面部分218よりも所定高さ(第2位置h2と第1位置h1との高低差)高くなった位置に、第2の底板60が上側に載置される第2の平面部分220が形成されることとなる。それから、図23(b)に示すように、空隙216に挟み込むようにして遮水部材12を敷設し、掘り起こした土を遮水部材12の上側に埋め戻しつつ、遮水部材12の第2の底板60の上側に有孔管24を配設する。   Here, when constructing such a system 10 using the laying device 204 described above, the soil of the cultivated land 200 is divided by the main body portion 206, as shown in FIG. A flat portion 218 on which the bottom plate 18 of the water shielding member 12 is placed on the upper side is formed on the lower soil of the gap 216 (that is, the soil not dug up by the main body portion 206), and the first flat surface thereof. A second flat surface portion 220 on which the second bottom plate 60 is placed on the upper side is formed at a position higher than the portion 218 by a predetermined height (a difference in height between the second position h2 and the first position h1). It will be. Then, as shown in FIG. 23 (b), the water shielding member 12 is laid so as to be sandwiched between the gaps 216, and the dug up soil is backfilled above the water shielding member 12, and the second water shielding member 12 is inserted. The perforated tube 24 is disposed above the bottom plate 60.

このように、図22に示すシステム10では、遮水部材12の最も低い第1位置h1よりも高い第2位置h2に第2の底板60を形成し、その第2の底板60の上側に有孔管24を載置するようにしているので、遮水部材12を挟んで掘り起こされていない(耕されていない)硬い土の上側に有孔管24を載置することが可能である。   As described above, in the system 10 shown in FIG. 22, the second bottom plate 60 is formed at the second position h2 higher than the lowest first position h1 of the water shielding member 12, and the second bottom plate 60 is provided above the second bottom plate 60. Since the perforated tube 24 is placed, the perforated tube 24 can be placed on the upper side of hard soil that is not dug up (not cultivated) with the water shielding member 12 interposed therebetween.

ここで、一度耕した土の上に有孔管24を配設すると、土が耕されたことで柔らかくなっているので、有孔管24や土の重量などで有孔管24の下の土、つまり土壌部50の土を圧縮して押しつぶして、有孔管24が下方に移動したりすることが懸念される。つまり、有孔管24の上下方向の位置が安定しないので、遮水部材12内の底部と有孔管24との距離が不均一になり、延いては、土壌部50に保水される水分量も不均一になってしまう。   Here, when the perforated pipe 24 is disposed on the soil once cultivated, the soil is softened by cultivating the soil, so that the soil under the perforated pipe 24 is reduced by the weight of the perforated pipe 24 or the soil. That is, there is a concern that the perforated tube 24 may move downward by compressing and crushing the soil of the soil portion 50. That is, since the position of the perforated pipe 24 in the vertical direction is not stable, the distance between the bottom of the water shielding member 12 and the perforated pipe 24 becomes non-uniform, and thus the amount of water retained in the soil part 50 Will be uneven.

これに対し、この実施例のように、耕されていない土の上に遮水部材12を挟んで有孔管24を載置することによって、有孔管24の上下方向の位置決めを行うようにすれば、有孔管24の上下方向の位置を安定させることができるので、遮水部材12の傾斜上端から傾斜下端にかけて遮水部材12内の底部と有孔管24との距離を均一化させて、土壌部50に保水させる水分量も均一化させることができる。したがって、毛管水状態の土壌部38の水分量が偏ることがなく、作土層の水分量をより均等に保つことができるようになる。   On the other hand, as in this embodiment, the perforated pipe 24 is positioned in the vertical direction by placing the perforated pipe 24 on the soil that is not cultivated with the water shielding member 12 interposed therebetween. By doing so, the vertical position of the perforated pipe 24 can be stabilized, so that the distance between the bottom of the water shielding member 12 and the perforated pipe 24 is made uniform from the upper end of the water shielding member 12 to the lower end of the inclination. Thus, the amount of water to be retained in the soil portion 50 can also be made uniform. Therefore, the moisture content of the soil portion 38 in the capillary water state is not biased, and the moisture content of the soil layer can be kept more even.

また、この実施例によれば、システム10の施工時に有孔管24の位置決めを簡単かつ確実に行うことができるようになる。   Further, according to this embodiment, the perforated tube 24 can be easily and reliably positioned when the system 10 is constructed.

なお、上では敷設装置200を利用してシステム10を施工した場合について説明したが、これに限定される必要はなく、トレンチャーなどの掘削用機械で地面を掘り起こし、そこに遮水部材12や有孔管24を設置した後で土を埋め戻す場合も同様である。   In addition, although the case where the system 10 was constructed using the laying device 200 has been described above, the present invention is not limited to this, and the ground is dug up by an excavating machine such as a trencher, and the water-impervious member 12 and the presence of the impermeable member 12 are provided. The same applies when the soil is backfilled after the hole tube 24 is installed.

また、図22の実施例では、遮水部材12の2つの側板20のうち一方の側板20を所定の高さで外側に屈曲させて第2の底板60を形成し、その第2の底板60の上に有孔管24を載置したが、これに限定される必要はない。底板18の第1位置h1よりも段差状に高くなった第2位置h2で上側に有孔管24を載置可能な部分(第2の底板60)を形成するのであれば、遮水部材12の形状は特に問わない。たとえば、図24に示すように、底板18の幅方向の中央部を段差状に立ち上げて、そこに第2の底板60を形成し、その第2の底板60の上に有孔管24を載置するようにしてもよい。   In the embodiment of FIG. 22, one side plate 20 of the two side plates 20 of the water shielding member 12 is bent outward at a predetermined height to form a second bottom plate 60, and the second bottom plate 60 is formed. Although the perforated tube 24 is placed on the top, it need not be limited to this. If the portion (second bottom plate 60) on which the perforated tube 24 can be placed is formed on the upper side at the second position h2 which is higher than the first position h1 of the bottom plate 18, the water shielding member 12 is formed. The shape is not particularly limited. For example, as shown in FIG. 24, the central portion in the width direction of the bottom plate 18 is raised in a step shape to form a second bottom plate 60 there, and the perforated tube 24 is formed on the second bottom plate 60. You may make it mount.

ところで、上述の各実施例ではいずれも、遮水部材12内に供給した水を保水部材14に吸収させて、保水部材14が保水した水を毛細管現象によって土壌に供給するようにしているので、遮水部材12が傾斜して埋設されていても、毛管水状態の土壌部32の水分量が偏ることがなく、また、水位管理器等の特別な設備を用いなくても、遮水部材12内に保持される水の量をほぼ均等に保つことができた。   By the way, in each of the above-described embodiments, the water supplied into the water-impervious member 12 is absorbed by the water retaining member 14, and the water retained by the water retaining member 14 is supplied to the soil by capillary action. Even if the water-impervious member 12 is inclined and embedded, the water content of the soil portion 32 in the capillary water state is not biased, and even without using special equipment such as a water level controller, the water-impervious member 12 is used. The amount of water retained inside could be kept almost even.

しかしながら、傾斜上端側(つまり、有孔管24の上流側)で遮水部材12内の底部に溜まった水と同量の水が、傾斜下端側(つまり、有孔管24の下流側)で遮水部材12内の底部に溜まるまでにはどうしても時間差が生じてしまうので、遮水部材12の傾斜上端側では土壌部50が十分な水量を含んでいても、遮水部材12の傾斜下端側では土壌部50が含む水量が不足するという事態が発生することがある。   However, the same amount of water as the water accumulated at the bottom in the water shielding member 12 on the inclined upper end side (that is, the upstream side of the perforated pipe 24) is on the inclined lower end side (that is, the downstream side of the perforated pipe 24). Since a time difference will inevitably occur before the bottom of the water shielding member 12 accumulates, even if the soil portion 50 contains a sufficient amount of water on the inclined upper end side of the water shielding member 12, the inclined lower end side of the water shielding member 12 Then, the situation that the amount of water contained in the soil part 50 is insufficient may occur.

特に、たとえば粘性が非常に高い(粘土質の)土によって耕作地200が構成されている場合などには、遮水部材12内の底部に形成した土壌部50を保水部材14として用いるようにすると、土の性質上、有孔管24から遮水部材12の内部に供給された水が土中に浸み込む速度が遅くなることにより、遮水部材12の傾斜上端側と傾斜下端側との水量の差が顕著になる。   In particular, when the cultivated land 200 is composed of, for example, highly viscous (clayy) soil, the soil portion 50 formed at the bottom of the water-impervious member 12 is used as the water retaining member 14. Due to the nature of the soil, the rate at which the water supplied from the perforated pipe 24 into the water shielding member 12 penetrates into the soil is reduced, so that the inclined upper end side and the inclined lower end side of the water shielding member 12 are reduced. The difference in water volume becomes significant.

そこで、図25に示すシステム10のさらに他の実施例では、遮水部材12の傾斜下端に土壌部50の重力水の水位を検知する水位検知手段62を設置するとともに、その水位検知手段62の検知結果に基づいて、給水部材16から保水部材14への給水を給水制御手段64により制御することによって、遮水部材12の傾斜上端側と傾斜下端側とで土壌部50が含む水量、つまり土壌部50の重力水の水位を均一化させるようにしている。   Therefore, in still another embodiment of the system 10 shown in FIG. 25, the water level detection means 62 that detects the water level of the gravitational water in the soil part 50 is installed at the inclined lower end of the water shielding member 12, and the water level detection means 62 By controlling the water supply from the water supply member 16 to the water retention member 14 by the water supply control means 64 based on the detection result, the amount of water contained in the soil portion 50 on the inclined upper end side and the inclined lower end side of the water shielding member 12, that is, soil The water level of the gravity water in the section 50 is made uniform.

図25に示すように、遮水部材12は、底板18の両側端から側板20がやや外側に傾斜して立ち上がる細長い溝状に形成され、その長手方向が耕作地200の傾斜に沿うように地中に埋設される。そして、耕作地200の両端付近まで延びる遮水部材12が、所定の間隔を隔てて並ぶように配置される。   As shown in FIG. 25, the water-impervious member 12 is formed in an elongated groove shape in which the side plate 20 rises slightly outward from both side ends of the bottom plate 18, and its longitudinal direction follows the inclination of the cultivated land 200. Buried inside. And the water-impervious members 12 extending to the vicinity of both ends of the cultivated land 200 are arranged so as to be arranged at a predetermined interval.

たとえば、この実施例では、遮水部材12内の底部に耕作地200の土が充填され、そこに形成された土壌部50が保水部材14として用いられる。また、保水部材14を介して、遮水部材12内に有孔管24(給水部材16,集水部材36)が配設される。   For example, in this embodiment, the bottom of the water-impervious member 12 is filled with soil of the cultivated land 200, and the soil portion 50 formed therein is used as the water retention member 14. In addition, the perforated pipe 24 (the water supply member 16 and the water collecting member 36) is disposed in the water shielding member 12 through the water retaining member 14.

有孔管24の下流側端部は、詳細は後述する水位検知手段62を介して、第2配水管32に接続され、第2配水管32の下流側端部は、貯水タンク34に接続される。また、有孔管24の上流側端部は、第1配水管28を介して、耕作地200の地上に設置された給水タンク30に接続され、第1配水管28と給水タンク30との接続部には、水位検知手段62の検知結果に基づいて作動する給水制御手段64が設けられる。   The downstream end of the perforated pipe 24 is connected to the second water distribution pipe 32 via a water level detecting means 62 described later in detail, and the downstream end of the second water distribution pipe 32 is connected to the water storage tank 34. The Further, the upstream end portion of the perforated pipe 24 is connected to the water supply tank 30 installed on the ground of the cultivated land 200 via the first water distribution pipe 28, and the connection between the first water distribution pipe 28 and the water supply tank 30 is performed. The unit is provided with water supply control means 64 that operates based on the detection result of the water level detection means 62.

図26に示すように、水位検知手段62は、縦管部材66および水位検知器68を含み、遮水部材12の傾斜下端と隣接するように耕作地200の地中に埋設される。   As shown in FIG. 26, the water level detection means 62 includes a vertical pipe member 66 and a water level detector 68 and is embedded in the cultivated land 200 so as to be adjacent to the inclined lower end of the water shielding member 12.

縦管部材66は、塩化ビニルなどの合成樹脂からなり、鉛直方向に立ち上がる側壁66aの下端に底板66bが設けられた有底円筒状に形成され、その底板66bが遮水部材12の傾斜下端の底板18よりも低い位置(高さ)になるように配置される。側壁66aには、遮水部材12の傾斜下端と連通する流入口70が形成されている。流入口70は、遮水部材12に対応した略台形の開口であって、この流入口70に遮水部材12の傾斜下端が差し込まれる(接合される)。このため、縦管部材66の内部の水位は、遮水部材12の傾斜下端の土壌部50の重力水の水位と連動している。   The vertical tube member 66 is made of a synthetic resin such as vinyl chloride, and is formed in a bottomed cylindrical shape in which a bottom plate 66b is provided at the lower end of a side wall 66a that rises in the vertical direction, and the bottom plate 66b is an inclined lower end of the water shielding member 12. It arrange | positions so that it may become a position (height) lower than the baseplate 18. FIG. An inflow port 70 that communicates with the inclined lower end of the water shielding member 12 is formed in the side wall 66a. The inflow port 70 is a substantially trapezoidal opening corresponding to the water shielding member 12, and the inclined lower end of the water shielding member 12 is inserted into (joined to) the inflow port 70. For this reason, the water level inside the vertical pipe member 66 is interlocked with the level of gravity water in the soil part 50 at the inclined lower end of the water shielding member 12.

また、遮水部材12と縦管部材66との接合部では、有孔管24の外側であってかつ遮水部材12の内側に、フィルター72が設けられており、このフィルター72によって、遮水部材12の内部の泥などが縦管部材66の内部に侵入することが防止されている。   In addition, a filter 72 is provided outside the perforated pipe 24 and inside the water shielding member 12 at the joint between the water shielding member 12 and the vertical tube member 66. Mud or the like inside the member 12 is prevented from entering the inside of the vertical tube member 66.

さらに、縦管部材66の側壁66aには、遮水部材12の傾斜下端の土壌部50の重力水の設定水位(土壌部50の重力水の適正な水位)Wに対応した位置に流出口74が形成される。たとえば、この実施例では、土壌部50の重力水の設定水位Wは、遮水部材12内に配設された有孔管24の管底の高さ位置と等しくなるように設定されており、流出口74は、その下端の高さが土壌部50の重力水の設定水位Wと等しくなる位置に配置されている。ただし、これに限定される必要はない。そして、流出口74には、第2配水管32が接続され、第2配水管32の下流側端部は、貯水タンク34に接続される。   Further, on the side wall 66a of the vertical pipe member 66, the outflow port 74 is located at a position corresponding to the set water level W of the soil portion 50 at the lower end of the inclined side of the water shielding member 12 (appropriate water level of the gravitational water of the soil portion 50). Is formed. For example, in this embodiment, the set water level W of the gravitational water in the soil portion 50 is set to be equal to the height position of the tube bottom of the perforated tube 24 disposed in the water shielding member 12. The outlet 74 is disposed at a position where the height of the lower end of the outlet 74 becomes equal to the set water level W of the gravity water of the soil part 50. However, it is not necessary to be limited to this. The second water distribution pipe 32 is connected to the outflow port 74, and the downstream end of the second water distribution pipe 32 is connected to the water storage tank 34.

また、水位検知器68は、遮水部材12の傾斜下端の土壌部50の重力水の水位、つまりそれに連動した縦管部材66の内部の水位を検知する。たとえば、この実施例では、水位検知器68は、汎用の水位調整可変式ボールタップ68aを有し、このボールタップ68aによって縦管部材66の内部の水位が設定水位Wに対して高いか低いかを検知する。そして、縦管部材66の内部の水位が設定水位Wよりも高くなった時に、給水制御手段64にたとえばパイロット圧や電気信号などの制御信号を伝達する。   Further, the water level detector 68 detects the water level of the gravitational water in the soil portion 50 at the lower end of the inclined side of the water shielding member 12, that is, the water level inside the vertical pipe member 66 in conjunction therewith. For example, in this embodiment, the water level detector 68 has a general-purpose water level adjustment variable ball tap 68a, and the ball tap 68a detects whether the water level inside the vertical tube member 66 is higher or lower than the set water level W. To do. When the water level inside the vertical pipe member 66 becomes higher than the set water level W, a control signal such as a pilot pressure or an electric signal is transmitted to the water supply control means 64.

図25に戻って、給水制御手段64は、給水タンク30と第1配水管28との間に設けられるパイロット弁や電磁弁などであって、縦管部材66の内部の水位が設定水位Wよりも高くなったという制御信号が水位検知器68から伝達されたときに、その制御信号に基づいて、給水タンク30から第1配水管28への給水を停止させる。   Returning to FIG. 25, the water supply control means 64 is a pilot valve, an electromagnetic valve or the like provided between the water supply tank 30 and the first water distribution pipe 28, and the water level inside the vertical pipe member 66 is higher than the set water level W. When a control signal indicating that the value has become higher is transmitted from the water level detector 68, water supply from the water supply tank 30 to the first water distribution pipe 28 is stopped based on the control signal.

なお、給水タンク30から第1配水管28への給水の開始のタイミングについては、上述の各実施例と同様に、タイマ等を利用して、所定の時間帯に自動的に給水タンク30から水が供給されるようにしたり、栽培作物の生理的状況をモニタリングして水分を補給するようにしたりして行う。ただし、それに代えて、縦管部材66の内部の水位が設定水位Wよりも低くなった時に、給水タンク30から第1配水管28への給水が自動的に開始されるようにし、縦管部材66の内部の水位が設定水位Wよりも高くなった時に、給水タンク30から第1配水管28への給水が自動的に停止されるようにしてもよい。   As for the timing of the start of water supply from the water supply tank 30 to the first water distribution pipe 28, the water is automatically supplied from the water supply tank 30 in a predetermined time zone using a timer or the like, as in the above-described embodiments. Or supply the water by monitoring the physiological condition of the cultivated crop. However, instead of this, when the water level inside the vertical pipe member 66 becomes lower than the set water level W, water supply from the water supply tank 30 to the first water distribution pipe 28 is automatically started, and the vertical pipe member When the water level inside 66 becomes higher than the set water level W, the water supply from the water supply tank 30 to the first water distribution pipe 28 may be automatically stopped.

このようなシステム10では、灌漑時には、有孔管24から遮水部材12内に給水される水は、有孔管24の上流側から下流側に向けて徐々に遮水部材12内で土壌部50に吸収される。そして、遮水部材12の傾斜下端において、有孔管24の給水した水が土壌部50に吸収されると、その土壌部50の重力水の水位を水位検知手段62によって検知し、その水位が設定水位Wよりも高い時に、給水タンク30から第1配水管28への給水を停止させる。   In such a system 10, during irrigation, the water supplied from the perforated pipe 24 into the water shielding member 12 gradually moves from the upstream side of the perforated pipe 24 toward the downstream side within the water shielding member 12. 50 is absorbed. And if the water which the perforated pipe | tube 24 supplied to the soil part 50 is absorbed by the soil part 50 in the inclination lower end of the water-impervious member 12, the water level detection means 62 will detect the water level of the soil part 50, and the water level will be detected. When the water level is higher than the set water level W, water supply from the water supply tank 30 to the first water distribution pipe 28 is stopped.

すなわち、図25の実施例では、遮水部材12の傾斜下端の土壌部50の重力水の水位を基準として有孔管24への給水を制御するようにしているので、仮に粘性が非常に高い土によって耕作地200が構成されている場合などでも、遮水部材12の傾斜下端側で土壌部50が含む水量が不足してしまうことがない。したがって、遮水部材12の傾斜上端から傾斜下端に亘って土壌部50の重力水の水位を均一化させることができるようになる。   That is, in the embodiment of FIG. 25, the water supply to the perforated pipe 24 is controlled based on the level of gravity water in the soil portion 50 at the inclined lower end of the water shielding member 12, so that the viscosity is very high temporarily. Even when the cultivated land 200 is constituted by soil, the amount of water contained in the soil portion 50 on the inclined lower end side of the water shielding member 12 does not become insufficient. Therefore, the water level of the gravitational water in the soil portion 50 can be made uniform from the upper slope end to the lower slope end of the water shielding member 12.

さらに、給水開始後、有孔管24の給水した水が遮水部材12の傾斜上端から傾斜下端までの土壌部50全体に給水された時点、つまり遮水部材12の傾斜下端の土壌部50の重力水の水位が設定水位Wよりも高くなった時点で給水タンク30から第1配水管28への給水を停止させるようにしているので、給水量の過不足を防止することができる。そして、過剰な給水や、システム10より下流側への水の無駄な放流を防止できるので、水資源を無駄にしてしまうこともない。   Furthermore, after the water supply is started, when the water supplied from the perforated pipe 24 is supplied to the entire soil portion 50 from the upper end of the water shielding member 12 to the lower end of the inclination, that is, the soil portion 50 at the lower end of the water shielding member 12 is inclined. Since the water supply from the water supply tank 30 to the first water distribution pipe 28 is stopped when the water level of the gravitational water becomes higher than the set water level W, it is possible to prevent an excess or deficiency of the water supply amount. And since excessive water supply or the wasteful discharge | release of the water downstream from the system 10 can be prevented, water resources are not wasted.

なお、必ずしも給水タンク30と第1配水管28との間に給水制御手段64を設ける必要はなく、第1配水管28の流路の途中や、第1配水管28と有孔管24との接続部分に給水制御手段64を設けるようにしてもよい。要は、水位検知手段62の検知結果に基づいて有孔管24から遮水部材12内への給水を制御することができればよい。   Note that it is not always necessary to provide the water supply control means 64 between the water supply tank 30 and the first water distribution pipe 28, and in the middle of the flow path of the first water distribution pipe 28 or between the first water distribution pipe 28 and the perforated pipe 24. You may make it provide the water supply control means 64 in a connection part. In short, it is only necessary to control the water supply from the perforated pipe 24 into the water shielding member 12 based on the detection result of the water level detection means 62.

また、水に混じった泥が縦管部材66の底部に溜まっていくことで、縦管部材66内の水位が遮水部材12の傾斜下端の土壌部50の重力水の水位と連動しなくなってしまうことを防止するために、縦管部材66の底部に泥排出手段を設け、この泥排出手段によって定期的に縦管部材66の底部に溜まった泥を排出するようにしてもよい。   Further, since mud mixed with water accumulates at the bottom of the vertical pipe member 66, the water level in the vertical pipe member 66 is not synchronized with the gravity water level of the soil part 50 at the inclined lower end of the water shielding member 12. In order to prevent this, mud discharge means may be provided at the bottom of the vertical pipe member 66, and mud collected at the bottom of the vertical pipe member 66 may be periodically discharged by the mud discharge means.

そのような泥排出手段の一例として、図27に示すように、縦管部材66の底部に上下動可能ないし取り外し可能な板部材76を設置するようにしてもよい。たとえば、板部材76は、その上端が設定水位W、つまり遮水部材12の傾斜下端の有孔管24の管底の高さ位置と等しくなるようにされ、流出口74の下に設けられる。そして、必要に応じて板部材76を上に移動させるないし取り外すことによって、縦管部材66の底部と第2配水管32とを連通させて、縦管部材66の底部に溜まった泥を第2配水管32に排出する。   As an example of such a mud discharging means, as shown in FIG. 27, a plate member 76 that can be moved up and down or removed can be installed at the bottom of the vertical tube member 66. For example, the plate member 76 has an upper end equal to the set water level W, that is, the height position of the tube bottom of the perforated tube 24 at the inclined lower end of the water shielding member 12, and is provided below the outlet 74. Then, if necessary, the plate member 76 is moved up or removed to allow the bottom of the vertical pipe member 66 and the second water distribution pipe 32 to communicate with each other, so that the mud accumulated at the bottom of the vertical pipe member 66 is second. Discharge to the water distribution pipe 32.

さらに、図25の実施例では、水位検知手段および給水制御手段を設けたシステム10を傾斜を有する耕作地200に適用して、耕作地200の地中に遮水部材12を傾斜させて設置するようにしたが、これに限定される必要はない。水位検知手段および給水制御手段を設けたシステム10を傾斜に直交する方向に畝立てした耕作地200や、傾斜地に形成された段々畑や棚田などの平坦地部分の耕作地200に適用して、耕作地200の地中に遮水部材12を水平または略水平に設置するようにしてもよい。こうすることにより、遮水部材12を地中に埋設する際に、施工現場で遮水部材12の正確な水平出しを行う必要がなくなり、施工性が向上する。ただし、この場合には、上述した“遮水部材12の傾斜上端側”を“有孔管24の上流端側”として、また、“遮水部材12の傾斜下端側”を“有孔管24の下流端側”として、システム10を構築するようにする。   Furthermore, in the embodiment of FIG. 25, the system 10 provided with the water level detection means and the water supply control means is applied to the cultivated land 200 having an inclination, and the water shielding member 12 is inclined and installed in the cultivated land 200. However, the present invention is not limited to this. The system 10 provided with the water level detection means and the water supply control means is applied to a cultivated land 200 that is set up in a direction orthogonal to the slope, or a flat cultivated land 200 such as terraced fields and terraced rice fields formed on the sloped land. The water shielding member 12 may be installed horizontally or substantially horizontally in the ground 200. By doing so, when the water shielding member 12 is buried in the ground, it is not necessary to accurately level the water shielding member 12 at the construction site, and workability is improved. However, in this case, the above-mentioned “inclined upper end side of the water shielding member 12” is set as “upstream end side of the perforated tube 24”, and “inclined lower end side of the water shielding member 12” is “perforated tube 24” The system 10 is constructed on the “downstream end side”.

さらにまた、システム10を傾斜に直交する方向に畝立てした耕作地200や、傾斜地に形成された段々畑や棚田などの平坦地部分の耕作地200に適用して、耕作地200の地中に遮水部材12を水平または略水平に設置する場合には、必ずしも水位検知手段を遮水部材12の傾斜下端に設置する必要はなく、水位検知手段および給水制御手段をともに遮水部材12の傾斜上端に設けるようにしてもよい。   Furthermore, the system 10 is applied to a cultivated land 200 erected in a direction perpendicular to the slope, or a flat cultivated land 200 such as terraced fields and terraced rice fields formed on the sloped land to block the cultivated land 200 in the ground. When the water member 12 is installed horizontally or substantially horizontally, it is not always necessary to install the water level detecting means at the inclined lower end of the water shielding member 12, and both the water level detecting means and the water supply control means are both inclined upper ends of the water shielding member 12. You may make it provide in.

一例を挙げると、図28に示すシステム10のさらに他の実施例では、遮水部材12は、底板18の両側端から側板20がやや外側に傾斜して立ち上がる細長い溝状に形成され、その長手方向が水平または略水平になるように耕作地200の地中に埋設される。そして、耕作地200の両端付近まで延びる遮水部材12が、所定の間隔を隔てて並ぶように配置される。   For example, in still another embodiment of the system 10 shown in FIG. 28, the water shielding member 12 is formed in an elongated groove shape in which the side plate 20 rises slightly outward from both side ends of the bottom plate 18, and its longitudinal length. It is buried in the cultivated land 200 such that the direction is horizontal or substantially horizontal. And the water-impervious members 12 extending to the vicinity of both ends of the cultivated land 200 are arranged so as to be arranged at a predetermined interval.

たとえば、この実施例では、遮水部材12内の底部に耕作地200の土が充填され、そこに形成された土壌部50が保水部材14として用いられる。また、保水部材14を介して、遮水部材12内に有孔管24(給水部材16,集水部材36)が配設される。   For example, in this embodiment, the bottom of the water-impervious member 12 is filled with soil of the cultivated land 200, and the soil portion 50 formed therein is used as the water retention member 14. In addition, the perforated pipe 24 (the water supply member 16 and the water collecting member 36) is disposed in the water shielding member 12 through the water retaining member 14.

有孔管24の下流側端部は、第2配水管32に接続され、この第2配水管32が貯水タンク34に接続される。また、有孔管24の上流側端部には、図29に示すように、縦管部材78が接合され、この縦管部材78の内部に、水位管理器80が設置される。   The downstream end of the perforated pipe 24 is connected to the second water distribution pipe 32, and the second water distribution pipe 32 is connected to the water storage tank 34. Further, as shown in FIG. 29, a vertical pipe member 78 is joined to the upstream end portion of the perforated pipe 24, and a water level management device 80 is installed inside the vertical pipe member 78.

縦管部材78は、分岐継手82と立ち上がり管84とを含み、地中に埋設される。分岐継手82は、塩化ビニルなどの合成樹脂からなり、3方向へ向けて受口86が形成されたチーズ形状に形成され、それぞれの軸線が互いに一致する受口86aおよび86bならびにその軸線が受口86aおよび86bの軸線と直交する受口86cを有している。分岐継手82の受口86aには、この受口86aを封止する蓋体88が設けられ、受口86bには、径違いソケット(インクリーザ)90などを介して、有孔管24が接続される。なお、径違いソケット90と有孔管24との接合部では、有孔管24の外側であってかつ遮水部材12の内側に蓋体が設けられており、この蓋体によって、有孔管24から遮水部材12内に給水した水が遮水部材12の外部にこぼれてしまうことが防止されている。   The vertical pipe member 78 includes a branch joint 82 and a rising pipe 84, and is buried in the ground. The branch joint 82 is made of a synthetic resin such as vinyl chloride and is formed in a cheese shape in which a receiving port 86 is formed in three directions. The receiving ports 86a and 86b whose axes coincide with each other, and the axis is the receiving port. There is a receiving port 86c orthogonal to the axes of 86a and 86b. The receiving port 86a of the branch joint 82 is provided with a lid 88 that seals the receiving port 86a, and the perforated tube 24 is connected to the receiving port 86b through a socket (increase) 90 having a different diameter. Is done. Note that a lid body is provided outside the perforated pipe 24 and inside the water-impervious member 12 at the junction between the socket 90 having a different diameter and the perforated pipe 24, and the perforated pipe is provided by this lid body. It is prevented that the water supplied from 24 into the water shielding member 12 is spilled outside the water shielding member 12.

さらに、分岐継手82の受口86cには、立ち上がり管84が接続される。立ち上がり管84は、塩化ビニルなどの合成樹脂によって両端開口の円筒状に形成され、分岐継手82から地表面まで立ち上がる。立ち上がり管84の上端開口の上方には、給水タンク30に接続された第1給水管92の端部が配置され、この第1給水管92は、主として最初に遮水部材12内に土壌部50を形成する時など、多量の水を遮水部材12内に供給する際に利用される。また、立ち上がり管84の内部には、給水タンク30に接続された第2給水管94が挿入され、この第2給水管94は、主として遮水部材12内に形成した土壌部50の水位管理を行う際に利用される。   Further, the rising pipe 84 is connected to the receiving port 86 c of the branch joint 82. The riser tube 84 is formed in a cylindrical shape with openings at both ends by a synthetic resin such as vinyl chloride, and rises from the branch joint 82 to the ground surface. Above the upper end opening of the rising pipe 84, an end portion of a first water supply pipe 92 connected to the water supply tank 30 is disposed. The first water supply pipe 92 is mainly formed in the water shielding member 12 first in the soil portion 50. It is used when a large amount of water is supplied into the water-impervious member 12, such as when forming the water. In addition, a second water supply pipe 94 connected to the water supply tank 30 is inserted into the rising pipe 84, and the second water supply pipe 94 mainly controls the water level of the soil portion 50 formed in the water shielding member 12. Used when doing.

また、水位管理器80は、水位検知手段ならびに給水制御手段として機能し、遮水部材12の内部の土壌部50の重力水の水位を検知して、その検知結果に応じて遮水部材12の内部への給水を制御するものである。このような簡易型の水位管理器80については、本願出願人等が先に出願した特開2010−029072号において詳しく説明されているので、必要なら、この特許文献を参照されたい。   Moreover, the water level management device 80 functions as a water level detection means and a water supply control means, detects the water level of the gravitational water in the soil portion 50 inside the water shielding member 12, and determines the water shielding member 12 according to the detection result. It controls the water supply to the inside. Such a simple water level controller 80 is described in detail in Japanese Patent Application Laid-Open No. 2010-029072 previously filed by the applicant of the present application and so on, so refer to this patent document if necessary.

水位管理器80について簡単に説明すると、水位管理器80は、縦管96を含み、縦管96内の水位に応じて水の供給を調整する。縦管96は、塩化ビニルなどの合成樹脂によって両端開口の円筒状に形成され、縦管部材78の底部に立設される。縦管部材78縦管96の側壁の底部には、開口98が形成され、その開口98は、縦管96内の水を外部に流入・流出させる出入口となる。   The water level manager 80 will be briefly described. The water level manager 80 includes a vertical pipe 96 and adjusts the supply of water according to the water level in the vertical pipe 96. The vertical tube 96 is formed in a cylindrical shape with openings at both ends by a synthetic resin such as vinyl chloride, and is erected at the bottom of the vertical tube member 78. An opening 98 is formed at the bottom of the side wall of the vertical pipe member 78 and the vertical pipe 96. The opening 98 serves as an inlet / outlet through which water in the vertical pipe 96 flows in and out.

さらに、縦管96の内部には、水位設定具100およびフロート102が設けられる。図30に示すように、水位設定具100は、縦管96内に配置されて、その配置高さに基づいて縦管96内の水位設定値を規定するものであり、縦管96内で土壌部50の重力水の設定水位の位置(高さ)に固定される。つまり、詳細は後に説明するように、縦管96内の水位が重力水の設定水位になったときに、フロート102が上昇してその上面102a第2給水管94の端に当接し、給水口106が閉じられるような位置に水位設定具100が固定される。水位設定具100は、有底円筒状に形成され、その外径は、縦管96内の所望の位置(高さ)に配置可能な程度に、縦管96の内径とほぼ同じに設定される。また、水位設定具100の底面には、貫通孔104が形成される。   Further, a water level setting tool 100 and a float 102 are provided inside the vertical pipe 96. As shown in FIG. 30, the water level setting tool 100 is arranged in the vertical pipe 96 and defines the water level setting value in the vertical pipe 96 based on the arrangement height. It is fixed to the position (height) of the set water level of the gravity water of the part 50. That is, as will be described in detail later, when the water level in the vertical pipe 96 becomes the set water level of gravity water, the float 102 rises and comes into contact with the end of the upper surface 102a of the second water supply pipe 94, and the water supply port The water level setting tool 100 is fixed at such a position that 106 is closed. The water level setting tool 100 is formed in a bottomed cylindrical shape, and its outer diameter is set to be substantially the same as the inner diameter of the vertical tube 96 to such an extent that it can be placed at a desired position (height) in the vertical tube 96. . A through hole 104 is formed on the bottom surface of the water level setting tool 100.

また、縦管96の上端開口には、上述した第2給水管94の端部が挿入され、第2給水管94は、さらに水位設定具100の貫通孔104に挿通されて、水位設定具100から下方に向かって突出するように固定される。第2給水管94の端は、後述するフロート102の上面102aと当接する弁座として機能し、その開口は、縦管96内に水を供給する給水口106となる。   Further, the end of the second water supply pipe 94 described above is inserted into the upper end opening of the vertical pipe 96, and the second water supply pipe 94 is further inserted into the through hole 104 of the water level setting tool 100, so that the water level setting tool 100 is inserted. It is fixed so as to protrude downward. The end of the second water supply pipe 94 functions as a valve seat that comes into contact with an upper surface 102 a of the float 102 described later, and the opening serves as a water supply port 106 for supplying water into the vertical pipe 96.

フロート102は、ゴム等の弾性材および合成樹脂などによって中空円柱状に形成され、水位設定具100の下方に配置されて、縦管96内の水位変動に応じて上昇および下降し、その上面102aは、弁座と当接して給水口106を閉じる弁体としても機能する。ただし、フロート102の上面102aにおいて、少なくとも弁座と当接する部位は、フロート102の上昇する力が弱い場合でもフロート102の上面102a(弁体)と第2給水管94の端(弁座)とが隙間無く接触して、給水口106を適切に閉じることができるように、ゴム等の弾性材によって形成すると好適である。   The float 102 is formed in a hollow cylindrical shape using an elastic material such as rubber and a synthetic resin, and is disposed below the water level setting tool 100. The float 102 rises and falls according to the fluctuation of the water level in the vertical pipe 96, and its upper surface 102a. Also functions as a valve body that contacts the valve seat and closes the water supply port 106. However, on the upper surface 102a of the float 102, at least the portion that contacts the valve seat is such that the upper surface 102a (valve element) of the float 102 and the end of the second water supply pipe 94 (valve seat) even when the ascending force of the float 102 is weak. It is preferable to form the elastic member such as rubber so that the water supply port 106 can be closed properly without any gap.

このようなシステム10では、システム10の施工後に、第1給水管92から縦管部材78の内部に給水し、縦管部材78から有孔管24に水を供給する。有孔管24に供給された水は、土中を浸透していき、重力水となって遮水部材12内に留まる。これによって、遮水部材12内に重力水状態の土壌部50が形成される。   In such a system 10, after construction of the system 10, water is supplied from the first water supply pipe 92 to the inside of the vertical pipe member 78, and water is supplied from the vertical pipe member 78 to the perforated pipe 24. The water supplied to the perforated pipe 24 penetrates through the soil and becomes gravity water and stays in the water shielding member 12. Thereby, the soil part 50 of the gravity water state is formed in the water-impervious member 12.

そして、遮水部材12内の底部の全長に亘って土壌部50が形成されると、第1給水管92からの給水を停止して、それから、水位管理器80によって土壌部50の重力水の水位を管理する。具体的には、図30(a)に示すように、第2給水管94を流れる水は、縦管96内に流入する。そして、縦管96内に流入した水は、開口98を通って縦管96の外部、つまり縦管部材78の内部に流出し、その水が縦管部材78から有孔管24に供給される。   And if the soil part 50 is formed over the full length of the bottom part in the water-impervious member 12, the water supply from the 1st water supply pipe | tube 92 will be stopped, Then, the gravity water of the soil part 50 will be stopped by the water level management device 80. Manage the water level. Specifically, as shown in FIG. 30A, the water flowing through the second water supply pipe 94 flows into the vertical pipe 96. Then, the water flowing into the vertical tube 96 flows out of the vertical tube 96 through the opening 98, that is, into the vertical tube member 78, and the water is supplied from the vertical tube member 78 to the perforated tube 24. .

つまり、遮水部材12の土壌部50の重力水の水位Wと縦管96内の水位とは連動しており、土壌部50の重力水の水位が設定水位に達すると、図30(b)に示すように、給水口106が閉じられて、第2給水管94から縦管96内への給水が停止される。また、土壌部50の重力水が上側の土壌に吸い上げられて、重力水の水位が設定水位よりも低下すると、図30(a)に示すように、給水口106が開かれて、第2給水管94から縦管96内への給水が行われる。   That is, the water level W of the gravitational water in the soil portion 50 of the water-impervious member 12 and the water level in the vertical tube 96 are interlocked, and when the water level of the gravitational water in the soil portion 50 reaches the set water level, FIG. As shown, the water supply port 106 is closed, and water supply from the second water supply pipe 94 into the vertical pipe 96 is stopped. Moreover, when the gravity water of the soil part 50 is sucked up by the upper soil and the water level of the gravity water is lower than the set water level, the water supply port 106 is opened as shown in FIG. Water is supplied from the pipe 94 into the vertical pipe 96.

なお、図28のシステムでは、遮水部材12の外側に縦管部材78を設置し、その中に水位管理器80を設置するようにしたが、これに限定される必要はなく、遮水部材12の内部に水位管理器80を直接設置するようにしてもよい。   In the system of FIG. 28, the vertical pipe member 78 is installed outside the water-impervious member 12, and the water level manager 80 is installed therein. However, the present invention is not limited to this, and the water-impervious member The water level management device 80 may be directly installed inside 12.

また、必ずしも上述したような水位管理器80を用いる必要はなく、図25の実施例で使用した水位調整可変式ボールタップならびにパイロット弁などを水位管理器として利用してもよい。要は、水位検知手段と給水制御手段とを備える任意の水位管理手段を適用することができる。   Further, it is not always necessary to use the water level manager 80 as described above, and the water level adjustment variable ball tap and pilot valve used in the embodiment of FIG. 25 may be used as the water level manager. In short, any water level management means including a water level detection means and a water supply control means can be applied.

さらにまた、図25の実施例ならびに図28の実施例では、遮水部材12内の底部に耕作地200の土が充填され、そこに形成された土壌部50が保水部材14として用いられた。そして、水位検知手段は土壌部50の重力水の水位を検知したが、これに限定される必要はなく、保水部材14には、汎用の保水剤や、そのような保水剤と土とを混合した混合物を用いるようにしてもよく、その保水部材14が保有する水の水位を検知すればよい。   Furthermore, in the example of FIG. 25 and the example of FIG. 28, the bottom of the water-impervious member 12 is filled with the soil of the cultivated land 200, and the soil part 50 formed therein is used as the water retaining member 14. And although the water level detection means detected the water level of the gravity water of the soil part 50, it does not need to be limited to this, The water retention member 14 mixes a general purpose water retention agent, such a water retention agent, and soil. The water level held by the water retaining member 14 may be detected.

なお、上述の各実施例ではいずれも、有孔管24を余剰水を集水するための集水部材36として兼用し、有孔管24によって集水した遮水部材12内の余剰水を第2配水管32を介して貯水タンク34に排出するようにしたが、それに加えて、有孔管24の上に疎水部108を形成し、この疎水部108ならびに有孔管24を集水部材36として機能させるようにしてもよい。   In each of the above-described embodiments, the perforated pipe 24 is also used as a water collecting member 36 for collecting surplus water, and surplus water in the water shielding member 12 collected by the perforated pipe 24 is used as the first. In addition to discharging the water to the water storage tank 34 via the two water distribution pipes 32, a hydrophobic portion 108 is formed on the perforated pipe 24, and the hydrophobic section 108 and the perforated pipe 24 are connected to the water collecting member 36. It may be made to function as.

一例として、疎水部108は、図31に示すように、石骨材などの無機質系材料や、もみ殻、木材チップ、貝殻、発泡スチロール等の周知の暗渠疎水材を成型することによって略直方体状に形成され、有孔管24の上に隣接して地中に埋設される。こうすることにより、耕作地200の地中から疎水部108の中へ滲みだした水が集められ、その水が有孔管24の上側の貫通孔26から有孔管24の内部に移動する。そして、有孔管24の中を流れた水が第2配水管32に流入し、貯水タンク34に排出される。   As an example, as shown in FIG. 31, the hydrophobic portion 108 is formed into a substantially rectangular parallelepiped shape by molding an inorganic material such as stone aggregate, or a well-known underdrain hydrophobic material such as rice husk, wood chip, shell, or polystyrene foam. Formed and embedded in the ground adjacent to the perforated tube 24. By doing so, water that has oozed out from the ground of the cultivated land 200 into the hydrophobic portion 108 is collected, and the water moves from the through hole 26 on the upper side of the perforated pipe 24 to the inside of the perforated pipe 24. Then, the water that has flowed through the perforated pipe 24 flows into the second water distribution pipe 32 and is discharged to the water storage tank 34.

また、必ずしも有孔管24と疎水部108とを別個に設ける必要はなく、図32に示すように、有孔管24の断面形状を上下方向に長い楕円形または楕円近似形のリング状になるように形成し、その上部の空間を疎水部38として機能させるようにしてもよい。   Further, it is not always necessary to provide the perforated tube 24 and the hydrophobic portion 108 separately. As shown in FIG. 32, the cross-sectional shape of the perforated tube 24 is an elliptical or elliptical ring shape that is long in the vertical direction. In this way, the upper space may function as the hydrophobic portion 38.

なお、上述した径や高さ等の具体的数値は、いずれも単なる一例であり、必要に応じて適宜変更可能である。   It should be noted that the specific numerical values such as the diameter and height described above are merely examples, and can be appropriately changed as necessary.

10 …地下灌漑システム
12 …遮水部材
14 …保水部材
16 …給水部材
24 …有孔管
38 …毛管水状態の土壌部
46 …仕切り部
50 …毛管水状態または重力水状態の土壌部
62 …水位検知手段
64 …給水制御手段
80 …水位管理器
200 …耕作地
DESCRIPTION OF SYMBOLS 10 ... Underground irrigation system 12 ... Impermeable member 14 ... Water retention member 16 ... Water supply member 24 ... Perforated pipe 38 ... Soil part of capillary water state 46 ... Partition part 50 ... Soil part of capillary water state or gravity water state 62 ... Water level Detection means 64 ... Water supply control means 80 ... Water level manager 200 ... Cultivated land

Claims (13)

上側開口の容器状に形成され、耕作地の地中に傾斜させて埋設される遮水部材、
前記遮水部材内の少なくとも底部に設けられる保水部材、および
前記保水部材を介して前記遮水部材内に配設され、給水源から供給された水を前記保水部材に給水する給水部材を備える、地下灌漑システム。
A water-impervious member that is formed in a container shape with an upper opening and is embedded in an inclined manner in the ground of the cultivated land,
A water retention member provided at least at the bottom of the water impermeable member, and a water supply member that is disposed in the water impermeable member via the water retention member and supplies water supplied from a water supply source to the water retention member. Underground irrigation system.
前記給水部材よりも下流側に設けられ、前記給水部材の内部の余剰水が流入する貯水手段をさらに備える、請求項1記載の地下灌漑システム。   2. The underground irrigation system according to claim 1, further comprising a water storage means provided downstream of the water supply member and into which surplus water inside the water supply member flows. 前記貯水手段によって貯水した水を前記給水源に戻す循環手段をさらに備える、請求項2記載の地下灌漑システム。   The underground irrigation system according to claim 2, further comprising a circulation means for returning the water stored by the water storage means to the water supply source. 前記給水部材は、管壁に形成される複数の貫通孔を有する有孔管を含み、
前記有孔管は、前記遮水部材の内部の余剰水を集水する集水部材として兼用され、この集水部材によって集水された余剰水が前記貯水手段に排出される、請求項2または3記載の地下灌漑システム。
The water supply member includes a perforated pipe having a plurality of through holes formed in a pipe wall,
The perforated pipe is also used as a water collecting member for collecting surplus water inside the water shielding member, and surplus water collected by the water collecting member is discharged to the water storage means. 3. Underground irrigation system.
上側開口の容器状に形成され、耕作地の地中に埋設される遮水部材、
前記遮水部材内の少なくとも底部に設けられる保水部材、
前記保水部材を介して前記遮水部材内に配設され、給水源から供給された水を前記保水部材に給水する給水部材、および
前記給水部材から前記保水部材に給水された水の水位を検知する水位検知手段、および
前記水位検知手段の検知結果に基づいて前記給水部材から前記保水部材への給水を制御する給水制御手段を備える、地下灌漑システム。
A water-impervious member formed in a container shape with an upper opening and buried in the ground of the cultivated land,
A water retaining member provided at least at the bottom of the water shielding member,
A water supply member that is disposed in the water-impervious member via the water retention member and supplies water supplied from a water supply source to the water retention member, and a water level supplied to the water retention member from the water supply member is detected. An underground irrigation system comprising: a water level detection unit that controls water supply from the water supply member to the water retention member based on a detection result of the water level detection unit.
前記遮水部材は、前記耕作地の地中に傾斜させて埋設され、
前記水位検知手段は、前記遮水部材の傾斜下端に設置され、
前記給水制御手段は、前記水位検知手段の検知結果に基づいて前記給水部材から前記保水部材への給水を停止させる給水停止手段を含む、請求項5記載の地下灌漑システム。
The water-impervious member is embedded in the ground of the cultivated land,
The water level detection means is installed at the inclined lower end of the water shielding member,
The underground irrigation system according to claim 5, wherein the water supply control unit includes a water supply stop unit that stops water supply from the water supply member to the water retention member based on a detection result of the water level detection unit.
上側開口の容器状に形成され、耕作地の地中に傾斜させて埋設される遮水部材、
前記遮水部材内の少なくとも底部に設けられる保水部材、および
前記遮水部材内の底部との間に前記保水部材を介在させた状態で前記遮水部材内に配設され、給水源から供給された水を前記保水部材に給水する給水部材を備える、地下灌漑システム。
A water-impervious member that is formed in a container shape with an upper opening and is embedded in an inclined manner in the ground of the cultivated land,
A water retaining member provided at least at the bottom of the water shielding member, and disposed in the water shielding member with the water retaining member interposed between the water shielding member and the bottom of the water shielding member, and supplied from a water supply source. An underground irrigation system comprising a water supply member that supplies water to the water retaining member.
前記耕作地の地中において、耕していない土の上に前記遮水部材を挟んで前記給水部材を載置することによって前記給水部材の上下方向位置を位置決めするようにした、請求項7記載の地下灌漑システム。   The vertical position of the water supply member is positioned by placing the water supply member on the soil that is not cultivated with the water-impervious member interposed therebetween in the ground of the cultivated land. Underground irrigation system. 前記遮水部材内の底部のうち最も低い第1位置よりも段差状に高くなった第2位置の上側に前記給水部材を載置するようにした、請求項8記載の地下灌漑システム。   The underground irrigation system according to claim 8, wherein the water supply member is placed on the upper side of the second position that is higher in a step shape than the lowest first position among the bottoms in the water shielding member. 前記遮水部材内の底部を当該遮水部材の設置方向に所定の間隔を隔てて仕切る仕切り部をさらに備える、請求項1ないし9のいずれかに記載の地下灌漑システム。   The underground irrigation system according to any one of claims 1 to 9, further comprising a partition portion that partitions a bottom portion in the water shielding member at a predetermined interval in a direction in which the water shielding member is installed. 前記保水部材は、前記耕作地の土を含む、請求項1ないし10のいずれかに記載の地下灌漑システム。   The underground irrigation system according to any one of claims 1 to 10, wherein the water retaining member includes soil of the cultivated land. 前記給水部材は、前記遮水部材の内部の余剰水を集水する集水部材として兼用される有孔管を含み、この有孔管の上側に疎水部が設けられる、請求項1ないし11のいずれかに記載の地下灌漑システム。
前記給水部材
The water supply member includes a perforated pipe that is also used as a water collecting member for collecting surplus water inside the water shielding member, and a hydrophobic portion is provided above the perforated pipe. An underground irrigation system according to any of the above.
The water supply member
上側開口の容器状に形成され、耕作地の地中に埋設される遮水部材、および
前記遮水部材内の底部に設けられる保水部材、
前記遮水部材内に前記保水部材を介して配設され、給水源から供給された水を前記保水部材に給水する給水部材を備える、地下灌漑システム。
A water-impervious member formed in a container shape with an upper opening and embedded in the ground of the cultivated land, and a water retention member provided at the bottom of the water-impervious member,
An underground irrigation system comprising a water supply member that is disposed in the water-impervious member via the water retention member and that supplies water supplied from a water supply source to the water retention member.
JP2012154416A 2011-07-21 2012-07-10 Underground irrigation system Active JP6041190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012154416A JP6041190B2 (en) 2011-07-21 2012-07-10 Underground irrigation system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011159957 2011-07-21
JP2011159957 2011-07-21
JP2012154416A JP6041190B2 (en) 2011-07-21 2012-07-10 Underground irrigation system

Publications (2)

Publication Number Publication Date
JP2013039125A true JP2013039125A (en) 2013-02-28
JP6041190B2 JP6041190B2 (en) 2016-12-07

Family

ID=47888159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012154416A Active JP6041190B2 (en) 2011-07-21 2012-07-10 Underground irrigation system

Country Status (1)

Country Link
JP (1) JP6041190B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554862B1 (en) * 2013-05-08 2014-07-23 水井 登志子 Cultivation equipment
JP2014187985A (en) * 2013-03-28 2014-10-06 Kubota-C. I Co Ltd Subirrigation system
JP2015023810A (en) * 2013-07-25 2015-02-05 株式会社パディ研究所 Water supply system and underground irrigation system comprising the same
JP2018166407A (en) * 2017-03-29 2018-11-01 株式会社クボタケミックス Plowland conversion method and irrigation drainage system
JP2018532431A (en) * 2015-11-03 2018-11-08 ジュン, ピル ホJUNG, Pil Ho Agricultural air injection equipment
WO2018221155A1 (en) * 2017-05-31 2018-12-06 デンカ株式会社 Underground irrigation device
JP2019201583A (en) * 2018-05-23 2019-11-28 パナソニックIpマネジメント株式会社 Agricultural greenhouse system
CN114600756A (en) * 2022-03-24 2022-06-10 深圳市优雨科技有限公司 Water-saving control structure with sectional watering function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445728A (en) * 1990-06-09 1992-02-14 Tokyu Jiyari Kk Underground irrigation system in putting green
JPH05123065A (en) * 1991-10-30 1993-05-21 Minoru Kubota Sprinkling apparatus utilizing negative pressure difference
JPH10164981A (en) * 1996-12-10 1998-06-23 Ohbayashi Corp Lawn management and management device
JP2006345761A (en) * 2005-06-15 2006-12-28 Asahi Kasei Homes Kk Watering method and apparatus to soil
JP2011015642A (en) * 2009-07-09 2011-01-27 Nara Kogyo:Kk Structure for improving water supply and water drainage and method for supplying and draining water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445728A (en) * 1990-06-09 1992-02-14 Tokyu Jiyari Kk Underground irrigation system in putting green
JPH05123065A (en) * 1991-10-30 1993-05-21 Minoru Kubota Sprinkling apparatus utilizing negative pressure difference
JPH10164981A (en) * 1996-12-10 1998-06-23 Ohbayashi Corp Lawn management and management device
JP2006345761A (en) * 2005-06-15 2006-12-28 Asahi Kasei Homes Kk Watering method and apparatus to soil
JP2011015642A (en) * 2009-07-09 2011-01-27 Nara Kogyo:Kk Structure for improving water supply and water drainage and method for supplying and draining water

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187985A (en) * 2013-03-28 2014-10-06 Kubota-C. I Co Ltd Subirrigation system
JP5554862B1 (en) * 2013-05-08 2014-07-23 水井 登志子 Cultivation equipment
JP2015023810A (en) * 2013-07-25 2015-02-05 株式会社パディ研究所 Water supply system and underground irrigation system comprising the same
JP2018532431A (en) * 2015-11-03 2018-11-08 ジュン, ピル ホJUNG, Pil Ho Agricultural air injection equipment
JP2018166407A (en) * 2017-03-29 2018-11-01 株式会社クボタケミックス Plowland conversion method and irrigation drainage system
WO2018221155A1 (en) * 2017-05-31 2018-12-06 デンカ株式会社 Underground irrigation device
JPWO2018221155A1 (en) * 2017-05-31 2020-04-02 デンカ株式会社 Underground irrigation equipment
JP7085542B2 (en) 2017-05-31 2022-06-16 デンカ株式会社 Underground irrigation equipment
JP2019201583A (en) * 2018-05-23 2019-11-28 パナソニックIpマネジメント株式会社 Agricultural greenhouse system
CN114600756A (en) * 2022-03-24 2022-06-10 深圳市优雨科技有限公司 Water-saving control structure with sectional watering function
CN114600756B (en) * 2022-03-24 2023-02-28 深圳市优雨科技有限公司 Water-saving control structure with sectional watering function

Also Published As

Publication number Publication date
JP6041190B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6041190B2 (en) Underground irrigation system
US20220142065A1 (en) Liquid Containment and Focus for Subterranean Capillary Irrigation
CN104603363A (en) Plantsurface structure and modules and method for forming the same
JP2007267732A (en) Rooftop greening system
JP2007267731A (en) Greening system
RU2346427C1 (en) Irrigation system
KR20100080686A (en) Subsurface water-supply and drainage system
US9011041B2 (en) Subirrigation system
US8256989B2 (en) Water-storage and water-purification system
JP5970675B2 (en) Underground irrigation system
KR20140135441A (en) A Watering System using Air Conditioner Discharge Water
CN101080999B (en) Method and device for irrigating
US6712552B1 (en) Geosynthetic material irrigation system
CN218233515U (en) Cellular health preserving protection device
JP5187752B2 (en) Underground irrigation system and double pipe unit used therefor
KR101044221B1 (en) Underground Irrigation System
CA2016375C (en) Portable watering &amp; drainage system &amp; combined heating system
US8192109B2 (en) Subsurface irrigation system
JP6094787B2 (en) Underground irrigation member and underground irrigation system using the same
CN201070611Y (en) Device for irrigation
JP5872195B2 (en) Underground irrigation system
JP3191153U (en) Planting base for tree planting
JP2007167039A (en) Greening container
JP2006296230A (en) Wall surface greening system
RU2779071C1 (en) Subsurface irrigation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161027

R150 Certificate of patent or registration of utility model

Ref document number: 6041190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250