JP2013033877A - 半導体素子、hemt素子、および半導体素子の製造方法 - Google Patents

半導体素子、hemt素子、および半導体素子の製造方法 Download PDF

Info

Publication number
JP2013033877A
JP2013033877A JP2011169805A JP2011169805A JP2013033877A JP 2013033877 A JP2013033877 A JP 2013033877A JP 2011169805 A JP2011169805 A JP 2011169805A JP 2011169805 A JP2011169805 A JP 2011169805A JP 2013033877 A JP2013033877 A JP 2013033877A
Authority
JP
Japan
Prior art keywords
layer
semiconductor device
group iii
iii nitride
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011169805A
Other languages
English (en)
Other versions
JP5806545B2 (ja
Inventor
Tomohiko Sugiyama
智彦 杉山
Sota Maehara
宗太 前原
Shigeaki Sumiya
茂明 角谷
Mitsuhiro Tanaka
光浩 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2011169805A priority Critical patent/JP5806545B2/ja
Publication of JP2013033877A publication Critical patent/JP2013033877A/ja
Application granted granted Critical
Publication of JP5806545B2 publication Critical patent/JP5806545B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

【課題】逆方向漏れ電流が抑制されてなるとともに二次元電子ガスの移動度が高い半導体素子を提供する。
【解決手段】下地基板1の上にIII族窒化物層群を(0001)結晶面が基板面に対し略平行となるよう積層形成したエピタキシャル基板10と、ショットキー性電極9と、を備える半導体素子20において、エピタキシャル基板10が、Inx1Aly1Gaz1N(x1+y1+z1=1、z1>0)なる組成の第1のIII族窒化物からなるチャネル層3と、Inx2Aly2N(x2+y2=1、x2>0、y2>0)なる組成の第2のIII族窒化物からなる障壁層5と、GaNからなり障壁層5に隣接する中間層6aと、AlNからなり中間層に隣接するキャップ6b層と、を備え、ショットキー性電極9がキャップ層6bに接合されてなるようにする。
【選択図】図1

Description

本発明は、半導体素子に関し、特に、III族窒化物半導体により構成される多層構造エピタキシャル基板と金属電極とのショットキーダイオード接合を有する半導体素子に関する。
窒化物半導体は、高い絶縁破壊電界、高い飽和電子速度を有することから次世代の高周波/ハイパワーデバイス用半導体材料として注目されている。例えば、AlGaNからなる障壁層とGaNからなるチャネル層とを積層してなるHEMT(高電子移動度トランジスタ)素子は、窒化物材料特有の大きな分極効果(自発分極効果とピエゾ分極効果)により積層界面(ヘテロ界面)に高濃度の二次元電子ガス(2DEG)が生成するという特徴を活かしたものである(例えば、非特許文献1参照)。
HEMT素子用基板の下地基板として、例えばシリコンやSiCのような、III族窒化物とは異なる組成の単結晶(異種単結晶)を用いることがある。この場合、歪み超格子層や低温成長緩衝層などの緩衝層が、初期成長層として下地基板の上に形成されるのが一般的である。よって、下地基板の上に障壁層、チャネル層、および緩衝層をエピタキシャル形成してなるのが、異種単結晶からなる下地基板を用いたHEMT素子用基板の最も基本的な構成態様となる。これに加えて、障壁層とチャネル層の間に、二次元電子ガスの空間的な閉じ込めを促進する目的として、厚さ1nm前後のスペーサ層が設けられることもある。スペーサ層は、例えばAlNなどで構成される。さらには、HEMT素子用基板の最表面におけるエネルギー準位の制御や、電極とのコンタクト特性の改善を目的として、例えばn型GaN層や超格子層からなるキャップ層が、障壁層の上に形成される場合もある。
チャネル層をGaNにて形成し、障壁層をAlGaNにて形成するという、最も一般的な構成の窒化物HEMT素子の場合、HEMT素子用基板に内在する二次元電子ガスの濃度は、障壁層を形成するAlGaNのAlNモル分率の増加に伴い増加することが知られている(例えば、非特許文献2参照)。二次元電子ガス濃度を大幅に増やすことができれば、HEMT素子の可制御電流密度、すなわち取り扱える電力密度を大幅に向上させることが可能と考えられる。
また、チャネル層をGaNにて形成し、障壁層をInAlNにて形成したHEMT素子のように、ピエゾ分極効果への依存が小さくほぼ自発分極のみにより高い濃度で二次元電子ガスを生成できる歪の少ない構造を有するHEMT素子も注目されている(例えば、非特許文献3参照)。
"Highly Reliable 250W High Electron Mobility Transistor Power Amplifier", TOSHIHIDE KIKKAWA, Jpn. J. Appl. Phys. 44,(2005),4896 "Gallium Nitride Based High Power Heterojuncion Field Effect Transistors: process Development and Present Status at USCB", Stacia Keller, Yi-Feng Wu, Giacinta Parish, Naiqian Ziang, Jane J. Xu, Bernd P. Keller, Steven P. DenBaars, and Umesh K. Mishra, IEEE Trans. Electron Devices 48, (2001), 552 "Can InAlN/GaN be an alternative to high power/high temperature AlGaN/GaN devices?", F. Medjdoub, J.-F. Carlin, M. Gonschorek, E. Feltin, M.A. Py, D. Ducatteau, C. Gaquiere, N. Grandjean, and E. Kohn, IEEE IEDM Tech. Digest in IEEE IEDM 2006, 673
チャネル層をGaNにて形成し、障壁層をInAlNにて形成することにより、HEMT素子を作製する場合、ゲート電極と障壁層との接合はショットキー接合とされるのが一般的である。しかしながら、この場合、InAlN層の組成や形成条件によっては、ショットキー接合への逆方向電圧印加の際に、大きな漏れ電流が発生することがある。
この漏れ電流は、InAlN層上にAlNからなるコンタクト層を形成することによって低減させることが可能であるが、一方で、係る構成のHEMT素子には、二次元電子ガスの移動度が低いという問題が生じる。これは、AlN層の格子定数がInAlN層に比して小さいために、InAlN層に歪が発生することが原因であると推定される。
本発明は、以上の課題に鑑みてなされたものであり、逆方向漏れ電流が抑制されてなるとともに二次元電子ガスの移動度が高い半導体素子を提供することを目的とする。
上記課題を解決するため、請求項1の発明は、下地基板の上にIII族窒化物層群を(0001)結晶面が基板面に対し略平行となるよう積層形成したエピタキシャル基板と、ショットキー性電極と、を備える半導体素子であって、前記エピタキシャル基板が、Inx1Aly1Gaz1N(x1+y1+z1=1、z1>0)なる組成の第1のIII族窒化物からなるチャネル層と、Inx2Aly2N(x2+y2=1、x2>0、y2>0)なる組成の第2のIII族窒化物からなる障壁層と、GaNからなり前記障壁層に隣接する中間層と、AlNからなり前記中間層に隣接するキャップ層と、を備え、前記ショットキー性電極が前記キャップ層に接合されてなる、ことを特徴とする。
請求項2の発明は、請求項1に記載の半導体素子であって、前記中間層の膜厚が0.5nm以上である、ことを特徴とする。
請求項3の発明は、請求項2に記載の半導体素子であって、前記中間層の膜厚が6nm以下である、ことを特徴とする。
請求項4の発明は、請求項1ないし請求項3のいずれかに記載の半導体素子であって、前記キャップ層の膜厚が0.5nm以上6nm以下である、ことを特徴とする。
請求項5の発明は、請求項1ないし請求項4のいずれかに記載の半導体素子であって、前記第2のIII族窒化物のバンドギャップが前記第1のIII族窒化物のバンドギャップよりも大きい、ことを特徴とする。
請求項6の発明は、請求項1ないし請求項5のいずれかに記載の半導体素子であって、前記ショットキー性電極がNi、Pt、Pd、Auの少なくとも1つを含んでなる、ことを特徴とする。
請求項7の発明は、請求項1ないし請求項6のいずれかに記載の半導体素子であって、前記キャップ層の自乗平均表面粗さが0.5nm以下である、ことを特徴とする。
請求項8の発明は、請求項1ないし請求項7のいずれかに記載の半導体素子であって、前記第2のIII族窒化物が、Inx2Aly2N(x2+y2=1、0.14≦x2≦0.24)である、ことを特徴とする。
請求項9の発明は、請求項1ないし請求項8のいずれかに記載の半導体素子であって、前記第1のIII族窒化物がAly1Gaz1N(y1+z1=1、z1>0)である、ことを特徴とする。
請求項10の発明は、請求項9に記載の半導体素子であって、前記第1のIII族窒化物がGaNである、ことを特徴とする。
請求項11の発明は、請求項9または請求項10に記載の半導体素子であって、前記チャネル層と前記障壁層との間に、Inx3Aly3Gaz3N(x3+y3+z3=1、y3>0)なる組成を有し、前記第2のIII族窒化物よりもバンドギャップが大きい第3のIII族窒化物からなるスペーサ層をさらに備える、ことを特徴とする。
請求項12の発明は、請求項11に記載の半導体素子であって、前記第3のIII族窒化物がAlNである、ことを特徴とする。
請求項13の発明は、請求項1ないし請求項12のいずれかに記載の半導体素子であって、オーミック性電極が前記ショットキー性電極と同一の前記キャップ層に接合されてなる、ことを特徴とする。
請求項14の発明は、請求項13に記載の半導体素子であるHEMT素子であって、前記ショットキー性電極がゲート電極であり、前記オーミック性電極がソース電極およびドレイン電極である、ことを特徴とする。
請求項15の発明は、下地基板の上にIII族窒化物層群を(0001)結晶面が基板面に対し略平行となるよう積層形成したエピタキシャル基板と、ショットキー性電極と、を備える半導体素子の製造方法であって、下地基板の上に、Inx1Aly1Gaz1N(x1+y1+z1=1、z1>0)なる組成の第1のIII族窒化物にてチャネル層を形成するチャネル層形成工程と、前記チャネル層の上に、Inx2Aly2N(x2+y2=1、x2>0、y2>0)なる組成の第2のIII族窒化物にて障壁層を形成する障壁層形成工程と、GaNにて中間層を前記障壁層に隣接形成する中間層形成工程と、AlNにてキャップ層を前記中間層に隣接形成するキャップ層形成工程と、前記キャップ層にショットキー性電極を接合形成するショットキー性電極形成工程と、を備えることを特徴とする。
請求項16の発明は、請求項15に記載の半導体素子の製造方法であって、前記中間層を0.5nm以上の厚みに形成する、ことを特徴とする。
請求項17の発明は、請求項16に記載の半導体素子の製造方法であって、前記中間層を6nm以下の厚みに形成する、ことを特徴とする。
請求項18の発明は、請求項15ないし請求項17のいずれかに記載の半導体素子の製造方法であって、前記キャップ層を0.5nm以上6nm以下の厚みに形成する、ことを特徴とする。
請求項19の発明は、請求項15ないし請求項18のいずれかに記載の半導体素子の製造方法であって、前記第2のIII族窒化物のバンドギャップが前記第1のIII族窒化物のバンドギャップよりも大きい、ことを特徴とする。
請求項20の発明は、請求項15ないし請求項19のいずれかに記載の半導体素子の製造方法であって、前記ショットキー性電極形成工程においては、前記ショットキー性電極をNi、Pt、Pd、Auの少なくとも1つを含むように形成する、ことを特徴とする。
請求項21の発明は、請求項15ないし請求項20のいずれかに記載の半導体素子の製造方法であって、前記第2のIII族窒化物が、Inx2Aly2N(x2+y2=1、0.14≦x2≦0.24)である、ことを特徴とする。
請求項22の発明は、請求項15ないし請求項21のいずれかに記載の半導体素子の製造方法であって、前記第1のIII族窒化物がAly1Gaz1N(y1+z1=1、z1>0)である、ことを特徴とする。
請求項23の発明は、請求項22に記載の半導体素子の製造方法であって、前記第1のIII族窒化物がGaNである、ことを特徴とする。
請求項24の発明は、請求項22または請求項23に記載の半導体素子の製造方法であって、前記チャネル層と前記障壁層との間に、Inx3Aly3Gaz3N(x3+y3+z3=1、y3>0)なる組成を有し、前記第2のIII族窒化物よりもバンドギャップが大きい第3のIII族窒化物にてスペーサ層を形成するスペーサ層形成工程、をさらに備えることを特徴とする。
請求項25の発明は、請求項24に記載の半導体素子の製造方法であって、前記第3のIII族窒化物がAlNである、ことを特徴とする。
請求項26の発明は、請求項15ないし請求項25のいずれかに記載の半導体素子の製造方法であって、前記ショットキー性電極が形成される前記キャップ層にオーミック性電極を接合形成するオーミック性電極形成工程、をさらに備えることを特徴とする。
請求項1ないし請求項26の発明によれば、障壁層の上にGaNからなる中間層とAlNからなるキャップ層をこの順に設け、該キャップ層に対してショットキー接合により電極形成を行い、MIS接合を形成することで、障壁層の上に直接にショットキー接合により電極形成を行う場合に比して、逆方向漏れ電流が抑制され、かつ二次元電子ガスの移動度が高く保たれた半導体素子が実現される。
本発明の実施の形態に係る半導体素子の一態様であるHEMT素子20の構成を概略的に示す断面模式図である。 キャップ層6bの表面粗さとその厚みとの関係を例示する図である。 逆方向漏れ電流とキャップ層6bとの関係を例示する図である。 オーミック性電極におけるコンタクト抵抗をキャップ層6bの厚みに対してプロットした図である。
<HEMT素子の構成>
図1は、本発明の実施の形態に係る半導体素子の一態様であるHEMT素子20の構成を概略的に示す断面模式図である。HEMT素子20は、概略、エピタキシャル基板10の上に、ソース電極7、ドレイン電極8、およびゲート電極9を設けた構成を有する。具体的には、エピタキシャル基板10は、下地基板1と、バッファ層2と、チャネル層3と、スペーサ層4と、障壁層5と、中間層6aと、キャップ層6bとが積層形成された構成を有する。そして、キャップ層6bの上に、ソース電極7、ドレイン電極8、およびゲート電極9が形成されてなる。なお、図1における各層の厚みの比率は、実際のものを反映したものではない。バッファ層2と、チャネル層3と、スペーサ層4と、障壁層5と、中間層6aと、キャップ層6bとはいずれも、MOCVD法(有機金属化学的気相成長法)を用いてエピタキシャル形成される(詳細は後述)のが好適な一例である。
以降においては、各層の形成にMOCVD法を用いる場合を対象に説明を行うが、良好な結晶性を有するように各層を形成できる手法であれば、他のエピタキシャル成長手法、例えば、MBE、HVPE、LPEなど、種々の気相成長法や液相成長法の中から適宜選択した手法を用いてもよいし、異なる成長法を組み合わせて用いる態様であってもよい。
下地基板1は、その上に結晶性の良好な窒化物半導体層を形成できるものであれば、特段の制限なく用いることができる。単結晶6H−SiC基板を用いるのが好適な一例であるが、サファイア、Si、GaAs、スピネル、MgO、ZnO、フェライトなどからなる基板を用いる態様であってもよい。
また、バッファ層2は、その上に形成されるチャネル層3、スペーサ層4、障壁層5、中間層6a、およびキャップ層6bの結晶品質を良好なものとするべく、AlNにて数百nm程度の厚みに形成される層である。例えば、200nmの厚みに形成するのが好適な一例である。
チャネル層3は、Inx1Aly1Gaz1N(x1+y1+z1=1)なる組成のIII族窒化物(第1のIII族窒化物)にて、数μm程度の厚みに形成される層である。好ましくは、チャネル層3はAly1Gaz1N(y1+z1=1、z1>0)組成のIII族窒化物にて形成され、より好ましくは、GaNにて形成される。
一方、障壁層5は、Inx2Aly2N(x2+y2=1、x2>、y2>0)なる組成を有するIII族窒化物(第2のIII族窒化物)にて、数nm〜数十nm程度の厚みに形成される層である。好ましくは0.14≦x2≦0.24である。x2の値がこの範囲の外にある場合は、障壁層5に作用する歪みが±0.5%を超えることとなり、ショットキー接合の信頼性に及ぼす結晶歪みの影響が大きくなり始めるため好ましくない。
なお、チャネル層3と障壁層5とは、前者を構成する第1のIII族窒化物のバンドギャップよりも後者を構成する第2のIII族窒化物のバンドギャップの方が大きいという組成範囲をみたして形成される。
中間層6aは、GaNにて形成される層である。また、キャップ層6bは、AlNにて形成される層である。HEMT素子20がこれら中間層6aとキャップ層6bを有することの作用効果については後述する。
さらに、チャネル層3と障壁層5の間にはスペーサ層4が設けられる。スペーサ層4は、Inx3Aly3Gaz3N(x3+y3+z3=1)なる組成を有し、少なくともAlを含む(y3>0をみたす)III族窒化物(第3のIII族窒化物)にて、0.5nm〜1.5nmの範囲の厚みで形成される層である。
このような層構成を有するエピタキシャル基板10においては、チャネル層3とスペーサ層4の界面に(より詳細には、チャネル層3の当該界面近傍に)二次元電子ガスが高濃度に存在する二次元電子ガス領域3eが形成される。
好ましくは、スペーサ層4と障壁層5とはそれぞれ、前者を構成する第3のIII族窒化物のバンドギャップが、後者を構成する第2のIII族窒化物のバンドギャップ以上という組成範囲をみたして形成される。係る場合、合金散乱効果が抑制され、二次元電子ガスの濃度および移動度が向上する。より好ましくは、スペーサ層4はAlN(x3=0、y3=1、z3=0)にて形成される。係る場合、スペーサ層4がAlとNの二元系化合物となるので、Gaを含む3元系化合物の場合よりもさらに合金散乱効果が抑制され、二次元電子ガスの濃度および移動度が向上することとなる。なお、係る組成範囲についての議論は、スペーサ層4が不純物を含有することを除外するものではない。
なお、エピタキシャル基板10においてスペーサ層4を備えるのは必須の態様ではなく、チャネル層3の上に直接に障壁層5を形成する態様であってもよい。係る場合、チャネル層3と障壁層5の界面に二次元電子ガス領域3eが形成される。
ソース電極7とドレイン電極8とは、それぞれの金属層が十数nm〜百数十nm程度の厚みを有する多層金属電極であり、キャップ層6bとの間にオーミック性接触を有してなる。ソース電極7およびドレイン電極8に用いる金属は、エピタキシャル基板10に対し(キャップ層6bに対し)良好なオーミック性接触が得られる金属材料にて形成されればよい。Ti/Al/Ni/Auからなる多層金属電極をソース電極7およびドレイン電極8として形成するのが好適であるが、これに限定されるものでなく、例えばTi/Al/Pt/AuあるいはTi/Alなどからなる多層金属電極を形成する態様であってもよい。ソース電極7およびドレイン電極8の形成は、フォトリソグラフィープロセスと真空蒸着法とにより行うことができる。
一方、ゲート電極9は、一または複数の金属層が十数nm〜百数十nm程度の厚みを有するように形成されてなる単層または多層の金属電極であり、障壁層5との間にショットキー性接触を有してなる。ゲート電極9は、Pd、Pt、Ni、Auなどの仕事関数が高い金属を形成材料として形成されるのが好適である。あるいは、上述の各金属同士の、あるいは各金属とAlなどとの多層金属膜として形成される態様であってもよい。なお、AlNからなるキャップ層6bを設けることから、上記に加えて、Ti/Alを含む多層金属膜など、III族窒化物半導体との間でオーミック接合をなす場合に用いられる金属材料も、ゲート電極9の形成材料として利用可能である。なぜならば、この場合、バンドギャップが大きいAlNと仕事関数が比較的小さい金属材料とが接合されるので、比較的容易にショットキー性のコンタクトが得られるからである。ゲート電極9の形成は、フォトリソグラフィープロセスと真空蒸着法とにより行うことができる。
<キャップ層とゲート電極とのショットキー接合>
上述のような構成を有するHEMT素子20においては、ゲート電極9と、キャップ層6bと、障壁層5とによって(厳密には中間層6aを介して)、いわゆるMIS(metal-insulator-semiconductor)接合が形成されてなる。このようなMIS接合を有することで、HEMT素子20は、障壁層5に対して直接にゲート電極9をショットキー接合させた従来のHEMT素子よりも、原理上、逆方向漏れ電流が抑制されてなる。具体的な値は各部の組成や厚みなどによっても異なるが、本実施の形態のようにHEMT素子20を構成した場合には、例えば−100V印加時の漏れ電流が、障壁層に直接にゲート電極を形成した場合の1/100から1/1000程度にまで抑制される。
図2ないし図4は、HEMT素子においてゲート電極9の直下にキャップ層6bを具備することの効果、つまりは、HEMT素子が上述のMIS接合を有することの効果を説明するための図である。具体的には、図2は、障壁層5の組成をIn0.14Al0.86N、In0.18Al0.82N、In0.24Al0.76Nの3水準に違えた3種類のHEMT素子について、キャップ層6bの表面粗さとその厚みとの関係を例示している。ただし、係るHEMT素子については議論の簡単のため中間層6aは設けていない。また、図3は、同じHEMT素子について、逆方向漏れ電流とキャップ層6bの厚みとの関係を例示している。さらに、図4は、同じHEMT素子についてコンタクト抵抗とキャップ層6bの厚みとの関係を例示している。
図2および図3においてはいずれも、キャップ層6bの厚みが0nmの場合(つまりはキャップ層6bを設けない場合)に値が最大で、キャップ層6bの厚みが0.5nmまでの間で値が急落し、0.5nm以上では0nmのときよりも小さな値(0.5nm以下)で概ね横ばいとなっている。このことは、キャップ層6bを0.5nm以上の厚みに形成することで、その表面平坦性が向上し、かつ、係る表面平坦性の優れたキャップ層6bの上にゲート電極9を設けることで、逆方向漏れ電流が低減されることを意味している。また、障壁層5の表面よりもキャップ層6bの表面の方が平坦化される。
一方、図4においては、キャップ層6bの厚みが6nm以下の範囲ではコンタクト抵抗が1.0×10-5/Ωcm2以下でほぼ一定であるのに対して、キャップ層6bの厚みが6nmを越えると、コンタクト抵抗が急激に増大することがわかる。係る結果は、オーミック性電極におけるコンタクト抵抗を十分に低い値に保つという観点からは、キャップ層6bの厚みを6nm以下とするのがよいことを示している。
以上のことから、キャップ層6bは、0.5nm以上6nm以下の厚みに形成するのが好適であることがわかる。
<中間層と二次元電子ガス濃度との関係>
また、本実施の形態に係るHEMT素子20は、障壁層5とキャップ層6bとの間に中間層6aを備える。これは、二次元電子ガスの移動度を高く保つためである。より具体的には、上述のようなキャップ層6bを障壁層5の上に直接に形成した場合、二次元電子ガスの移動度が低下してしまうので、本実施の形態においては、これを抑制するために、障壁層5の上に中間層6aを形成し、その上にキャップ層6bを形成する。
なお、中間層6aの厚みは、0.5nm以上6nm以下とするのが好適である。0.5nm以上の厚みに形成することで、中間層6aを設けない場合に比して高い移動度が実現される。一方、中間層6aの厚みの上限は、シート抵抗に影響を及ぼさない低く保たれる範囲で定めればよい。例えば、キャップ層6bの厚みが0.5nm以上6nm以下の場合であれば、中間層6aの厚みを、(0.5nm以上)6nm以下とすることで、シート抵抗が300Ω/□以下に低減される。
なお、本実施の形態に係るHEMT素子20は、中間層6aおよびキャップ層6bが障壁層5の上に全面的に形成され、ゲート電極9の直下のみならずソース電極7およびドレイン電極8の直下にまで一様に備わっている点についても特徴的であるといえる。本来的には、ゲート電極9の直下にのみ中間層6aおよびキャップ層6bが存在すれば、逆方向漏れ電流の低減という作用効果が得られるものの、そのような構成を実現するには、フォトリソグラフィープロセスやエッチングプロセスなどが必要となり、コスト高の要因となる。本実施の形態においては、中間層6aおよびキャップ層6bを障壁層5の上に全面的に形成するのみであり、そうしたプロセスを行わないので、コストを抑制しつつ特性の優れたHEMT素子が実現されているともいえる。もちろん、ソース電極7およびドレイン電極8を障壁層5の上に直接に形成するべく、両電極の形成前に、キャップ層6b、中間層6a、障壁層5の一部をエッチングによって取り除く、いわゆるリセスオーミックを実施したうえで、これによって露出した障壁層5の上にソース電極7およびドレイン電極8を形成する態様であってもよい。
<HEMT素子の作製方法>
次に、上述のような構成を有するHEMT素子20を作製する方法を説明する。
まず、エピタキシャル基板10の作製は、公知のMOCVD炉を用いて行うことができる。具体的には、In、Al、Gaについての有機金属(MO)原料ガス(TMI、TMA、TMG)と、アンモニアガス(NH3ガス)と、水素ガスと、窒素ガスとをリアクタ内に供給可能に構成されてなるMOCVD炉を用いる。
まず、例えば(0001)面方位の2インチ径の6H−SiC基板などを下地基板1として用意し、該下地基板1を、MOCVD炉のリアクタ内に設けられたサセプタの上に設置する。リアクタ内を真空ガス置換した後、リアクタ内圧力を5kPa〜50kPaの間の所定の値に保ちつつ、水素/窒素混合フロー状態の雰囲気を形成した上で、サセプタ加熱によって基板を昇温する。
サセプタ温度がバッファ層形成温度である950℃〜1250℃の間の所定温度(例えば1050℃)に達すると、Al原料ガスとNH3ガスをリアクタ内に導入し、バッファ層2としてのAlN層を形成する。
AlN層が形成されると、サセプタ温度を所定のチャネル層形成温度に保ち、チャネル層3の組成に応じた有機金属原料ガスとアンモニアガスをリアクタ内に導入し、チャネル層3としてのInx1Aly1Gaz1N層(ただし、x1=0、0≦y1≦0.3)を形成する。ここで、チャネル層形成温度T1は、950℃以上1250℃以下の温度範囲から、チャネル層3のAlNモル分率y1の値に応じて定められる値である。なお、チャネル層3形成時のリアクタ圧力には特に限定はなく、10kPaから大気圧(100kPa)の範囲から適宜選ぶことができる。
Inx1Aly1Gaz1N層が形成されると、次いで、サセプタ温度を保ったまま、リアクタ内を窒素ガス雰囲気に保ち、リアクタ圧力を10kPaとした後、有機金属原料ガスとアンモニアガスとをリアクタ内に導入して、スペーサ層4としてのInx3Aly3Gaz3N層を所定の厚みに形成する。
Inx3Aly3Gaz3N層が形成されると、障壁層5となるInx2Aly2Nを形成するために、サセプタ温度を650℃以上800℃以下の所定の障壁層形成温度に保ち、リアクタ内圧力が1kPa〜30kPaの間の所定の値に保たれるようにする。そして、アンモニアガスと、障壁層5の組成に応じた流量比の有機金属原料ガスとを、いわゆるV/III比が3000以上20000以下の間の所定の値となるようにリアクタ内に導入する。
Inx3Aly3Gaz3N層が形成されると、引き続いて、サセプタ温度を所定の中間層形成温度としたうえで、TMGとNH3ガスとを供給して、中間層6aとしてのGaN層を所定の厚みに形成する。
GaN層が形成されると、引き続いて、サセプタ温度を所定のキャップ層形成温度としたうえで、TMAとNH3ガスとを供給して、キャップ層6bとしてのAlN層を所定の厚みに形成する。キャップ層6bが形成されれば、エピタキシャル基板10が作製されたことになる。
エピタキシャル基板10が形成されると、これを用いてHEMT素子が形成される。以降の各工程は、公知の手法で実現されるものである。
まず、フォトリソグラフィープロセスと真空蒸着法を用いて、キャップ層6bの形成対象個所に、ソース電極7およびドレイン電極8となる多層金属パターンを形成する。
次いで、ソース電極7およびドレイン電極8のオーミック性を良好なものにするため、これらソース電極7およびドレイン電極8が形成されたエピタキシャル基板10に対し、650℃〜1000℃の所定温度の窒素ガス雰囲気中において、数十秒間の熱処理を施す。
続いて、フォトリソグラフィープロセスと真空蒸着法を用いて、キャップ層6bの形成対象個所に、ゲート電極9となる多層金属パターンを形成する。
その後、ダイシングにより所定のサイズにチップ化することで、多数個のHEMT素子20が得られる。得られたHEMT素子20に対しては、適宜にダイボンディングやワイヤボンディングが施される。
以上、説明したように、本実施の形態によれば、障壁層の上にGaNからなる中間層を設け、さらに、AlNからなるキャップ層を設け、該キャップ層に対してショットキー接合によりゲート電極の形成を行い、MIS接合を形成することで、障壁層の上に直接にショットキー接合によりゲート電極の形成を行う場合に比して、逆方向漏れ電流が大きく低減され、かつ二次元電子ガスの移動度が高いHEMT素子が実現される。
<変形例>
上述の実施の形態においては、HEMT素子を対象として説明を行っているが、ゲート電極と障壁層との間にMIS接合を形成する態様は、ショットキー接合を用いる他の電子デバイス、例えば、ショットキーバリアダイオードや、フォトセンサなどにも、同様に適用が可能である。
また、上述の実施の形態においては、キャップ層6bをAlNにて形成しているが、キャップ層6bは、第2のIII族窒化物のバンドギャップよりも大きく、絶縁性を有するIII族窒化物にて形成される態様であってもよい。ここで、III族窒化物が絶縁性を有するとは、比抵抗が108Ωcm以上であることを意味する。係る範囲の比抵抗を有していれば、上述するMIS接合が好適に形成される。また、係る比抵抗をみたす限りにおいて、キャップ層6bにおいて導電性不純物の存在は許容される。
(実施例1、比較例1、および比較例)
まず、実施例1として、中間層6aおよびキャップ層6bを備える、上述の実施の形態に係るエピタキシャル基板10を作成し、その二次元電子ガス濃度と、二次元電子ガスの移動度と、シート抵抗とを評価した。そして、係るエピタキシャル基板10を用いて、ゲート電極9の構成が異なる、4種類のHEMT素子20を作製し、それぞれのHEMT素子20について、−100V印加時の逆方向漏れ電流を評価した。
一方、比較例1として、中間層6aおよびキャップ層6bをともに備えていないエピタキシャル基板を用意し、その二次元電子ガス濃度と、二次元電子ガスの移動度と、シート抵抗とを評価した。また、係るエピタキシャル基板に対して、実施例1と同様にゲート電極9を形成することによって4種類のHEMT素子を作製し、それぞれのHEMT素子について、−100V印加時の逆方向漏れ電流を評価した。
さらに、比較例2として、中間層6aを備えずキャップ層6bのみを備えるエピタキシャル基板を用意し、その二次元電子ガス濃度と、二次元電子ガスの移動度と、シート抵抗とを評価した。また、係るエピタキシャル基板に対して、実施例1と同様にゲート電極9を形成することによって4種類のHEMT素子を作製し、それぞれのHEMT素子について、−100V印加時の逆方向漏れ電流を評価した。
すなわち、3種類のエピタキシャル基板に対してそれぞれ、構成が異なる4種類のゲート電極9を形成することにより、計12種類のHEMT素子を得た。
はじめに、エピタキシャル基板10を作製した。その際、スペーサ層4の形成までは、全てのエピタキシャル基板10について同一の条件で行った。
具体的には、まず、下地基板1として(0001)面方位の2インチ径の6H−SiC基板を複数枚用意した。厚みは300μmであった。それぞれの基板について、MOCVD炉リアクタ内に設置し、真空ガス置換した後、リアクタ内圧力を30kPaとし、水素/窒素混合フロー状態の雰囲気を形成した。次いで、サセプタ加熱によって下地基板1を昇温した。
サセプタ温度が1050℃に達すると、TMAバブリングガスとアンモニアガスをリアクタ内に導入し、バッファ層として厚さ200nmのAlN層を形成した。
続いて、サセプタ温度を所定の温度とし、有機金属原料ガスとしてのTMGバブリングガスとアンモニアガスとを所定の流量比でリアクタ内に導入し、チャネル層3としてのGaN層を2μmの厚みに形成した。
チャネル層3が得られると、リアクタ圧力を10kPaとし、次いでTMAバブリングガスとアンモニアガスをリアクタ内に導入し、スペーサ層4として厚さ1nmのAlN層を形成した。
スペーサ層4を形成した後、続いて、障壁層5を15nmの厚みに形成した。障壁層5の組成は、In0.18Al0.82Nとした。また、サセプタ温度は745℃とした。
障壁層5の形成後、実施例1については、サセプタ温度を障壁層形成温度である745℃に保ったまま、中間層6aとしてのGaN層を3nmの厚みに形成し、続いて、キャップ層6bとしてのAlN層を3nmの厚みに形成した。比較例2については、キャップ層6bを3nmの厚みに形成した。比較例1については、何も形成しなかった。
それぞれのエピタキシャル基板に対して最後の層を形成した後、サセプタ温度を室温付近まで降温し、リアクタ内を大気圧に復帰させた後、作製されたエピタキシャル基板10を取り出した。以上の手順により、それぞれのエピタキシャル基板10が得られた。
次いで、それぞれのエピタキシャル基板の一部をダイシングにより切り出し、得られた評価用試料を対象に、ホール効果測定を行った。これにより、それぞれのエピタキシャル基板についての、二次元電子ガス濃度と、二次元電子ガス移動度と、シート抵抗とを求めた。
続いて、それぞれのエピタキシャル基板の上面の、ソース電極7およびドレイン電極8の形成対象箇所に、フォトリソグラフィープロセスと真空蒸着法とを用いて、Ti/Al/Ni/Au(それぞれの膜厚は25/75/15/100nm)からなる電極パターンを形成した。その後、窒素中で800℃、30秒間の熱処理を行った。
続いて、それぞれのエピタキシャル基板の上面の、ゲート電極9の形成対象個所に、フォトリソグラフィープロセスと真空蒸着法とを用いて、ゲート電極9のパターンを形成した。ゲート電極9としては、Ni/Au(膜厚6nm/12nm)、Pd/Au(6nm/12nm)、およびPt/Au(6nm/12nm)の3種類の多層金属電極と、Auのみの単層金属電極(12nm)との計4種類を形成した。なお、ゲート電極9は、ゲート長を1μm、ゲート幅を100μmとし、ソース電極7との間隔が2μm、ドレイン電極との間隔が10μmとなるように形成した。
最後に、ダイシングによりチップ化することで、HEMT素子を得た。
得られたHEMT素子について、ダイボンディングおよびワイヤボンディングを行ったうえで、−100V印加時の逆方向漏れ電流を測定した。
それぞれのHEMT素子について、エピタキシャル基板の中間層6aおよびキャップ層6bの構成と、二次元電子ガス濃度と、二次元電子ガスの移動度と、シート抵抗と、HEMT素子ごとのゲート電極の構成と−100V印加時の逆方向漏れ電流の測定結果とを、表1に一覧にして示す。
Figure 2013033877
表1に示す結果からは、実施例1に係る全てのHEMT素子において、つまりは、ゲート電極9の構成によらず、その逆方向漏れ電流が、中間層6aおよびキャップ層6b以外を同一の条件として作製した比較例1に係るHEMT素子における逆方向漏れ電流の1/100から1/1000程度にまで抑制されていることがわかる。また、二次元電子ガス濃度と、二次元電子ガス移動度と、シート抵抗とについては、実施例1と比較例1との間でほとんど差異がないこともわかる。
これに対して、中間層6aを設けずキャップ層6bのみを設けた比較例2のHEMT素子の場合、逆方向漏れ電流については実施例1と同程度にまで抑制されているものの、二次元電子ガス移動度は実施例1および比較例1よりもより低く、シート抵抗が実施例1および比較例1よりも高くなっていることがわかる。
以上の結果は、キャップ層6bを障壁層5の上に直接に設けることには、漏れ電流低減という効果がある一方で、二次元電子ガスの移動度やシート抵抗の低下を引き起こすという短所があること、および、中間層6aを両層の間に介在させることで、漏れ電流低減というキャップ層6bの効果を維持しつつ、二次元電子ガスの移動度の低下によるシート抵抗の悪化を抑止することができるということを、指し示している。
換言すれば、障壁層5の上に中間層6aを設けたうえでキャップ層6bを設けることが、二次元電子ガス濃度およびシート抵抗を好適に保ちつつ、逆方向漏れ電流を低減させるうえで効果があることを示している。
(実施例2)
本実施例では、中間層6aを設けない場合を含め、中間層6aの厚みを種々に違えたHEMT素子を作製した。具体的には、中間層6aの厚みを0nm、0.1nm、0.5nm、1.5nm、3nm、6nm、8nm、10nmの8水準とする一方、ゲート電極9の形成材料をNi/Au(膜厚6nm/12nm)のみとしたほかは、実施例1と同様の手順でHEMT素子を作製した。
なお、係るHEMT素子作製の途中、エピタキシャル基板が得られた時点で実施例1と同様に、ホール効果測定を行った。これにより、それぞれのエピタキシャル基板についての、二次元電子ガス濃度と、二次元電子ガス移動度と、シート抵抗とを求めた。
また、得られたHEMT素子について、実施例1と同様に逆方向漏れ電流を測定した。
それぞれのHEMT素子について、エピタキシャル基板の膜厚と、二次元電子ガス濃度と、二次元電子ガスの移動度と、シート抵抗と、HEMT素子の−100V印加時の逆方向漏れ電流の測定結果とを、表2に一覧にして示す。
Figure 2013033877
表2に示すように、中間層6aの厚みが0.5nm以上の場合、中間層6aを設けない場合に比して、二次元電子ガスの移動度が高い値となっている。また、中間層6aの厚みが6nm以下の場合であれば、二次元電子ガス濃度の値が中間層6aを設けない場合と同程度となっている。さらには、中間層6aの厚みが0.5nm以上6nm以下の場合であれば、シート抵抗の値が、中間層6aを設けない場合に比して低い300Ω/□以下の値に保たれている。
一方で、表2に示すように、いずれのHEMT素子についても、漏れ電流の値は、表1に示した比較例1の場合(ゲート電極が同じNi/Auの場合)の1/1000以下にまで低減されている。
以上のことから、キャップ層6bと障壁層5との間に中間層6aを0.5nm以上の厚みに形成することで、漏れ電流が低減されているとともに、二次元電子ガスの移動度が高いHEMT素子が実現されることがわかる。さらに、中間層6aの厚みを6nm以下とすることで、二次元電子ガス濃度が高く、かつシート抵抗が小さいHEMT素子が実現されることがわかる。
1 下地基板
2 バッファ層
3 チャネル層
3e 二次元電子ガス領域
4 スペーサ層
5 障壁層
6a 中間層
6b キャップ層
7 ソース電極
8 ドレイン電極
9 ゲート電極
10 エピタキシャル基板
20 HEMT素子
I 接合界面

Claims (26)

  1. 下地基板の上にIII族窒化物層群を(0001)結晶面が基板面に対し略平行となるよう積層形成したエピタキシャル基板と、
    ショットキー性電極と、
    を備える半導体素子であって、
    前記エピタキシャル基板が、
    Inx1Aly1Gaz1N(x1+y1+z1=1、z1>0)なる組成の第1のIII族窒化物からなるチャネル層と、
    Inx2Aly2N(x2+y2=1、x2>0、y2>0)なる組成の第2のIII族窒化物からなる障壁層と、
    GaNからなり前記障壁層に隣接する中間層と、
    AlNからなり前記中間層に隣接するキャップ層と、
    を備え、
    前記ショットキー性電極が前記キャップ層に接合されてなる、
    ことを特徴とする半導体素子。
  2. 請求項1に記載の半導体素子であって、
    前記中間層の膜厚が0.5nm以上である、
    ことを特徴とする半導体素子。
  3. 請求項2に記載の半導体素子であって、
    前記中間層の膜厚が6nm以下である、
    ことを特徴とする半導体素子。
  4. 請求項1ないし請求項3のいずれかに記載の半導体素子であって、
    前記キャップ層の膜厚が0.5nm以上6nm以下である、
    ことを特徴とする半導体素子。
  5. 請求項1ないし請求項4のいずれかに記載の半導体素子であって、
    前記第2のIII族窒化物のバンドギャップが前記第1のIII族窒化物のバンドギャップよりも大きい、
    ことを特徴とする半導体素子。
  6. 請求項1ないし請求項5のいずれかに記載の半導体素子であって、
    前記ショットキー性電極がNi、Pt、Pd、Auの少なくとも1つを含んでなる、
    ことを特徴とする半導体素子。
  7. 請求項1ないし請求項6のいずれかに記載の半導体素子であって、
    前記キャップ層の自乗平均表面粗さが0.5nm以下である、
    ことを特徴とする半導体素子。
  8. 請求項1ないし請求項7のいずれかに記載の半導体素子であって、
    前記第2のIII族窒化物が、Inx2Aly2N(x2+y2=1、0.14≦x2≦0.24)である、
    ことを特徴とする半導体素子。
  9. 請求項1ないし請求項8のいずれかに記載の半導体素子であって、
    前記第1のIII族窒化物がAly1Gaz1N(y1+z1=1、z1>0)である、
    ことを特徴とする半導体素子。
  10. 請求項9に記載の半導体素子であって、
    前記第1のIII族窒化物がGaNである、
    ことを特徴とする半導体素子。
  11. 請求項9または請求項10に記載の半導体素子であって、
    前記チャネル層と前記障壁層との間に、Inx3Aly3Gaz3N(x3+y3+z3=1、y3>0)なる組成を有し、前記第2のIII族窒化物よりもバンドギャップが大きい第3のIII族窒化物からなるスペーサ層をさらに備える、
    ことを特徴とする半導体素子。
  12. 請求項11に記載の半導体素子であって、
    前記第3のIII族窒化物がAlNである、
    ことを特徴とする半導体素子。
  13. 請求項1ないし請求項12のいずれかに記載の半導体素子であって、
    オーミック性電極が前記ショットキー性電極と同一の前記キャップ層に接合されてなる、
    ことを特徴とする半導体素子。
  14. 請求項13に記載の半導体素子であるHEMT素子であって、
    前記ショットキー性電極がゲート電極であり、前記オーミック性電極がソース電極およびドレイン電極である、
    ことを特徴とするHEMT素子。
  15. 下地基板の上にIII族窒化物層群を(0001)結晶面が基板面に対し略平行となるよう積層形成したエピタキシャル基板と、
    ショットキー性電極と、
    を備える半導体素子の製造方法であって、
    下地基板の上に、Inx1Aly1Gaz1N(x1+y1+z1=1、z1>0)なる組成の第1のIII族窒化物にてチャネル層を形成するチャネル層形成工程と、
    前記チャネル層の上に、Inx2Aly2N(x2+y2=1、x2>0、y2>0)なる組成の第2のIII族窒化物にて障壁層を形成する障壁層形成工程と、
    GaNにて中間層を前記障壁層に隣接形成する中間層形成工程と、
    AlNにてキャップ層を前記中間層に隣接形成するキャップ層形成工程と、
    前記キャップ層にショットキー性電極を接合形成するショットキー性電極形成工程と、
    を備えることを特徴とする半導体素子の製造方法。
  16. 請求項15に記載の半導体素子の製造方法であって、
    前記中間層を0.5nm以上の厚みに形成する、
    ことを特徴とする半導体素子の製造方法。
  17. 請求項16に記載の半導体素子の製造方法であって、
    前記中間層を6nm以下の厚みに形成する、
    ことを特徴とする半導体素子の製造方法。
  18. 請求項15ないし請求項17のいずれかに記載の半導体素子の製造方法であって、
    前記キャップ層を0.5nm以上6nm以下の厚みに形成する、
    ことを特徴とする半導体素子の製造方法。
  19. 請求項15ないし請求項18のいずれかに記載の半導体素子の製造方法であって、
    前記第2のIII族窒化物のバンドギャップが前記第1のIII族窒化物のバンドギャップよりも大きい、
    ことを特徴とする半導体素子の製造方法。
  20. 請求項15ないし請求項19のいずれかに記載の半導体素子の製造方法であって、
    前記ショットキー性電極形成工程においては、前記ショットキー性電極をNi、Pt、Pd、Auの少なくとも1つを含むように形成する、
    ことを特徴とする半導体素子の製造方法。
  21. 請求項15ないし請求項20のいずれかに記載の半導体素子の製造方法であって、
    前記第2のIII族窒化物が、Inx2Aly2N(x2+y2=1、0.14≦x2≦0.24)である、
    ことを特徴とする半導体素子の製造方法。
  22. 請求項15ないし請求項21のいずれかに記載の半導体素子の製造方法であって、
    前記第1のIII族窒化物がAly1Gaz1N(y1+z1=1、z1>0)である、
    ことを特徴とする半導体素子の製造方法。
  23. 請求項22に記載の半導体素子の製造方法であって、
    前記第1のIII族窒化物がGaNである、
    ことを特徴とする半導体素子の製造方法。
  24. 請求項22または請求項23に記載の半導体素子の製造方法であって、
    前記チャネル層と前記障壁層との間に、Inx3Aly3Gaz3N(x3+y3+z3=1、y3>0)なる組成を有し、前記第2のIII族窒化物よりもバンドギャップが大きい第3のIII族窒化物にてスペーサ層を形成するスペーサ層形成工程、
    をさらに備えることを特徴とする半導体素子の製造方法。
  25. 請求項24に記載の半導体素子の製造方法であって、
    前記第3のIII族窒化物がAlNである、
    ことを特徴とする半導体素子の製造方法。
  26. 請求項15ないし請求項25のいずれかに記載の半導体素子の製造方法であって、
    前記ショットキー性電極が形成される前記キャップ層にオーミック性電極を接合形成するオーミック性電極形成工程、
    をさらに備えることを特徴とする半導体素子の製造方法。
JP2011169805A 2011-08-03 2011-08-03 半導体素子、hemt素子、および半導体素子の製造方法 Active JP5806545B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011169805A JP5806545B2 (ja) 2011-08-03 2011-08-03 半導体素子、hemt素子、および半導体素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011169805A JP5806545B2 (ja) 2011-08-03 2011-08-03 半導体素子、hemt素子、および半導体素子の製造方法

Publications (2)

Publication Number Publication Date
JP2013033877A true JP2013033877A (ja) 2013-02-14
JP5806545B2 JP5806545B2 (ja) 2015-11-10

Family

ID=47789500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011169805A Active JP5806545B2 (ja) 2011-08-03 2011-08-03 半導体素子、hemt素子、および半導体素子の製造方法

Country Status (1)

Country Link
JP (1) JP5806545B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016051935A1 (ja) * 2014-10-03 2017-04-27 日本碍子株式会社 半導体素子用のエピタキシャル基板およびその製造方法
JP2017085051A (ja) * 2015-10-30 2017-05-18 富士通株式会社 化合物半導体装置及びその製造方法
US10032899B2 (en) 2015-10-29 2018-07-24 Fujitsu Limited Semiconductor device and method therefor including multiple cap layers with amorphous layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227501A (ja) * 2007-03-12 2008-09-25 Cree Inc 窒化物ベースのトランジスタのための窒化アルミニウムを含むキャップ層およびその作製方法
US20100327322A1 (en) * 2009-06-25 2010-12-30 Kub Francis J Transistor with Enhanced Channel Charge Inducing Material Layer and Threshold Voltage Control
JPWO2009119356A1 (ja) * 2008-03-24 2011-07-21 日本碍子株式会社 半導体素子用エピタキシャル基板、半導体素子、および半導体素子用エピタキシャル基板の作製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227501A (ja) * 2007-03-12 2008-09-25 Cree Inc 窒化物ベースのトランジスタのための窒化アルミニウムを含むキャップ層およびその作製方法
JPWO2009119356A1 (ja) * 2008-03-24 2011-07-21 日本碍子株式会社 半導体素子用エピタキシャル基板、半導体素子、および半導体素子用エピタキシャル基板の作製方法
US20100327322A1 (en) * 2009-06-25 2010-12-30 Kub Francis J Transistor with Enhanced Channel Charge Inducing Material Layer and Threshold Voltage Control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016051935A1 (ja) * 2014-10-03 2017-04-27 日本碍子株式会社 半導体素子用のエピタキシャル基板およびその製造方法
US10332975B2 (en) 2014-10-03 2019-06-25 Ngk Insulators, Ltd. Epitaxial substrate for semiconductor device and method for manufacturing same
US10032899B2 (en) 2015-10-29 2018-07-24 Fujitsu Limited Semiconductor device and method therefor including multiple cap layers with amorphous layer
JP2017085051A (ja) * 2015-10-30 2017-05-18 富士通株式会社 化合物半導体装置及びその製造方法

Also Published As

Publication number Publication date
JP5806545B2 (ja) 2015-11-10

Similar Documents

Publication Publication Date Title
WO2014024310A1 (ja) 半導体素子、hemt素子、および半導体素子の製造方法
JP5782033B2 (ja) 半導体素子用エピタキシャル基板、半導体素子、pn接合ダイオード素子、および半導体素子用エピタキシャル基板の製造方法
JP6170893B2 (ja) 半導体素子用エピタキシャル基板の作製方法
JP5634681B2 (ja) 半導体素子
JP5758880B2 (ja) 半導体素子用エピタキシャル基板、半導体素子、および半導体素子用エピタキシャル基板の作製方法
WO2012026396A1 (ja) 半導体素子用エピタキシャル基板、半導体素子、半導体素子用エピタキシャル基板の作製方法、および半導体素子の作製方法
JP5580009B2 (ja) 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の作製方法
JP5562579B2 (ja) 半導体素子用エピタキシャル基板の作製方法
JP2014053639A (ja) 半導体素子用エピタキシャル基板の作製方法
WO2012014675A1 (ja) 半導体素子、hemt素子、および半導体素子の製造方法
JP5308290B2 (ja) 半導体素子用エピタキシャル基板、ショットキー接合構造、およびショットキー接合構造の漏れ電流抑制方法
US10332975B2 (en) Epitaxial substrate for semiconductor device and method for manufacturing same
JP5806545B2 (ja) 半導体素子、hemt素子、および半導体素子の製造方法
JP2012186268A (ja) エピタキシャル基板
JP2011222969A (ja) 半導体素子用エピタキシャル基板の製造方法、半導体素子用エピタキシャル基板、および半導体素子
WO2015005083A1 (ja) 窒化物半導体積層基板、窒化物半導体装置および窒化物半導体積層基板の製造方法
JP2011222964A (ja) 半導体素子用エピタキシャル基板および半導体素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150904

R150 Certificate of patent or registration of utility model

Ref document number: 5806545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150